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We propose a hybrid quasicontinuum model which captures both long and
short-wave instabilities of crystal lattices and combines the advantages of weakly
non-local (higher gradient) and strongly non-local (integral) continuum models.
To illustrate the idea, we study the simplest one-dimensional lattice exhibiting
commensurate and incommensurate short-wave instabilities. We explicitly
compute stability limits of the homogeneous states using both discrete and
quasicontinuum models. The new quasicontinuum approximation is shown to be
capable of reproducing a detailed structure of the discrete stability diagram.

1. Introduction

Lattice instabilities are responsible for various transformations of crystal structures.
Macroscopic or long-wave instabilities give rise to martensitic phase transforma-
tions, which proceed through the formation of finite-size domains of the new phase
[1, 2]. Microscopic or short-wave instabilities lead to the formation of multi-lattices
and modulated ‘‘tweed’’ patterns [2–4]. Both micro- and macroinstabilities are
detectable in the phonon dispersion spectra. The loss of stability takes place when the
minimum of the dispersion curve touches the zero frequency level [5–7]. Macroscopic
instabilities correspond to infinitely long waves and can be linked to the softening of
the appropriate combinations of macroscopic elastic moduli. Typical microscopic
instabilities occur at finite wave lengths associated with special points in the Brillouin
zone corresponding to modulations commensurate with the lattice. Less frequent
microinstabilities with the generic wave vectors give rise to incommensurate
phases [8].

The classical continuum description of lattice instabilities is provided by the
Landau theory. When the unstable wave vector is equal to zero, the order parameter
can be chosen to coincide with a component of the macroscopic strain (see, for
example, Fadda et al. [9]). If the unstable wave vector is different from zero, the
macroscopic order parameter can be identified with the amplitude of an unstable
normal mode (see, for example, Cao and Barsch [10]). The resulting coarse-grained

*Corresponding author. Email: aav4@pitt.edu

Philosophical Magazine

ISSN 1478–6435 print/ISSN 1478–6443 online � 2005 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/14786430500363270



description remains adequate until external length scales become comparable with

the lattice spacing, as in the cases of ultra-thin layers, boundaries with singularities
or strongly interacting defects.

To preserve the fine structure of the elastic fields in the continuum setting we

propose a new quasicontinuum model which captures both long and short-wave

instabilities associated with the acoustic branch of the phonon spectrum. The model
is obtained by a long-wave expansion of the lattice energy and it shares with the

discrete model the property that strain is the only order parameter. To make the
truncated gradient expansion well-posed, we extend the polynomial dispersion

relation by zero outside the first Brillouin zone. The model therefore restricts

modulations in the physical space to length scales larger than lattice spacing. The
suppression of the gradient model outside the Brillouin zone allows one to avoid the

unphysical small-scale instabilities; a similar hard cut-off procedure is routinely used

in coarse-grained continuum field theories [11]. As we show, the cut-off makes the
gradient model equivalent to a fully non-local model with a slowly decaying

oscillatory kernel.
To illustrate the idea, we consider a one-dimenstional lattice involving

interactions of up to third nearest neighbours which can be either of ferromagnetic

or antiferromagnetic type. The discrete model is shown to generate both

commensurate and incommensurate short-wave instabilities (see, for example,
Houchmandzadeh et al. [12] and Janssen and Tjon [13]). We show that the

quasicontinuum model captures all unstable modes exhibited by the discrete model
and provides good quantitative bounds for the instability thresholds.

2. Discrete model

Consider an infinite chain of interacting particles with the total energy

W ¼ "
X1

n¼�1

Xq
p¼1

p�p
unþp � un

p"

� �
: ð1Þ

Here �pðwÞ is the energy density of an effective spring with reference length p"
(representing interaction of pth nearest neighbours) and un(t) is the displacement of
nth particle. The equilibria in this system satisfy the following infinite system of

difference equations:

Xq
p¼1

�0p
unþp � un

p"

� �
� �0p

un � un�p
p"

� �� �
¼ 0: ð2Þ

To access stability of a homogeneous equilibrium state u0n ¼ n"w, where w is
the average strain, we need to introduce perturbations vn ¼ un � u0n and study the

positive definiteness of the quadratic part of the energy expansion. This leads to the

following eigenvalue problem:

