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Abstract We introduce the concept of kinetic or rate equations for moving defects representing a natural
extension of the more conventional notion of a kinetic relation. Algebraic kinetic relations, widely used to
model dynamics of dislocations, cracks and phase boundaries, link the instantaneous value of the velocity of
a defect with an instantaneous value of the driving force. The new approach generalizes kinetic relations by
implying a relation between the velocity and the driving force which is nonlocal in time. To make this relation
explicit one may need to integrate a system of kinetic equations. We illustrate the difference between kinetic
relation and kinetic equations by working out in full detail a prototypical model of an overdamped defect in
a one-dimensional discrete lattice. We show that the minimal nonlocal kinetic description, containing now an
internal time scale, is furnished by a system of two ordinary differential equations coupling the spatial location
of defect with another internal parameter that describes configuration of the core region.

Keywords Martensitic phase transitions · Lattice dynamics · Kinetic relations · Kinks · Defects ·
Quasicontinuum models · Dispersion · Nonlinear waves

1 Introduction

Kinetic relations attributing a particular value of velocity to a given value of the driving force are widely used
in continuum mechanics as a constitutive description of moving lattice defects including phase boundaries,
dislocations, and cracks (see the reviews [2,16,28,30]). These algebraic relations form independent postulates
that serve as closing conditions specifying singular solutions in the classical continuum theories. Kinetic rela-
tions replace the detailed modeling of the core regions of the defects and represent a condensed description of
the complex physical behavior at the microscale. In practice, kinetic relations are either taken from experiment
or deduced from the solutions of auxiliary microscale problems. Characteristically, these auxiliary problems
always assume constant values of both the macroscopic velocity of the defect and of the corresponding driving
force.

Due to the implicit assumption that the defect is in a steady motion, the kinetic relations based description
misses the details of a non-steady internal dynamics of the core region. In particular, the internal pulsations
originating from the defect interaction with localized micro-inhomogeneities become averaged out. To partially
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recover the missing information we propose in this paper to replace algebraic kinetic relations by differential
kinetic equations. The aim of these equations is to capture the transient phases of the defect evolution in
response to non-steady driving.

In the language of constitutive theory, we propose to replace the instantaneous rheological relations for
moving defects by nonlocal memory functionals originating from a local description in terms of internal vari-
ables. Such augmentation of the model brings into the conventional theory internal time scales and allows one
to deal with the so-called “rate effects”. An example of a similar development is provided by the rate-dependent
constitutive laws in the theory of friction, where the set of internal state variables is also assumed to satisfy
differential constitutive relations (e.g. [32,33]).

In order to show the possibility of a systematic derivation of kinetic equations from a micromodel, we
consider a prototypical overdamped defect moving in a lattice. We develop a low-parametric description of
the internal dynamics of this defect involving some specially selected internal variables which characterize the
structure of the core region. Our approach can be viewed as an example of a quasicontinuum method in the
sense of [4,29,37] because we match the macroscopic continuum description outside singularities with a more
detailed atomistic resolution of the core regions. The zero-order model of this type produces kinetic relations
and implies instantaneous and universal response of the core region to external perturbations (autonomous core
region). The first-order approximation leads to kinetic equations which capture some non-universal features
of the microscopic dynamics. For consistency of the two approximations, kinetic equations must of course
reduce to the kinetic relation when the variation of the macroscopic parameters is sufficiently slow.

In this paper, we illustrate the general idea of our approach to kinetics by considering the case of a martens-
itic phase transition. Phase boundaries are particularly convenient for the demonstration of our main principles
because these plane defects can be adequately represented already in one-dimensional models. To emphasize
ideas we limit our attention to overdamped dynamics. At the microscale, the analysis of the non-steady evolu-
tion of the transformation front requires a study of a dynamical system with an infinite number of degrees of
freedom. At the macroscale, the phase transition is modeled as a singular surface (jump discontinuity) whose
evolution is governed by a kinetic relation [38]. We pose the question of whether an intermediate description
is possible when the interface is equipped with a small number of “mesoscopic” degrees of freedom whose
dynamics reproduces the main transient effects.

Probably the first example of such a reduced description can be found in the theory of lattice disloca-
tions where a dynamic defect is often viewed as an effective particle moving in the Peierls–Nabarro (PN)
landscape [7]. The PN landscape is obtained by relaxing all microscopic variables other than one collective
variable interpreted as the macroscopically observable location of the core. The idea of a tilted PN landscape
has been heuristically applied to the description of dynamic dislocations in close to continuum limit [13,17–
20,27,31,45]. This approach, however, cannot be used in principle in the strongly discrete case when the
dislocation core is atomically narrow [14,21]. In order to deal with this limit, it is natural to abandon the idea
of macroscopic collective variables and trace instead the dynamics of the particular discrete elements while
enslaving all others. Such elements were called “localized normal modes” in [44] and “active points” in [24].
In some special cases it can be proven rigorously that dynamics of “active points” corresponds to the motion
along the center manifold of the infinite-dimensional dynamical system [9].

In the absence of a systematic approach, the internal variables capturing the main response of a defect to a
particular class of external perturbations have to be chosen heuristically. In this paper, we propose to base the
selection of the minimal set of relevant parameters on the analysis of the relative “activity” of the variables
in the traveling wave solution. As a result, we obtain kinetic equations which describe small (and adiabatic)
modulations of such steady states. Stronger deviations from the traveling wave ansatz have been rigorously
studied for several classes of nonlinear equations in the case of periodic obstacles (pulsating traveling fronts,
e.g., [5,11]). Here we deal with singular limit of such problems (localization of the fronts) which has not been
fully understood in the mathematical literature.

The paper is organized as follows. To show the limitations of the algebraic kinetic relations and to motivate
the ideas behind the construction of the differential kinetic equations, we begin in Sect. 2 with a toy model.
In Sect. 3, we formulate the singular macroscopic problem which requires a closure relation. We then dis-
cuss different phenomenological options, including local and nonlocal kinetic relations. In search for a more
physically sound microscopic closure we turn in Sect. 4 to a lattice model of a moving defect. The kinetic
equations of different dimensionality are proposed in Sect. 5. By studying the exact traveling wave solution
of our discrete problem, which is known in the case of a piecewise quadratic interaction potential [36,42,43],
we conclude in Sect. 6 that the system of kinetic equations must be at least two-dimensional. In Sect. 7, we
test our low-parametric reduced model in the case of a time-dependent driving force and show how it can be
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used to obtain a rheological model of the transformation kinetics which is nonlocal in time. We also show that
depending on the rate of external driving the responses of the phase boundary based on the kinetic relation and
on the associated kinetic equations may be markedly different. Our conclusions are summarized in Sect. 8.
Explicit traveling wave solution of the microscopic problem which is used in the paper as a benchmark test is
constructed in Appendix A. In Appendix B, we show that at least for adiabatic variations of the driving force
the system of kinetic equations inherits the gradient flow structure from the microscopic model.

