
Chapter 4
Power-Stroke-Driven Muscle Contraction

Raman Sheshka and Lev Truskinovsky

Abstract To show that acto-myosin contraction can be propelled directly through
a conformational change, we present in these lecture notes a review of a recently
developed approach to muscle contraction where myosin power-stroke is interpreted
as the main active mechanism. By emphasizing the active role of power stroke, the
proposed model contributes to building a conceptual bridge between processive and
nonprocessive motors.

4.1 Introduction

Broadly accepted chemo-mechanical models of muscle contraction operate with
kinetic constants depending on a continuous variable, the elongation of an effective
spring. This leads to an appearance of phenomenological functions, which brings
into the theory an infinite number of parameters. In an attempt to avoid such ‘free-
dom’ we make a tacit assumption that the structural elements of force producing
machinery are purely mechanical and can be in principle built in a lab.

To model the phenomenon of muscle contraction at a purely mechanical level we
follow the approach developed in the theory of Brownian ratchets which replaces the
conventional chemistry-based interpretation of active force generation by the study
of Langevin dynamics of mechanical systems. In ratchet-based models describing
acto-myosin contraction, the ATP activity is usually associated with actin binding
potential while the power-stroke mechanism, residing inside myosin heads, is
viewed as passive. Instead, in view of the reasons discussed below, we assume that
power-stroke is the main active mechanism. Implicitly, our basic assumption is that
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Fig. 4.1 Schematic
illustration of the four-step
Lymn–Taylor cycle showing
the power-stroke A → B, the
detachment B → C, the
re-cocking of the
power-stroke C → D and the
final re-attachment D → A

bringing the system back into
the original state

the fundamental mechanism behind active force generation is the same in the linear
molecular motors (myosins, kynesins, dyneines).

Muscle contraction takes the form of a relative motion of thick (myosin) and
thin (actin) filaments [3]. Active force generation results from stochastic interaction
between individual myosin heads (cross-bridges) and the adjacent actin binding
sites. It includes cyclic attachment of myosin cross-bridges to actin filaments
together with a concurrent conformational change in the core of the myosin
catalytic domain (of folding-unfolding type). A lever arm amplifies this structural
transformation producing the power-stroke, which allows the attached cross bridges
to generate macroscopic forces [53].

Myosin motors convert chemical energy into mechanical work by catalyzing the
hydrolysis of adenosin triphosphate (ATP) to the adenosine di-phosphate (ADP),
freeing phosphate (Pi) and using the released energy for generating motion. A
prototypical biochemical model of the myosin ATPase reaction in solution, linking
together the attachment-detachment, the power-stroke and the hydrolysis of ATP, is
known as the Lymn–Taylor cycle [72], see Fig. 4.1. While this minimal description
of enzyme kinetics is common for most myosins motors [113], its association
with microscopic structural details and its relation to micro-mechanical interactions
remains a subject of debate [22, 111, 112].

In physiological literature it is usually implied that muscle contraction is to
a large degree driven by the power-stroke which is then perceived as an active
mechanism [42]. This opinion is supported by observations that both the power-
stroke and the reverse-power-stroke can be induced by ATP even in the absence of
actin filaments [112], that contractions can be significantly inhibited by antibodies
which impair lever arm activity [84], that sliding velocity in mutational myosin
forms depends on the lever arm length [117] and that the directionality can be
reversed as a result of modifications in the lever arm domain [15, 116].

A perspective that the power-stroke is the driving force of active contraction
was challenged by the suggestion that myosin catalytic domain could operate as
a Brownian ratchet, which means that it can move and produce contraction without
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assistance from the power-stroke mechanism [49, 95, 130]. In this interpretation
the contraction is driven directly by the attachment-detachment machinery which
rectifies correlated noise and selects directionality following, for instance, the
polarity of actin filaments [57, 58].

Although the simplest models of Brownian ratchets neglect the conformational
change, some phases of the attachment-detachment cycle can be interpreted as the
power-stroke when the actin potential is assumed to undergoe additional externally
driven horizontal shifts [122, 126]. Ratchet models were also proposed where the
periodic spatial landscape is supplemented by a reaction coordinate, representing
the conformational change [93, 127]. In all these models, however, the role of the
power stroke was viewed as secondary and the contraction could be generated even
if the power stroke mechanism was disabled. The main functionality of the power-
stroke mechanism would be then attributed to passive fast force recovery [2, 19, 54].

An alternative viewpoint that the power-stroke mechanism consumes chemical
energy and can be viewed as active, is the underpinning of the broadly accepted
phenomenological chemo-mechanical models [52, 88]. These models pay great
attention to structural details and in their most comprehensive versions faithfully
reproduce the main experimental observations [83, 109]. The chemo-mechanical
models, however, are not transparent mechanistically because they deal with elastic
interactions implicitly. In these models chemical states are interpreted as continuous
manifolds (parameterized by the strain) and to characterize jump processes between
the points on these manifolds the authors choose the transition rate functions phe-
nomenologically. While this functional freedom compensates the lack of knowledge
of the underlying multidimensional energy landscape, the inherent arbitrariness of
some of these choices limits the ultimate predictive power of this approach.

In an attempt to reach a synthetic description, several hybrid models, allowing
chemical states to coexist with springs and forces, have been also proposed
[26, 46, 65]. The phenomenological side of these models is minimal, however,
they still combine continuous dynamics with jump transitions which makes the
precise identification of structural prototypes and the underlying micro-mechanical
interactions challenging. In this class of models the power-stroke in an individual
cross-bridge was reproduced most faithfully by Geislinger and Kawai who intro-
duced a 2D energy landscape by coupling a bi-stable potential with a symmetric
periodic potential [43]. In this model both the attachment-detachment mechanism
and the power stroke mechanism were effectively endowed with activity, however,
the ATP hydrolysis was still represented by a flashing actin potential.

In these lecture notes we review a set of models which suggest that the
power stroke can be, at least in principle, the main driving force behind muscle
contraction. The discussed models are fully mechanistic in the sense that all
ambiguous jump processes are replaced by a fully mechanistic Langevin dynamics.
To focus exclusively on the idea of an active power stroke, driven directly by the
ATP hydrolysis, we intentionally simplify the real picture and at some point even
model actin filaments as passive non-polar tracks. The power-stroke mechanism is
represented by a symmetric bi-stable potential associated with an internal degree of
freedom and the ATP activity is modeled by a correlated component of the external
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noise. We show that even in this simple setting one can obtain a fully mechanical
interpretation of all four chemical states in the minimal Lymn–Taylor cycle which
opens a possibility of building artificial engineering devices mimicking enzymatic
activity.

We start with a discussion of the three main force generation mechanisms: motor
driven contraction, power stroke driven contraction and the model where power
stroke not only drives the process but also controls the attachment/detachment
mechanism. The idea that the symmetry breaking mechanism rests in internal
conformational transition [23, 75] is borrowed from the theory of processive motors
[24, 82, 104, 124]. Thus, in the description of dimeric motors it is usually assumed
that ATP hydrolysis induces a conformational transformation which then changes
the relative position of the motor legs ensuring motility [119]. Here we use the same
idea to describe a non-processive motor with a single leg that remains on track due
to the presence of a thick filament.

To be realistic, a model of the power stroke driven contraction must contain an
assumption that the strength of the attachment depends on the state of the power
stroke element. To justify the implied coupling, we argue that the conformational
state of the power-stroke element provides steric regulation of the distance between
the myosin head and the actin filament. More specifically, we assume that when the
lever arm swings, the interaction of the head with the binding site weakens. This and
other aspects of steric rotation-translation coupling in ratchet models are discussed
in [43, 68, 90].

The proposed framework allows for three different modes of power stroke driven
contractility which may operate simultaneously.

The first mode is activated only if correlations are present in the additive noise
as in the conventional rocking ratchets [74]. The peculiarity of our rocking ratchet
is that the periodic potential is symmetric and time independent. The correlated
component of the noise affects the bi-stable potential and, since it is also symmetric,
the directional motion is due exclusively to an asymmetry induced by the coupling
between the internal degrees of freedom and the center of mass of the motor.

The second mode does not necessitate correlations in the noise but instead
requires that the coupling between the power-stroke element and the actin filament
is hysteretic. The motor can then extract energy directly from the delay mechanism
which represents a non-equilibrium reservoir. We show that the two active mecha-
nisms, correlations-induced and hysteresis-induced, can favor motions in different
directions and can play complimentary roles.