�!2vn ¼
Xq
p¼1

Kp vnþp � 2vn þ vn�p
� �

, ð3Þ
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where Kp ¼ �
00
pðwÞ=p and !2 is the square of the characteristic frequency. By

representing the normal modes (phonons) in the form vn¼ exp(ink), where k is a real

wave number, we obtain the dispersion relation

!2ðkÞ ¼ 4
Xq
p¼1

Kp sin
2 pk

2
: ð4Þ

By reflectional symmetry and periodicity it suffices to consider the wave numbers

in the interval 0� k�� (Brillouin zone). A uniform deformation is then stable

if and only if !2(k)>0 for all k 2 ð0,��. This condition is the far reaching

generalization of the Legendre–Hadamard condition of strong ellipticity in

continuum elasticity [14].
One can obtain some immediate necessary conditions for stability by requiring

that

d2!2ð0Þ

dk2
> 0 and !2ð�Þ > 0:

The first condition, written as

E ¼
Xq
p¼1

p2Kp > 0, ð5Þ

means physically that the effective elastic modulus along the homogeneous branch of

equilibria is positive; the corresponding eigenmode, vn¼ 1, is infinitely long wave.

The second condition,

Xq
k¼1, k odd

Kp > 0, ð6Þ

is less transparent: the corresponding unstable eigenmode vn ¼ ð�1Þ
n is microscopic,

commensurate and has the smallest possible wave length.
To characterize the complete set of stability conditions (necessary and sufficient)

explicitly, we need to specify the number of interactions. One can show that the first

generic case is q¼ 3, when nearest (NN), next to nearest (NNN) and next to next

to nearest (NNNN) neighbours interact. The corresponding dispersion relation reads

!2ðkÞ ¼ 4 sin2
k

2
K1 þ 4K2 þ 9K3 � 4ðK2 þ 6K3Þ sin

2 k

2
þ 16K3 sin

4 k

2

� �
: ð7Þ

A straightforward analysis of the positive definiteness of the right hand side produces

the following necessary and sufficient conditions of stability:

K1 þ 4K2 þ 9K3 > 0

K1 þ K3 > 0

K2
2 < 4K3ðK1 þ K2Þ if � 6 <

K2

K3
< 2:

ð8Þ
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The first two of these conditions have been already obtained as necessary (see

equalities (5)–(6)) and can be identified with macroinstabilities (k¼ 0) and

commensurate microinstabilities (k¼�), respectively. The third condition in (8) is

associated with the incommensurate mode 0<k¼ 2 arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2 þ 6K3Þ=ð8K3Þ

p
< �.

The full stability diagram in the plane of the non-dimensional parameters

� ¼
K2

K1
, � ¼

K3

K1
ð9Þ

is presented in figure 1 for K1>0 and figure 2 for K1<0.
To relate the microscopic stability limits with macroscopic stress–strain relation,

consider a family of homogeneous configurations un¼wn" parametrized by the

strain w. Assume that all three interactions (NN, NNN and NNNN) are governed

by the Morse potentials

UpðrÞ ¼
�p"

2�2p
1� exp ��p

r

"
� 1

� 	h i� 	2
, 1 � p � 3: ð10Þ

The energy density associated with pth interaction in the homogeneous state is

�pðwÞ ¼ Upðp"ðwþ 1ÞÞ=ðp"Þ; ð11Þ
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Figure 1. Stability diagram for the discrete model with q¼ 3 and K1>0. Regions of stability
are shown in grey. Dispersion relations corresponding to different modes of stability loss are
shown in inserts. Stability boundaries: (i) commensurate microinstability, �¼�1 (to the right
of N); (ii) macroinstability, 1þ 4�þ 9�¼ 0 (between N and M); (iii) incommensurate
microinstability, �2¼ 4�(1þ�) (above M). Classical continuum stability boundary is given
by the grey line, 1þ 4�þ 9�¼ 0. Dashed lines with numbers indicate deformation paths:
�2¼ �3¼ 1 (path 1); �2¼ 1, �3¼ 0.4 (path 2); �2¼ 0.4, �3¼ 0.2 (path 3); �2¼ �3¼ 0.4 (path 4).
In all cases �1¼�2¼�3¼ �1¼ 1.
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the elastic moduli are given by

