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Peierls-Nabarro landscape for martensitic phase transitions
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We consider a prototypical model of a martensitic phase transition, which takes discreteness and nonlocality
into account and allows one to reconstruct explicitly the Peierls-Nabarro energy landscape for the phase
boundaries. We solve the discrete problem exactly and obtain a simple expression for the critical Peierls force
that is necessary to release a lattice-trapped phase boundary. The model suggests specific relations between the
microscopic parameters of the lattice and the size of the hysteresis in martensitic materials, which we verify for
the cubic-b18-monoclinic phase transition in Cu-Al-Ni alloy.
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Rate-independent hysteresis is commonly observed in
terials undergoing martensitic phase transitions, e.g., Ag-C1

In-Tl,2 Cu-Al-Ni,3,4 and Ni-Ti.5,6 When subjected to a quas
static loading, these materials deform elastically until
load reaches a threshold when one or several phase bo
aries nucleate and propagate through the specimen; upo
loading, the reverse transformation takes place at a lo
critical load.7,8 While it is understood that the resulting rat
independent hysteresis reflects the presence of mul
metastable configurations, the physical origin of the up
and lower critical loads has been a subject of act
debate emphasizing factors such as disorder,9 elastic
incompatibility,10 and surface energy.11 The goal of the
present paper and of its forthcoming dynamic extension12 is
to explore the effects of materialdiscretenessas a source of
the overall ruggedness of the energy landscape and of
associated hysteresis. By following the pattern of plastic
theory, we relate hysteresis to the lattice trapping
phase boundaries viewed as the main carriers of inela
deformation.

We recall that in plasticity theory, the yield stress is r
lated to the Peierls force13,14 representing a threshold need
to release trapped dislocations and set plastic deformatio
motion. The dislocations in this approach are viewed as m
ing in a Peierls-Nabarro~PN! periodic potential with the val-
leys representing pinned equilibrium configurations. The
plied shear stress tilts the PN landscape until at the crit
level ~Peierls force!, characterizing the yield strength of th
crystal, the barriers between the valleys completely dis
pear.

Similar to dislocations, martensitic phase boundaries r
resent highly mobile planar defects whose resonant inte
tion with a crystal lattice leads to an intense radiative dam
ing and results in dry-friction-type kinetics.15 The goal of the
present paper is to develop for martensitic phase bounda
a prototypical one-dimensional model capturing the effec
lattice trapping and allowing for a transparent analyti
study of both statics and dynamics. As a first step, we exp
itly reconstruct the fine structure of the PN landscape for
proposed model and relate the critical Peierls force to
microparameters of the model characterizing interatomic
teractions.
0163-1829/2003/67~17!/172103~4!/$20.00 67 1721
a-
,

e
nd-
un-
er

le
r

e

he
y
f
tic

-

in
v-

-
al

p-

p-
c-
-

ies
f
l
-
e
e
-

The simplest physical description of a stress-driven m
tensitic phase transition in lattices can be obtained from
study of a chain of bistable elements.16–19 The same mode
may also represent a collection of rigid atomic planes int
acting through shear snap springs. To mimic the thr
dimensional nature of the actual problem, it is natural
complement the anharmonic nearest-neighbor~NN! interac-
tions by a harmonic interaction of the next-to-nearest nei
bors~NNN!. The resulting potential energy, which represe
a simplified version of a nonlocal discrete model stud
numerically in Ref. 20, can be written in the form

C5« (
k52`

` FfS uk2uk21

« D1
g

2 S uk112uk21

« D 2G . ~1!

Here,uk is the displacement of thekth particle with respect
to the homogeneous reference configuration with spacing«.
The first term in the sum represents the double-well ene
of the NN interactions, the second term is the energy of
linear NNN interactions, characterized by the modulusg.
Some numerical experiments aimed at locating the glo
energy minima for a finite discrete system similar to~1! can
be found in Refs. 21 and 22; in continuum limit, the grou
state for this class of energies was studied in Refs. 22 and
We remark that in terms of strainswk5(uk2uk21)/«, en-
ergy ~1! can be rewritten as the energy of the Frenk
Kontorova~FK! model:24

C5« (
k52`

` F f̃~wk!2
g

2
~wk2wk21!2G , ~2!

where f̃(wk)5f(wk)14gwk
2 . Although in statics the two

models are equivalent, their dynamic extensions are enti
different.