Finally, the third mode functions if the internal forces acting between the myosin
head and the actin filament are non-potential even without being hysteretic [73, 93,
130]. This assumption introduces another active mechanism which can drive the
motor even if the environment is in equilibrium. The correlations-induced and non-
potentiality-induced mechanisms can impose opposite directionality, in particular,
they can operate in combination to slow down and even to stop the motor.

The variety of the available regimes is particularly rich when the forces are
non-potential and the coupling between the power-stroke and the actin filament
is hysteretic. The resulting ratchet shows complex reversals of current depending
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on the amplitude of the external driving and temperature. The importance of the
hysteretic coupling is revealed by the observation that only in this case the model
can reproduce all four steps of the Lymn–Taylor cycle.

In the last section of these lecture notes we show that the power-stroke-driven
active rigidity can emerge as a result of resonant nonthermal excitation of the power
stroke machinery. Building upon the idea of active drift [96] we consider a family of
stall states in a power stroke driven system parameterized by a meso-scopic measure
of total deformation. We compute the time and ensemble averaged potential at the
fixed value of the deformation parameter and interpret the deformation derivative of
this potential as an effective stiffness.

Of particular interest is the effect on active rigidity of the stochastic nature
of the nonequilibrium reservoir. We show that while in periodic or dichotomous
environments, the noise induced pseudo well exists, active stabilization disappears
if the noise is of Ornshtein–Uhlenbeck type. The sensitive dependence of the
mechanical performance of the molecular scale devices on the shape of the power
spectrum of the noise, has been previously observed in the studies of active drift
[25, 81] and here we broaden the picture by covering molecular machines generating
active rigidity. Various features captured by our minimal model of active rigidity are
in common not only with inertial stabilization [17], but also with the performance
of the Ising model in periodic magnetic field [40], the folding/unfolding of proteins
subjected to periodic forces [38] and the parametric behavior of more complex
actively driven systems [11, 20, 85].

While some of the material collected in these lecture notes is new, the main ideas
are based on the published papers [107, 108].

4.2 General Ratchet Model

Even the simplest mechanical model of a cross-bridge capable of both, the
attachment detachment and the power stroke, must involve at least two continuous
variables [52, 73, 74].

Suppose that the position of the motor head is modeled by the variable x(t),
while the variable y(t) describes the internal degree of freedom representing the
configuration of the lever-arm, see Fig 4.2a. Suppose also that the interaction
between the myosin head and the actin filament is modeled by a space periodic
potential. Finally, assume that the molecular link between the motor head and the
motor tail can be described by a bi-stable spring, see Fig 4.2b.

Using these assumptions we can now formulate the general stochastic dynamics
of a cross-bride in terms of the system of Langevin equations:

ηdX/dt = −∇G(X, t)+ σξ (t). (4.1)
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Fig. 4.2 (a) Sketch of one-legged molecular motor in pre-power stroke and post-power stroke
configurations. (b) The mechanical model

Here η is a diagonal matrix defining drift coefficients, σ is another diagonal matrix
with components

√
2ηikB" , and ξ(t) is the Gaussian random vector with zero

mean 〈ξi(t)〉 = 0, and with correlations 〈ξi(t)ξj (s)〉 = δij δ(t− s), i, j = x, y. The
terms ηidxi/dt describe frictional forces and the corresponding drag coefficients
are assumed to be constant. The function G(X, t) introduces the energy landscape
of the motor device.

The mechanical action of the ATP hydrolysis will be represented by a correlated
component of the external noise f. Suppose that such a noise can affect both, the
actin/myosin bound states and the conformational state of the lever-arm. This means
that the corresponding force can act on coordinates x and y. Writing a generic
expression for a tilted energy landscape G(X, t) we obtain

G(X, t) = G0(x, y)− xfx(t)− yfy(t). (4.2)

Here G0(x, y) = �(x)+ V (y − x) is the intrinsic energy landscape, see Fig. 4.4a,
where the bi-stable potential V (y − x) describes two conformational states of the
power stroke mechanism. We identify one energy well with the pre-power-stroke
state and another energy well with the post-power-stroke state. We also assume
that the potential �(x) has period L so what �(x + L) = �(x). The simplest
representation of the correlated noise fi(t) imitating the ATP activity is through
periodic functions with zero average (over the corresponding periods τi).

Since our goal is to develop the model with active power stroke we will not con-
sider the most general case, when the components fy(t) and fx(t) are independent.
Instead, we focus on three specific models. In ‘X model’ the rocking/tilting force
acts on the variable x,

fx(t) = f (t), fy(t) = 0; (4.3a)

this model was already introduced and studied in [76]. In ‘Y model’ the rocking
force will be acting on the variable y

fx(t) = 0, fy(t) = f (t). (4.3b)
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Fig. 4.3 (a) The surface and contour plot of the function G0(x, y). (b) The scheme illustrating
three different rocking mechanism: X-ratchet (4.3a), Y-ratchet (4.3b), XY-ratchet (4.3c)

Finally, in ‘XY model’ the rocking couple will act on the difference y − x,

fx(t) = −f (t), fy(t) = f (t). (4.3c)

In Fig. 4.3a we illustrate our two-dimensional energy landscape identifying four
different mechanical configurations A,B,A1, B1 which represent different local
minima of the energy. The schematic illustration of the three different rocking
mechanisms is shown in Fig. 4.3b.

In the X-tilted ratchet model (4.3a) the correlated force is applied to the x variable
while the power-stroke mechanism remains passive. Applying the correlated force
to the y variable in the Y-tilted ratchet model (4.3b) we make the first step in the
direction of bringing activity to the power stroke mechanism. Finally, in the XY-
tilted ratchet model (4.3c), the active force is applied directly to the y − x variable.
The non-equilibrium noise in this model is then acting directly on the internal degree
of freedom characterizing the motor mechanism.

A model closely related to XY-tilted ratchet and coupling translational and
rotational degrees of freedom was considered in [43]. The XY-tilted ratchet also
resembles some models of Kinesin where ATP acts on the internal bi-stable device
forcing two legs to move along the actin filament. In this sense the XY-tilted cross-
bridge can be viewed as a “single-leg” analog of a Kinesin motor [78] with both
mechanisms driven through the power stroke.

In these lecture notes we consider two loading devices–hard and soft, see Fig. 4.4.
In the case of hard (or, rather, mixed) device the total energy is

Gh
0(x, y) = �(x)+ V (y − x)+ 1

2
km(y − z)2, (4.4)

where Vm = 1
2km(y − z)2 is the potential of a linear spring and the variable z is

treated as a fixed external parameter, see Fig. 4.4a. In this case, it is of interest to
compute the average tension generated by such system T = km(〈y〉 − z), where the
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Fig. 4.4 (a) Soft device configuration; (b) hard device configuration

notation 〈y〉 indicates the averaging of the stochastic variable y(t) over the ensemble
and over the time. In the case of soft device the total energy is

Gs
0(x, y) = �(x)+ V (y − x)− yfext , (4.5)

where fext is an external force, see Fig. 4.4b. In this case, the parameter of interest
is the drift velocity v = limt→∞〈x(t)〉/t .

4.3 X-Tilted Ratchet

We recall that in this case the correlated noise f (t) is acting on the x variable. In
Fig. 4.5 we present a schematic illustration of the rocking axis for the corresponding
energy landscape in coordinates (y − x, x). The implied tilting biases the states
A′, B ′ during the first half of the period and the states A,B during the second half
of the period.

It will be convenient to rewrite our equations in the dimensionless
form. We use the following definitions of the non-dimensional variables:
X̃

(
t̃
) ≡ (1/a)X

(
t = τ �t̃

)
, Ṽ (x̃, ỹ) ≡ (1/(kma2))V (x = ax̃, y = aỹ), f̃ (t̃ ) ≡

(1/(kma))f (t) and ξ̃i (t̃) ≡ ξi(t)/
√
τ � Here τ � is the main time scale of the

problem τ � = ηy/km. The distance a between two minima of the potential V (y−x)

introduces the characteristic length scale, while the natural energy scale is kma
2.

The remaining nondimensional parameters are D̃ ≡ kB"/(kma
2) and α = ηy/ηx .

Below, for simplicity, we omit the tildas.
In the soft device the dimensionless system takes the form:

⎧
⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)− f (t)] + √

2αD ξx(t),

dy/dt =− ∂yV (y − x)+ fext +
√

2D ξy(t),
(4.6)

while in the hard device we obtain
⎧
⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)− f (t)] + √

2αD ξx(t),

dy/dt =− ∂yV (y − x)− km(y − z)+ √
2D ξy(t).