KpðwÞ ¼ �p exp½�p�pw�ð2 exp½�p�pw� � 1Þ, 1 � p � 3: ð12Þ

Using equations (9) and (12), we can compute the strain dependence of the
dimensionless parameters �(w) and �(w). Depending on the choice of the microscopic
parameters �p and �p, we obtain different paths in the �–� plane; each path starts
in the stable region and eventually reaches the instability threshold. If the potentials
are identical for NN, NNN and NNNN interactions (�1¼�2¼�3, �1¼ �2¼ �3),
the resulting homogeneous equilibrium branch (path 1 in figure 1) crosses the
macroinstability boundary MN, activating the instability mode vn¼ 1. The
corresponding macroscopic stress–strain relation �(w) is shown in figure 3. In this
case the bifurcation point A1 corresponds to the failure of the Legendre–Hadamard
conditions for the macroscopic energy (�0(w)¼ 0).

Suppose next that the three considered interactions (NN, NNN and NNNN)
are governed by different Morse potentials. For instance, we may assume that
U01ðrÞ ¼ U02ðrÞ but that the force associated with the NNNN interaction U03ðrÞ decays
at large r slower than U01ðrÞ. If �3 is sufficiently smaller than �1¼ �2, the
corresponding equilibrium branch (path 2 in figure 1) crosses the incommensurate
microinstability boundary. The stability is lost at point A2 where �0(w)>0, i.e.
before the macroscopic threshold.

Now suppose that U02ðrÞ decays slower than U01ðrÞ but faster than U03ðrÞ (e.g.
�1¼ 1, �2¼ 0.4, �3¼ 0.2). The corresponding equilibrium path 3 starts in the stable
region where all three elastic moduli are positive (see figure 1). As w increases, K1(w)
approaches zero faster than the other two moduli, so that � and � both tend
to infinity. When K1 changes sign, parameters � and � become infinite and the
path re-emerges in the stable region with K1<0 (figure 2). The failure of the
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Figure 2. Stability diagram for the discrete model with q¼ 3 and K1<0. Stability
boundaries: (i) commensurate microinstability, �¼�1 (to the left or R); (iii) incommensurate
microinstability, �2¼ 4�(1þ�) (below R). Dashed line indicates deformation path 3 which
is also shown in figure 1.
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homogeneous state at A3 takes place via incommensurate microinstability before
the macroinstability threshold.

Finally, assume that NNN and NNNN interactions potentials are identical and
that the corresponding forces decay slower than U01ðrÞ ð�1 ¼ 1, �2 ¼ �3 ¼ 0:4Þ. Then
we obtained path 4 which crosses the commensurate microinstability boundary at
point A4 to the right of point N in figure 1. The corresponding microinstability again
precedes the macroinstability (see figure 3).

In the special case when the only two interactions are NN and NNN (q¼ 2,
K3¼ 0), the stability conditions (8) reduce to K1þ 4K2>0, K1>0 [15]; see the
shaded region in figure 4a. In this case the microinstability is necessarily
commensurate, and it takes place at K1¼ 0. As before, the path with identical
potentials for NN and NNN interactions (path 1) leads to macroinstability. If U02ðrÞ
decays slower than U01ðrÞ, the instability becomes microscopic (see figure 4b).
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Figure 4. (a) Stability diagram for the discrete model with q¼ 2. The trivial solution is stable
in the grey area. Stability boundaries: (i) commensurate microinstability, K1¼ 0; (ii)
macroinstability, K1þ 4K2¼ 0. In the classical continuum model the trivial solution is stable
above the grey line K1þ 4K2¼ 0. The dotted curves show deformation paths: �2¼ 1 (path 1)
and �2¼ 0.4 (path 2). In both cases �1¼�2¼ �1¼ 1. (b) The corresponding stress–strain
curves.
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Figure 3. Stress–strain relations along the deformation paths shown in figures 1 and 2.
Points Ai mark the loss of stability of the homogeneous deformation.
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3. Quasicontinuum approximation

A higher gradient quasicontinuun approximation of a lattice model is obtained by

replacing the discrete dispersion relation equation (4) by the first few terms of its

Taylor expansion around k¼ 0 [16, 17]. To capture all three types of instabilities