2 Motivation

To motivate our approach, we begin with a toy model describing an overdamped dynamics of a configurational
point in a one-dimensional energy landscape:

∂ν

∂τ
= −∂Φ(ν; G(t))

∂ν
. (1)

Here ν is a variable defining the microstate of the system and G(t) is a sufficiently slow varying macroscopic
driving force which depends on slow time t . The fast time is defined as τ = t/ε, where ε � 1 is a small
parameter. We assume that the gradient of the energy landscape Φ(ν; G) is periodic in ν. For example, one
can consider (see also [3])

Φ(ν; G) = GPδ sin
ν

δ
− Gν, (2)

where the parameter δ > 0 measures the degree of discreteness of the system, which is manifested here through
the “wiggles” in the energy landscape. Thus, δ → 0 represents the continuum limit, while δ ∼ 1 is the strongly
discrete regime. The Peierls driving force GP > 0 is a depinning threshold: at |G| < GP the system is trapped
in one of the local minima of the energy landscape, which become saddle points at G = ±GP; at |G| > GP
the configurational point starts moving.

The method of kinetic relations postulates the existence of an algebraic relation between the driving force
G and the macroscopic velocity

V (t) =
〈
∂ν

∂τ

〉
τ

= lim
ε→0

ε

1/ε∫
0

∂ν

∂τ
dτ. (3)

Such relation, which we write as V (t) = F(G(t)), can be computed explicitly if Φ(ν; G) is given by (2).
Then (e.g. [3,15])

V = �(G) =
{

0 |G| ≤ GP

sgn(G − GP)

√
G2 − G2

P |G| ≥ GP.
(4)

In more realistic situations, the microscopic description of the type (1) is too complex because it involves a
huge number of variables. In contrast, the macroscopic description (4) is too schematic and cannot be trusted
when one deals with the problems where slow and fast time scales cannot be separated. Consider, for instance,
time-dependent driving force given by

G(t) = G0 − A tanh
t − t∗

ζ
. (5)

Here G0 = G(t∗) > GP is the constant background driving force, A is the amplitude of the (diffuse) jump in the
driving force, and ζ is the characteristic time over which the driving force decreases by 2A. Such perturbation
of the driving force may represent an interaction of a dislocation or a phase boundary with an obstacle.

Compare two responses to the perturbation (5). One is obtained by solving the kinetic equation

∂ν

∂t
= G(t) − GP cos

ν

δ
(6)
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Fig. 1 The transient response in the model (2) to a time-dependent variation of the driving force (5) with A = 0.1, t∗ = 50,
G0 = 0.65 and ζ = 1, GP = 0.5 and δ = 1. The curves ν(t) (black curve) and ν∗(t) (gray curve) are obtained using (6) and (7),
respectively. Horizontal dashed lines indicate the discrete locations 2πnδ of the lattice points
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Fig. 2 a Time-dependent driving force (5) with A = 0.1, t∗ = 50, G0 = 0.65 and different ζ in the model (2) with GP = 0.5
and δ = 1. b The corresponding difference ν∗(t) − ν(t) evaluated at the times tn when ν(tn) = 2πnδ

for ν(t). The other response is governed by the kinetic relation (4) at G > GP and is given by

ν∗(t) =
t∫

0

F(G(τ )) dτ =
t∫

0

√
G2(τ ) − G2

P dτ. (7)

Typical results are shown in Fig. 1. One can see that as G(t) decreases, the average velocity decreases, resulting
in the smaller slope of both graphs. Observe also that while the parameter ν changes continuously with time
t , the core of the moving defect modeled by this system can take values at the discrete lattice points 2πnδ
(the inflection points of Φ(ν; GP)) shown by dashed lines in Fig. 1b. The difference ν∗(t) − ν(t) at the times
tn when ν(tn) = 2πnδ is shown in Fig. 2b for different values of ζ (with the corresponding G(t) graphs
shown in part (a)). One can see that for each ζ the difference is nearly zero at t small enough so that G(t) is
almost constant, becomes nonzero as G(t) decreases and tends to a constant nonzero value at large t . The large
difference between the two responses at small ζ indicates that kinetic relation approach is not suitable when
G(t) changes sufficiently fast. As ζ becomes larger, the difference between the two responses tends to zero,
suggesting that kinetic relation approach produces adequate approximation above a certain threshold in ζ .

To understand how this threshold depends on the inhomogeneity level without solving the time-dependent
problem, one can consider a constant G > GP and replace the driving rate ζ by the size of the observation
window. Introduce an auxiliary function

τ(q, δ, G) = δ

q∫
0

dp

G − GP cos p
= 2δ

arctan

⎡
⎣

√
G2 − G2

P

G − GP
tan

q

2

⎤
⎦ + π

⌊
q + π

2π

⌋

√
G2 − G2

P

,
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Fig. 3 a The misfit z between the coarse-grained and the kinetic relation based descriptions vs the size of the averaging window
τ at δ = 0.5. b The threshold |z| = 0.01 separating the region in δ − τ plane where the kinetic relation approach is suitable from
the region where kinetic relation can not be expected to work well. Here G = 0.65

where q > 0, and �x	 denotes the largest integer less or equal than x . We can now define a coarse-grained
velocity

Vc(q, G) = qδ

τ(q, δ, G)
.

The quantity

z(q, G) = Vc(q, G)

F(G)
− 1,

which is independent of δ, quantifies the error of the approximation of the coarse-grained velocity Vc(q, G) by
the kinetic relation (4). The parametric plot of z(q, G) versus τ(q, δ, G) at δ = 0.5 and G = 0.65 is shown in
Fig. 3a. One can see that this is an oscillating function that decreases in amplitude as the window τ decreases.
Therefore, kinetic relation approach becomes justified only when τ is sufficiently large. Using the threshold
value |z| = 0.01 we find that the domain in the (τ, δ) plane where kinetic relation works is bounded by a
linear function representing the critical scaling (see Fig. 3b). The existence of such a crossover indicates, in
particular, that the continuum limit δ → 0 is nonuniform with respect to τ .