(4.7)
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Fig. 4.5 X-tilted ratchet
model: the energy landscape
with a fictive axis showing
how the rocking is applied

The Fokker–Planck equations corresponding to the normalized systems of Langevin
equations (4.6) and (4.7) take the form:

• in the soft device configuration:

∂tP
s(x, y, t) = αD∂x

[
P s(x, y, t)

D
∂xG

s(x, y, t)+ ∂xP
s(x, y, t)

]

+D∂y

[
P s(x, y, t)

D
∂yG

s(x, y, t)+ ∂yP
s(x, y, t)

]
, (4.8)

where Gs(x, y, t) = �(x)+ V (y − x)− xf (t)− yfext .
• in the hard device configuration:

∂tP
h(x, y, t) = αD∂x

[
Ph(x, y, t)

D
∂xG

h(x, y, t)+ ∂xP
h(x, y, t)

]

+D∂y

[
Ph(x, y, t)

D
∂yG

h(x, y, t)+ ∂yP
h(x, y, t)

]
, (4.9)

where Gh(x, y, t) = �(x)+ V (y − x)− xf (t)+ 1
2km(y − z)2.

In what follows, we adopt the simplest descriptions of the functions �(x),
V (y − x) and f (t). Thus, we assume that

�(x) =

⎧
⎪⎪⎨
⎪⎪⎩

�max

λ1
(x − nL), for nL ≤ x < nL+ λ1

�max

λ2
((n+ 1)L− x), for nL+ λ1 ≤ x < (n+ 1)L, n ∈ N

(4.10)

where � = λ1 − λ2 is the parameter, which controls the potential asymmetry, when
λ1 = (L + �)/2 and λ2 = (L −�)/2. The bi-stable element will be described by
a piece-wise quadratic function

V (y − x) =
⎧
⎨
⎩

1
2k0 (y − x)2 + ε0, (y − x) � l,

1
2k1 (y − x − a)2 , (y − x) � l,

(4.11)
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Fig. 4.6 The adopted simplified structure of the functions �(x),V (y − x) and f (t)

where ε0 = 1/2
(
k1(l − a)2 − k0l

2
)
. A periodic force f (t) with period τ is assumed

to be a square signal

f (t) = A(−1)n(t) with n(t) = �2t/τ , (4.12)

where brackets � denote integer part. We illustrate the functions �(x), V (y − x)

and f (t) in Fig. 4.6.

4.3.1 Typical Cycles

Soft Device We begin with a series of numerical experiments in the soft device.
We perform computations by using the standard Euler scheme with the time step
�t = 10−3 and then conduct the averaging over Nr = 103 realizations of the noise.

In Fig. 4.7a we illustrate the typical average trajectory of the X-tilted motor when
the system reaches the steady state with the average velocity vx = vy ≡ v. Our
Fig. 4.7b shows the time evolution of the system in coordinates (t, y − x). Observe
the emerging oscillations between the two wells of the bi-stable potential and note
that the motor crosses a succession of space periods, see Fig. 4.7c.

We define the cycle as a segment of the average trajectory corresponding to one
period of the driving f (t). During the cycle we associate the transition A′′ → B ′
with the release of the power stroke mechanism and the transition B → A′′ with its
recharging.

In order to make sure that during each cycle the motor performs only one
attachment-detachment step, we need to adjust our parameters. Suppose that α =
0.2 (which controls the drift along x coordinate), take L = 3, and, in order to
preserve the value of the force acting on the particle, choose �max = 4.5. In Fig. 4.8
we show the ensuing average behavior of the motor. As in the case shown in Fig. 4.7,
the system reaches the steady state with a particular value of the average velocity, see
Fig. 4.7a. The visible fluctuations can be explained by the relatively small number
of stochastic realization in this case where we took Nr = 200.
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Fig. 4.7 The behavior of the X-tilted ratchet model in soft device with fext = 0. (a) The
trajectories 〈x(t)〉 (solid black line) and 〈y(t)〉 (dashed gray line); (b) the time evolution of the
system in coordinates {t, y − x}; (c) the average trajectory in coordinates {y − x, x}. Parameters:
k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, λ1 = 0.35, L = 0.5, �max = 0.75, α = 1, A = 2,
τ = 16

Fig. 4.8 The X-tilted ratchet in the soft device configuration with fext = 0. (a) The trajectories
〈x(t)〉 (solid black line) and 〈y(t)〉 (dashed gray line); (b) the time evolution of the system in
coordinates {t, y−x}; (c) the average trajectory in coordinates {y−x, x}. The red line corresponds
to f (t) = +A, blue line—to f (t) = −A. Parameters: k0 = 1.5, k1 = 0.43, l = 0.22, a =
1, λ1 = 2.4, L = 3, α = 0.2, A = 4.5, τ = 16

The ensuing X motor cycle can be presented as a combination of two steps (see
Fig. 4.9a):

• 1→2. First, because of the broken space symmetry, the motor advances in the
x direction and crosses the energy barriers associated with the maxima of the
periodic potential �(x). In the meanwhile the motor recharges the power stroke
mechanism.
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Fig. 4.9 The X-tilted ratchet model in the soft device configuration. With the solid gray lines we
show the surface contours of the energy landscape �(x)+V (y−x). (a) The simplest motor cycle.
(b) More complex motor cycle

• 2→3. As the rocking force changes its sign, the new configuration of the
energy landscape drives the motor into the backward direction along the x axis.
However, the motor is now trapped and instead of going backwards, it performs
the power-stroke. Then the motor cycle starts again.

Note that in both studied cases the detachment and re-attachment take place
simultaneously with the power stroke. Since the power stroke in this model is
passive, the advance of the motor is due exclusively to the asymmetry of the
potential V (y − x): the motor must advance along the x axis in order to ensure
the recharging of the power stroke mechanism. Note also that the ratchet must make
a sufficiently large step in the forward direction in order to recharge the power stroke
mechanism.

By varying the parameters of the model we can obtain other cycles as well. For
instance, the motor step 1 → 2 can be made longer than a simple jump between
the two nearest periods. Also, we can force the motor to move according to the
scheme 1 → 2′ → 2, shown in Fig. 4.9b. Moreover, the motor can advance few
periods along the x axis in the forward direction before accomplishing the power-
stroke 2 → 3 and can also move backward during a few periods following the path
2 → 3′ → 3. Note, however that while both motor positions, 3′ and 3, correspond to
the same energy well 0 in the bi-stable potential, they are associated with different
wells of the periodic potential.

Hard Device To study the effect of temperature we vary the parameter D while
keeping the amplitude of the nonequilibrium driving fixed at A = 6 and in Fig. 4.10
we show the average trajectories during one time period of the force f (t). With solid
lines we show the energy landscape in the positive phase and with dashed black lines
in the negative phase of rocking. We illustrate the average trajectory using different
colors depending on the phase of rocking.

We observe that the cycle get stabilized after a short transient period. At
low temperatures the response is localized around one minimum of the bi-stable
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Fig. 4.10 The X-tilted ratchet model in the hard device configuration at different values of the
temperature D and constant amplitude A = 6. The light gray lines depict a single stochastic
realization during one time period. (a) D = 0.01; (b) D = 0.065; (c) D = 0.08; (d) D = 0.3. The
other parameters are: k0 = k1 = 7, l = 0.22, a = 1, L = 2, λ1 = 1.4, �max = 5, α = 5 and
τ = 20

potential, see Fig. 4.10a. The increase of temperature allows the configurational
particle to cross the potential barriers along both y−x and x directions, in particular
it allows for a transition between the energy wells of the bi-stable potential, see
Fig. 4.10b, c. An (almost) three-state cycle is formed if the motor can displace itself
along x sufficiently far in order to be able to recharge the power stroke element. If
we increase the parameter D further, the particle makes larger jumps along the x

direction, see Fog. 4.10d. At even higher temperatures the system loses its ability to
generate force.

In Fig. 4.11 we present a schematic illustration of the attainable three-state cycle
in the hard device. After a transient stage the motor follows the following trajectory
in the clockwise direction 1 → 2 → 3 → 1 where:
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Fig. 4.11 The schematic representation of the typical X-tilted ratchet cycle in the hard device
loading configuration. The average trajectory is shown by solid black arrows

• Transition 1 → 2. The average trajectory is shown schematically by black
arrows. During the positive phase of the driving f (t), motor crosses the barrier in
the forward direction along the saw-tooth actin potential. It recharges the power
stroke element, see Fig. 4.10 (phase plotted in red).

• During the negative phase of the driving f (t) the motor makes the transition
2 → 3 → 1, see Fig. 4.10 (phase plotted in blue). The change of sign of the force
f (t) biases the transition in the backward direction along the potential �(x). At
the same time, the transition 2 → 3 takes place which we can identify with the
power stroke. After the transition 3 → 1 the motor cycle starts again.

