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Chapter 5
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Abstract We study a fuliy inertial discrete model of a martensitic phase transition
which takes into account i'teractions of first and seconJ nearest neigh-
bors. Although the model is Hamiltonian at the mi,croscale, itqenerates
a nontrivial macroscopic relation between Lhe velocity of the mlrtensitic
phase boundary and the conjugate configurational force. The appare't
dissipatio' is due to the i'duced radiation of lattice waves carrying en-
ergy away from tlie front.

Keywords: I{i'etic relations, lattice \\.raves, radia,tive damprng

Introduction
The fact that a ltonzero configurational force is required to sustaina martensitic phase transition reflects inability of the classical coltin-

lli tiT'icity to describe dissipative phenomena inside the transition
't'rlrL w'llere discreteness of the underlying crystal structure capnot beneglected. \ve recall that in continuum theory a phase boundary canInove without friction. At the same time its motion in a lattice can becolxpared to that of a particle placed in a wiggly (peierls-Nabarro) la'd-scape: the oscillations of the verocity then lead to the enerqv transfer
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Figure 5.1' (a) The macroscopic stress-strain law and the Rayleigh line for a sub-
sonic phase boundary' The difference A2 -,4r between the shaded areas is the config-
urational force G' (b) The discrete microstructure with nearest and next-to-nearest
neighbor interactions.

from macro to microscale 114]. At continuum level the emitted short-
length lattice waves are invisible, and the radiation is perceived as energy
dissipation' Since the rate of energy release at the macroscale remains
unspecified, in order to close the system of equations at the macrolevel,
one needs to supplement the conservative continuurn equations with the
dissipative kinetic relation on the moving discontinuity [10, 11]. In this
paper we consider the simplest nonlocal discrete model of a martensitic
phase boundary allowing one to find the unknown energy release rate
explicitly' Following some previous work in fracture [7, 8] and plasticity
[1,3,4] we use a biparabolic ansatz for the free energy and construct an
explicit soiution of the discrete problern. we emphasize that our only
input inforrnation concerns the elasticities of the constitutive elements,
and hence the resulting kinetic relation can be considered of the ,,first
principles" typ..

1. CONTINUUM MODEL
Consider an isothermal motion of an infinite homogeneous bar with a

unit cross-section. Let u(n,l) be the displacement of a reference point z
at tirne f . The' strain and velocity fields are given by , : ,rr(r, t) and
'7r : 'ti,t(r,t), respectively. The balances of mass and linear momentum
are ur - u1 and pu1 - (o(tr'))", where the function a(tu) specifies the
stress-strain relation. To model martensitic phase transitions, we follow
[2] and assume that a(tr) is non-monotone as shown in Figure b.1a. The
two monotonicity regions where o'(-) > 0 will be associated with ma-
terial phases I and IL Suppose now that an isolated strain discontinuity
propagates along the bar with constant velocity V. On the discontinuitv

(b)
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the balance laws reduce to the Rankine-Hugoniot jump conditions

pV'[*n: fian , pV[un: -flon, (1)

where [/J = f+- /- denotes the jump. Conditions (1) must be supple-
rnented by the entropy inequality R: GV ) 0, where

c:fdn-{"}[r] (2)

is the associated configurational force. Here {o} - (o* + o_)l2.Given
V and the state (u+,w+) in front of the moving discontinuity, one can use
(i) to determine tlie state (r-,*-) behind. In particular, (l)1 implies
that wa lie on the intersection of the curve 

"(w) and the Rayleigh line
with the slope pVz, as shown in Figure 5.1a. To satisfy the entropy
inequality it is sufficient to require ihat the difference between the areas
A2 and.41 shorvn in Figure 5.1a is nonnegative. It is not hard to see that
the macroscopic jurnp conditions do not provide enough information to
specify the velocity of the phase boundary I/ uniquely.

Although the difficulty with finding I/ does riot arise in the case of su-
personic shock waves, it is essential in the case of subsonic phase bound-
aries, where additional jump condition controlling the rate of dissipation
must be provided to ensure that the continuum problern is well posed
[6, 12]. The corresporlding closing kinetic relation in t]re forrn G : G(V)
can be either postulated as a phenomenological constitutive relation (e.g.

[t0, t1]) or derived from a regularized continuum rnodel which usually
includes dissipative as well as dispersive terms (e.g. [b, 10]). Below
we take a different approach and derive the closing relation from a dis-
crete lattice model represented by an infinite system of coupled ordinary
differential equations.