3 Macroscopic model

Let u(x, t) be a one-dimensional continuum displacement field. The macroscopic energy of a bar undergoing
martensitic phase transition can be written as

E =
∫ [

ρu2
t

2
+ φ(ux )

]
dx . (8)

Here ut ≡ ∂u/∂t is the macroscopic velocity, ux ≡ ∂u/∂x is the macroscopic strain, ρ > 0 is the reference
mass density, and the energy density φ(ux ) is represented by a double-well potential which will be specified
later.

The dynamic equation corresponding to the energy (8) is

ρutt = (σ̂ (ux ))x , (9)

where σ̂ (ux ) = φ′(ux ) is the stress–strain relation. On discontinuities, the Eq. 9 must be supplemented with
the jump conditions. Let f− and f+ denote the values of f (x) to the left and to the right of the interface, and
introduce the notations [[ f ]] ≡ f+ − f− for the jump and { f } ≡ ( f+ + f−)/2 for the average of f across
the discontinuity. Then the parameters on a discontinuity must satisfy the classical Rankine–Hugoniot jump
conditions

[[ut ]] + V [[ux ]] = 0, ρV [[ut ]] + [[σ̂ (ux )]] = 0. (10)
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The entropy inequality, which must also hold on the jump, can be written in the form

R = GV ≥ 0, (11)

where R is the rate of energy dissipation and

G = [[φ]] − {σ̂ (ux )}[[ux ]] (12)

is the configurational (driving) force. In one-dimensional problems, imposing the entropy inequality can rem-
edy local non-uniqueness only in the case of supersonic discontinuities (shock waves). For subsonic phase
boundaries one must specify the rate of entropy production as well. This is usually done phenomenologically
through the kinetic relation V = F(G) linking the driving force and the velocity [1,38,39]. If the microscopic
model is known, one can compute the function F(V ) directly from the microscopic traveling wave solution
(e.g. [34,36,38,42,43]).

Since the adjustment of the velocity V (t) to the dynamic configurational loading G(t) is not instantaneous,
the algebraic kinetic relation cannot be expected to work well if the function G(t) changes sufficiently fast. In
this case, the more realistic relationship between the velocity and the driving force will be history-dependent:

V (t) = F{G(τ ), τ ≤ t}. (13)

The goal of the following sections is to find the way such a nonlocal relationship can be reconstructed from a
microscopic model and to show that the nonlocality may be important in the case of nonadiabatic driving.

For simplicity, we limit our attention in what follows to the overdamped limit. In this case, the macroscale
governing equations (9) reduce to

(σ̂ (ux ))x = 0.

The Rankine–Hugoniot jump conditions take the form

[[σ̂ (ux )]] = 0.

Suppose now that the overdamped dynamics of the transformation front can be described on the microscale
by a system of equations in the form

ẇ = R(w; G(t)), (14)

where G(t) is the macroscopic driving force (12) entering the microscopic equations as a time-dependent
parameter. If we could solve these equations and express the velocity of the transformation front through the
micro-parameters w ∈ R

N , the problem of reconstructing the nonlocal kinetic relation (13) would be solved. In
view of the large value of N this is hardly possible. Therefore, we can try to approximate the higher-dimensional
dynamical system (14) by a low-dimensional dynamical system of the type

ν̇ = Q(ν; G(t)), (15)

where now ν ∈ R
K and K � N defines the dimensionality of the reduced system. After the solution of the

vector Eq. 15 is known, the microscopic discrete field (14) should be recoverable from the auxiliary relations
wn(t) = wn(ν1(t), . . . , νK (t)) describing the “non-order-parameter” variables. The knowledge of the dynam-
ics of the front in terms of the variables ν will then be sufficient for finding the nonlocal relation between the
front velocity V (t) and the driving G(t).

Observe that behind the conventional assumption that there exists an algebraic relation between the driving
force, G, and the velocity, V , lies the idea that the width of the transition layer is so small that the internal
relaxation to the traveling wave profile takes place much faster than the variation of the driving force. However,
as we have seen in our toy example, the convergence to the sharp interface limit may be nonuniform with
respect to the parameter describing the rate of configurational loading. This becomes important if, for instance,
our phase boundary interacts with an obstacle. The structure of this obstacle should be sufficiently diffuse
for the algebraic kinetic relation to hold. If the profile of the obstacle is sufficiently sharp, the time scales of
internal relaxation and of external driving may become comparable and the traveling wave ansatz may break.
In this case, one can expect that more complex double limits in the spirit of [6] may still work and we view
our kinetic equations as a step towards constructing such intermediate asymptotics.
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Fig. 4 The discrete microstructure with viscoelastic nearest and elastic next-to-nearest-neighbor interactions

4 Microscopic model

Consider an infinite chain of particles, connected to their nearest neighbors (NN) through viscoelastic springs
and to their next-to-nearest neighbors (NNN) by elastic springs (see Fig. 4).

Suppose that in the undeformed configuration the NN and NNN springs have lengths ε and 2ε, respec-
tively. Let un(t) denote the displacement of nth particle at time t with respect to the reference configuration.
We associate with the deformation of nth NN spring a discrete measure of strain

wn = un − un−1

ε
. (16)

For the viscoelastic NN springs we assume the following constitutive relation:

fNN(w, ẇ) = φ′
NN(w) + ξẇ, (17)

where ξ > 0 is the viscosity coefficient. To describe domain boundaries the function φNN(w) must be at least
a double-well potential; to simplify the analysis we also assume that this function is biquadratic:

φNN(w) =
{ 1

2μw2, w ≤ wc

1
2μ(w − a)2 + μa

(
wc − a

2

)
, w ≥ wc.

(18)

Under these assumptions the NN elastic units can be in two different phases, depending on whether the strain
is below (phase I) or above (phase II) the critical value wc. The elastic modulus in each phase is μ > 0, and
the parameter a > 0 measures the transformation strain. To further simplify calculations, we assume that the
NNN interactions are linearly elastic:

fNNN(ŵ) = 2γ ŵ. (19)

Here we defined ŵn = (wn+1 + wn)/2 as the strain in the NNN spring connecting (n + 1)th and (n − 1)th
particles.

The dynamics of the chain is governed by the following system of ordinary differential equations:

ρεün = μ[wn+1 − wn − θ(wn+1 − wc)a + θ(wn − wc)a]
+γ (wn+2 + wn+1 − wn − wn−1) + ξ(ẇn+1 − ẇn). (20)

Here ρ > 0 is the mass density of the chain and θ(x) is the unit step function. To ensure stability of the chain
we require that

E = μ + 4γ > 0, (21)

where E is the homogenized macroscopic elastic modulus; following [40,41], we also assume that the NNN
interactions are of ferromagnetic type, meaning that γ ≤ 0. In the limit ε/L → 0, where L is a macroscopic
length scale, the viscosity term tends to zero and we recover (9) with the homogenized stress–strain law [43]

σ̂ (w) = E(w − �θ(w − wc)).

