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Abstract We study a fully inertial model of a martensitic phase transition in a one-dimensional crystal lattice
with long-range interactions. The model allows one to represent a broad range of dynamic regimes, from
underdamped to overdamped. We systematically compare the discrete model with its various continuum
counterparts including elastic, viscoelastic and viscosity-capillarity models. Each of these models generates
a particular kinetic relation which links the driving force with the phase boundary velocity. We find that the
viscoelastic model provides an upper bound for the critical driving force predicted by the discrete model, while
the viscosity-capillarity model delivers a lower bound. We show that at near-sonic velocities, where inertia
dominates dispersion, both discrete and continuum models behave qualitatively similarly. At small velocities,
and in particular near the depinning threshold, the discreteness prevails and predictions of the continuum
models cannot be trusted.

Keywords Martensitic phase transitions · Kinetic relations · Dispersion · Dissipation · Inertia ·
Discrete to continuum · Quasicontinuum models
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1 Introduction

Proper martensitic phase transitions in crystals represent largely mechanical phenomena. They are associated
with softening of an elastic modulus and generate spontaneous deformation which transforms a high-symmetry
parent lattice into a low-symmetry ferroelastic phase. The latter is characterized by several stable variants
(twins) corresponding to different atomic arrangements which are structurally fully identical. During these
transformations both elasticity and dynamics play a crucial role and a component of the macroscopic strain is
used as the order parameter [14,20,23,25].

Materials undergoing martensitic phase transitions are known to exhibit damping and hysteresis under
cyclic loading [17,21]. The task of optimizing the corresponding energy dissipation through microstructural
and compositional selection presents an important technological challenge. It is well understood that the en-
ergy is dissipated due to propagation of phase and twin boundaries. The dissipation takes place inside the
atomically sharp transition zones and must be modeled by lattice theories. Adequate molecular dynamical
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models are available, but due to the necessity of resolving a large number of nonlinear degrees of freedom,
they are analytically opaque and can be used only for numerical experiments. The transition zones can also be
modeled at the macroscopic level, as jump discontinuities. However, since elastodynamics does not provide
any information about the rate of the transformation, the system of jump conditions has to be closed phe-
nomenologically (e.g., [1,32]). Various regularizations incorporating dispersion and dissipation mechanisms
and providing the desired closure have been proposed in the literature, albeit without an explicit link to the
underlying discrete theory (see the reviews [6,16,33]).

In this paper we establish such a link by studying dynamics of a phase boundary associated with a pro-
totypical martensitic transformation in a model lattice. To obtain analytical results, we consider a nonlocal
extension of the one-dimensional mass-spring model proposed in [28,30] and later studied in [29,37]; analo-
gous semilinear models were also applied to modeling dislocations (e.g., [4,11–13]). In this class of models
the discreteness is viewed as representing either atomic structure or a system of periodically placed obstacles,
while the nonlocality is intended to mimic some three-dimensional effects in the one-dimensional setting.
The martensitic phase transition is modeled as the bistability of the springs connecting nearest neighbors. In
addition, the model incorporates inertial and dissipative terms, which allows one to cover the whole range
of dynamic regimes, from underdamped to overdamped. The Hamiltonian limit of the nonlocal model was
studied in [38], while the problem of nucleation was addressed in [18].

The main focus of the present paper is the interplay between the macroscopic, dispersion-induced dissi-
pation, also known as radiative damping, and the conventional microscopic dissipation due to environmental
viscosity. To reconstruct the effect of lattice-induced dispersion on the kinetic behavior of the martensitic phase
boundaries, we introduce a dimensionless parameter δ, characterizing the degree of discreteness. We then con-
sider two limits: when the model is strongly discrete and when it is almost continuous. In the continuum limit
δ → 0 we recover the classical elasticity theory, which is now supplemented with a particular kinetic relation
for the phase discontinuities. This relation depends on the details of the limiting procedure, in particular, on
the asymptotic behavior of the parameters representing dissipative properties of the model. By expanding
the governing equations at small δ we recover various quasicontinuum regularizations of the classical theory,
including the ones that have been previously advanced on the phenomenological grounds. In particular, we
formally qualify the asymptotic limits producing the viscoelasticity model [22] and the viscosity-capillarity
model [27,31].

To recover the kinetic relation, we consider an isolated phase boundary driven by the conditions at infinity
and solve the associated traveling wave problem. This problem can be viewed as a nonlinear eigenvalue
problem for the phase boundary velocity. The conditions at infinity define the driving force, and we search
for a functional relation between the driving force and the velocity ensuring that the eigenvalue problem has
a solution. Using the partial linearity of the discrete model, we obtain such a relation in the closed form and
compare it to its counterparts in the viscoelastic and viscosity-capillarity models for the same values of the
microscopic parameters.

We find that at near-sonic velocities, when inertial and dissipative effects dominate dispersion, the kinetic
relations in all three models have the same asymptotic structure. On the phenomenological level, the ensuing
kinetic relation corresponds to the maximum dissipation criterion which can also be derived formally from
the viscoelastic model. At small velocities the kinetic relations in discrete and continuum models are quite
different. The discrete model predicts lattice trapping: a phase boundary cannot move until the driving force
reaches a certain nonzero threshold, which we call the Peierls driving force by analogy with dislocation
theory (e.g., [11]). The magnitude of the Peierls force is largely exaggerated by the viscoelastic model and is
completely missed by the viscosity-capillarity model. This leads to vastly different overdamped limits which
can be interpreted as the zoom in on the kinetic curves in the region where the inertial effects are negligible.
In general, our calculations show that the viscosity-capillarity model provides a lower bound for the discrete
kinetics, while the viscoelasticity model delivers an upper bound. When viscous damping increases, the range
of velocities where the three models are qualitatively similar broadens, although the quantitative thresholds
remain different.

As we have implied above, the viscosity-capillarity model provides a good representation of discrete
kinetics in the regimes of high damping and large inertia. The approximation becomes progressively worse
as viscosity decreases. At zero viscosity, the model becomes even qualitatively incorrect as it predicts zero
dissipation in the whole range of velocities up to the sonic limit. In contrast, the discrete model yields nonzero
macroscopic dissipation even in the Hamiltonian limit which is then caused by radiative damping [38]. In
general, the deficiencies of the viscosity-capillarity model point to the urgent need for the development of
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other quasicontinuum approximations, adequately reproducing the dispersive properties of the discrete model
in the physically relevant underdamped regimes. Different proposals in this direction can be found in [5,10,39].

The paper is organized as follows. In Sect. 2 we introduce the discrete model, specify the main dimensionless
parameters and determine the exact scaling in the regimes of interest. Various continuum and quasicontinuum
approximations are derived and studied in Sect. 3. In Sect. 4 we give the full solution of the discrete problem and
study several important limiting cases including the overdamped and Hamiltonian regimes. We then specialize
the discrete model to the case of only nearest and next-to-nearest neighbor interactions (NNN model) and
perform a systematic quantitative case study of this example. A detailed comparison of the discrete and
continuum kinetic relations emerging in this benchmark problem is presented in Sect. 5. The final Sect. 6
summarizes our conclusions.

2 The model

We begin by introducing the discrete model, formulating the problem in dimensionless form and specifying
the asymptotic regimes studied in detail in the subsequent sections.

2.1 Elastic energy

Consider a one-dimensional lattice, or chain, comprised of isolated point masses connected by springs. Each
mass interacts with its q neighbors on each side. If un(t) is the displacement of the nth mass, the sum of kinetic
and potential energies of the chain can be written as

E = ε

∞∑

n=−∞

⎡

⎣ρu̇2
n

2
+

q∑

p=1

pφp

(
un+p − un

pε

)⎤

⎦ . (1)

Here the function φp(w) defines the potential of the elastic interaction between pth nearest neighbors, ε is the
reference interparticle distance and ρ is the constant mass density.