The main characteristic feature of the X model is that the power stroke is
recharged purely mechanically, together with the advance of the motor along the
actin filament. This unavoidably combines two different steps of the Lymn–Taylor
cycle into one.

4.3.2 Force-Velocity Relations and Stochastic Energetics

Next we study the force-velocity relation for the X-tilted ratchet placed in the soft
device. In Fig. 4.12 we present our numerical results for different temperatures D
and two amplitudes of the non-equilibrium driving: A = 2.5 and A = 4.5. At
A = 2.5 and small temperature we observe the characteristic concave shape of
the force velocity curve. The area limited by the curve and the axes increases with
temperature until the maximum is reached at D = 0.1. The subsequent increase
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Fig. 4.12 Force-velocity relations for the X-tilted ratchet: (a) A = 2.5; (b) A = 4.5. The
parameters: k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L = 1, λ1 = 0.7, �max = 1.5, α = 1,
α = 1 and τ = 20

of temperature leads to the loss of the performance of the motor. The stall force,
defined in soft device as the value of force at zero average velocity, increases with
increasing temperature until the threshold value of D and decrease afterwards. At
A = 4.5 we observe that the force velocity curves become convex. With the increase
of temperature D we first approach the linear regime but then start to lose the active
performance.

We define the active work performed by the motor against the load as −fextv

which means that it is positive when the average velocity and the external force
have opposite signs. In these regimes the system is anti-dissipative, the motor uses
(instead of dissipating) the external energy and can therefore perform some useful
work, see the gray quadrants in 4.12. The predominantly passive regimes correspond
to the cases where the average velocity and the external load have the same sign.
Such systems are mostly dissipative and the energy is released rather than being
absorbed, see the white quadrants in Fig. 4.12.

In Fig. 4.13a we present the average velocity of the motor as a function of
temperature D for several values of the rocking amplitude A. At small amplitudes
the motor shows a maximum of the velocity at a finite temperature. At high
amplitudes the average velocity is a monotonically decreasing function of D which
suggests that we deal with a purely mechanical ratchet. By light green color we
identify the region with negative velocity where the motor is dragged by the cargo.
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Fig. 4.13 X-tilted ratchet in the soft device configuration, fext = −0.1. (a) The dependence of the
average velocity v on temperature D for the different values of the amplitude A. (b) The consumed
energy R. The parameters: k0 = 1.5, k1 = 0.43, l = 0.22, a = 1, L = 1, λ1 = 0.7, �max =
1.5, α = 1 and τ = 30

To study the energetics of the X-tilted ratchet we rewrite the equations of the
model in the soft device (4.6) in the form

⎧⎪⎨
⎪⎩
∂x[�(x)+ V (y − x)] − f (t) = − 1

α
dtx +

√
2D

α
ξx(t),

∂yV (y − x)− fext = −dty + √
2D ξy(t).

(4.13)

If we now multiply these equations by the vector dX in the Stratonovich
sense and use the conventional definition of the exchanged heat δQi =(−ηdtxi +√

2ηiDξi(t)
) ◦ dxi [105] we obtain

{
∂x [�(x)+ V (y − x)] ◦ dx − f (t) ◦ dx = δQx,

∂yV (y − x) ◦ dy − fext ◦ dy = δQy.
(4.14)

Using the definition G0(xt , yt ) = �(xt )+ V (yt − xt )− yfext we can rewrite these
equations in the form

{
∂xG0 ◦ dx − f (t) ◦ dx = δQx,

∂yG0 ◦ dy = δQy.
(4.15)

If we now average these equations over one time period τ , we obtain

1

τ

Xt+τ∫

Xt

dG0(Xt )− 1

τ

xt+τ∫

xt

f (t)dxt = 1

τ

Xt+τ∫

Xt

(δQx + δQy). (4.16)
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Here we can identify the input energyR = 1
τ

xt+τ∫
xt

f (t)dxt . Our Fig. 4.13b shows the

value of R for the system in a soft device as a function of D for several values of
A. One can see that with the increase of the level of thermal fluctuations the motor
needs more energy in order to preform the work. At large temperatures we observe
saturation, showing that the motor dragged by the cargo consumes energy at a fixed
rate.

If we now define the (active or passive) mechanical work

Wmec = 1

τ

Xt+τ∫

Xt

dG0(Xt ) = −1

τ

yt+τ∫

yt

fext dy = −fextvy ≡ −fextv, (4.17)

we can then write the energy balance in the form Wmec = R+Q where the heat term

is Q = 1
τ

Xt+τ∫
Xt

(δQx + δQy) [105]. For the system in the soft device, the mechanical

efficiency of the system can be defined by the expression

εmec = Wmec

R
. (4.18)

If we associate the functional work of an unloaded motor with overcoming viscous
drag WStokes = α−1v2

x + v2
y . we can also define the Stokes efficiency

εStokes = WStokes

R
. (4.19)

Finally, we can define the rectifying efficiency by combining Stokes and mechanical
efficiencies:

εrec = Wmec +WStokes

R
. (4.20)

In Fig. 4.14a we illustrate for the system in the soft device the mechanical work
as a function of D at increasing values of A. By color, we mark the region of positive
and negative mechanical work. In Fig. 4.14b we show the temperature dependence
of the mechanical efficiency. In the regime of small amplitude A we observe a
maximum of efficiency at finite temperature. With increasing amplitude A, the
maximum vanishes and the efficiency becomes a monotonically decreasing function
of D, which is the behavior characteristic for mechanical ratchets. By light green we
indicate the regime of negative efficiency, where our motor is unable to perform a
positive mechanic work against the external force and performs instead as an active
breaking mechanism. In Fig. 4.14c we plot the Stokes efficiency as a function of
D; the rectifying efficiency is shown in Fig. 4.14d. The shape of these functions
is dominated by the quadratic Stokes term, however, the cumulative efficiency can



134 R. Sheshka and L. Truskinovsky

Fig. 4.14 X-tilted ratchet in the soft device configuration with fext = −0.1. (a) The dependence
of the mechanical work Wmec on temperature D for different amplitudes A; (b) the mechanical
efficiency εmec; (c) the stokes efficiency; (d) the rectifying efficiency. Parameters are the same as
in Fig. 4.13

have a maximum at a finite temperature also if the amplitude of the rocking is small
and the device works as a Brownian ratchet.

4.4 Y-Tilted Ratchet

The Y-tilted ratchet coupes the bi-stable potential V (y − x) with the space periodic
potential �(x). On the scheme presented in Fig. 4.15 we show again one period
of the two-dimensional energy landscape with four mechanical configurations
A,B,A′, B ′ representing local minima of the energy. The applied periodic tilting
acts along the diagonal and biases either the state B ′, during the positive phase of
rocking, or the state A, during the negative phase.
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Fig. 4.15 Y-tilted ratchet energy landscape

The dimensionless system of Langevin equation for the Y-tilted motor in the soft
device takes the form

⎧⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)] +√

2αD ξx(t),

dy/dt =− ∂yV (y − x)+ fext + f (t)+√
2D ξy(t).

(4.21)

In the hard device we obtain
⎧
⎨
⎩
dx/dt = − α [∂x�(x)+ ∂xV (y − x)] +√

2αD ξx(t),

dy/dt = − ∂yV (y − x)− km(y − z)+ f (t)+√
2D ξy(t).

(4.22)

Here we use the same potentials as before: �(x), see (4.10), V (y − x), see (4.11)
and f (t), see (4.12). They are all schematically illustrated in Fig. 4.6.

4.4.1 Typical Cycles

Soft Device In Fig. 4.16 we show the two-dimensional representation of the motor
trajectory in the case of zero external load, fext = 0. The main new observation is
that the Y-tilted ratchet is able to generate a four-state cycle A → B → B ′ → A′.
This cycle is realistic and can be in principle directly compared with the biochemical
Lymn–Taylor cycle.

The schematic representation of such cycle is shown in Fig. 4.17. It can be
represented as a sequence of the following steps:

• 1 → 1′ → 2. We start at the end of the negative phase of the driving f (t) when
the system is in the state A. As f (t) changes the phase (to positive), the energy
switches to �(x) + V (y − x) − yA. After an immediate advance 1 → 1′, the
bi-stable element goes through the major transition 1′ → 2 which we identify
with the power stroke.