Here � is the macroscopic transformation strain:

� = aμ

E
. (22)
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There are two time scales associated with this problem: the time scale of inertia, Tin = ε
√

ρ/E , and the
viscosity time scale, Tvisc = ξ/E . In what follows we limit our attention to the overdamped limit when
Tvisc � Tin, i.e.

ξ � ε
√

ρE . (23)

We can then nondimensionalize the problem using Tvisc as the time scale and letting

t̄ = t E

ξ
, ūn = un

�ε
, w̄n = wn

�
, w̄c = wc

�
. (24)

Dropping the bars on the new variables, we obtain dimensionless system equations:

ẇn − ẇn+1 = σ̂ (wn+1) − σ̂ (wn) + D(wn+2 − 3wn+1 + 3wn − wn−1), (25)

where

σ̂ (w) = w − θ(w − wc) (26)

is the rescaled macroscopic stress–strain law. The dimensionless parameter

D = − γ

E
≥ 0 (27)

characterizes the relative strength of NN and NNN interactions. In what follows it will also be interpreted as
a measure of coupling of the bistable units.

Observe that system (25) can be “integrated”, yielding

ẇn = D(wn+1 − 2wn + wn−1) − σ̂ (wn) + σ. (28)

Here σ = σ(t) is the time-dependent applied stress. One can see that we obtained the overdamped Frenkel–
Kontorova (FK) model [9,12,23,26]. A subtle but important particularity of the present setting is that in contrast
to the usual setting of the FK model our coupling coefficient D is independent of the spatial scale ε.

5 Kinetic equations

To obtain a reduced model, we seek to condense out all but a small number of strain variables governing the
evolution of the core region of the moving phase boundary. The key to our approach will be the assumption
that the dynamics of only a few bonds located in the core region has to be resolved fully. A careful study of
the traveling wave solution of the infinite-dimensional system (28) presented in the Appendix A shows that
other bonds remain confined to near bottoms of their respective potential wells, and their small adjustment to
the changing conditions can be treated as instantaneous. In a certain sense we extend the approach of “active
points” [9,24] introduced first to deal with the immediate vicinity of the depinning point to a broader class of
non-steady motions.

We start by choosing a single active point and follow its exact dynamics while instantaneously equilibrating
all other microstrain variables at a current value of the driving force G(t). More specifically, we assume that
dynamics of only a single NN spring, located right behind the phase transition front and actually changing the
energy well, needs to be traced in all the detail, while all other springs can be “enslaved” to it.

We can always assume that at t = 0 it is the 0th NN spring that has just switched from phase I to phase
II and therefore, the “active strain” is w0 and w0(0) = wc. The other strain variables wn , n �= 0, satisfy the
system of equilibrium equations

D(wn+1 − 2wn + wn−1) − σ̂ (wn) + σ = 0, (29)

where n �= 0. Since we deal with an isolated phase boundary, we assume that at infinity the solution of (29)
approaches uniform-strain G-dependent states in two different phases:

lim
k→−∞wk = G + wc + 1/2, lim

k→∞wk = G + wc − 1/2. (30)
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Introducing

λ = arccosh

(
1

2D
+ 1

)
, (31)

we obtain

wn = wc − 1/2 + G +
{

1 + (w0 − wc − G − 1/2)eλn, n ≤ −1
(w0 − wc − G + 1/2)e−λn, n ≥ 1,

(32)

which also extends to n = 0. Substituting these expressions in (28) with n = 0, we obtain a single equation
governing the dynamics of the active point:

ẇ0 = −w0{1 + 2D(1 − e−λ)} + wc + G + 1/2 + 2D(G + wc)(1 − e−λ). (33)

Equation 33 is the simplest example of a differential kinetic equation generalizing the algebraic kinetic relation
(47).

To obtain a more sophisticated reduced model which can be expected to work in a wider range of driving
conditions, we need to incorporate more “active points” into the monitored core region of the defect. The nat-
ural next step is to consider in addition to w0(t) the adjacent strains w−1(t), and w1(t). We therefore assume
again that G = const and equilibrate all strain variables other than w−1, w0 and w1. This leads to the following
recovery relations:

wn =
⎧⎨
⎩

wc + G + 1/2 + (w−1 − wc − G − 1/2)eλ(n+1), n ≤ −1
w0, n = 0
wc + G − 1/2 + (w1 − wc − G + 1/2)eλ(1−n), n ≥ 1.

(34)

The three active variables satisfy the dynamic equations

ẇ−1 = D(w0 − 2w−1 + w−2) − w−1 + wc + G + 1/2

ẇ0 = D(w1 − 2w0 + w−1) − w0 + wc + G + 1/2 (35)

ẇ1 = D(w2 − 2w1 + w0) − w1 + wc + G − 1/2.

Substituting the expressions for w2 and w−2 from (34) in (36), we obtain

ẇ−1 = (−2D − 1 + e−λD)w−1 + Dw0 + (wc + G + 1/2)(1 + D(1 − e−λ))

ẇ0 = (−2D − 1)w0 + Dw1 + Dw−1 + wc + G + 1/2 (36)

ẇ1 = (−2D − 1 + e−λD)w−1 + Dw0 + (wc + G − 1/2)(1 + D(1 − e−λ)).

If we now compare the equations governing the dynamics of w−1(t) and w1(t), we see that they differ only
by a constant term. This allows us to reduce (37) to a two-dimensional system for

x(t) = w0(t), y(t) = w−1(t) + w1(t)

2
. (37)

These two variables, x(t), describing the dynamics of the transforming spring, and y(t), describing the average
strain in the core region, must satisfy the following system of equations:

ẋ = (−2D − 1)x + 2Dy + wc + G + 1/2 (38)

ẏ = Dx + (−2D − 1 + e−λD)y + (wc + G)(1 + D(1 − e−λ)). (39)

This system of kinetic equations generalizes (33) and will serve in what follows as our main approximation
of the full microscopic dynamics. Note that the active strains can be recovered from (38), (39) by means of
explicit formulas: w∓1(t) = y(t) ± (1 − e−λ)/2. The described process of extracting higher and higher order
systems of kinetic equations can be of course continued until one recovers the original infinite-dimensional
system.