The next step is to specify the interparticle potentials φp. We recall that in order to support a proper
martensitic phase transition, the macroscopic elastic energy of the material must be at least bistable. The
macroscopic energy can be derived from the microscopic potentials

φ(w) =
q∑

p=1

pφp(w). (2)

In the interest of analytical simplicity we assume that the function φ(w) is biquadratic:

φ(w) =
⎧
⎨

⎩

1
2 Ew2, w ≤ wc,

1
2 E(w − �)2 + �E

(
wc − �

2

)
, w ≥ wc,

(3)

Fig. 1 The bilinear stress–strain curve. The driving force G = A2 − A1 equals the difference between the two shaded areas
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where E is the macroscopic elastic modulus and � is the macroscopic transformation strain. The macroscopic
stress–strain relation is then (see Fig. 1)

σ̂ (w) = φ′(w) =
q∑

p=1

pφ′
p(w) = E(w − �θ(w − wc)), (4)

where θ(w) is the unit step function.
The simplest way to secure the desired macroscopic response is to assume that in the micro-model the

nearest–neighbor potential is biharmonic:

φ1(w) =
{ 1

2µ1w
2, w ≤ wc,

1
2µ1(w − a)2 + aµ1

(
wc − a

2

)
, w ≥ wc,

(5)

while the long-range potentials are harmonic:

φp(w) = 1

2
pµpw

2, p = 2, . . . , q. (6)

Here µp, p = 1, . . . , q , are the microscopic elastic moduli, a > 0 is the microscopic transformation strain and
wc is the critical value of strain separating in (5) the two regions of convexity (two phases). The compatibility
between the microscopic and macroscopic models requires that

E =
q∑

p=1

p2µp (7)

and
� = aµ1/E . (8)

The microscopic moduli must ensure that E > 0 and that the transformation strain is positive. Additional
constraints on µp which guarantee stability in the discrete problem will be introduced later.

We remark that in statics the ensuing discrete model can be alternatively characterized as an Ising model
with elastic wells. Indeed, the double-well potential, describing nearest–neighbor interactions (3), generates
a spin-like variable, while the harmonic potentials (6) for next-to-nearest neighbors and beyond ensure that
these “spins” interact. If the quadratic wells in (3) are replaced by the infinitely steep walls located at ±1
(µ1 → ∞), the static problem reduces exactly to the (nonlocal) Ising model.

2.2 Dissipation

In view of the fact that the model deals with only few generalized coordinates representing potentially much
more complex phenomena at the microscale (for instance, it does not resolve electronic degrees of freedom), it
is natural to conclude that the above Hamiltonian formulation is oversimplified and to include some dissipation
already at the microscale.

Since we are aiming at the simplest prototypical formulation, we assume that the dissipation is linear, which
means that the corresponding Rayleigh function is quadratic. While different assumptions can be made in this
respect, we assume that the dissipation is viscous and that it comes from the viscoelasticity of the nearest–
neighbor “springs”. We must therefore supplement in the governing equations the elastic force between the
nearest neighbors,

f (1)
1 (w) = φ′

1(w),

by a second additive component representing the viscous force. We write it in the form

f (2)
1 (ẇ) = ξẇ,

where ξ > 0 is the viscosity coefficient. The resulting dynamic equations can be written as

ρün = 1

ε

q∑

p=1

[
φ′

p

(
un+p − un

pε

)
− φ′

p

(
un − un−p

pε

)
+ ξ

ε
(u̇n+1 − 2u̇n + u̇n−1)

]
. (9)
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It will be convenient to rewrite equations (9) in terms of strains

wn = un − un−1

ε
. (10)

Using our specific assumptions regarding the microscopic elastic potentials, we obtain

ρ ε2ẅn −
∑

|k−n|≤q

µk−nwk + ξ(2ẇn − ẇn+1 − ẇn−1)

= µ1a[2θ(wn − wc) − θ(wn+1 − wc) − θ(wn−1 − wc)]. (11)

2.3 Scaling

To clarify the role of different terms in the system (11), it is necessary to nondimensionalize it. Elastic moduli
and the critical strain can be normalized by the macroscopic parameters E and � defined in (7) and (8),
respectively. This produces dimensionless parameters

Dp = −µp

E
, w̃c = wc

�
,

which are assumed to be of order one. In view of (7) parameters Dp are not independent and D1 = −1 −∑q
p=2 p2 Dp. Note also that D1 < 0, since both E and µ1 are assumed to be positive.

There are two characteristic velocities in the problem: the macroscopic sound speed cs = √
E/ρ, and the

microscopic relaxational velocity c∗ = εE/ξ. The ratio of these velocities gives a dimensionless parameter

W = cs

c∗
= ξ√

ρEε
,

which characterizes the relative importance of dissipation at the scale of the lattice. In particular, when W ≈ 0,
the discreteness-induced dispersion dominates dissipation and, when W → ∞, the dispersion can be neglected.

To quantify the presence of inertia, we assume that there is a third characteristic velocity c defining the
rate of the external macroscopic processes under consideration. The ratio of the characteristic speed c and the
macroscopic sound speed cs can be taken as the second dimensionless parameter,

V = c

cs
= c

√
ρ

E
.

This parameter is fully macroscopic and represents the analog of Mach number in gas dynamics. When V ≈ 0,
inertia is negligible, and the motion can be viewed as quasistatic; the ensuing dynamics is also overdamped if
additionally W 	= 0.

The next step is to link the macroscopic and microscopic scales. Suppose that the characteristic external
length of the problem is L . This introduces another dimensionless parameter,

δ = ε

L
,

which characterizes the relative role of discreteness, or dispersion, at the macroscale. More specifically, when
δ ≈ 0 we obtain almost continuum case (small dispersion), while δ ≈ 1 defines the strongly discrete (large
dispersion) limit.

To rewrite the main system of the Eq. (11) in dimensionless form, we define the new variables

τ = tc

L
, ũn = un

�L
, w̃n = wn

�
, φ̃p(w̃) = φp(�w̃)

E�2 , Ẽ = E
E�2L

. (12)

Omitting the tildes on the new variables, we obtain the following expression for the energy:

E = δ

∞∑

n=−∞

⎡

⎣V 2u̇2
n

2
+

q∑

p=1

pφp

(
un+p − un

pδ

)⎤

⎦ . (13)
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The normalized equations read

V 2ẅn − 1

δ2

∑

|k−n|≤q

Dk−nwn + W V

δ
(2ẇn − ẇn+1 − ẇn−1)

= 1

δ2 [2θ(wn − wc) − θ(wn+1 − wc) − θ(wn−1 − wc)]. (14)

We reiterate that the essential dimensionless parameters are W , V and δ.

It is of interest to consider two main cases: infinitesimal δ and finite δ. At small δ one is tempted to replace
the discrete model by a continuum counterpart. Several possibilities are considered in the paper:

Classical elasticity. In the limit δ → 0, with two other dimensionless parameters fixed, we obtain the classical
elasticity theory which contains neither dispersion nor dissipation.

Viscoelasticity. If we assume that δ is small but finite, expand the governing equations (14) in δ and keep
only the linear terms, we obtain a viscoelastic model with the macroscopic viscosity given by W∗ = Wδ.
Alternatively, this approximation can be obtained by considering the limit δ → 0 and W → ∞, with W∗
remaining finite.

Viscosity-capillarity model. By expanding the governing equations (14) up to the second order in δ, we obtain
the viscosity-capillarity model. This approximation preserves the competition between the dissipative terms
and the dispersive terms, mimicking the original discreteness of the problem.

At each value of δ, finite or infinitesimal, it is instructive to perform a parametric study of the problem in
the space of parameters V and W . The following limiting cases are of particular interest:

Hamiltonian limit: W = 0. In this case the microscopic dissipation is absent. The macroscopic dissipation,
however, may still be possible due to the energy tunneling from long to short waves. In the context of dynamics
of defects, this phenomenon is known as radiative damping.

Static limit: V = 0. This case is of interest due to the phenomenon of lattice trapping. The study of this case
is necessary for determining the depinning threshold (Peierls stress).

Overdamped limit: V → 0, W → ∞, V∗ = V W = c/c∗. In this approximation one zooms in on the depinning
bifurcation and encounters the phenomenon of rate-independent dissipation. Here the inertia is neglected and
the main interplay is between dissipation and dispersion whose ratio enters the problem through the parameter
V∗. Our quasilinear system converges in this limit to a semilinear system, equivalent to the Frenkel–Kontorova
model.

2.4 Traveling waves

We are now in a position to specify the macroscopic problem which attaches a particular meaning to the
parameter c. To find the kinetic relation, it is natural to consider a steady motion of an isolated phase boundary.
The corresponding solution of the governing equations (14) must have the form of a discrete traveling wave

wn(τ ) = w(η),

where η = (nε − ct)/L = nδ − τ . Without loss of generality, we can assume that

w(η) < wc for η > 0, w(η) > wc for η < 0. (15)

In this case, phase II is behind the localized transformation zone and phase I is in front (see Fig. 1); at η = 0,
we need to impose the condition

w(0) = wc. (16)
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Under these assumptions the infinite system (14) reduces to a single advance-delay differential equation:

V 2w′′ + 1

δ2

∑

|p|≤q

Dpw(η + pδ) − W V

δ
(2w′(η) − w′(η + δ) − w′(η − δ))

= 1

δ2 [2θ(η) − θ(η + δ) − θ(η − δ)]. (17)

Observe that this equation is now linear due to the known location of the phase boundary. To specify the
external boundary conditions for the Eq. (17), we further assume that

w(η) → w± as η → ±∞, (18)

where w± are the limiting strains which cannot be prescribed independently. Their interdependence, which
remains implicit until the Eq. (17) is solved, is the ultimate reason for the existence of a kinetic relation.