• 2 → 3. While the system remains in the positive phase of the loading f (t),
the motor makes a step along x direction from the state B to the state B ′. This
advance along the actin filament is the direct consequence of the power stroke
which is here the driving force behind the detachment and reattachment.
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Fig. 4.16 Y-tilted ratchet in the soft device configuration with fext = 0. (a) The average
trajectories /〈x(t)〉 (solid black line) and 〈y(t)〉 (dashed gray line). (b) The time evolution of the
system in coordinates {t, y − x}; (c) the average trajectory in coordinates {y − x, x}. The red lines
correspond to the positive phase of the rocking f (t) = +A, the blue lines—to the negative phase
of rocking f = −A. The parameters: k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, L = 1, λ1 =
0.7, �max = 1.5, α = 1, A = 2.5, τ = 16, D = 0.06

• 3 → 3′ → 4. Now the system is in state B ′, see Fig. 4.16d. The correlated force
changes its sign and the energy landscape becomes tilted in the other direction.
Following an immediate transition 3 → 3′ the power stroke element is recharged
through the transition 3′ → 4. Because of the asymmetry of the actin potential
�(x) the coordinate x gets trapped and does not move in the backward direction.
Therefore the advance along the actin filament has taken place and the cycle can
start again.

Depending on the amplitude of the correlated noise term, the motor step 2 → 3 can
be longer or shorter. In particular, the system can jump over several periods of the
potential �(x). The length of such ‘step’ is influenced by the fine structure of the
energy landscape and also depends on the stiffness of the bi-stable spring.

Hard Device We assume that z = 0. The cycles emerging after short transients are
illustrated in Fig. 4.18.

At small temperature D = 0.01 we observe oscillations between the conforma-
tional states A and B inside the same space period of the actin potential (x = 0), see
Fig. 4.18a. This behavior can be interpreted as a power-stroke (red path) followed by
the recharging (blue path) in the attached state. The little loop around the state B is
a consequence of the distorted landscape in the hard device. We can therefore speak
here about a two-state cycle. With the increase of temperature the Brownian particle
is able to explore larger areas of the two-dimensional landscape and at D = 0.1 we
can stabilize the oscillations between the state A′ and B ′, see Fig. 4.18b. In this case
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Fig. 4.17 Y-tilted ratchet in the soft device configuration. (a) Mechanical representation of the
motor cycle. (b) Average trajectory superposed with the energy landscape in the positive (solid red
lines) and in the negative (solid blue lines) phases of the loading. (c) Schematic representation of
the major transitions associated with the power stroke element

the system reattaches to a new cite on the actin filament and stretches the spring.
As a result, the motor generates much larger average tension, however, the cycle
is still composed of only two states. By increasing the temperature further, we are
forcing the system to go through a four state cycle, see Fig. 4.18c. Interestingly,
in this regime the motor generates smaller tension then in the regime of slightly
lower temperature when the cycle consists of two states only. At even higher values
of D we still have the four-state cycle but we now occasionally encounter also
disadvantageous transitions in the backward direction, see Fig. 4.18d.
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Fig. 4.18 Y-tilted ratchet in the hard device configuration at different temperatures and constant
amplitude of non-equilibrium driving A = 6. Solid lines represent the energy landscape in the
positive and dashed lines—in the negative phase of rocking. The average motor trajectory is shown
by the thick red line during the positive and by the thick blue line during the negative phase. The
light gray lines follow the single stochastic realization during one time period: (a) D = 0.01; (b)
D = 0.1; (c) D = 0.3; (d) D = 0.8. The parameters: k0 = k1 = 7, l = 0.22, a = 1, L =
2, λ1 = 1.4, �max = 5, α = 5,km = 1 and τ = 20
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Fig. 4.19 Y-tilted ratchet in the hard device configuration. With solid gray lines we show the
energy level contours in positive phases of the rocking when potential is �(x) + V (y − x) +
1/2kmy2 − yA while with dashed gray lines we show the energy level contours in the negative
phase of rocking when the potential is �(x)+V (y−x)+1/2kmy2 +yA. (a) The two-state motor
cycle, the average trajectory is shown schematically by red arrows in the positive phase and by
blue arrows in the negative phase; (b) schematic structure of the two-state cycle; (c) the four-state
motor cycle; (d) schematic structure of the four-states cycle

In Fig. 4.19 we present a more systematic comparison of the observed two-state
and four-state cycles. In the ‘two- state cycle’ we observe the following steps:

• 1 → 1′ → 2. We start at the end of the phase with the negative tilt. The system
explores the state A, see Fig. 4.19b. As the tilt switches to positive, the system
makes an immediate transition 1 → 1′. From this new configuration the system
performs the power stroke 1′ → 2. The motor then remain in the state B.
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• 2 → 2′ → 1. While the system is in the state B, see Fig. 4.19b, the correlated
noise changes sign, creating again the negative tilt of the energy landscape.
The system undergoes an immediate transition 2 → 2′. Because of the spatial
asymmetry of the actin potential the system remains trapped in the same period
of the periodic potential �(x) while the power stroke is recharged performing
the transition 2′ → 1. Then the cycle starts again.

In the ‘four-state cycle’ the steps are:

• 1 → 1′ →. We start again at the end of the negative phase of the rocking.
The system explores the state A. As the noise term f (t) changes the value from
negative to positive, the system makes an immediate transition 1 → 1′, see
Fig. 4.19d. From this new configuration the system performs the power stroke
1′ → 2.

• 2 → 3. While in the positive phase of f (t), the system makes a jump into the
next nearest well in the positive x direction which is the consequence of the
power stroke.

• 3 → 3′ → 4. The system is now in the state 3 and the corresponding energy well
is B ′, see Fig. 4.19d. The correlated noise term changes the sign and the system
undergoes a transition 3 → 3′. Then the instability causes the particle to perform
the transition 3′ → 4, which we interpret as the recharging of the power stroke
mechanism.

• 4 → 1. From the state A′ the motor jumps in backward direction making the
transition 4 → 1. The system returns into the initial state and the cycle can start
again.

To summarize, in the two-state regime the system is residing in a distant, force
generating well of the periodic potential while performing periodic oscillations
between the two conformational states of the power stroke element. The level of
the generate force is high because the cross bridge is firmly attached throughout the
cycle. In the four-state regime, the system is periodically reaching the distant well of
the periodic potential but remains there only for a limited time before returning back
to the original attachment site. In this regime the average force is smaller, however
the mechanical cycle is closer to its biochemical analog.

4.4.2 Force-Velocity Relations and Stochastic Energetics

In Fig. 4.20a we show the force-velocity relation at different temperatures D and
fixed amplitude of rocking A = 2.5. Observe that it is mostly convex at this level
of driving. With the increase of temperature the system generates smaller average
velocity at zero load and is characterized by smaller stall force. These trends were
similar in the case of X-tilted ratchet, see Fig. 4.12. In Fig. 4.20b we show how the
force-velocity relation changes when we vary the amplitude of rocking A at the
fixed temperature D = 0.01. We obtain concave force-velocity relations at small
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Fig. 4.20 Force velocity relations for the Y-tilted ratchet: (a) temperature dependence at A = 2.5;
(b) non-equilibrium noise amplitude dependence at the temperature D = 0.01

Fig. 4.21 Y-tilted ratchet in the soft device configuration working against the load fext = −0.1:
(a) temperature dependence of the drift velocity at different values of A; (b) Consumed energy R

dependence on temperature D at different values of A. The parameters k0 = 1.5, k1 = 0.43, l =
0.22, a = 1, L = 1, λ1 = 0.7, �max = 1.5, α = 1 and τ = 60

amplitude of the driving where we expect that the system to work as a thermal
ratchet but then recover the convexity in the interval 1.5 < A ≤ 3.

In Fig. 4.21a we show the average velocity as a function of temperature at dif-
ferent values of the amplitude A. For small amplitudes (thermal ratchet regime) the
motor exhibits a maximum of velocity at finite temperature. At higher amplitudes A
(mechanical ratchet) the average velocity decreases monotonically with D. Overall
the Y-tilted model is generating smaller average velocities than the X-tilted model
at the same values of parameters.
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Fig. 4.22 Y-tilted ratchet in the soft device working against the load fext = −0.1. Temperature
dependence at different values of A: (a) the mechanic work Wmec; (b) the mechanic efficiency; (c)
the Stokes efficiency; (d) the rectifying efficiency. The parameters are the same as in Fig. 4.21

In Fig. 4.21b we show the consumed energy R as a function of D and use the
same range of amplitudes A. As the temperature increases, the motor consumes
more and more energy in order to preform useful work. We also again observe a
saturation at high temperatures meaning that there is a limit of how much thermal
energy the motor can rectify.

