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Peierls-Nabarro landscape for martensitic phase transitions
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We consider a prototypical model of a martensitic phase transition, which takes discreteness and nonlocality
into account and allows one to reconstruct explicitly the Peierls-Nabarro energy landscape for the phase
boundaries. We solve the discrete problem exactly and obtain a simple expression for the critical Peierls force
that is necessary to release a lattice-trapped phase boundary. The model suggests specific relations between the
microscopic parameters of the lattice and the size of the hysteresis in martensitic materials, which we verify for
the cubicg;-monoclinic phase transition in Cu-Al-Ni alloy.
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Rate-independent hysteresis is commonly observed in ma- The simplest physical description of a stress-driven mar-
terials undergoing martensitic phase transitions, e.g., Ag-Cdtensitic phase transition in lattices can be obtained from the
In-T1,? Cu-Al-Ni,>* and Ni-Ti>® When subjected to a quasi- study of a chain of bistable elemerfs!® The same model
static loading, these materials deform elastically until themay also represent a collection of rigid atomic planes inter-
load reaches a threshold when one or several phase bour@ctmg through shear snap springs. To mimic the three-
aries nucleate and propagate through the specimen; upon Uimensional nature of the actual problem, it is natural to
loading, the reverse transformation takes place at a lowetomplement the anharmonic nearest-neighidéy) interac-
critical load”® While it is understood that the resulting rate- tions by a harmonic interaction of the next-to-nearest neigh-
independent hysteresis reflects the presence of multiplg, s (NNN). The resulting potential energy, which represents

metastable co_n_figurations, the physical O”Qif‘ of the uppeg simplified version of a nonlocal discrete model studied
and lower critical loads has been a subject of aCt'VenumericaIIy in Ref. 20. can be written in the form

debate emphasizing factors such as disotdedastic

incompatibility’® and surface enerdy. The goal of the % U U U — o)\ 2
present paper and of its forthcoming dynamic exter€ign V=g > | ——1 +Z( ki1 kl) } (1)
to explore the effects of materidiscretenesas a source of k=—o 2 €

the oyerall ruggedngss of the energy landscape and c?f.tngxlere,uk is the displacement of thieth particle with respect
associated hysteresis. By fo!lowmg the pattern of plgstlcnyo the homoaeneous reference confiauration with soaein
theory, we relate hysteresis to the lattice trapping 01’t 9 9 P 9

phase boundaries viewed as the main carriers of inelasti-tl;he first term in the sum represents the_double-well energy
deformation of the NN interactions, the second term is the energy of the

We recall that in plasticity theory, the yield stress is re_hnear NNN interactions, characterized by the modujus

lated to the Peierls foré&*representing a threshold needed Some numerical experiments aimed at locating the global
to release trapped dislocations and set plastic deformation [nergy minima for a finite discrete system similar(1 can

motion. The dislocations in this approach are viewed as mO\}-)e found ir_1 Refs. 21 and 2_2; in continu_um_limit, the ground
ing in a Peierls-NabarréPN) periodic potential with the val- state for this class of energies was studied in Refs. 22 and 23.

: - Y : : We remark that in terms of straing,=(u,—u,_;)/e, en-
leys representing pinned equilibrium configurations. The ap- ; k= Ak Fk=1)7 %
ys rep g p! quitior 'gurat P rgy (1) can be rewritten as the energy of the Frenkel-

plied shear stress tilts the PN landscape until at the criticaﬁ o4

level (Peierls forcg characterizing the yield strength of the ontorova(FK) model:

crystal, the barriers between the valleys completely disap- o

pear. y | v=e 3 |[Bw)-2We-wi_ 2, @
Similar to dislocations, martensitic phase boundaries rep- k=—c 2

resent highly mobile planar defects whose resonant interac-

tion with a crystal lattice leads to an intense radiative dampyv here $(wy) = ¢(wy) +4ywj . Although in statics the two

ing and results in dry-friction-type kineti¢s The goal of the models are equivalent, their dynamic extensions are entirely
present paper is to develop for martensitic phase boundariélfferent.