3 Continuum approximations

We begin with the study of a series of approximate continuum models justified by the smallness of the
parameter δ.

3.1 Classical elasticity

We assume that in the limit δ → 0 all fields of interest are sufficiently smooth so that one can perform the
Taylor expansions in δ. Define u(x, τ ) as the continuum displacement field which satisfies u(nδ, τ ) = un(τ ).
By expanding finite differences in (13) and taking the limit δ → 0, we obtain

E =
∫ [

V 2u2
τ

2
+ φ(ux )

]
dx . (19)

In dimensionless variables equations (9) reduces to

V 2uττ = (σ̂ (ux ))x . (20)

Here uτ ≡ ∂u/∂τ is the macroscopic velocity field and ux ≡ ∂u/∂x is the macroscopic strain. The dimen-
sionless macroscopic stress–strain relation is given by

σ̂ (w) = φ′(w) = w − θ(w − wc). (21)

In this continuum framework phase boundaries are described by jump discontinuities which are not con-
strained by the Eq. (20) and must be defined by the appropriate jump conditions. To formulate these conditions
we denote by f− and f+ the values of f (x) to the left and to the right of the interface, and introduce the
notations [[ f ]] ≡ f+ − f− for the jump and { f } ≡ ( f+ + f−)/2 for the average of f across the discontinuity.
We first recall the Rankine–Hugoniot jump conditions which ensure the balance of mass and momentum:

[[uτ ]] + V [[ux ]] = 0, V [[uτ ]] + [[σ̂ (ux )]] = 0. (22)

Both the physical motivation of the problem and the mathematical requirement of well-posedness point towards
the necessity of an additional assumption regarding the positive definiteness of the rate of dissipation

R = GV ≥ 0, (23)

where
G = [[φ]] − {σ̂ (ux )}[[ux ]] (24)

is the configurational (driving) force, which can be interpreted geometrically as the difference between the
two shaded areas in Fig. 1. In what follows we check that in the limit δ → 0 both the Rankine–Hugoniot jump
conditions (22) and the entropy inequality (23) follow from the discrete theory. Moreover, we show that in the
case of a phase boundary with |V | < 1, not only the sign of the driving force but also its magnitude are dictated
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Fig. 2 The admissible domain for the kinetic relations G(V ) for the subsonic kink solutions generated by the bilinear stress–strain
law

by the discrete theory. This imposes a link between the limiting strains on both sides of the discontinuity and
sets up a specific kinetic relation.

To put things into perspective, we recall that in one-dimensional nonlinear elastodynamics, represented by
the Eq.(20), the entropy inequality is sufficient for local uniqueness in the case of supersonic discontinuities
(shock waves) satisfying the Lax condition c+ < V < c−, where c± are the values of the sound velocity
in front and behind the discontinuity. In the case of subsonic phase boundaries, or kinks, the Lax condition
is violated and the nonuniqueness persists unless the rate of entropy production is specified precisely (e.g.
[15,33]). This is usually done phenomenologically, by imposing a kinetic relation for phase boundaries, first
introduced in [32]. One expects that a particular kinetic relation in the form G = G(V ) should follow from
the discrete theory in the limit δ → 0, and we show that this is in fact the case.

Until the discrete problem is solved, the function G(V ) cannot be specified. However, some natural bounds
can be easily obtained. Thus, for our piecewise linear material the admissible set for kinks with 0 < V < 1 is
illustrated in Fig. 2. One of the boundaries of this set corresponds to reversible kinks which satisfy the kinetic
relation G = 0 [31]. Another boundary marks the maximum rate of dissipation R at a given V . In particular,
the static kinks (V = 0) become maximally dissipative when the driving force reaches the spinodal threshold
Gs = 1/2. The classical continuum theory, incorporating Eq. (20) for smooth motions and Rankine–Hugoniot
jump conditions (22) plus the entropy inequality (23) for discontinuities, allows for arbitrary kinks in the
shaded area shown in Fig. 2. This is a clear sign of degeneracy of the classical theory and the necessity of an
independent closure condition.

In the next subsections we show that higher order quasicontinuum approximations, allowing the parameter δ
to be small but finite, are free from this degeneracy and can be used as sources of the particular kinetic relations.
Later in the paper the adequacy of such kinetic relations will be checked against the discrete benchmark.

3.2 Viscoelasticity

Keeping linear terms in δ as we Taylor expand Eq. (14), we obtain the following partial differential equation:

V 2uττ = (σ̂ (ux ) + WδV uxτ )x . (25)

To find the rate of energy dissipation associated with a moving kink we need to study the traveling wave
solutions of the form

u(x, τ ) = û(η), η = x − τ, (26)

subject to the conditions (18) at infinity. Substituting the traveling wave ansatz (26) in (25) and integrating
once we obtain the following equation for w = ux = û′(η):

w′ = 1

V Wδ
(V 2(w− − w) + σ̂ (w) − σ̂ (w−)). (27)

The states at infinity satisfy the Rankine–Hugoniot conditions automatically because, after eliminating velocity,
Eq. (22) can be written as

V 2(w− − w+) + σ̂ (w+) − σ̂ (w−) = 0. (28)
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Fig. 3 Kinetic relation at V ≥ 0 resulting from the viscoelasticity model. Insert: the overdamped limit. Note that the kinetic
relation for the overdamped case zooms in on the neighborhood of the depinning point

Now consider the two cases V = 0 and V 	= 0 separately. In the first case, (28) reduces to σ̂ (w+) = σ̂ (w−),
and we obtain a family of piecewise constant equilibrium states inside the trapping region, where V = 0 and
|G| < Gs . In the second case, a study of the Eq. (27) gives the Oleynik chord condition (e.g., [19,22]). For
subsonic phase boundaries, the chord condition implies that either w+ or w−, depending on the sign of [[w]]V ,
must satisfy σ̂ ′(w) = 0. In the case of the bilinear material considered here, the set of such configurations
reduces to a single point with the critical (spinodal) strain wc. We can therefore immediately conclude that
Gs = 1/2.

Strain profiles. For the case of bilinear stress–strain law (21), the desired traveling wave solution with V 	= 0
can be written explicitly. In particular, if V > 0, and w+ < w−, we obtain

w(η) =
⎧
⎨

⎩
wc + 1

1 − V 2

(
1 − exp

[
(1 − V 2)η

V Wδ

])
, η ≤ 0

wc, η ≥ 0.

(29)

One can see that in the limit δ → 0 (or W → 0) the transition layer disappears, and the viscoelastic profile
converges to the piecewise constant traveling wave of the classical elasticity problem.

Kinetic relation. Using the geometrical interpretation of the driving force G and the fact that one of the limiting
strains (w+ or w−) must be spinodal, one can compute the area above, for V > 0 (or below, for V < 0), the
graph σ̂ (w) and below (above) the chord connecting the states at infinity and obtain the kinetic relation G(V ).
According to (28), this chord, known also as the Raleigh line, has the slope V 2, so that in Fig. 1 either A1 = 0
(V > 0) or A2 = 0 (V < 0). The kinetic relation is then given by

G(V ) = 1

2(1 − V 2)
sgn(V ). (30)

As remarked above, at V = 0 the kinetic curve G(V ) contains the interval V = 0, |G| < Gs , which
represents the trapped equilibrium states (see Fig. 3). The point Gs = 1/2 at V = 0 is the depinning threshold
from which the solutions with V > 0 bifurcate (similarly, solutions with V < 0 bifurcate at G = −Gs).
In addition to the trapping segment at V = 0 the full kinetic curve includes a V > 0 piece described by
the Oleynik condition at nonzero V (see Fig. 3). We observe that the kinetic relation in this approximation
selects exactly the upper boundary of the admissibility domain shown in Fig. 2 and therefore produces only
maximally dissipative kinks. A serious deficiency of the viscoelastic approximation is that it admits only sonic,
or Chapman–Jouget, moving discontinuities, with either w+ or w− taking critical (spinodal) values.
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Overdamped limit. In the overdamped limit (V → 0, W → ∞, V∗ = V W finite) cs � c renders cs
inappropriate for use as the velocity scale. Instead we can use the rescaled velocity V∗ = V W . Then, at V∗ > 0
and w+ < w− we obtain

w(η) =
⎧
⎨

⎩
wc +

(
1 − exp

[
η

V∗δ

])
, η ≤ 0,

wc, η ≥ 0.