Note that at t = t1, when w1(t1) = wc the core region moves by one lattice space, and the equations gov-
erning the reduced models need to be modified accordingly. In general, during the time interval ti ≤ t < ti+1,
where ti is such that wi (ti ) = wc, the active strains are wi and (in K = 2 case) wi±1.
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Fig. 5 a Kinetic relations G(V ) for the infinite-dimensional dynamics (64) (solid curve) and for the K = 1 approximation
(dotted curve). b Comparison of strain trajectories obtained in the K = 1 reduced model (dotted curves) and in the original
infinite-dimensional model (solid curves). Parameters: V = 0.1, D = 0.5, wc = 1

6 Kinetic relation

To show the advantage of the two-dimensional system (38), (39) over the one-dimensional equation (33), we
consider in this section the simplest steady-state regime with G(t) = const and wn(t) = w(n − V t). The
corresponding solution of the infinite-dimensional problem describing a steadily propagating phase boundary
is known explicitly (see Appendix A).

To see whether the simplest kinetic equation with K = 1 is compatible with the exact kinetic relation (64),
we solve (33) subject to the boundary condition w0(0) = wc, obtaining

w0(t) = wc + (G + GP)

{
1 − exp

(
− t

2GP

)}
. (40)

Here GP is the classical Peierls threshold introduced in the Appendix A (see (67)). Next, by setting n = 1 in
(32), we find

w1(t) = wc + G − GP − e−λ(G + GP) exp

(
− t

2GP

)
.

The second boundary condition w1(1/V ) = wc yields the desired approximation of the kinetic relation:

G(V ) = GP + (1 − e−λ)(GS − GP)

exp
(

1
2GPV

)
− exp(−λ)

. (41)

Clearly, G(V ) → GP as V → 0, and in agreement with (64) G(V ) tends to the spinodal value GS = 1/2 as
V goes to infinity.

In Fig. 5b, we compare the dynamics governed by the one-dimensional model (33) with the full infinite-
dimensional dynamics at G = const which follows from the traveling wave solution (62). As expected, the
evolution of the active strain is captured quite well, but there is a visible deviation from the actual values
for the strains whose adjustment was assumed to be instantaneous. The corresponding kinetic relations are
compared in Fig. 5a. One can see that the reduced model with K = 1 provides a good quantitative approxi-
mation of the exact kinetic relation until V = 0.2. At higher velocities it deviates substantially from the exact
relation, although both tend to the same spinodal limit GS at infinite V . The observed discrepancies in the case
G = const suggest that the reduced model with K = 1 may be oversimplified.

We now turn to the kinetic equations with K = 2 and check whether the traveling wave solution (62) of
the original system can be reproduced by the reduced system (38), (39). Such solution must be subjected to a
set of constraints. First, we must require that

x(0) = wc, (42)
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a condition that ensures that the 0th NN spring (recall that x = w0) has just transformed to the new phase at
t = 0. Second, we require that

w1(1/V ) = wc,

or

y(1/V ) = wc + 1 − e−λ

2
. (43)

This means that at t = 1/V the first NN spring reaches the critical strain, marking the end of the first time
interval. Finally, the traveling wave ansatz requires that

w1(0) = w2(1/V ).

Using (34) at n = 2 together with (43), we can see that this boundary condition reduces to

w1(0) = wc − (GS − G)(1 − e−λ),

or

y(0) = wc + G(1 − e−λ). (44)

Next, by solving the system (38), (39) subject to the initial conditions (42) and (44), we obtain

x(t) = wc + G + GP + c1er1t + c2er2t

y(t) = wc + G + e−λGP + e−λ

4 (c1(1 + √
1 + 8e2λ)er1t + c2(1 − √

1 + 8e2λ)er2t ),
(45)

where

r1,2 = − eλ

4 sinh2(λ/2)

(
1 + 1

2
e−2λ(1 ∓

√
1 + 8e2λ)

)
(46)

(note that r2 < r1 < 0) and

c1 = − (3 + √
1 + 8e2λ)(2G − 1 + eλ(1 + 2G))

4(1 + eλ)
√

1 + 8e2λ

c2 = − (
√

1 + 8e2λ − 3)(2G − 1 + eλ(1 + 2G))

4(1 + eλ)
√

1 + 8e2λ
.

The application of the boundary condition (43) yields the following approximation of the kinetic relation:

G(V ) =
GP + 1−e−λ

4(1+eλ)
√

1+8e2λ

(
(1 + 2e2λ + √

1 + 8e2λ)er1/V + (
√

1 + 8e2λ − 2e2λ − 1)er2/V
)

1 − e−λ

2
√

1+8e2λ

(
(1 + 2e2λ + √

1 + 8e2λ)er1/V + (
√

1 + 8e2λ − 2e2λ − 1)er2/V
) . (47)

Notice again that the approximate kinetic relation (47) satisfies the constraint G(0) = GP. Then, as V
tends to infinity, G(V ) → GS = 1/2. The global comparison of the approximate and exact kinetic relations is
presented in Fig. 6a. One can see that in view of how few degrees of freedom are involved in the approximation
(two), the agreement is quite good.

The comparison of strain trajectories in the two-dimensional reduced theory with the exact result at G =
const shows a considerable improvement over the one-dimensional approximation. For instance, Fig. 6b com-
pares the evolution of strains near the phase boundary over the first three time intervals at V = 0.1. While
in the case K = 1 the evolution of only the transforming element could be followed closely over each time
interval, in the K = 2 case the dynamics of the all nontransforming elements forming the core region of the
defect is also captured extremely well.

In Fig. 7, we show the regions in the (D, V ) plane where the reduced models capture the exact kinetics
within 1% error. The errors are defined as follows:

e1,2(V, D) = |1 − G1,2(V, D)/Gex(V, D)|,
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Fig. 6 a Kinetic relations G(V ): infinite-dimensional system (64) (solid curve) and K = 2 approximation (dashed curve); b
Comparison of the strain trajectories obtained in the K = 2 model (dashed curves) and in the infinite-dimensional model (solid
curves). Parameters: V = 0.1, D = 0.5, wc = 1
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Fig. 7 The boundaries of the region in the (D, V ) plane where the errors e1(V, D) (dashed line) and e2(V, D) (solid line) in the
approximation of the exact kinetic relation by K = 1 and K = 2 reduced models, respectively, are less than 1%

where G1(V, D), G2(V, D), and Gex(V ; D) are given by (41), (47) and (64), respectively. One can see that
at V < 0.25 both approximations are within this error margin for all D. The error becomes much smaller
as V decreases (e.g. less than 0.002% error for K = 2 approximation at V = 0.1). At higher velocities the
agreement is good only for small enough D (strongly discrete limit, narrow core), with the threshold value of
D depending on V . At larger D (strong coupling limit, broad core) the transformation front delocalizes and
more and more active points need to be included (see also [9]).1

In summary, we have shown that the kinetic model with K = 2 performs well in a much larger parameter
range than the kinetic model with K = 1. It is then natural to use the K = 2 system as the basis for the con-
struction of the nonlocal rheological relation on the moving phase boundary. An interpretation of the K = 2
dynamics as the overdamped motion of an effective configurational particle in a two-dimensional dynamic
Peierls–Nabarro energy landscape is discussed in Appendix B.