Since our aim is to obtain analytical results, we furth
simplify the model by assuming that the NN potentialf(w)
is biparabolic with a piecewise linear derivative

f8~w!5K„w2au~w2wc!…, ~3!

whereu(x) is the Heaviside function. In this case the spi
odal region reduces to a point, so that the NN springs ar
©2003 The American Physical Society03-1
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BRIEF REPORTS PHYSICAL REVIEW B67, 172103 ~2003!
phase I if the strainw is below the critical valuewc and in
phase II otherwise. Other parameters of the potentialf(w)
are the transformation straina and the elastic modulusK
.0, which we assume to be identical in both phases.
elastic modulusg of the NNN springs is taken to benega-
tive, as suggested, for instance, by molecular models with
Lennard-Jones potential.25 In what follows we focus on the
representation of the PN landscape associated with the m
~1! and ~3!; a related analysis for the piecewise linear F
model at zero driving and limited to thecomputation of t
Peierls barrier can be found in Refs. 26 and 27.

We begin with the localization of the valleys of the P
potential representing equilibrium configurations of Eqs.~1!
and ~3! with a single interface. From the expression of t
energy, we obtain the following equilibrium equations:

Aklwl5p~wk!. ~4!

Here, the tridiagonal symmetric matrixAkl , which describes
the ‘‘elasticity’’ of the lattice with NNN interactions, is
defined by Aklwl5wk1$(h21)/4%(wk1112wk1wk21),
where h5(K14g)/K is the main nondimensional param
eter of the problem measuring the relative strength of the
and NNN interactions. The loading functionp(w)5F/K
1au(w2wc) contains the constant drivingF representing,
for instance, the applied shear stress.

The trivial solution of the equilibrium equations~4! cor-
responds to a uniform deformation in either of the phas
Thus, the chain is in phase I with constantwk5F/Kh when
F<Khwc . We assume that at the given loading, this hom
geneous configuration is stable, which in our case (K.0,
g,0) translates into the requirement that 0,h,1.25 To
find a nontrivial solution of Eq.~4! describing an isolated
phase boundary pinned by the lattice, we assume that
location of the interface coincides with particlei. This leads
to the constraintswk>wc , k< i ~phase II! and wk<wc , k
. i ~phase I!. The system of nonlinear equilibrium equatio
~4! can then be rewritten as a system of linear equations w
a given right-hand side:

p~wk!5F/K1au~ i 2k!. ~5!

Solutions of Eq.~5! must tend to the homogeneous config
rations w2`5(F/K1a)/h and w1`5F/(Kh) at infinity.
The exact solution of this linear problem is given by

wk~ i !5w* 1s~k2 i !, ~6!

where

w* 5
F

E
, s~m!5DH u~ 1

22m!2
e2um21/2ul

2 cosh~l/2!J sgn~ 1
2 2m!,

and l52 arccosh(1/Auh21u). ParametersE5Kh and D
5a/h define the macroscopic elastic modulus and the tra
formation strain, respectively, for the homogeneously
formed system with the macroscopic responseF5E„w
2Du(w2wc)….

Using Eq.~6!, one can show that the strains in the pha
are confined to the corresponding energy wells if and onl
the applied force lies in the intervalFM2FP<F<FM
17210
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1FP . Here,FM5E(wc2D/2) is the equilibrium~Maxwell!
force for the homogeneous system defined by the co
sponding equal area construction, and

FP5EDAh/2 ~7!

is the Peierls force. One can see that after the strain in
( i 11)th NN spring reaches the critical valuewc at F5FM
1FP , the single interface solution ceases to exist, mak
the phase boundary free to move. During the unloading,
depinned phase boundary starts moving in the opposite
rection once the strain in thei th reaches the valuewc at F
5FM2FP . Notice that inside the interval of lattice trappin
FM2FP,F,FM1FP , solution ~6! is at least metastable
due to the positive definiteness of the matrixAkl , guaranteed
by our assumptions on elastic moduli.