(31)

We reiterate that these regimes have to be supplemented by the piecewise constant trapped equilibrium states
(V∗ = 0).

The jump condition (28) reduces to σ̂ (w+) = σ̂ (w−). The magnitude of the driving force is then constant
and is given by the area enclosed between the graph σ̂ (w) and the horizontal line σ̂ (w) = σ̂ (w+). The
condition (28) reduces to w− − w+ = 1, so that the resulting kinetic relation is piecewise constant (see the
insert in Fig. 3):

G(V∗) = 1

2
sgn(V∗). (32)

This piecewise constant kinetics reflects the fact that we capture only quasistatic dynamics with rate-
independent dissipation [24]. One can also see that the kinetic picture in the overdamped limit can be obtained
simply by zooming in on the viscoelastic kinetic law around the depinning point. Analytically this is achieved
by introducing the rescaled parameter V∗ which stretches the velocity coordinate around V = 0.

3.3 Viscosity-capillarity model

As we saw, the viscoelastic model does not admit moving subsonic discontinuities. To correct this problem,
one can try to preserve in the continuum problem the effects of dispersion by expanding the energy of the
discrete system (13) in Taylor series at small δ and retaining the terms up to the order of δ2. This procedure
leads to the viscosity-capillarity approximation (35), first proposed as a phenomenological model in [27,31].

Up to the nonessential null Lagrangian, the total energy in the viscosity-capillarity model can be written as

E =
∫ [

V 2u2
τ

2
+ φ(ux ) + 1

2
A2δ2u2

xx

]
dx, (33)

where

A2 = 1

12

q∑

p=1

p4 Dp. (34)

The model is ill-posed for A2 < 0, which means that some coefficients Dp must be positive. Since Dp =
−µp/E and E > 0, this implies that µp < 0 and that the corresponding bonds are unstable.

The dynamic equations in this approximation can be written as

V 2uττ = (σ̂ (ux ) + W V δuxτ − A2δ2uxxx )x . (35)

Substituting the traveling wave ansatz (26) in (35) and integrating, we obtain the differential equation

A2δ2w′′ + W V δw′ + V 2w − σ̂ (w) = V 2w− − σ̂ (w−). (36)

This equation must be considered on the infinite domain with the boundary conditions (18).

Strain profile. For the bilinear stress–strain law (21), the traveling wave solutions of (36) are given by (see
[34] for more details)

w(η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wc + p2(ep1η − 1)

(p1 − p2)(1 − V 2)
, η ≤ 0,

wc + p1(ep2η − 1)

(p1 − p2)(1 − V 2)
, η ≥ 0,

(37)
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Fig. 4 Kinetic relation for the viscosity-capillarity model for V ≥ 0 at A = 0.56 and different values of the parameter W

where η = η/(Wδ) and

p1,2 = V W 2

2A2

⎡

⎣−1 ±
√

1 + 4A2

W 2

(
1

V 2 − 1

)⎤

⎦ .

One can see that moving subsonic discontinuities with w± in the interior of the phase regions are now admis-
sible.

Kinetic relation. The kinetic relation becomes [34]

G(V ) = 1

2

(
1 − V 2)−1

(
1 + 4A2

W 2

(
1

V 2 − 1

))−1/2

sgn(V ). (38)

Observe that Eq. (38) is independent of δ, and that parameters A and W enter only through the ratio α = A/W .
Figure 4 shows the typical kinetic curves. At finite W all of them originate at V = 0 and G(0) = 0. This
means zero depinning driving force (no lattice trapping) and contradicts the persistence of rate-independent
hysteresis in quasistatic loading [26]. As W tends to infinity, the slope G ′(0) increases, and the curves approach
the viscoelastic limit (30), which is consistent with the trapping phenomenon.

At near-sonic velocities V � 1 and W > 0 Eq. (38) converges to Eq. (30), and all kinetic curves approach
the viscoelastic limit (W = ∞, thick upper curve). It is also important to note that in the sonic limit V → 1 (and
finite W ) the far-field strain w+ tends to wc − A2/W 2 and remains binodal (w+ < wc). Taking a (pointwise)
limit W → 0, one can see that the model predicts zero dissipation at subsonic velocities and infinite driving
force at V = 1.

Overdamped limit. Now consider (38) at the limit V → 0 and W → ∞, with V∗ = V W remaining finite. We
obtain

G(V ) = 1

2

(
1 + 4A2

V 2∗

)−1/2

sgn(V ).

The resulting kinetic curves are shown in Fig. 5 for different values of A. Under the additional assumption that
A → 0, we obtain the viscoelastic limit.

3.4 Other quasicontinuum approximations

As we show later in the paper, in the region of its validity, the viscosity-capillarity model is sufficient to
capture the dispersive features of the discrete model only in the highly damped regimes. The approximation
becomes progressively worse as W decreases. In particular, in the absence of internal damping (W = 0), the
model predicts zero dissipation for subsonic phase boundaries, which completely misses the effect of radiative
damping [38]. This failure of the theory suggests that in order to adequately reproduce dispersive effects in
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Fig. 5 Kinetic relation for the viscosity-capillarity model in the overdamped limit for V ≥ 0 at different values of the parameter A

a continuum setting when the microscopic viscosity is small, other dispersive approximations of the discrete
model should be considered.

For example, one can follow the approach proposed in [39] and replace the energy of the bilinear discrete
system by its exact quasicontinuum analog

EQC =
∞∫

−∞

[
1

2
V 2uτKuτ + 1

2
uxLux − (ux − wc)θ(ux − wc)

]
dx . (39)

Here K and L are operators with Fourier images given by

K(k) = (kδ)2

4 sin2(kδ/2)
, L(k) = −

∑q
p=1 Dp sin2(pkδ/2)

sin2(kδ/2)
.

In this formal representation both kinetic and elastic contributions to the energy are nonlocal. Various local
models can be obtained if one approximates the Fourier images of the two above operators by the first few
terms in their Taylor expansions around k = 0. In the physical space this leads to gradient approximations of
higher order for both kinetic and elastic energies, e.g.,

1

2

∞∫

−∞
uτKuτ dx ≈1

2

∞∫

−∞

[
u2

τ + 1

12
δ2u2

xτ + 1

240
δ4u2

xxτ

]
dx,

1

2

∞∫

−∞
uxLux dx ≈1

2

∞∫

−∞

[
u2

x + a1δ
2u2

xx + a2δ
4u2

xxx

]
dx .

(40)

The coefficients a1 and a2 can be found from the Taylor expansion (see [39] for the exact expressions).
One can show that for sufficiently high velocities the mixed-gradient model (40) is in excellent agreement

with the kinetic relations generated by the discrete model even in the Hamiltonian limit. To capture the
low-velocity regime, one may have to replace the Taylor expansion around k = 0 by a multi-point Pade
approximation which reproduces more faithfully the short-wave structure of the operators K and L (see, for
instance, [5])

4 Solution of the discrete problem

In this section we return to the strongly discrete problem by assuming that δ = 1. We begin by studying the
general features of the solution of the discrete problem and then consider the special case q = 2 to focus on
the detailed structure of the kinetic curves.
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4.1 General features of the solution

At δ = 1 Eq. (17) becomes

V 2w′′ +
∑

|p|≤q

Dpw(η + p) − W V (2w′(η) − w′(η + 1) − w′(η − 1))

= 2θ(η) − θ(η + 1) − θ(η − 1). (41)

Using Fourier transform technique, we obtain1 (see [38] for the details)

w(η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w− + ∑
k∈M−(V )

4 sin2(k/2)eikη

kLk(k, V )
for η < 0,

w+ − ∑
k∈M+(V )

4 sin2(k/2)eikη

kLk(k, V )
for η > 0.

(42)

Here the summation is over the sets M±(V ) = {k : L(k, V ) = 0, Imk ≷ 0}, where

L(k, V ) ≡ −4
q∑

p=1

Dp sin2 pk

2
− V 2k2 − 4W V ik sin2 k

2
= 0 (43)

and Lk ≡ ∂L/∂k. The states at infinity must satisfy the jump condition

w− − w+ = 1

1 − V 2 , (44)

which coincides with the Rankine–Hugoniot condition (29). For consistency with the assumptions that led to
(11), we still need to check that the formal solution is admissible in the sense that it satisfies the constraints
(15).