7 Nonsteady dynamics

We saw that the traveling wave solution of the original infinite-dimensional system can be reproduced rather
faithfully by the reduced two-dimensional system (38) and (39). This suggests that the K = 2 model may be
extended to deal with the situation when the driving force is not constant but varies sufficiently slowly. In this
more general setting we obtain

ẋ = (−2D − 1)x + 2Dy + wc + G(t) + 1/2
ẏ = Dx + (−2D − 1 + e−λD)y + (wc + G(t))(1 + D(1 − e−λ)).

(48)

1 Another possibility is to change the type of the approximation from “active points” to “collective variables”, which is more
in tune with a close to continuum character of the model in this limit. We will not pursue these ideas in the present paper.
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The system of kinetic equations (48) introduces an implicit nonlocal kinetic relation V (t) = F{G(τ ), τ ≤ t}.
To reconstruct this nonlocal relation we first suppose that the phase boundary is located at n = i at time

t = ti , meaning that in this instance the i th spring has critical strain: wi (ti ) = wc. As before, we can define
x(t) = wi (t) and y(t) = (wi+1(t) + wi−1(t))/2 when ti ≤ t < ti+1. Our goal is to compute the average
velocity V̄i in the interval (ti , ti+1), under the assumption that G(t) is known.

Observe that conditions

x(ti ) = wc (49)

and

y(ti+1) = wc + 1 − e−λ

2
, (50)

which are the extensions of (42) and (43) to the interval [ti , ti+1), ensure that the system holds from t = ti until
the time ti+1 when the next spring reaches the critical strain: wi+1(ti+1) = wc. While for given ti+1 conditions
(49) and (50) are sufficient to find a unique solution of (48), the moment ti+1 when the consecutive spring
switches from one energy well to another remains unknown. If G(t) varies sufficiently slowly, it is reasonable
to assume that the motion is close to steady in the sense that2

wi (ti ) = wi+1(ti+1). (51)

This condition allows us to close the system and find ti+1 from

y(ti ) = wc + G(ti+1)(1 − e−λ). (52)

To this end, we solve (48) subject to (49) and (52), obtain for ti ≤ t ≤ ti+1,

x(t) = g(t) +
t∫

ti

(er1(t−τ) f1(τ ) + er2(t−τ) f2(τ ))dτ

y(t) = h(t) + e−λ

4

t∫
ti

{
(1 +

√
1 + 8e2λ)er1(t−τ) f1(τ )

+(1 −
√

1 + 8e2λ)er2(t−τ) f2(τ )
}

dτ, (53)

where we defined

g(t) = 1√
1 + 8e2λ

{
1

2

(
(
√

1 + 8e2λ − 1)er1(t−ti ) + (
√

1 + 8e2λ + 1)er2(t−ti )
)

wc

+2eλ(er1(t−ti ) − er2(t−ti ))(wc + G(ti+1)(1 − e−λ))

}

h(t) = 1√
1 + 8e2λ

{
eλ(er1(t−ti ) − er2(t−ti ))wc

+1

2

(
(
√

1 + 8e2λ + 1)er1(t−ti ) + (
√

1 + 8e2λ − 1)er2(t−ti )
)

(wc + G(ti+1)(1 − e−λ))

}
(54)

f1(t) =
√

1 + 8e2λ − 1

2
√

1 + 8e2λ
(wc + 1

2
+ G(t)) + 2eλ

√
1 + 8e2λ

(wc + G(t))(1 + D(1 − e−λ))

f2(t) =
√

1 + 8e2λ + 1

2
√

1 + 8e2λ
(wc + 1

2
+ G(t)) − 2eλ

√
1 + 8e2λ

(wc + G(t))(1 + D(1 − e−λ)).

2 This condition is obviously not exact because G(ti ) �= G(ti+1). By using the knowledge of the exact structure of the traveling
waves at both G(ti ) and G(ti+1) this approximation can be in principle improved.
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Fig. 8 Position s(t) of the phase boundary obtained from the numerical solution of the discrete system (28) on a truncated lattice
(black solid curve), kinetic equations (48) (dashed line) and kinetic relation (47) for the reduced K = 2 model (gray curve) under
time-dependent driving force (5). Here D = 0.1, G0 = 0.4295, A = 0.0065, ζ = 1, and t∗ = 25

We can now determine the strains wi (t) = x(t) and wi∓1(t) = y(t) ± (1 − e−λ)/2. The other strains can be
recovered as before, from the constrained energy minimization:

wn(t) =
{

wc + G(t) + 1/2 + (wi−1 − wc − G(t) − 1/2)eλ(n−i+1), n ≤ i − 2
wc + G(t) − 1/2 + (wi+1 − wc − G(t) + 1/2)eλ(1−n−i), n ≥ i + 2.

Condition (50) applied to y(t) in (53) yields the nonlinear equation for ti+1:

h(ti+1) − wc − 1 − e−λ

2
+ e−λ

4

ti+1∫
ti

{
(1 +

√
1 + 8e2λ)er1(ti+1−τ) f1(τ )

+(1 −
√

1 + 8e2λ)er2(ti+1−τ) f2(τ )
}

dτ = 0. (55)

As we have seen in the previous section, at G = const this equation a unique solution and one can expect that
at least for the case of slowly varying driving force G(t) the solution ti+1 also exists and is unique. Once it is
found, we can obtain the desired expression for the average velocity in the time interval (ti , ti+1):

V̄i = 1

ti+1 − ti
. (56)

Using this iterative process, one can generate the sequence of successive time intervals [ti , ti+1] and the
piecewise constant function

s(t) = i, ti ≤ t < ti+1

describing the position of the phase boundary according to the reduced model. To illustrate this procedure,
consider the time-dependent driving force (5) with G0 = 0.4295, A = 0.0065, ζ = 1 and t∗ = 25 and let
D = 0.1. In Fig. 8, we see the dynamics s(t) of the phase boundary responding to this loading if computed
from (48) with s(0) = 0 (dashed curve). It is compared to the dynamic trajectory generated numerically by
solving the original discrete system (28) (black solid curve) on a truncated lattice (600 lattice points) with
initial strain given by the traveling wave solution at G = G(0) that has one of the springs at the critical strain
wc. In both cases the front initially propagates with a steady speed corresponding to constant driving force
G(t) ≈ G0 + A. As the driving force decreases at 22 ≤ t ≤ 28 (see the curve ζ = 1 in Fig. 9), there is a
transient regime followed, for t > 28, by another nearly steady regime at a lower velocity corresponding to
the lower value G(t) ≈ G0 − A. One can see that there is a delay in the response of the original system with
respect to the reduced one due to the approximations we made to obtain and solve (48).