a prototypical one-dimensional model capturing the effect of .| SINCE our aim is to obtain analytical results, we further
lattice trapping and allowing for a transparent analyticalSIMPlify the model by assuming that the NN potenigiw)

study of both statics and dynamics. As a first step, we expliciS Piparabolic with a piecewise linear derivative

itly reconstruct the fine structure of the PN landscape for the ") —

o . w)=K(Ww-—afd(w—w,)), 3
proposed model and relate the critical Peierls force to the ¢'(wW)=K( ( ) ®
microparameters of the model characterizing interatomic inwhere (x) is the Heaviside function. In this case the spin-
teractions. odal region reduces to a point, so that the NN springs are in
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phase | if the strainw is below the critical valuev. and in
phase Il otherwise. Other parameters of the potewiial)
are the transformation straia and the elastic moduluk
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+Fp. Here,F\=E(w;—A/2) is the equilibrium(Maxwell)
force for the homogeneous system defined by the corre-
sponding equal area construction, and

>0, which we assume to be identical in both phases. The
elastic modulusy of the NNN springs is taken to beega- Fr=EA \/;/2 (7

tive, as suggested, for instance, by molecular models with the

Lennard-Jones potenti&l.In what follows we focus on the is the Peierls force. One can see that after the strain in the
representation of the PN landscape associated with the modgl+ 1)th NN spring reaches the critical value, at F=F),

(1) and (3); a related analysis for the piecewise linear FK +Fp, the single interface solution ceases to exist, making
model at zero driving and limited to thecomputation of thethe phase boundary free to move. During the unloading, the

Peierls barrier can be found in Refs. 26 and 27.
We begin with the localization of the valleys of the PN
potential representing equilibrium configurations of Eds.

depinned phase boundary starts moving in the opposite di-
rection once the strain in thieh reaches the value, at F
=Fy—Fp. Notice that inside the interval of lattice trapping

and (3) with a single interface. From the expression of theF,,—Fr<F<F,+Fp, solution (6) is at least metastable

energy, we obtain the following equilibrium equations:

(4)

Here, the tridiagonal symmetric mati,, which describes
the “elasticity” of the lattice with NNN interactions, is
defined by Agw=w+{(7—1)/4 (W, 1+ 2W+wW,_q),
where =(K+4+v)/K is the main nondimensional param-

AW = p(Wy).

due to the positive definiteness of the matkiy, guaranteed
by our assumptions on elastic moduli.

To reconstruct the full PN energy landscape, one needs to
find the optimal(minimal barriej path connecting the meta-
stable equilibria of a single interface. Assume for determi-
nacy thatF,,<F<Fp+F) and consider the two adjacent
pinned equilibrium configurations, (i) andw(i+1). No-

eter of the problem measuring the relative strength of the NNiC€ that in the first of these configurations thet()th

and NNN interactions. The loading functign(w)=F/K
+af(w—w,.) contains the constant driving representing,
for instance, the applied shear stress.

The trivial solution of the equilibrium equatior{g) cor-

spring is still in phase I, while in the second this spring has
already switched to phase Il. In order to move from the first
to the second configuration, the system has to follow a non-
equilibrium path with {(+1)th spring changing phase. We

responds to a uniform deformation in either of the phasegM@y therefore choose; ., as the order parameter and mini-

Thus, the chain is in phase | with constani=F/K » when

mize the energy with respect to all,, with k<i andk=i

F<K 7w, . We assume that at the given loading, this homo-T 2. The necessary conditions for this constrained equilib-

geneous configuration is stable, which in our cake>Q,
y<0) translates into the requirement thatk §<1.?° To
find a nontrivial solution of Eq(4) describing an isolated

phase boundary pinned by the lattice, we assume that the

location of the interface coincides with partigleThis leads
to the constraintsv,=w,;, k<i (phase I} andw,<w,, k
>i (phase ). The system of nonlinear equilibrium equations

rium are given by equation@), with k#i+1. Fork<i, the
solution of the resulting linear system satisfying the bound-
ary condition at—<« can be written in the parametric form

|

eMk=v=1/2)

S e
Wi (v)=wr 411 2costin/2)