Kinetic relation. The continuity of w(η), together with (42) and (16) imply an additional relation between w±
and V which can be written as either

w− = wc −
∑

k∈M−(V )

4 sin2(k/2)

kLk(k, V )
(45)

or

w+ = wc +
∑

k∈M+(V )

4 sin2(k/2)

kLk(k, V )
. (46)

Due to (44) only one of these relations is independent and is therefore furnishing the desired kinetic relation.
To express this relation in a more familiar form we need to obtain the microlevel expression for the driving
force. We recall that in the viscoelastic case (W > 0) the rate of energy dissipation is

R = V 2W

∞∫

−∞
(w′)2dη,

the same expression as in the continuum viscoelasticity (e.g. [22]). It immediately confirms that the entropy
inequality (23) is satisfied. By substituting the traveling wave solution (42) and using R = V G(V ), we can

1 We assume that the moduli Dp , with p ≥ 2, are not all zero (see [38] for the discussion of the case when this condition is
not satisfied).
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write the expression for the driving force in the form

G = V W

∞∫

−∞
(w′)2dη

= 16V Wi

⎧
⎨

⎩
∑

k∈M−(V )

∑

l∈M−(V )

sin2(k/2) sin2(l/2)

Lk(k, V )Lk(l, V )(k + l)

−
∑

k∈M+(V )

∑

l∈M+(V )

sin2(k/2) sin2(l/2)

Lk(k, V )Lk(l, V )(k + l)

⎫
⎬

⎭ . (47)

As shown in the Appendix, this expression coincides with the formula for the driving force obtained from (24)
in the continuum problem. In our bilinear case it reduces to

G = 1

2
(w+ + w−) − wc = 2

⎛

⎝
∑

k∈M+(V )

sin2(k/2)

kLk(k, V )
−

∑

k∈M−(V )

sin2(k/2)

kLk(k, V )

⎞

⎠ , (48)

where we used (45) and (46). One can see that the driving force in both discrete and continuum cases is given
by the area difference formula (24), which shows that the microscopic and macroscopic ways of assessing
dissipation are consistent. Since the sets of roots M±(V ) can be computed for each V , the second equality in
(48) can be viewed as a semi-analytic representation of the relation G(V ).

We remark that although (47) was obtained assuming nonzero viscosity, the final expression (48) also
applies in the Hamiltonian limit W = 0. As explained below, in this limit certain roots of the dispersion
relation (43) become real, and (48) reduces to the summations over the real roots which are responsible for
short-wave energy radiation generated by the phase boundary [38].

Hamiltonian limit. For W > 0 and V 	= 0 all nonzero roots of the characteristic equation have nonzero
imaginary parts and are located in either upper (set M+(V ), η > 0) or lower (set M−(V ), η < 0) half of the
complex plane. As η → ±∞ the amplitude of oscillations due to the real parts of the roots tends to zero, and
solution approaches the constant values w± given by (45) and (46).

As W tends to zero, some of the complex roots approach the real axis, and in the purely inertial case W = 0
the characteristic equation (43) becomes

L0(k, V ) = −4
q∑

p=1

Dp sin2 pk

2
− V 2k2 = 0. (49)

This equation has a finite number of nonzero real roots responsible for the radiative damping phenomenon:
short-length lattice waves emitted by the moving phase boundary carry energy away from it (see [38] for more
details). These waves appear behind or ahead of the moving front, depending on whether the corresponding
roots approach the real axis from the lower or upper half plane as W → 0.

Indeed, let kr be a real root of (49) and let kr + κ be a small complex root of (43) that approaches kr
(κ → 0) as W → 0. Expanding L(kr + κ, V ) = 0 around kr for small κ and neglecting O(κ2) terms, we
obtain

L(kr , V ) + κLk(kr , V ) = 0.

Recalling that L(k, V ) = L0(k, V ) − 4W V ik sin2 k
2 and L0(kr , V ) = 0, we can write

κ =
4W V sin2 kr

2

[
−2W V kr (2 sin2 kr

2 + kr sin kr ) + ikr L0
k(kr , V )

]

(L0
k(kr , V ))2 + 4W 2V 2(2 sin2 kr

2 + kr sin kr )2
.

One can see that if V > 0, a complex root moves to real axis from above (Imκ > 0) if and only if kr L0
k(kr , V ) >

0 and from below whenever kr L0
k(kr , V ) < 0. Therefore, in the limit W = 0 when the system becomes
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Hamiltonian, a particular real root contributes to the solution in front (behind) of the moving phase boundary
if kr L0

k(kr , V ) > 0 (< 0). The same radiation condition was employed in [38] on the basis of the following
radiation condition: the group velocity of the waves in front (behind) of the moving phase boundary must be
higher (lower) than the phase boundary velocity.

We can now summarize the above analysis by specifying the sets M±(V ) in (17) as they appear in the
Hamiltonian limit. For V > 0 we obtain

M±(V ) = {k : L(k, V ) = 0, Imk ≷ 0}
⋃

N±(V ), (50)

where
N±(V ) = {k : L(k, V ) = 0, Imk = 0, kLk(k, V ) ≷ 0} (51)

are the sets of real roots describing radiation.
Observe now that in the Hamiltonian limit the complex roots of the Eq. (43), which reduces to (49), appear

in symmetric quadruples k, −k, k and −k, where k denotes the complex conjugate of k. In particular, for any
k ∈ M+(V )\N+(V ) (i.e., nonreal root in the upper half-plane) we have −k ∈ M−(V )\N−(V ). Due to this
symmetry and the fact that the expressions under the sums in (48) are even at W = 0, we can rewrite the kinetic
relation in terms of the positive real roots Npos(V ) = {k ∈ N+(V ) ∪ N−(V ) : k > 0} of (49). We obtain

G(V ) = sgn(V )
∑

k∈Npos(V )

4 sin2(k/2)

|kLk(k, V )| . (52)

This expression coincides, up to a dimensional rescaling, with the formula obtained in [38] by direct compu-
tation of the energy fluxes due to lattice waves moving away from a phase boundary.

Static limit. In another limiting case, V = 0, the continuous variable η assumes only discrete values and the
strain profile becomes discontinuous at every integer η. The main advance-delay differential equation of the
model reduces to a system of finite-difference equations, and we can replace the continuous Fourier transform
by its discrete analog (e.g., [11,38]). Either using discrete Fourier transform or directly solving the difference
equations, we obtain the following family of equilibrium configurations:

wn(G) = σM +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G + 1 + ∑
k∈F−

sin(k/2)eik(n+1/2)

ω(k)ω′(k)
, n < 0,

G − ∑
k∈F+

sin(k/2)eik(n+1/2)

ω(k)ω′(k)
, n ≥ 0.

(53)

These lattice-trapped states are parameterized by the value of the driving force G. The parameter

σM = wc − 1/2 (54)

is the Maxwell stress furnishing the equal area construction for the macroscopic stress–strain graph σ = σ̂ (w).
The sets F± = {k : ω2(k) = 0, Imk ≷ 0,−π < Rek ≤ π} contain the zeroes of the dispersion relation

ω2(k) = −4
q∑

p=1

Dp sin2 pk

2
. (55)

The admissibility requirements

wn ≥ wc for n ≤ −1, wn ≤ wc for n ≥ 0 (56)

impose constraints on G; the set of admissible driving forces constitutes the trapping region. In particular, if
the strain profile (53) is monotone, which occurs, for example, when all long-range interactions are repulsive
(Dp > 0 for p ≥ 2 2), the constraints (56) can be replaced by w0 ≤ wc and w−1 ≥ wc. The trapping region
is then given by

|G| ≤ GP, (57)

2 In this case, since D(1) < 0, the homogeneous phases can still be stable (ω2(k) > 0 for all k) provided that the moduli
responsible for long-range interactions are sufficiently small in magnitude.
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where

GP = 1

2
+

∑

k∈F+

sin(k/2)eik/2

ω(k)ω′(k)
(58)

is the Peierls driving force (see also [2,35]).
The phase boundary remains trapped until the driving force reaches one of the limiting values: G = −GP,

corresponding to w−1 = wc, when the interface starts moving to the left (V < 0), or G = GP, corresponding
to w0 = wc, when the interface starts moving to the right (V > 0). The two limiting equilibrium configurations
represent unstable states from which the dynamic solution bifurcates. We emphasize that the Peierls driving
force is generally different from the spinodal driving force Gs = 1/2, which describes depinning bifurcation
in the viscoelastic continuum model.