Finally, in Fig. 4.22 we show the temperature dependence of the various measures
of efficiency at increasing values ofA. The qualitative behavior of all these functions
is basically the same as in the case of X-tilted ratchet.
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Fig. 4.23 XY-tilted ratchet:
the effective tilting of the
energy landscape

4.5 XY-Tilted Ratchet

In the XY-tilted ratchet the correlated force f (t) acts on the combination of variables
y − x, which can be identified with an internal strain inside the bi-stable element.
This means that the rocking force affects the power stroke mechanism directly
instead of implicitly modifying the internal state of this device through other
external degrees of freedom. In Fig. 4.23 we illustrate the mechanical action of the
rocking force on the two dimensional energy landscape: note that the ATP activity
is now fully decoupled from the actin filament.

In the non-dimensional variables the main system of equations describing the
activity of the XY-tilted ratchet in the case of soft device takes the form

⎧⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)+ f (t)] +√

2αD ξx(t),

dy/dt =− ∂yV (y − x)+ fext + f (t)+ √
2D ξy(t).

(4.23)

In the case of hard device we obtain
⎧
⎨
⎩
dx/dt =− α [∂x�(x)+ ∂xV (y − x)+ f (t)] +√

2αD ξx(t),

dy/dt =− ∂yV (y − x)− km(y − z)+ f (t)+ √
2D ξy(t).

(4.24)

In the corresponding Fokker–Planck equations (4.8) and (4.9) we must use the
potential Gs(x, y, t) = �(x) + V (y − x) − (y − x)f (t) − yfext in the case of
the soft device and Gh(x, y, t) = �(x)+V (y−x)− (y−x)f (t)+ 1

2km(y− z)2 in
the case of the hard device. In our numerical experiments we used the same choices
for the functions �(x), see (4.10), V (y − x), see (4.11) and f (t), see (4.12) as in
the previous sections, see Fig. 4.6.

Before turning to the structure of the generated cycles we remark that a
conceptually similar approach was used before to describe Kinesin modeled as two
coupled rocking ratchets which move along the same periodic potential [78]. The
corresponding system of over-damped Langevin equation can be written ass:

⎧
⎨
⎩
dx/dt =− ∂x�(x)− ∂xV (x − y)− f (t)+√

2D ξx(t),

dy/dt =− ∂y�(y)− ∂yV (x − y)+ f (t)+√
2D ξy(t),

(4.25)
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Fig. 4.24 Kinesin-type molecular motors: (a) ratchet concept developed in [79]; (b) ratchet
concept developed in [78]; (c) ratchet concept developed here, XY-tilted ratchet

where �(x) and �(y) are two identical ratchet potentials, V (x − y) is the bistable
potential describing the interaction between the two legs of the Kinesin motor,
whose positions are given by coordinates x and y. Note that here, as in our model,
the time periodic rocking acts on the coordinate x − y, which indicates the implicit
activity of the bistable element, see Fig. 4.24. In contrast to such ‘two-leg’ designs
describing processive motors, our ‘one-leg’ design concerns non-processive motors.

4.5.1 Motor Cycles

Soft Device In Fig. 4.25 we show the averaged trajectory of the XY-tilted ratchet
exposed to a rocking force with amplitude A = 0.6 and simultaneously subjected to
a thermal noise with D = 0.02. The system follows a three-state cycle: it performs a
power-stroke while being attached to one particular state on the periodic landscape
and then moves in the forward direction along this landscape, while recharging
the power-stroke mechanism. The change of sign of the tilting force f (t) both
re-activates the power-stroke mechanism and causes the directional motion of the
motor. The amplitude of the tilting strongly influences the shape of the energy
landscape, in particular, in each phase, positive and negative, the intrinsic bi-stability
of the potential in the y − x direction may be either preserved or not. In Fig. 4.26
we schematically show the states visited by the motor during one cycle:

• 1 → 1′ → 2. We start the cycle at the very end of the negative phase of the
rocking, see Fig. 4.26 when the system explores the state A. As the force f (t)

changes from negative to positive, the energy becomes�(x)+V (y−x)−(y−x)A

and the particle makes a transition 1 → 1′. During the positive phase of the
rocking the system undergoes the transition 1′ → 2 which we identify with the
power stroke.
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Fig. 4.25 XY-tilted ratchet in the soft device configuration with fext = 0: (a) Trajectories 〈x(t)〉
(solid black line) and 〈y(t)〉 (dashed gray line); (b) time evolution of the system in coordinates
{t, y−x}; (c) average trajectory in coordinates {y−x, x}; red line correspond to the rocking phase
f (t) = +A, blue lines—to the phase f = −A. The parameters k0 = 1.5, k1 = 0.43, l =
0.35, a = 1, λ1 = 0.35, L = 0.5, �max = 1, α = 1 and τ = 16

• 2 → 3′ → 3. We are now in state 2 corresponding to the state B, see Fig. 4.25.
The rocking force changes the sign and the energy becomes �(x)+ V (y − x)+
(y − x)A. The system makes the step 2 → 3′, and since the bistable potential
is now biased, the motor performs an additional transition 3′ → 3, finalizing the
recharging of the power stroke element. Because of the spatial asymmetry of the
periodic potential the attachment site does not change during such recharging.
Then the cycle starts again.

Note that the motor advance and the recharging of the power stroke take place
simultaneously. Those are the two stages where the external energy supply is
necessary and they cannot be separated in this setting.

Hard Device We fix the total displacement at z = 0 and show in Fig. 4.27 the
simplest motor cycles. At low temperatures the system moves only between the
states A and B. This means that the cross bridge is attached to a particular site of
the actin potential while performing random work between two configurations of
the power stroke element. With the increase of temperature D the motor eventually
crosses the energy barrier (detaches) and then stabilizes (attaches) in the next site
on the actin filament. In this new attached position the motor continues to perform
the transitions between state A′ and state B ′, see Fig. 4.27b. Observe that now the
attachment site is distant from the reference position, the spring is stretched and the
motors shows higher levels of tension comparing to the cycle shown in Fig. 4.27a.



146 R. Sheshka and L. Truskinovsky

Fig. 4.26 Schematic cycle of the XY-tilted ratchet in the soft device configuration: (a) mechanical
representation of the motor cycle; (b) averaged trajectory; (c) the cycle showing the energy changes
associated with different moves of the system in the space ((y − x), x)

By increasing the temperature and the amplitude of rocking further, we force
the motor to visit more sites on the energy landscape. Thus in Fig. 4.27c the motor
periodically changes the attachment site: the cycle is performed between the state
A′ and the state B, corresponding to different attachment sites along the potential
�(x). In this regime the motor is able to generate the highest level of average
tension. We see first motor detachment and advance, accompanied by the recharging
of the power stroke element, and then the power stroke combined with re-attachment
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Fig. 4.27 XY-tilted ratchet model in the hard device configuration with z = 0. The dependence
of the motor cycle on the temperature D and the rocking amplitude A: (a) D = 0.01, A = 2.4;
(b) D = 0.065, A = 2.4; (c) D = 0.08, A = 4; (d) D = 0.1, A = 4. The parameters
k0 = 1.5, k1 = 0.43, l = 0.35, a = 1, λ1 = 0.7, L = 1, �max = 1.5, α = 1 and τ = 10
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Fig. 4.28 XY-tilted ratchet model in the hard device configuration: (a) D = 0.2, A = 2.4; (b)
D = 0.4; A = 4. Other parameters are the same as in Fig. 4.27

bringing the system to the original site. Once again, the two biochemical steps
appear coupled in this mechanical setting. The slanted two-state cycle is preserved
also at higher values of D, see Fig. 4.27d. The fine structure of the cycle, however,
is now a bit different because higher level of noise stimulates additional spurious
transitions inside the landscape. At even larger temperature the device progressively
looses its ability to rectify thermal fluctuations. In particular, at sufficiently high
temperatures the motor changes the direction in which the motor cycle is performed.
Thus, in Fig. 4.28a, b the cycle is performed in the direction opposite to what we
have seen in Fig. 4.27.

To summarize, we now present the schematic structure of the simplest two-state
hard device cycle shown in Fig. 4.29.

• 1 → 1′ → 2. We start at the end of the negative phase of the rocking when
the system explores the state A. Then the force f changes sign and the system
makes the transition 1 → 1′. During the positive phase of the rocking the particle
performs the transition 1′ → 2, which we associate with the power stroke.