®

(4) can then be rewritten as a system of linear equations withlere, v is defined by the conditionv;, ,(v)=w;,; it is

a given right-hand side:

p(w,) =F/K +ad(i—k). (5)

Solutions of Eq(5) must tend to the homogeneous configu-
rationsw_,,=(F/K+a)/n and w, ,.,=F/(K#%) at infinity.
The exact solution of this linear problem is given by

wy (i) =w*+s(k—i), (6)
where
F e~ Im-12
wr=g, s(m=A 0(%—m)—m sgn(z—m),

and A =2 arccosh(I{| »—1|). ParameterE=K#» and A

easy to see that=[ v] (the integer part o). In the interval
(i,i+1), the functiorw; ;(») monotonically increases with

v from w;, ¢(i) tow;,¢(i+1) andv can be used as a new
order parameter. To complete the construction of the con-
strained equilibria, we need to fivd; (v) satisfying equilib-
rium equations fok=i+2, the boundary condition at ©

and the continuity conditiow;" ;(v)=w;, ;(v). We obtain

e)\([v] —v+1/2)

W;(V):W* +Ae)‘([V]+lk)[ 1— m

]. 9

The combination ofwv, (v) taken atk<[v]+1 andw, (v)
atk=[ v]+ 1 constitutes the desired nonequilibrium transfor-
mation pathw,(»). Notice that by construction, the integer

=al n define the macroscopic elastic modulus and the transvalues ofv correspond to the metastable configurations of
formation strain, respectively, for the homogeneously dethe pinned phase boundary with the strain profilgi).

formed system with the macroscopic resporse E(w
—AfH(w—w)).

To obtain the associated PN landscape, we introduce the
Gibbs energyG=Vv-FX,___w, and compute its values

Using Eq.(6), one can show that the strains in the phaseslong the nonequilibrium path8) and(9). Since the energy
are confined to the corresponding energy wells if and only ifof the chain is infinite, we need to evaluate the difference

the applied force lies in the intervely—Fp<F<Fy

betweenG(v) and the energy of one of the metastable equi-
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zero atF =0 (horizontal PN landscapand reaches its maxi-

mum atF = Fp when the barriers disappear. The critical driv-
ing force is equal to

gp=FpA, (12

where the Peierls force is given by E{).

In the limiting casep=1 when NNN interactions are ab-
sent, the PN landscape reduces to the expression computed
in Ref. 18, and the limiting minimal barrier path corresponds
. . . . . ) . to a single spring changing phase, with other springs remain-

4 5 6 v ing fixed in their equilibrium positions. We remark, however,
that in the NN chain the location of the spring that changes

FIG. 1. Peierls-Nabarro energy landscapg(v)/(Ee) atF/E  phase is arbitrary. When NNN interactions are taken into
=03, 7=12, w;=a=1. account, the permutational degeneracy is removed and the
o o o transforming spring is located exactly in front of the phase
libria. Defining Go(») =G(v) —G(0) and substituting Eqs. poundary. The existence of the boundary layer in the NNN
(8) and(9) into Eq. (1), we obtain chain makes the propagation of the existing phase boundary

easier than the nucleation of a new one, which has also been
A(n—1) \/; noticed in the numerical experiments conducted for the finite
8 chains in Ref. 20. In the present model, this is manifested by
- the fact that the Peierls forde, associated with the propa-
Flv] ] gation of a phase boundary is smaller thangpmodal force

327

A4t

Go(y)=—EAg{ (1—e Mr=[vDy2

t—E 7t h(»)o(h(v)) (10 Fs=EA/2 marking the threshold of instability for the homo-
- geneous state. In the local model without NNN interac-
Here, F=F—F), is the difference between the applied tions the corresponding “nucleation peak” is absent and

— _ 18
and Maxwell forces, and h(v)=F/E+(A/2){1 Fp=Fs.” .
—e‘“”‘[v]‘1’2)/coshQ\/2)}. To verify the theory, we estimate the modulus of NNN