Overdamped limit. Next, consider the situation when V → 0 and W → ∞, while their product V∗ = V W
remains finite. Equation (44) reduces to w− − w+ = 1, which implies that the stresses σ± = σ̂ (w±) in this
limit are equal:

σ+ = w+ = w− − 1 = σ− = σM + G.

This is in agreement with the jump condition (28) at V = 0 and we can write that w+ = σM + G and w− =
σM +G +1. The characteristic function L(k, V ) in (43) can then be written as L(k, V ) = 4 sin2(k/2)�(k, V∗),
where V∗ = V W and

�(k, V∗) = −
q∑

p=1

Dp
sin2(pk/2)

sin2(k/2)
− V∗ik. (59)

The traveling wave solution (42) takes the form

w(η) = σM +

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G + 1 + ∑
k∈S−(V∗)

eikη

k�k(k, V∗)
for η < 0,

G − ∑
k∈S+(V∗)

eikη

k�k(k, V∗)
for η > 0,

(60)

where S±(V∗) = {k : �(k, V∗) = 0, Imk ≷ 0}.
From (54) and condition w(0) = wc = σM + 1/2, one can see that in the overdamped limit the kinetic

relation (48) reduces to

G = 1

2
+

∑

k∈S+(V∗)

1

k�k(k, V∗)
. (61)

When V∗ → ±∞, the sets S±(V∗) become empty, and the driving force tends to the constant value G(V ) =
(1/2)sgn(V∗), which agrees with the behavior (32) predicted by the viscoelastic continuum model.

4.2 Case study: q = 2

We now focus on the special case when only nearest neighbor (NN) and next-to-nearest neighbor (NNN)
interactions are taken into account. In the context of the Ising model this means standard local interaction of
the “spins”.

Motivated by the analogy with the Lennard–Jones type interactions [36], we assume that −D(1) = 1 +
4D > 0 and D ≡ D(2) ≥ 0; the latter meaning that NNN interactions are repulsive. To facilitate the
comparison with the viscosity-capillarity model, we specify for the discrete NNN model the formula (34)

A = √
D − 1/12. (62)

Since A2 > 0, this implies that the well-posedness of the viscosity-capillarity model requires additionally that
D > 1/12. This means that only sufficiently strong NNN interactions can ensure stability of the viscosity-
capillarity model.
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(a) (b)

(c) (d)

Fig. 6 The structure of nonzero roots of L(k, V ) = 0 (a, b and c) and �(k, V∗) (d) at different W . In all pictures D = 1/16. In
c and d V∗ = V W is plotted along the vertical axis

Under the above assumptions the governing equations (14) reduce to

V 2ẅn − (1 + 4D)(wn+1 − 2wn + wn−1) + D(wn+2 − 2wn + wn−2)

−W V (ẇn+1 − 2ẇn + ẇn−1) = 2θ(wn − wc) − θ(wn+1 − wc) − θ(wn−1 − wc). (63)

The traveling wave solution is then given by (42) with

L(k, V ) = 4(1 + 4D) sin2 k

2
− 4D sin2 k − V 2k2 − 4W V ik sin2 k

2
. (64)

Dispersion spectrum. To compute the displacement field we need to determine the roots k of the equation
L(k, V ) = 0. At V = 0 this equation has real roots k = 2πn, for any integer n; if D > 0 there are also
complex roots

k = 2πn ± iλ, (65)

where

λ = arccosh

(
1

2D
+ 1

)
. (66)

Notice that λ tends to infinity as D → 0; therefore at D = 0 the complex roots disappear. For V > 0 the roots
can be computed via an iterative numerical procedure which uses the known roots at V = 0 as initial guesses.
The general configuration of nonzero roots can be understood from Fig. 6, where due to the symmetry of the
problem only roots with positive real part had to be shown.

In summary, there are two types of roots and they are shown in Fig. 6 as solid black and gray branches
parameterized by the velocity V . The black branches emanate from the real roots k = 2πn corresponding
to V = 0 ; for small enough W , they can also bifurcate from the branch of purely imaginary roots. These
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(a) (b)

Fig. 7 Strain profiles for traveling wave solutions with V = 0.5: a W = 0; b W = 0.1. Here D = 1/16 and wc = 1

branches contribute to the oscillatory behavior of the solution and create the dynamic structure of the core that
disappears at V = 0. The gray branches emanate from (65). With the exception of the branch originating at
k = −iλ and V = 0 (along which the roots tend to zero as V increases), the gray branches exist only at D > 0
and are responsible for the core structure that is inherited from statics. As W tends to zero, the black branches
move closer to each other (see Fig. 6b). In the purely inertial limit (W = 0, [38]), these branches get attached
to each other in such a way that some of the roots become real. For contrast, they are shown in Fig. 6a by a
thinner line from which the complex roots (black curves) bifurcate.

As W becomes larger, each black branch folds, and in the overdamped limit they become straight lines
k = 2πn (see Fig. 6c). The limiting roots (the zeroes of sin2(k/2)) are no longer singularities and hence do
not contribute to the solution. To see this, we recall that L(k, V ) = 4 sin2(k/2)�(k, V∗), so that 4 sin2(k/2)
appears in both numerator and denominator. The relevant nonzero roots are those of �(k, V∗) = 0, with

�(k, V ) = 1 + 4D sin2 k

2
− V∗ik. (67)

Therefore, as we see in Fig. 6d, only gray branches survive in the overdamped limit.
As D tends to zero, all gray branches except the one coming out of k = −iλ, V = 0, move to infinity.

Thus at D = 0 (NN model) only this and the black branches (at finite W ) remain. In the overdamped limit the
only nonzero root of �(k, V∗) = 0 at each V∗ (the single surviving gray branch) is given by k = −i/V∗. As a
result, the strain profile (60) in this case coincides with its continuum counterpart (31).

Strain profiles. Typical strain profiles of the traveling wave solutions (42) with sufficiently large velocity
(V = 0.5) are shown Fig. 7 where the Hamiltonian case (W = 0) is compared with the case of nonzero
viscosity (W = 0.1). One can see that solutions of the discrete problem exhibit lattice scale oscillations (that
become damped at W > 0), while neither classical elasticity nor viscoelastic or viscosity-capillarity models
predict any oscillatory behavior of the displacement fields.

Admissibility. As we have already mentioned, some of the solutions formally constructed using (42), may have
to be discarded if they violate the constraints (15). For instance, in both cases shown in Fig. 8 (V = 0.25 and
V = 0.1) the oscillating strain at small η > 0 is in phase II, when the single interphase ansatz requires it to be
in phase II. In fact, a systematic numerical study reveals several small-velocity intervals (velocity gaps) where
the formal traveling wave solutions are not admissible; in these intervals of velocity a more complex dynamics
is expected to take place. These prohibited intervals become smaller at larger D, for example, Fig. 9 shows
that at D = 0.4 the solution with V = 0.25, which was discarded at D = 1/16, becomes admissible. This
takes place due to the regularizing role of D: as D increases, the gray branches of the characteristic equation
move closer to the real axis which make the transition layer wider and suppress the oscillations near the phase
boundary. The same effect can be achieved by increasing W .

Static limit. Single-interface equilibria (53) with phase boundary located at n = m can be presented in the
form [7,8,35]

wm
n (G) = σM +

⎧
⎪⎪⎨

⎪⎪⎩

G + 1 − exp(λ(n − m − 1/2))

2 cosh(λ/2)
, n < m,

G + exp(−λ(n − m − 1/2))

2 cosh(λ/2)
, n ≥ m,

(68)



Dynamics of martensitic phase boundaries 115

(a) (b)

Fig. 8 Examples of inadmissible solutions at D = 1/16, W = 0.1 and wc = 1: a V = 0.25; b V = 0.1. Solutions violate the
constraints (15) and hence are not admissible

(a) (b)

Fig. 9 Strain profiles at D = 0.4, W = 0.1 and wc = 1. Solution at V = 0.25 is now admissible but solution at V = 0.1 still
violates (15)

where λ is given by (66). These solutions exist for G in the trapping region (57), with the Peierls driving force
given by

GP = 1

2
√

1 + 4D
. (69)

Note that the Peierls force is nonzero and GP < Gs for all finite D > 0; at D = 0 we have GP = Gs .
A subtle but important feature distinguishing our model from the Frenkel–Kontorova (FK) model is that

D does not depend on δ and the Peierls force remains finite in the continuum limit δ → 0. In contrast, in the
FK model the Peierls force is proportional to δ and thus disappears in the continuum limit (e.g., [11]).