2, DISCRETE MODEL
Consider a chain of particles connected to their nearest neighbors

(NN) and next-to-nearest neighbors (NNN) by elastic springs, as shorvn
in Figure 5.1b. In the undeformed configuration the NN and NNN
springs have length E and 2e, respectively. Let un(f), -- ( z ( N,
oenote the displacement of nth particle at time I with respect to the ref-
erence configuration. In terms of the strain variables un: (un-un_t)1,
the dynarnic equations take the forrn

ntw, - d'Nrv(r"+r) - 2divN (.,) + d'NN(r"_r) + f (un +z - 2wn * wn-z).
(3)

/F40

Here dNN is the nonlinear
ttrteractions are assumed
lutions of (3) in the form

and nonconvex NN potential, while the NNN
to be linear: diuNN(r) - 21w. We seek so-
of a traveling r,vave rnoving with the velocity
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I/ and connecting two states in
assume that
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:n€-Vtand

(4)

(8)

(e)

u"(t) : u(r), w,(t) _ w(r) _ [r(r) _ u(r _ e)]/e
The system (B) can now be repraced by a single nonrinear advance_delay differential equation for tr(r):

mv2u" : dfuiv @(r+ r)) _ 2divp @@))+ di,'v @@_ €))+1(w(r +2e) _zw(r) *u(x _24), 
rr\1\\*\4 c)) 

(b)

The states at z : *oo must correspond to their macroscopic limits

w(*) --+ u/+ Ds tr _+ *oo. (6)
since we expect emission of elastic waves, the rimits in (6) must beunderstood in the weak sense 

"rfyIn order to obtain analytical sorution of the discrete probrem, wechoose NN poten'3t r? u. u191'"boric 
""; ;;;;".rric so rhat /i,* (r) -K(' - a,(ta - *:),),-*:..^ri"Jls a.unit step fun*ron. Assume thar ar,springs in the region r ) 0 are in phase r, .,ir,li.'uil springs with c < 0

;TrilJl*e 
II' Then in nondimensionar variabres equation (5) can be

where g : 4l /K is the main nondimensionar parameter of the problem.
8H:T."Jf i#;'f *,**jruJ;;;;;";io,nu,th",,o,,ii,,.arity

Y2rrr - w@+ t) + 2w(r) _ w(r _ t)
* u(r - 2D : -0(-r - 1) + 20(_r)

w(0) - s"
and in the constraints

nU
- n@@ + 2) - 2w(r) 

,F,\

- eG - r), \/i

w\r) { uL. for r > 0, w(r\ } ?t)" for r < 0
ensuring that the springs are in proper phases. The probiem now re_duces to soivine 

{1i *u.:g.ri"'io;, (B)and (9) we remark that a re_
::l'i"[:.TlT &1"},i;- 'iil, 

p'l b (,,o NNi{ interactions) was previousry
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3. SOLUTION OF THE DISCRETE
PROBLEM

Equation (7) can be solved by standard Fourier transform (see
for details) yielding

47

(
_)-t

w_
t . a t, ,^' ,i,kzr \- 4Stn-1rc/z)e

' /J kLt(k)keM-
1 s- 4 sirl2 (k /2\etk,

I+/J-Vz ./: kL'(k\
ke M+

r <0

r)0,

[13]

(10)w(r)

wlre_re Z(A) : 1:t.r(kl2) * 7sin2k -V2k2 and A[* : {k : L(k)_
0, {Imk ? 0}l){Imk:0, kL'(k) ? 0}. The solution ca'be viewed
as a homogeneous state superimposed with the combination of plane
waves lvith phase velocity v and wave numbers given by the zeroes ofL(k). In particular, there is a finite number of real roots of L(k) :
0 corresponding to radiative modes. To obtain (10), we applied the
radiation conditions [1, 7] requiring that all radiative modes *ith grorrp
velocities l/, higher than the interface veloc ity V appear in front of the
tnoving phase boundary (" > 0), while all radiative modes with vo { v
appear behind the front. Since r/ - r/ J- L'(k)

modes ahead (behind) trre inter#l ;J,tffi'#iff:4"(t ';il"t*
Equations (10)^impiy that the limiting states are related by u)+:w--tlQ+c-v'), which is exactly the macroscopic Rankine-Hugoniot

co'ditio' (1)1. The switching condition (g) implies that

w_

w+: wcT 4 sin2 (kl2)
2(r+P-V2) lkL,(k)l'

+r
Ae N$"

(11)