• 2 → 2′ → 1. We are now in the state B. The rocking force changes sign and
the system makes the transition 2 → 2′. Because of the spatial asymmetry of the
periodic potential, the system remains trapped in the ‘distant minimum’ of �(x)
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Fig. 4.29 Schematic representation of the XY-tilted ratchet cycle in the hard device corresponding
to the trajectory shown in Fig. 4.27a: (a) two-state motor cycle; (b) energetics of the two-state cycle

Fig. 4.30 Schematic representation of the XY-tilted ratchet cycle in the hard device corresponding
to the trajectory shown in Fig. 4.27d: (a) ‘slanted’ two-state motor cycle; (b) energetics of the
‘slanted’ two-state cycle

while performing the transition 2′ → 1, which we interpret as the recharging of
the power stroke. Then the cycle can start again.

In Fig. 4.30 we similarly illustrate the (low temperature) ‘slanted’ two-state cycle
corresponding to what we have seen in Fig. 4.27d. Formally, the motor visits only
two sites corresponding to the stable states A′ and B ′, see Fig. 4.30a. However,
because of the peculiar shape of the cycle we can distinguish two additional
intermediate states marked as 1′ and 2′. With these additional states taken into
consideration we can interpret the ensuing periodic trajectory as the following four-
states cycle:

• 1 → 2′ → 2. We start again at the end of the negative phase of the rocking when
the system explores the state A′. Then the force f changes its sign from negative
to positive and the system makes a transition 1 → 2′ ‘moving back’ along the
x coordinate. During the positive phase of the rocking the system performs an
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additional transition 2′ → 2 and finds itself in the state B. We interpret the
transition 2′ → 2 as the power stroke.

• 2 → 1′ → 1. We now are in the state 2, point B. The correlated force changes its
sign again, from positive to negative. The system detaches and makes a ‘forward
jump’ to the next site along the actin filament performing the transition 2 → 1′.
Subsequently the particle continues with the transition 1′ → 1 which we interpret
as the recharging of the power stroke mechanism. Then, the cycle can start again.

4.5.2 Force-Velocity Relations and Stochastic Energetics

In Fig. 4.31a we show the effect of temperature at low amplitudes of rocking
A = 2.5 on the force velocity relations for a XY-tilted ratchet. At zero temperature
the system exhibits purely mechanical behavior without any ‘anti-dissipation’ (no
entrance into the white quadrants). The growth of temperature D increases the area
between the force-velocity curve and the axes in the domain of anti-dissipative
behavior. We observe the pronounced concave character of the force-velocity
relations at sufficiently low temperatures. After the threshold in D the concavity
progressively vanishes and the profile becomes linear, while the motor loses its
ability to carry the cargo. In Fig. 4.31b we illustrate the dependence of the force-
velocity relation on A at fixed D = 0.02. At small amplitudes of rocking the motor
follows closely the external force fext and does not perform useful mechanical work.

Fig. 4.31 The XY-tilted ratchet in soft device configuration: (a) dependence of the force-velocity
relation on temperature D at the fixed A = 2.5; (b) dependence of the force-velocity relation on A

at the fixed temperature D = 0.02. Parameters are the same as in Fig. 4.27
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Fig. 4.32 XY-tilted ratchet in the soft device configuration working against the fixed load fext =
−0.1. (a) the mechanical work Wmec; (b) the mechanical efficiency; (c) the Stokes efficiency; (d)
the rectifying efficiency. Parameters are the same as in Fig. 4.27

Only after a certain threshold in amplitude the motor starts to generate active drift
against the load.

In Fig. 4.32a we show the mechanical work as a function of D at different
amplitudes of the rocking amplitude A. We observe two regimes: with positive
and with negative mechanic work. In Fig. 4.32b we present the mechanical effi-
ciency. At small amplitudes A we observe a maximum of the efficiency at finite
temperature. With increasing A the maximum vanishes and the efficiency becomes
a monotonically decreasing function of D, as one can expect in a purely mechanic
ratchet. By light green color we indicated the regimes with the negative efficiency,
where dissipation prevails. In Fig. 4.32c we present the Stokes efficiency as a
function of D. We observe maxima on the efficiency vs D curve corresponding
to finite temperatures and low rocking amplitudes regimes and also see that in
some regimes the Stokes efficiency may increase with temperature. The rectifying
efficiency is shown in Fig. 4.32d. Once again, at small amplitudes of rocking we see
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thermal ratchet behavior with a maximum of efficiency at finite temperature while
at high rocking amplitudes we see the mechanical ratchet behavior with efficiency
decreasing with temperature.

4.6 Comparison of the Three Models

We introduced above three minimal mechanistic models which all describe muscle
contraction in terms of Langevin dynamics of a mechanical system. By localizing
the mechanical effects of the ATP-related activity on a single internal degree of
freedom, we could study separately the possibilities that actin filament is active
(X model), that the coupling between the attachment/detachment and the power
stroke elements is active (Y model) and that the power stroke element itself is
active (XY model). Now we chose a single set of parameters and compare directly
the resulting force-velocity relations and the efficiencies of the associated energy
transduction mechanisms. To allow such a comparison we continue to use the
simplest descriptions of the functions �(x), V (y − x) and f (t) shown in Fig. 4.6.

To produce a realistic description of muscle contraction we use the time scale
t� = ηy/km ∼ 0.2 ms where ηy ∼ 0.38 ms · pN/nm is the micro-scale viscosity
[19] and where km ∼ 2 pN/nm is the stiffness of the elastic part of the myosin
motor [7, 67]. The spatial scale is then l� = a where a ∼ 10 nm is the distance
between two minima of the pre and post power stroke wells [69]. Then the energy
scale is ε� = kma

2 ∼ 200 pN · nm. We assume that D = kB"/(kma
2) ∼

0.02 where kB = 4.10 pN · nm is the Boltzmann constant, " ∼ 300 K is the
ambient temperature, and a = 10 nm is the characteristic size of a motor power-
stroke [69]. For the active driving we obtain τ = τAT P /(η/km) ∼ 100 where
τAT P = 40 ms is the characteristic time of ATP hydrolysis [53]. We can now write
A = √

�μ/(kma2) ≈ 1 where �μ = 20kB" is the typical value of degree of
non-equilibrium in terms of the affinity of ATP hydrolysis reaction [53]. Finally
we assume that the non-dimensional parameters of the bi-stable potential take the
values [19]: k0 = 1.5, k1 = 0.43, l = 0.35, a = 1. The space periodic potential
is characterized by the parameters λ1 = 0.7, L = 1, �max = 1.5 and in most
illustrations we suppose for simplicity that α = 1.

4.6.1 Soft Device

In Fig. 4.33 we compare the drift velocities generated by X,Y and XY -tilted
ratchets in the soft device. The common feature of all three systems is that they
exhibit the phenomenon of stochastic resonance: the average velocity is maximized
at a particular value of temperature. At large temperatures all three systems
progressively lose the capacity to rectify thermal fluctuations. In the regimes with
high amplitude of the rocking the stochastic resonance disappears and the average
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Fig. 4.33 The performance of different motors in soft device conditions with fext = 0. Average
velocity v as a function of temperature D at different values of the amplitude A for X ratchet (a),
Y ratchet (b), XY ratchet (c). Here the correlation time τ = 30
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Fig. 4.34 (a) The dependence of the average velocity on the correlation time τ at A = 3 and
D = 0.08. The variation of the average velocity with temperature D for X-ratchet (b), Y-ratchet
(c) and XY-ratchet (d). Here α = 1

velocity becomes a monotonically decreasing function of D. This is an indication
that in all three cases the nature of the ratchet changes from Brownian to purely
mechanical. Observe also that at α = 10 (in the right column of Fig. 4.33) all three
motors change their direction of the motion because of an additional asymmetry in
the system which competes with polarity of the actin filament.

In Fig. 4.34 we compare the average velocities in the three models at different
values of the correlation time τ characterizing the driving f (t). In the case of X
ratchet, Fig. 4.34a, the influence of τ is minimal. This suggests that for small and
moderate amplitudes of rocking, the ratchet behavior can be well approximated by
the effective model with adiababtically eliminated fast variable y. The Y ratchet
is operational over a broad interval of the periods τ . Instead, the XY ratchet is
functional only for sufficiently small values of τ . In Fig. 4.35, we compare the
dependence of the average velocity v on temperature D at several values of the
rocking amplitude A.

In Fig. 4.36 in the left column we compare the average trajectories for X, Y and
XY ratchets at the pointsϕ,ψ andμmarked in Fig. 4.33. As before, we use red color
to identify the part of the cycle associated with the positive phase of the rocking, and
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Fig. 4.35 The dependence of the average velocity v on temperature D at fext = −0.1; X ratchet
(a); Y ratchet (b); XY ratchet (c). The parameters: α = 1 and τ = 30

blue color for the path associated with the negative phase. The dotted line shows the
boundary between left and right wells of the bi-stable potential and we associate its
crossing with either release or re-cocking of the power stroke mechanism.