Overdamped limit. In the overdamped limit (V → 0, W → ∞, V∗ = V W finite) the Eq. (63) can be
“integrated” to yield

V∗ẇn = D(wn+1 − 2wn + wn−1) − σ̂ (wn) + σ, (70)

where σ = σM + G is the applied stress. Equation (70) coincides with the discrete reaction-diffusion equation,
which is also known as Nagumo system in biology [7,9] or the overdamped FK system in dislocation dynamics
[3,11]. We emphasize that the equivalence between our and FK models can be established only in the over-
damped and static limits: when the inertia term in (63) is nonzero, the two models yield different dynamics [38].
Observe also that at D = 0 Eq. (70) coincides with the analogous equation obtained in continuum viscoelastic
model in overdamped limit.

The traveling wave solution in the overdamped limit is given by (60) with �(k, V ) taken from (67). As
V → 0+ the strain profile approaches the staircase shown in Fig. 10 (V∗ = 0+); at larger V∗, the staircase
structure smoothens out. The corresponding “stick-slip” evolution of wn(t) at small V∗ for n = 0, 1, 2 can be
reconstructed from Fig. 11.

Notice that the small-V∗ solutions can be viewed as singular perturbations of wV∗=0+(η), in particular,
they replace steps by thin transition layers with the width proportional to V∗ (e.g., [7]). During the time period
T = 1/V∗ the dynamics can be interpreted as an approach toward the closest “virtual attractor” given by a
stable equilibrium at G = GP − 0, just below the boundary of the trapping region. For instance, if initially
the phase boundary is at n = 0 (w0(0) = wc), and if G is just above the trapping region, the closest virtual
attractor is s0

n where s0
1 = wc − 0, and sm

n ≡ wm
n (GP − 0). The attractor is only virtual because at G > GP no

equilibrium solutions actually exist, and, as a result, it is never attained. Thus, as soon as w1(t) reaches wc,
the whole process starts again, with solution “attracted” by s1

n and so on.
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Fig. 10 Strain profiles in the overdamped limit at D = 1/4, wc = 1

Fig. 11 Evolution of strain in the zeroth, first and second springs at small V in the overdamped limit. Parameters: V∗ = 0.01,
D = 1/4, wc = 1

5 Comparison of discrete and continuum models

In this section we first review the specific structure of the kinetic relation emerging in our NNN model, and
then use it as a benchmark for comparison of the discrete model with its continuum approximations.

In the Hamiltonian limit (W = 0) the kinetic relation in the discrete NNN model reduces to (52), with
the driving force fully determined by the real roots of the dispersion relation. In this case there is an infinite
number of resonance velocities Vi corresponding to real k satisfying equations L(k, Vi ) = 0 and Lk(k, Vi ) = 0
simultaneously (recall that Lk ≡ ∂L/∂k). At such velocities, the driving force diverges which creates singular
peaks on the kinetic curves (see Fig. 12a). At nonzero W the resonances are replaced by oscillations; the
amplitude of oscillations decreases as W increases (Fig. 12b,c). The shaded regions in Fig. 12 correspond to
nonadmissible traveling waves that must be removed. As W increases, the velocity gaps become more narrow.
The effect of D can be seen from the comparison of Fig. 13 (D = 0.4) and Fig. 12b (D = 1/16): at larger D
one inadmissibility interval may transform into several ones.

We can now move to the comparison of the discrete and continuum models. Figure 14 shows discrete kinetic
relations corresponding to a fixed D = 0.4 and different W . This value of D is equivalent to A = 0.56 in the
viscosity-capillarity model (recall (62)), and Fig. 14 should be juxtaposed against Fig. 4. Although the overall
behavior of the kinetic curves in the discrete theory and in viscosity-capillarity model is similar, the discrete
kinetics has two distinct features. First, due to the nonzero value of the Peierls force and the nonexistence of
traveling wave solutions at small V , there is a region in the left bottom corner of the discrete diagram (below
the schematic dashed line), where there are no admissible kinetic curves. In contrast, in continuum viscosity-
capillarity model all curves start from V = 0 and therefore the left bottom corner is filled in. Second, the
discrete model predicts nonzero dissipation in the Hamiltonian limit (W = 0), which results in the presence
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(a) (b)

(c) (d)

Fig. 12 Kinetic relations G(V ) at different W . Here D = 1/16. The shaded regions indicate the portions of the graphs that should
be removed because the corresponding traveling wave solutions violate the admissibility conditions (15)

Fig. 13 Kinetic relation G(V ) at larger D. Here D = 0.4 and W = 0.1. This figure can be compared to Fig. 12b

Fig. 14 Kinetic relation for discrete model at different W . Here D = 0.4, which corresponds to A = 0.56 in the viscosity-
capillarity model, the case depicted in Fig. 4. The portions of the small-W curves that contain nonadmissible solutions have been
removed. The solid dashed line is the (schematic) boundary of the region in the left bottom corner where there are no admissible
traveling wave solutions
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Fig. 15 Kinetic relations at different D in the overdamped limit

of a lower boundary below which there are no kinetic curves. Meanwhile, kinetic curves in the viscosity-
capillarity model can exist anywhere inside the bounds predicted by the classical continuum theory (see our
Fig. 2).

As the phase boundary velocity approaches the sonic limit (V → 1) the behavior of the kinetic curves
starts to exhibit universality.

It will be convenient to first look at the Hamiltonian limit W = 0. Recall that in this case the driving force
(52) is determined entirely by the positive real roots of L(k, V ) = 0 and when V � 1, there is only one positive
real root. Expanding the dispersion relation at small k and W = 0, we obtain

V 2 ≈ 1 +
(

D − 1

12

)
k2 − 1

6

(
D − 1

60

)
k4.

This means that for weak NNN interactions (D < 1/12), the relevant root approaches zero as V → 1−.
Substituting the above approximation into the expansion of (52) near small k, we obtain

G ≈ 1

2(1 − V 2)
. (71)

One can see that this asymptotics at V → 1− coincides with (30) (see also Fig. 12a, where D = 1/16).
Meanwhile, for stronger NNN interactions (D > 1/12, the interval where viscosity-capillarity model is valid),
the single positive root approaches a nonzero value ks as V → 1−, and this leads to a finite value of the driving
force [38]. At V = 1+ the driving force becomes infinite, due to the addition of a root at zero. We can then
conclude that the resulting kinetic relation has a “corner” at V = 1 (see, for example, the curve W = 0 in
Fig. 14, where D = 0.4).

If now W > 0, the sum of residues over the set M+(V ) tends in the sonic limit to a finite value s > 0,
which increases as W → 0 and tends to zero as W → ∞. Thus w+ → wc − s (recall (46)), while w− →
wc − s +1/(1− V 2) (recall (44)). Hence (48) yields the asymptotics (71) for V � 1, regardless of the value of
D. The width of the boundary layer where this asymptotic is valid increases with W (see the W > 0 curves in
Fig. 14). The asymptotic behavior of the kinetic curves at W > 0 is thus the same as in the viscosity-capillarity
and viscoelasticity model.

In the overdamped limit the graphs showing the kinetic relations at different D are presented in Fig. 15.
When D = 0 (no NNN interactions) the set S+ is empty, and the driving force (61) is constant: G = Gs = 1/2.
We recall that in this case the discrete equation (70) coincides with the continuum equation. At D > 0 the
driving force approaches the Peierls value from above as V∗ tends to zero and G(0+) = GP. At large V∗,
solution approaches the one for D = 0, so that G tends to Gs . In Fig. 15, which should be compared to Fig. 5,
one can see the blow up of the domain in the parameter space where V is small and W is large. Both figures
show a similar approach to the constant value of the driving force at V∗ > 0 as the nonlocality parameter (D
or A) decreases. At the same time, while the viscosity-capillarity model always sets Peierls force at zero and
yields piecewise constant dynamics in the limit when A = 0, the Peierls force in the discrete model is always
nonzero (recall that D = 1/12 in this limit).

To see more clearly how the discrete theory is approximated by its formal continuum limits, it is instructive
to consider the discrete model at the intermediate values of δ. In particular, we expect to see that in the limit
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(a) (b)

Fig. 16 Strain profiles generated by the discrete (solid curves), viscoelasticity (dashed curves) and viscosity-capillarity (dotted
curves) models at a V = 0.8 and b V = 0.95. Here D = 0.4, W = 0.1, δ = 0.01 and wc = 1

δ << 1 (weakly discrete limit) the predictions of the discrete model are comparable with those of viscosity-
capillarity and viscoelasticity models everywhere outside thin boundary layers in the space of parameters. The
persistence of the boundary layers is expected due to the singular nature of the perturbation associated with
the parameter δ.