:n:.:,f: : {,k : L(k) - s, Intk:0,kL'(k) ? 0}. Since both r(k)
atrd .Ay'r depe'd explicitly on v, trq. (r1) provides two additio'a} re-lations between the velocity of the moving interface and the strains atinfinity; one of them is equivalent to (t;1 ivtrite tlie other one generates
a tlontrivial kinetic relation. To recover the second Rankine-Hugoliot
condition (1)2, we recall that given the self-similar ansatz (4), the strai'
and velocity fields are related through r(")-u(r-l) - r,ir). since theright hand side of the latter equation is known.*pii.itly (see (10)), wecan agaiu use the Fourier transform to show that the difference'bei*een

f^lre 
avelage velocities at infinity satisfies uy-u- - vl0+ p -vr),Thists exactly our macroscopic j,rmp condition (1)2.
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4. KINETIC
Consider the global
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REI-,ATION
energy baiance in the discrete model

\2lt
) li : Fnunll=:.", (12)

rlCOrr)9l\-l';
dtl / l2-n:-oo.

n/* drurv(tu") + I {' ') \

wn * wn*l

wlrere F,: dir*(.") + f;(wn-t *2wn*wn+t) is the total force acting
on the nth particle from the left. Since at infinity our soiution tends
to the homogeneous state plus linear oscillatiorls we use asymptotic or--
thogonality of the modes and write: (Fnrrlfi=f."; _ p * ps, where (.)
denotes the averaging over sufficiently large period, p - o+uf - o_u_ is
the macroscopic power supply at *oo and ps is the energy carried away
by the microscopic lattice waves:

-Po: | {e*)*(vn-v)+ \ to;-(v -v).
t:e N+ /r€N-

Here gn is the sum of kinetic and potential energies per particle carried
by the mode k. The average energy density .utii.d by the mode k can
be computed from (Qn) : (8 - Qo)n, where g(r) is the total energy per
particle and 9o is the energy of th^e limiting homogeneous states. The
calculation yields [13] (gn)x : y6,ffi for the the average energy
density carried by the radiative wave #itn r € l/o1, _ {k € Ai+ : k }0). Substituting these explicit relations into (13i"and tbserving thatR: Gv - -Po, we obtain the desired expression for the driving-forr.,

G_4 \- sin2(tclz)
L_ lkL,(k)l'

Ae 1rf,""

(13)

(14)

since both L(k) and ly'* are known functions of v, Eq. (1a) yields an
explicit kinetic relation (see also 11).

Alternatively, we could compute the driving force G by using Eq (z)
for the continuum macromodel. observe that the macroscopic energy
dens;ty Q@) is related to its microscopic counterparts vra g(w): *(iiP)*' - 0(. - *")(* -."). By substituting this reration into (2) and
using (11), we obtain c : i(',- + -i - It)c:4 rre ,^rs "ffi, which
coincides with (14), This confirms that the macroscopi. .".igy release
rate is consistent with the microscopic account of dissipation.

To compute the resulting kinetic relation we need to find at each V
all positive real zeroes of L(k). The typical function v (k) is plotted
in Figure 5.2a. It possesses an infinite number of iocai maxima v;,
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Fdgure 5'2' (a) Real wave numbers & corresponding to a given interface velocity7 with "*" and "-'' denoting the sign of m;gr1. A'lso marked are the resonancevelocities 7i'' (b) M_obility curves G(V).The entire regiop around the resonancesslrould be excluded. In both graphs 0 : _l/8.

(resonance velocities) where L'(k) - 0 and the sums in (10) and (14)diverge. These resonances are symmetry-related and disappear whenthe curvatures of the erergy wells are different [3]. Two limiting cases)V -. 0 and V ---+ Zr, where I/, _ \tr+p i, itr" macroscopic sound
velocity, deserve particular attention. In the zero-velocity limit we obtain
[13]

G(0) - 2\/T +p - Gp,

which coincides with the peierls force computed in i1a]. The limit v __+
7' depends on p. Assume for dete.ninacy that * jli a B s 0.Thenone can show that for v -, % the o'ly relevant positive real root k €No".(7)tendstozeroandsirrceinthislirnitG_.ffi;-ffi;
O(k'), we obtain that G(n --+ oo.

In the intermediate range 0 < v ( x/, the kinetic relation can beobtai'ed numericaily by computing the sets ,ntrodrilr;. rigrre 5.2b shou,stlre typical rnobility-curves G(v)"at p - -tfi: As expected, in thesmall-r'elocity range 0 < v s vi there is an accurnulation of resona'ces.It can be show' 1is1 that tlre 
"irr"sponding traveling wave solution arenot admissible because they viorate tire condition (9). In this range ofaverage velocities the interface motion may be of a rnore complex nature,for instance, stick-slip.
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