Figure 8 also compares the two history-dependent trajectories of the front with the corresponding instanta-
neous response obtained from the kinetic relation (47) (gray curve). In this case, we obtain V∗(t) = F(G(t))
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Fig. 9 a Time-dependent driving force (5), with ζ = 1 (solid curve) and ζ = 100 (dashed curve). b The corresponding difference
between the coordinate s∗(t) of the phase boundary obtained using the instantaneous kinetic response V (t) = F(G(t)) and the
coordinate s(t) calculated using the kinetic equations (48). Here D = 0.1, G0 = 0.4295, A = 0.0065 and t∗ = 25

by inverting (47), and the location s∗(t) of the phase boundary assuming s∗(0) = 0 can be found by integration
from

s∗(t) =
t∫

0

F(G(τ ))dτ.

Initially, all three responses are close but as driving force decreases, the phase boundary location obtained
using the kinetic relation is found to be ahead of the history-dependent responses of the full and reduced
discrete systems. This is seen more clearly in Fig. 9, which shows the difference s∗(t)− s(t) between the front
locations found using the kinetic relation (47) and the kinetic equation (48). The comparison is made at the
discrete moments of time ti obtained in the iterative procedure described above. As in the zero-dimensional
toy model presented in Sect. 2 the two kinetic models converge and the difference s∗(t)− s(t) tends to zero as
ζ → ∞. However, as Fig. 9 shows, at finite ζ the prediction of the model based on the local kinetic relation
may be markedly different from the one obtained by solving the system of kinetic equations.

8 Conclusions

In the classical macroscopic continuum description of lattice defects the core regions are represented by singu-
larities, and the dynamics of these singularities is governed by algebraic kinetic relations. Such description is
too coarse to capture the details of the dynamic response of the cores of the defects to relatively fast changes of
the macroscopic driving forces. It also averages out the details of the intricate interaction of the core regions with
localized micro-inhomogeneities which manifests itself through microscopic velocity oscillations and leads
to macroscopically observable acoustic emission. We can refer, for instance, to scale-free acoustic emission
accompanying plasticity, martensitic phase transitions, and fracture (e.g. [22]).

To describe the “breathing” of the core regions as well as other transient effects that are usually neglected,
we proposed in this paper to replace the algebraic relations between the macroscopic velocity and the corre-
sponding driving force, which imply internal steady state, by a system of differential kinetic equations. The
explicit time dependence of the driving force makes these equations nonautonomous and allows them to cap-
ture the nonlocal relation between the current value of velocity and the history of the driving force. Therefore,
the ensuing rheological description of the moving defect can be qualified as a differential rate model.

The main idea of our construction is to follow the exact dynamics of only few discrete degrees of freedom.
Minimizing out the infinite number of the remaining variables outside the core region serves as the matching
condition with the classical continuum description outside the defect. The choice of the dimensionality of the
reduced system remains heuristic and is based on the comparison of steady solutions of the finite-dimensional
system with the discrete traveling wave solutions of the microscopic infinite-dimensional model. We show that
in contrast to the standard approach that involves only the center of mass of the defect, the minimally adequate
approximation includes not only the location but also the internal configuration of the core. Such extension
of the scope is necessary even if both the macroscopic driving force and the average velocity of the defect are
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constant because the core region can experience microscopic configurational deformations rather than being
translated as a rigid body.

In this paper, we presented only the contours of the nonlocal approach to kinetic relations and provided
only the most elementary illustrations. More rigorous study is necessary to formulate a systematic center-
manifold-type reduction procedure and to evaluate the errors of the finite-dimensional approximation of kinet-
ics in mathematical terms. Other problems include transition from overdamped to underdamped dynamics and
generalization to higher dimensions. Special development is also needed to advance from a prototypical case
of a martensitic phase boundary to the geometrically more challenging cases of dislocations, cracks, and point
singularities.

Acknowledgements This work was supported by the US National Science Foundation grant DMS-0443928 (A.V.) and by the
EU contract MRTN-CT-2004-505226 (L.T.).

9 Appendix

A Traveling wave solution and its static limit

To construct a traveling wave solution of the system (28) with σ = const, we assume that

wn(t) = w(η), η = n − V t, (57)

where V is the dimensionless velocity of the front, which represents a moving phase boundary. Since we seek
a description of an isolated phase boundary that leaves phase II behind, we require that

w(η) < wc for η > 0, w(η) > wc for η < 0 (58)

Under these assumptions, (28) reduces to

V w′(η) − D(w(η + 1) − 2w(η) + w(η − 1)) + w(η) = θ(−η) + σ. (59)

At infinity the solution must tend to uniform-strain equilibria of (25):

w(η) → w± as η → ±∞. (60)

Finally, for consistency, we must also require that

w(0) = wc. (61)

The Eq. 59 is linear in each phase, and it can be solved using Fourier transform (see [9,12,43] for details). We
obtain

w(η) =

⎧⎪⎨
⎪⎩

σ + 1 + ∑
k∈S−(V )

eikη

k�k (k,V )
for η < 0

σ − ∑
k∈S+(V )

eikη

k�k (k,V )
for η > 0,

(62)

where S±(V ) = {k : �(k, V ) = 0, Imk ≷ 0} are the sets of roots of the dispersion relation

�(k, V ) ≡ 1 + 4D sin2(k/2) − V ik = 0.

Continuity of w(η) at η = 0 gives the relationship between the applied stress and velocity of the traveling
wave:

σ = σM + 1

2
+

∑
k∈S+(V )

1

k�k(k, V )
= σM − 1

2
−

∑
k∈S−(V )

1

k�k(k, V )
, (63)
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where σM = wc − 1/2 is the Maxwell stress. Since the difference between applied and Maxwell stresses is
equal to the driving force G = σ − σM (see [42]), we obtain the kinetic relation between the driving force and
the velocity of the moving front:

G(V ) = 1

2
+

∑
k∈S+(V )

1

k�k(k, V )
. (64)

This semianalytic expression remains implicit until one finds the exact locations of the roots k = k(V ) of the
dispersion equation (see [43]).