To reconstruct the full PN energy landscape, one need
find the optimal~minimal barrier! path connecting the meta
stable equilibria of a single interface. Assume for determ
nacy thatFM,F,FP1FM and consider the two adjacen
pinned equilibrium configurationswk( i ) andwk( i 11). No-
tice that in the first of these configurations the (i 11)th
spring is still in phase I, while in the second this spring h
already switched to phase II. In order to move from the fi
to the second configuration, the system has to follow a n
equilibrium path with (i 11)th spring changing phase. W
may therefore choosewi 11 as the order parameter and min
mize the energy with respect to allwk , with k< i andk> i
12. The necessary conditions for this constrained equi
rium are given by equations~4!, with kÞ i 11. Fork< i , the
solution of the resulting linear system satisfying the boun
ary condition at2` can be written in the parametric form

wk
2~n!5w* 1DH 12

el(k2n21/2)

2cosh~l/2!J . ~8!

Here, n is defined by the conditionwi 11
2 (n)5wi 11; it is

easy to see thati 5@n# ~the integer part ofn). In the interval
( i ,i 11), the functionwi 11

2 (n) monotonically increases with
n from wi 11( i ) to wi 11( i 11) andn can be used as a new
order parameter. To complete the construction of the c
strained equilibria, we need to findwk

1(n) satisfying equilib-
rium equations fork> i 12, the boundary condition at1`
and the continuity conditionwi 11

1 (n)5wi 11
2 (n). We obtain

wk
1~n!5w* 1Del([n] 112k)H 12

el([n] 2n11/2)

2cosh~l/2! J . ~9!

The combination ofwk
2(n) taken atk<@n#11 andwk

1(n)
at k>@n#11 constitutes the desired nonequilibrium transfo
mation pathwk(n). Notice that by construction, the intege
values ofn correspond to the metastable configurations
the pinned phase boundary with the strain profilewk( i ).

To obtain the associated PN landscape, we introduce
Gibbs energyG5C2F(k52`

` wk and compute its values
along the nonequilibrium paths~8! and~9!. Since the energy
of the chain is infinite, we need to evaluate the differen
betweenG(n) and the energy of one of the metastable eq
3-2
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BRIEF REPORTS PHYSICAL REVIEW B67, 172103 ~2003!
libria. Defining G0(n)5G(n)2G(0) and substituting Eqs
~8! and ~9! into Eq. ~1!, we obtain

G0~n!52ED«H D~h21!Ah

8
~12e2l(n2[n]) !2

1
F̄@n#

E
1h~n!u~h~n!!J . ~10!

Here, F̄5F2FM is the difference between the applie
and Maxwell forces, and h(n)5F̄/E1(D/2)$1
2e2l(n2[n] 21/2)/cosh(l/2)%.

A typical graph ofG0(n) is shown in Fig. 1. As expected
the PN landscape exhibits local minima at integer values on
corresponding to successive metastable pinned location
the phase boundary. In order to switch from one pinned c
figuration ~say, at n5 i ) to the neighboring one~at n5 i
11), the system needs to climb an energy barrier. In
present piecewise linear setting, the maxima of the PN
tential ~saddle points of the original energy! are represented
by the sharp peaks.28 For eachi, the peak is located atn i

P( i ,i 11), which is defined by the conditionwi 11
6 (n i)

5wc . The energy barrier associated with a peak does
depend oni and is given by the following explicit formula

G0~n i !2G0~ i !5
~FP2F̄ !2«D

4FP
. ~11!