For the general δ 	= 0 the solution of Eq. (17) is given by (42) with eikη replaced by eikη/δ . The driving
force is still given by (48), where the summations are over the roots of L(k, V ) from (43). Interestingly, the
value of the Peierls driving force is independent of δ.

We begin by comparing the strain profiles generated by the weakly discrete model to those obtained using
viscoelasticity and viscosity-capillarity models. Recall that A is related to D through (62) and that viscosity-
capillarity approximation is only meaningful in the strongly nonlocal regime D > 1/12. Figure 16 compares
the strain profiles generated by discrete (solid curves), viscoelasticity (dashed curves) and viscosity-capillarity
(dotted curves) models at D = 0.4, δ = 0.01 and W = 0.1. One can see that the continuum approximations
completely miss the damped oscillations that are inherently present in the solution of the discrete problem. As
noted above, it is possible to reproduce these oscillations by using more sophisticated quasicontinuum models
that approximate the discrete dispersion more faithfully [39]. At higher velocities the average strain profiles
generated by the discrete and viscosity-capillarity models become closer. This is expected since at higher V
the effective viscosity is higher, and the dissipation due to viscosity plays a larger role, making the flaws in
the approximation of dispersion less visible. Note, however, that strain profiles in both discrete and viscosity-
capillarity cases predict w+ below the spinodal value wc, while the viscoelastic model gives w+ = wc. As W
tends to infinity, w+ tends to the critical value in all three models.

Figure 17 compares the kinetic curves in different models at W = 0.1, 1 and 10 for D = 0.4. One can
see that the kinetic curves for the discrete model (solid curves) start at the Peierls value G(0+) = GP, which
is less than spinodal value Gs = 1/2 for D > 0 (here GP = 0.31), and approach the viscosity-capillarity
(dotted curves) and viscoelastic continuum (dashed) curves at larger velocities. While the viscosity-capillarity
model underestimates the driving force at small velocities, since it requires G(0) = 0, the viscoelastic model
overestimates it, since it starts at G(0+) = Gs . At sufficiently large V , all three curves display the same
asymptotic behavior given by (30). How “fast” this asymptotics is approached depends on W . At higher
values of W , the width of the small-velocity boundary layer where discrete model behaves differently from
its continuum and quasicontinuum counterparts diminishes. On the other hand, the range of velocities where
discrete and viscosity-capillarity models predict different behaviors increases as W tends to zero. In the limiting
case, W = 0, the viscosity-capillarity model incorrectly predicts that G ≡ 0 for V < 1, while the discrete
model always requires a nonzero driving force for the phase boundary to move (see Fig. 12a). Despite this
shortcoming, the viscosity-capillarity model still provides a valid lower bound for the driving force.

6 Concluding remarks

In this paper we considered the simplest discrete dynamical model of a prototypical martensitic phase transition,
amenable to a detailed analytical study. We focused on the interplay between three main physical mechanisms
responsible for the specificity of the dynamics of martensitic phase boundaries, namely, dispersion, dissipation,
and inertia. We introduced three nondimensional measures of the corresponding effects: δ, W , and V . Despite
its simplicity, the model also allows for nonlocality which in the simplest case can be characterized by one
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(a)

(c)

(b)

Fig. 17 Kinetic relations generated by the discrete model (solid curves) and viscosity capillarity approximation (dotted curves)
at a W = 0.1, b W = 1 and c W = 10. Here D = 0.4. In a portions of the discrete kinetic relation that contain inadmissible
solutions have been removed. The kinetic curve generated by viscoelastic continuum model (dashed curve), independent of W ,
is also shown for comparison

additional nondimensional parameter D. The main challenge was to distinguish qualitatively different kinetic
regimes in the space of parameters δ, W , V and D.

A more specific problem addressed in this paper was to what extent the discrete model can be replaced
in the domain δ ∼ 0 by its quasicontinuum approximation. Having a fully analytical benchmark, we could
test three continuum candidates broadly employed in the modeling of martensitic phase transitions: elasticity,
viscoelasticity and viscosity-capillarity models. We have temporarily left aside some other more sophisticated
quasicontinuum options.

After showing that the naive continuum limit δ → 0, corresponding to classical elasticity theory, fails to
provide the necessary information regarding the kinetics of phase boundaries, we have focused on two other
continuum approximations of the discrete model—viscoelasticity, a local continuum model which includes
only dissipation, and viscosity-capillarity, a weakly nonlocal quasicontinuum model that incorporates both dis-
persion and dissipation. We systematically compared the kinetic relations and traveling wave profiles resulting
from these two models with the one taken from the explicit solution of the discrete problem.

Based on this analysis, we can make the following conclusions:

1. The defining feature of the discrete model is lattice trapping. In the presence of nonlocality (D > 0) the
value of the Peierls force in the discrete model is below the spinodal limit and remains nonzero for all
finite D. In contrast, the viscosity-capillarity model predicts identically zero Peierls force. At large W ,
the lattice trapping is mimicked in the viscosity-capillarity model by a rapid increase of the driving force
with velocity around V = 0. Even though the viscoelasticity model captures the trapping phenomenon
qualitatively, it overestimates the value of the Peierls force by equating it to the spinodal force.

2. If stable, all three models predict the same asymptotics for the kinetic relation in the regime of |V | � 1,
where inertial effects dominate.

3. The overdamped limit represents a blow up of the kinetic curves in the region of large W and small V ,
where inertial effects can be neglected. In the absence of nonlocality (D = 0 in the discrete case and
D = 1/12 in case of viscosity-capillarity model) all three models behave similarly. In the presence of
nonlocality the behavior of the three models around V = 0 is qualitatively different.

4. The most sophisticated among our quasicontinuum approximations, the viscosity-capillarity model, be-
comes progressively less adequate as W decreases. In particular, the viscosity-capillarity model predicts
zero dissipation at W = 0 in the subsonic regime while the discrete theory always remains macroscopically
dissipative due to the phenomenon of radiative damping. The viscosity-capillarity model also cannot be
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used in the weakly nonlocal regime with D < 1/12 where it is unstable. To deal with the regimes where
viscosity-capillarity model fails, alternative quasicontinuum models should be constructed and we refer
to [5,39] for the realistic propositions.

Acknowledgements This work was supported by the RTN grant MULTIMAT from EU (L.T.) and by National Science Foundation
grant DMS-0443928 (A.V.).

Appendix

In this appendix we prove that the formulas (47) and (48) for kinetic relation are equivalent. We start by
considering the double sums in (47). For convenience, we denote the summand by

f (k, l) = sin2(k/2) sin2(l/2)

Lk(k, V )Lk(l, V )(k + l)

and omit the explicit reference to dependence on V . Now observe that
∑

k∈M−

∑

l∈M−
f (k, l) =

∑

k∈M−

∑

l∈M

f (k, l) −
∑

k∈M−

∑

l∈M+
f (k, l)

and
∑

k∈M+

∑

l∈M+
f (k, l) =

∑

k∈M+

∑

l∈M

f (k, l) −
∑

k∈M+

∑

l∈M−
f (k, l).

Here M = M+ ∪ M−. Since f (k, l) = f (l, k), the mixed sums can be interchanged, and thus
∑

k∈M−

∑

l∈M−
f (k, l) −

∑

k∈M+

∑

l∈M+
f (k, l) =

∑

k∈M−

∑

l∈M

f (k, l) −
∑

k∈M+

∑

l∈M

f (k, l).

Now, using Residue Theorem, we can write

lim
R→∞

1

2π i

∮

|l|=R

sin2(l/2)dl

(k + l)L(l, V )
=

∑

l∈M

sin2(l/2)

(k + l)Lk(l, V )
+ sin2(k/2)

L(−k, V )
.

But the integral in the left hand side vanishes as the radius R of the circular contour tends to infinity, and thus
we have

∑

l∈M

sin2(l/2)

(k + l)Lk(l, V )
= − sin2(k/2)

L(−k, V )
.

Recalling that k ∈ M satisfy the Eq. (43), we have

L(−k, V ) = L(k, V ) + 8W V ik sin2 k

2
= 8W V ik sin2 k

2
.

Thus,

∑

l∈M

sin2(l/2)

(k + l)Lk(l, V )
= − 1

8W V ik

and we obtain

8W V i

⎛

⎝
∑

k∈M−

∑

l∈M−
f (k, l) −

∑

k∈M+

∑

l∈M+
f (k, l)

⎞

⎠

=
∑

k∈M+

sin2(k/2)

kLk(k, V )
−

∑

k∈M−

sin2(k/2)

kLk(k, V )
,

which shows that (47) and (48) are equivalent, as claimed.
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