(long-wave, commensurate and incommensurate) exhibited by the discrete

model with q� 3, it is necessary to consider a polynomial expansion of at least

sixth order:

!2ðkÞ � k2ðEþ A1k
2 þ A2k

4Þ, ð13Þ

where the Taylor coefficients are

E ¼ K1 þ 4K2 þ 9K3

A1 ¼ �
K1 þ 16K2 þ 81K3

12

A2 ¼
K1 þ 64K2 þ 729K3

360
:

ð14Þ

The quadratic part of the continuum energy function corresponding to equation (13)

takes the form

W ¼
1

2

Z 1
�1

½Eu2x þ A1"
2u2xx þ A2"

4u2xxx� dx: ð15Þ

To access stability of the homogeneous state in the continuum problem we need

to solve the following eigenvalue problem:

�!2v ¼ Evxx � A1"
2vxxxx þ A2"

4vxxxxxx: ð16Þ

One can immediately see that if A2<0 the energy is unbounded from below

(!2(k)<0 for sufficiently large |k|). This short-wave instability is unphysical if the

unstable wave length is shorter than the lattice spacing. To eliminate this possibility

we can limit the class of perturbations by imposing a constraint |k|��. This is

achieved by replacing equation (13) with !2(k)¼ 0 outside the first Brillouin zone

(for |k|>�). The resulting dispersion relation with a short wave cut-off is compared

in figure 5 with the dispersion relation for the exact quasicontinuum model [18]

obtained by replacing discrete dispersion by zero at |k|>�.
Despite its appearance, the proposed higher gradient approximation with a cut-

off is essentially a continuum model with long-range spatial memory. Indeed, if we

compute inverse Fourier transform of the truncated dispersion relation (13), we

obtain the integral model

W ¼

Z 1
�1

Z 1
�1

�ðx� �Þuðx, tÞuð�, tÞ dx d� ð17Þ

with the kernel

�ðxÞ ¼
1

�x7
½2�xððEþ 2A1�

2 þ 3A2�
4Þx4 � 12ðA1 þ 5A2�

2Þx2 þ 360A2Þ cos�x

þ ð�2x6ðEþ A1�
2 þ A2�

4Þ þ 2ðEþ 6A1�
2 þ 15A2�

4Þx4

þ 24ðA1 þ 15A2�
2Þx2 � 720A2Þ sin�x�: ð18Þ

Quasicontinuum modelling of short-wave instabilities in crystal lattices 4061



Meanwhile, the exact quasicontinuum model has the kernel (see, for example,
Kunin [18])

�DðxÞ ¼
4 sin�x

�x
K1

x2 � 1=2

x2 � 1
�

2K2

x2 � 4
þ K3

x2 � 9=2

x2 � 9

� �
: ð19Þ

The two kernels are compared in figure 5b; one can see that the non-local
interactions decay in both cases as a power of distance which is characteristic for
the models with long-range interactions.

The proposed quasicontinuum model can be used to study stability of the
homogeneous state. Following the same procedure as in the discrete case, we obtain
the following necessary and sufficient conditions of stability:

E > 0

Eþ A1�
2 þ A2�

4 > 0

4A2E� A2
1 > 0 if 0 < �

A1

2A2
< �2:

ð20Þ

The first condition, indicating macroinstability, coincides with the first inequality
in (8). The second condition is the analog of the second inequality in (8), and the
unstable mode is again k¼�. The last inequality in (20) is analogous to the third
condition of equation (8); its failure corresponds to incommensurate microinstability
with the wave number

k ¼ k� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

A1

2A2

r
: ð21Þ

A combined stability diagram illustrating conditions (20) is presented in figure 6
where it is compared with the stability diagram for the discrete model.