In the static limit (V = 0) the continuous variable η = n − V t takes discrete values, and the strain profile
becomes discontinuous at every integer η. The differential equation reduces to a system of finite-difference
equations, and we can replace the continuous Fourier transform by its discrete analog [42] (see also [10,25,35]).
Both this procedure and the direct solution of the difference equations, yield the following family of stationary
solutions [12,17,40]:

wm
n (G) = σM +

⎧⎪⎨
⎪⎩

G + 1 − exp(λ(n − m − 1/2))

2 cosh(λ/2)
, n < m

G + exp(−λ(n − m − 1/2))

2 cosh(λ/2)
, n ≥ m,

(65)

with the phase boundary located at n = m. The admissibility constraints

wm
n ≥ wc for n ≤ m, wm

n ≤ wc for n ≥ m + 1 (66)

determine the constraints on G; the set of driving forces satisfying these constraints constitutes the trapping
region. One can show that in the present case of repulsive long-range interactions (D > 0) the strain profile
(65) is monotone, so the constraints (66) can be replaced by wm

m ≥ wc and wm
m+1 ≤ wc. The trapping region

is then given by |G| ≤ GP, where

GP = 1

2
√

1 + 4D
= 1

2
tanh

λ

2
(67)

is the Peierls force (see also [8,40]). The phase boundary remains trapped until the driving force reaches one
of the limiting values: G = −GP, when the interface starts moving to the left (V < 0), or G = GP, when
the interface starts moving to the right (V > 0). The two limiting solutions represent unstable equilibria from
which the dynamic solution bifurcates.

B Dynamic Peierls–Nabarro landscape

In the overdamped limit the microscopic equation (28) can be rewritten in the gradient-flow form

ẇ = −∇W(w; G(t)). (68)

Here w ∈ R
∞ is the vector of strains, the gradient is taken with respect to w, and

W =
∞∑

n=−∞

(
1

2
w2

n − (wn − wc)θ(wn − wc) + 1

2
D(wn+1 − wn)

2 − (σM + G(t))wn

)
(69)

is the dimensionless energy of the system. It is natural to ask whether the reduced dynamics can also be
expressed as a gradient flow in a particular potential. With this potential we associate our dynamic Peierls–
Nabarro (PN) landscape.

In view of what has been found in Sect. 6 we need to focus on the case K = 2. We shall also assume that the
landscape is evolving slowly in the time scale of internal dynamics so that we can use adiabatic approximation
and assume that G = const.

We recall that expressions (45), (37), and (34) define the strain trajectories wn(t) only over the time interval
0 ≤ t ≤ 1/V . The desired extension of this solution for k/V ≤ t ≤ (k + 1)/V can obtained by replacing n
in the above formulas by n − k and t by t − k/V . To patch together different intervals we need to introduce a
set of two order parameters that change continuously and monotonically with t .
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Fig. 10 Two-dimensional dynamic PN energy landscape Φ(ν1, ν2) and the path of the effective particle ν(t). Parameters: V = 0.1,
D = 0.5, wc = 1

Observe first that in (46) we have |r2| > |r1| > 0, so that the eigenvector (e−λ

4 (
√

1 + 8e2λ + 1), 1)

corresponding the eigenvalue r2 is the slow direction, while the eigenvector (e−λ

4 (1 − √
1 + 8e2λ), 1) that

corresponds to r1 is the fast direction. Introduce the slow variable

ν1(t) = �V t	 + 1 − exp(r1(t − �V t	/V ))

1 − exp(r1/V )
(70)

and the fast variable

ν2(t) = �V t	 + 1 − exp(r2(t − �V t	/V ))

1 − exp(r2/V )
. (71)

In terms of the new variables, the time evolution of all strains is given by

wn(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wc + G + 1/2 + {GP − 1/2 + 1
4 c1(1 + √

1 + 8e2λ)(1 − (1 − er1/V )(ν1(t) − �V t	))
+c2(1 − √

1 + 8e2λ)(1 − (1 − er2/V )(ν2(t) − �V t	))}eλ(n−�V t	), n ≤ �V t	 − 1
wc + G + GP + c1(1 − (1 − er1/V )(ν1(t) − �V t	))

+c2(1 − (1 − er2/V )(ν2(t) − �V t	)), n = �V t	
wc + G − 1/2 + {GP + 1/2 + 1

4 c1(1 + √
1 + 8e2λ)(1 − (1 − er1/V )(ν1(t) − �V t	))

+c2(1 − √
1 + 8e2λ)(1 − (1 − er2/V )(ν2(t) − �V t	))}e−λ(n−�V t	), n ≥ �V t	 + 1.

(72)

The vector field ν(t) = (ν1(t), ν2(t)) satisfies

ν̇ = −α∇Φ(ν; G), (73)

where the mobility matrix α = diag(α1, α2) is diagonal (here α1 > 0 and α2 > 0 are constants). The the
dynamic PN potential Φ(ν1, ν2; G) is piecewise quadratic; it depends on V and hence, through the kinetic
relation V = F(G) given by (47), on the driving force G. Using (70) and (71), we obtain

Φ(ν1, ν2; G) = − r1

2α1

{
(ν1 − �ν1	)2 − 2

1 − exp(r1/F(G))
ν1 + �ν1	

}

− r2

2α2

{
(ν2 − �ν2	)2 − 2

1 − exp(r2/F(G))
ν2 + �ν2	

}
.

To determine the effective viscosities α1 and α2, we require that at G = GP the dynamic PN potential
equals the relative Gibbs free energy of the system:

Φ(ν; GP) = W(w(ν); GP) − W(w(0); GP).
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This yields

α1 = − r1
√

1 + 8e2λ

(
√

1 + 8e2λ + 3)GP
, α2 = − r1

√
1 + 8e2λ

(
√

1 + 8e2λ − 3)GP
(74)

and, finally,

Φ(ν1, ν2; G) = (
√

1 + 8e2λ + 3)GP

2
√

1 + 8e2λ

{
(ν1 − �ν1	)2 − 2

1 − exp(r1/F(G))
ν1 + �ν1	

}

+ (
√

1 + 8e2λ − 3)GP

2
√

1 + 8e2λ

{
(ν2 − �ν2	)2 − 2

1 − exp(r2/F(G))
ν2 + �ν2	

}
. (75)

The dynamic PN landscape Φ(ν1, ν2; G), along with the trajectory of the effective particle, is shown in Fig. 10.
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