A typical graph ofGo(») is shown in Fig. 1. As expected interactions using the experimental data on kinetics of mar-

the PN landscape exhibits local minima at integer values of €NSitic phase boundaries and then compare it with an inde-

corresponding to successive metastable pinned locations gendent estimate based on a simple molecular model of the

the phase boundary. In order to switch from one pinned cong@Me solid phase. Formu(@) for the Peierls force implies
figuration (say, atv=i) to the neighboring ondat v=i
+1), the system needs to climb an energy barrier. In the _ 2
present piecewise linear setting, the maxima of the PN po- 7={1+2(Fp=Fg)/(EA)}" (13
tential (saddle points of the original energgire represented Then, if parametersp, E, andA are known from the mac-
by the sharp peakd. For eachi, the peak is located at,  roscopic experiment, one can determine parametérom
e(i,i+1), which is defined by the conditiom; ;(v;) Eqg. (13). Note, however, that the assumption about the bilin-
=w,. The energy barrier associated with a peak does natar character of the force-strain curve for a single spring
depend ori and is given by the following explicit formula  largely overestimates the maximal hysteresis widdithile a
more appropriate estimate could, in principle, be obtained
_ (FP—E)ZSA from the model with the cubic force-strain relation, the asso-
Go(¥i) =Go(l) = ——7— (1) ciated discrete model does not lend itself to an analytical
P study. To obtain an improved estimate pf we assume that

The barrier is maximal at Maxwell forcef0) and van-  in the realistic case whefp is close toF 5,2 the linearized

ishes at the upper boundary of the trapping region wikere VETS1ON of Bq.(19),

= F.p. If the energys(w) contains a nondegenerate spinodal n~1+4(Fp—FoI(EA), (14)
region, the cusps are replaced by the smooth energy
maxima® but the y dependence of the Peierls barrier be-remains true for the cubic model with the saf&. For the
comes much more complék. cubic interpolation of Eq(3), the spinodal force reduces to
A parameter playing an important role in the formulation Fs=EA/(6+/3). The Peierls forcép can then be found
of the kinetic relations for phase boundatfets thedriving  from formula(12) relating it to the critical driving forcep,
force grepresented in the three-dimensional continuum setwhich, in turn, can be obtained from the data on kinetics of
ting by the jump of the normal component of the Eshelbymartensitic phase boundaries.
tenso® In our framework, g={Gg(i)—Gq(i+1)}/e To estimate, we use the critical driving forcegp
=FA, which is again independent of One can see thagy ~ =25.26 MPa reported in Ref. 30 for a moving interface be-
characterizes the degree of tilting of the PN landscape due tveen cubic andB;-monoclinic phases in a single-crystal
the external forceF. In particular, the driving force equals Cu-Al-Ni alloy. The other relevant parameters, also provided
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in Ref. 30, areA=0.16868 andE=10 GPa. Substituting

these values into Eq$12) and (14), we obtain »=0.97,

which corresponds tg=—77.13 MPa andK =10.3 GPa.
To check this result, we can alternatively estimatdoy

PHYSICAL REVIEW B57, 172103 (2003

We conclude that despite its simplicity, the proposed
model provides a realistic link between the macroscopic hys-
teresis and the microscopic parameters of interatomic inter-
actions. To study the behavior of the driven system inside the

assuming that both NN and NNN interactions are governedysteresis loop, one needs to analyze the dynamic extension

by the Lennard-Jones potentidl(r)=(Ke/72){(e/r)*?

of this model. Our preliminary results show that the rugged-

—2(e/r)®, where parameters are selected so that elastioess of the PN landscape exposed in the present paper gives

modulus in the potential well located at ¢ equalsk. By

rise to stick-slip motion of the phase boundaries at small

linearizing U(r) around the unstretched homogeneous stataveraged velocities and nonzero radiative drag at subsonic

with the spacingsr=¢ and r=2¢, we obtaif® 7
=4U"(2&)/U"(&). This yields =0.98, which, despite a

rather rigid form of the potential, is remarkably close to the

above estimate. With macroscopic elastic modulds
=10 GPa, we obtaiy=—45.1 MPa andK=10.18 GPa.

and near sonic velocities.
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