Observe first that in the discrete and quasicontinuum models at K1>0 the
stability boundaries are tangent at point M where the unstable wave is infinitely long
(k¼ 0).
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Figure 5. (a) Dispersion relations !(k) for the exact quasicontinuum model (thick solid line)
and the cut-off polynomial approximation (dashed). (b) The kernels �(x) of the exact
quasicontinuum (solid) and cut-off polynomial (dashed) non-local models in physical space.
Parameters: K1¼ 1, K2¼ 5, K3¼�0.02.
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Above point M the quasicontinuum model reproduces the main qualitative
features of the discrete diagram. Between pointsM andQ ¼ ð�4ð�2 � 3Þ=ð13�2 � 30Þ,
ð�2 � 6Þ=ð3ð13�2 � 30ÞÞ the instability mode is macroscopic in both models;
this interval, however, is much shorter in the quasicontinuum model.
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Figure 6. Stability diagram for the quasicontinuum polynomial model with the cut-off
compared with the discrete stability diagram. Regions of stability are shown in grey, the
corresponding graphs of !2(k) (dispersion relations) are shown in the inserts. Dashed curves
indicate stability bounds for the discrete model. The two main diagrams correspond to the
cases (a) K1>0 and (b) K1<0. Stability boundaries: (i) commensurate microinstability,
EþA1�

2
þA2�

4
¼ 0 (PQ); (ii) macroinstability, E¼ 0 (MQ); (iii) incommensurate micro-

instability, 4A2E� A2
1 ¼ 0 (above M, below P and entire boundary of K1<0 stability region

in (b)). Classical continuum model predicts stability above the grey line in (a) and below it in
(b). In (c) we present stress–strain relations along the deformation paths (the same as
in figure 1) shown by the dotted curves in (a) and (b), with bifurcation points for
quasicontinuum model shown by grey circles and for the discrete model by black circles.
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Between points Q and P ¼ ð�ð120� 80�2 þ 3�4Þ=ð10ð30� 26�2 þ 3�4ÞÞ,
�ð30�2 � �4 � 90Þ=ð45ð30� 26�2 þ 3�4ÞÞ the stability loss is via microscopic mode
with k¼�. Below P the instability mode is again incommensurate; such transition
from commensurate to incommensurate instability is not observed in the discrete
case. Overall, the quasicontinuum theory underestimates stability domains in the
region {K1>0, K2>0, K3<0}. This is due to the larger contribution of the
oscillation-producingK3 terms in the polynomial model compared to the discrete case.

At K1<0 the quasicontinuum approximation has the opposite effect: it
overestimates the stability of the homogeneous state. This is again caused by the
very nature of the polynomial approximation: for positive K2 and K3 (which at
K1<0 result in negative � and �) the smoothening quadratic and quartic terms in
the dispersion relation easily dominate the unstable contribution due to K1. Notice
also that while in the discrete case the boundary of the stable domain contains
a segment corresponding to commensurate instability (which at point R becomes
incommensurate), in the polynomial quasicontinuum model the whole instability
boundary is due to incommensurate mode.

It is instructive to compare the instability mechanisms along the four
deformation paths considered earlier for the discrete model with the predictions
of the quasicontinuum models (see figure 6). Along path 1 the quasicontinuum
approximation predicts a commensurate microinstability (at point B1), whereas the
discrete model predicts macroscopic instability. Both models predict incommensu-
rate instability along paths 2 and 3, with stability failure somewhat delayed in the
quasicontinuum model. Finally, path 4 is predicted to pass through microinstability
boundary by both models; the mode of instability is, however, commensurate
in the discrete case and incommensurate in the quasicontinuum approximation.
The analysis of the relative position of the bifurcation points on the stress–strain
curves, presented for both models in figure 6c, shows a reasonable quantitative
agreement.

4. Conclusions

It has been long recognized that higher gradient approximations of lattice models
generate in the continuum limit either unbounded or non-positive definite operators
leading to ill-posed mathematical problems (see, for example, Christov et al. [19] and
Rosenau [20]). To overcome this difficulty we propose to regularize such operators
by restricting them to a finite sphere in the Fourier space. At short wavelengths the
resulting quasicontinuum model effectively replaces partial differential equations by
integral equations. The dual nature of such cut-off polynomial models may be used
to design hybrid computational schemes filtering parasitic small-scale oscillations
while taking full advantage of the availability of simple partial differential
equations for slowly varying fields. As we showed, the new quasicontinuum model
combines the analytical simplicity of the gradient models at long waves with the
physically corrent description at small scales provided by models with long spatial
memory. In particular, the approximation was shown to be sufficient to capture the
whole spectrum of short-wave instabilities exhibited by the prototypical lattice
model.
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