The barrier is maximal at Maxwell force (F̄50) and van-
ishes at the upper boundary of the trapping region wherF̄
5FP . If the energyf(w) contains a nondegenerate spinod
region, the cusps are replaced by the smooth ene
maxima18 but the g dependence of the Peierls barrier b
comes much more complex.24

A parameter playing an important role in the formulati
of the kinetic relations for phase boundaries15 is thedriving
force g represented in the three-dimensional continuum
ting by the jump of the normal component of the Eshe
tensor.29 In our framework, g5$G0( i )2G0( i 11)%/«
5F̄D, which is again independent ofi. One can see thatg
characterizes the degree of tilting of the PN landscape du
the external forceF. In particular, the driving force equal

FIG. 1. Peierls-Nabarro energy landscapeG0(n)/(E«) at F/E
50.3, h51/2, wc5a51.
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zero atF̄50 ~horizontal PN landscape! and reaches its maxi
mum atF̄5FP when the barriers disappear. The critical dri
ing force is equal to

gP5FPD, ~12!

where the Peierls force is given by Eq.~7!.
In the limiting caseh51 when NNN interactions are ab

sent, the PN landscape reduces to the expression comp
in Ref. 18, and the limiting minimal barrier path correspon
to a single spring changing phase, with other springs rem
ing fixed in their equilibrium positions. We remark, howeve
that in the NN chain the location of the spring that chang
phase is arbitrary. When NNN interactions are taken i
account, the permutational degeneracy is removed and
transforming spring is located exactly in front of the pha
boundary. The existence of the boundary layer in the NN
chain makes the propagation of the existing phase boun
easier than the nucleation of a new one, which has also b
noticed in the numerical experiments conducted for the fin
chains in Ref. 20. In the present model, this is manifested
the fact that the Peierls forceFP associated with the propa
gation of a phase boundary is smaller than thespinodal force
FS5ED/2 marking the threshold of instability for the homo
geneous state. In the local model without NNN intera
tions the corresponding ‘‘nucleation peak’’ is absent a
FP5FS .18

To verify the theory, we estimate the modulus of NN
interactions using the experimental data on kinetics of m
tensitic phase boundaries and then compare it with an in
pendent estimate based on a simple molecular model of
same solid phase. Formula~7! for the Peierls force implies
that

h5$112~FP2FS!/~ED!%2. ~13!

Then, if parametersFP , E, andD are known from the mac-
roscopic experiment, one can determine parameterh from
Eq. ~13!. Note, however, that the assumption about the bil
ear character of the force-strain curve for a single spr
largely overestimates the maximal hysteresis width.4 While a
more appropriate estimate could, in principle, be obtain
from the model with the cubic force-strain relation, the as
ciated discrete model does not lend itself to an analyt
study. To obtain an improved estimate ofh, we assume tha
in the realistic case whenFP is close toFS ,20 the linearized
version of Eq.~13!,

h'114~FP2FS!/~ED!, ~14!

remains true for the cubic model with the sameED. For the
cubic interpolation of Eq.~3!, the spinodal force reduces t
FS5ED/(6A3). The Peierls forceFP can then be found
from formula~12! relating it to the critical driving forcegP ,
which, in turn, can be obtained from the data on kinetics
martensitic phase boundaries.

To estimateh, we use the critical driving forcegP
525.26 MPa reported in Ref. 30 for a moving interface b
tween cubic andb18-monoclinic phases in a single-cryst
Cu-Al-Ni alloy. The other relevant parameters, also provid
3-3
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BRIEF REPORTS PHYSICAL REVIEW B67, 172103 ~2003!
in Ref. 30, areD50.168 68 andE510 GPa. Substituting
these values into Eqs.~12! and ~14!, we obtainh50.97,
which corresponds tog5277.13 MPa andK510.3 GPa.

To check this result, we can alternatively estimateh by
assuming that both NN and NNN interactions are gover
by the Lennard-Jones potentialU(r )5(K«/72)$(«/r )12

22(«/r )6%, where parameters are selected so that ela
modulus in the potential well located atr 5« equalsK. By
linearizing U(r ) around the unstretched homogeneous s
with the spacings r 5« and r 52«, we obtain25 h
54U9(2«)/U9(«). This yields h50.98, which, despite a
rather rigid form of the potential, is remarkably close to t
above estimate. With macroscopic elastic modulusE
510 GPa, we obtaing5245.1 MPa andK510.18 GPa.
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