For the X-tilted ratchet shown in Fig. 4.36a we obtain a three-state cycle, where
the detachment and the re-attachment take place simultaneously with the recharge
of the power stroke. For the Y-tilted ratchet shown in Fig. 4.36b we obtain a four
-state cycle. Note that here, the motor releases and recharges the power-stroke
mechanism actively, moreover without the power-stroke activity the motor won’t be
able to move. Finally, for the XY -tilted ratchet shown in Fig. 4.36c we again obtain
a three-state cycle. First, it performs a power-stroke while being attached to one
particular site on the periodic landscape �(x) and after that it moves forward along
the potential �(x), while in same time recharging the power-stroke mechanism.
Here again the motor advance and the recharging of the power stroke take place
simultaneously.

In Fig. 4.37 we compare the force velocity relations at different temperatures D
and fixed rocking amplitude A = 2.5. At zero temperature all three systems exhibit
purely mechanical depinning behavior without showing any “anti-dissipation”. At
finite temperatures we obtain the concave force-velocity relations in agreement with
experimental observations [62, 87, 125]. After the threshold D ≈ 0.1 the force
velocity relations becomes almost linear and eventually the motors lose their ability
to carry cargo. The XY-tilted ratchet shows the highest stall force value among the
three type of devices.

4.6.2 Hard Device

In Fig. 4.38 we compare the average tension generated by the motors in the hard
device at different temperatures D and rocking amplitudes amplitude A. The active
tension is optimized at a finite value of D for all configurations given that the
amplitude of the correlated noise is sufficiently low.
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Fig. 4.36 Typical trajectories of the three motors in the soft device with fext = 0: (a) X-tilted
ratchet; (b) Y-tilted ratchet; (c) XY-tilted ratchet. The parameters: α = 1 and τ = 30

At low temperatures and low amplitudes of rocking the X-tilted ratchet generates
small tension because the energy transmitted to the motor is not sufficient to
activate the bi-stable element. The Y-tilted ratchet shows the plateau regimes,
where the system acts as simple mechanical bi-stable element. The XY-tilted
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Fig. 4.37 Comparison of the force-velocity relations at fixed A = 1.5 for: X ratchet (a), Y ratchet
(b), XY ratchet (c). The parameters: α = 1 and τ = 30

Fig. 4.38 The dependence of the average tension T on temperature D for: X-tilted ratchet (a), Y-
tilted ratchet (b) and XY -tilted ratchet (c). The parameters k0 = 1.5, k1 = 0.43, l = 0.35, L =
1, λ1 = 0.7, �max = 1.5,τ = 30, α = 1, km = 1 and z = 0. Under these conditions the averaged
tension T is equal to 〈〈y〉〉

ratchet demonstrates a hybrid behavior exhibiting the temperature and the amplitude
thresholds whose crossing allows the motor to form a cycle. Such regime takes
advantage of both, the thermal fluctuations and the correlated noise.

The structure of the motor cycle—the sequence of visited energy minima during
different stages of the rocking—is the unique signature of each device. The most
interesting motor cycles generated at z = 0 in each of our three devices are presented
in Fig. 4.39. Again, the average motor trajectory is plotted by red during the positive
and in blue line during the negative phase of the rocking. The light gray trajectories
show single stochastic realizations. The corresponding tension curves are shown in
Fig. 4.40.

As we have already seen, in the hard device, the X-tilted is trapped in a single
energy well of the double well potential and the power stroke element does not
contribute to force generation. We can force the X-tilted ratchet to visit both minima
of the double well potential if we use somewhat less realistic parameters, k0 =
7, k1 = 7, l = 0.22, L = 2, λ = 1.4, �max = 5 and α = 5. Such cycle
is formed only when the motor makes sufficiently large steps along the coordinate
x and can therefore recharge the power stroke element. After a transient stage, an
X-tilted ratchet with these parameters performs the cycle in the clockwise direction:
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Fig. 4.39 The most complex motor cycles in hard device at z = 0: (a) X ratchet, (b) Y ratchet, (c)
XY ratchet. The parameters k0 = 7, k1 = 7, l = 0.22, L = 2, λ = 1.4, �max = 5, τ = 20,
α = 5
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Fig. 4.40 Average tension T versus temperature D in: X ratchet (a), Y rathet (b) and XY ratchet
(c). The parameters are the same as in figure above

1 → 2. Due to the broken space symmetry, the motor advances in the x direction and
crosses the energy barrier along the periodic potential �(x). In the meanwhile the
motor recharges the power stroke element (performs the transition from the lower
energy well B to the higher energy well A1 in the bistable potential). During the
next step 2 → 3, as the rocking force changes its sign, the new configuration of
the energy landscape forces the motor into backward direction along the x axis.
However, the motor is now trapped and instead of going backwards, it performs the
power-stroke. Then the motor cycle starts again.

Consider now the Y-tilted ratchet. If we choose parameters as in the case of
X-ratchet above we obtain the four-state cycle shown in Fig. 4.39b. The system
reattached and jumps to a new cite on the actin filament while stretching the bi-
stable spring. This behavior can be interpreted as a power-stroke (red path) followed
by the recharging (blue path) in the attached state. The motor first goes through
mechanical configurations A,B and then through the configurations B1, A1. In the
ensuing four-state cycle the stages are: the transition 1′ → 2 is the power stroke,
then, as the motor makes a jump into the next nearest well along the actin filament
(in the positive x direction) the rocking force changes sign forcing the recharging of
the power stroke mechanism, 3′ → 4.

Note that in the corresponding two-state cycle obtained in the section on Y-tilted
ratchets, the system was residing in a distant, force generating well of the periodic
potential while performing periodic oscillations between the two conformational
states of the power stroke element. The level of the generate force was high because
the cross bridge was firmly attached throughout the cycle. In the four-state regime
studied here, the system is periodically reaching the distant well of the periodic
potential as well, but remains there only for a limited time before returning back to
the original attachment site. In such regimes the average force is necessarily smaller.

Our Fig. 4.39c shows the typical cycle exhibited by the XY ratchet in the hard
device. The motor periodically changes the attachment site: the cycle is performed
between the state A1 and the state A,B, corresponding to different attachment sites
along the actin filament. In this regime the motor is able to generate the highest level
of average tension. The three- state cycle can be interpreted as follows: first motor
detachment and advance accompanied by the recharging of the power stroke device
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and then the power stroke combined with re-attachment brings the system into the
original site.

4.6.3 Stochastic Energetics

We now apply to all devices the same conservative load fext = −0.1. In Fig. 4.41a
we illustrate the temperature dependence of the mechanical efficiency for the X-
tilted ratchet. In the regime of small amplitudes A we observe a maximum at finite
temperature. The negative values of efficiency indicate the regimes where the motor
is unable to perform a positive mechanic work against the external force and works
instead as an active breaking mechanism. The Stokes efficiency, also shown in
Fig. 4.41a, is always positive by definition.

We illustrate the efficiency of the Y-ratchet in Fig. 4.41b. Overall this ratchet is
less efficient when the X ratchet. We can explain this difference by the design of
the active mechanism: the metabolic energy is taken by the bi-stable element and
therefore only partially consumed by the forward steps long the x direction.

Finally, the performance of the XY tilted ratchet is illustrated in Fig. 4.41c. At
small amplitudes A we again observe a maximum of the mechanical efficiency
at finite temperature. Interestingly, we find the XY device is the least efficient
among all. One problem with our XY-tilted ratchet model is that it still interprets
ambiguously the detached state which is present only implicitly. To deal with this
conceptual problem we consider in the next section a more sophisticated model of
the XY-tilted ratchet where we also take into consideration the explicit feedback
between the state of the power stroke element and the degree of interaction between
the myosin heads and the actin filament.

4.7 XY-Tilted Ratchet with a Steric Feedback

In this section we argue that the conformational state of the power-stroke element
can provide steric regulation of the distance between the myosin head and the
actin filament. More specifically, we assume that when the lever arm swings, the
interaction of the head with the binding site weakens, see Fig. 4.42a. This and other
aspects of steric rotation-translation coupling in ratchet models have been previously
discussed in [43, 68, 90].

A schematic representation of the proposed model is shown in Fig. 4.42b,
where x is the observable position of a myosin head, y is the internal variable
characterizing the phase configuration of the power stroke element and z is another
internal variable responsible for the coupling. The “macroscopic” variable x sees
a symmetric energy landscape and is not directly affected by the ATP hydrolysis.
Both asymmetry and driving can then originate only from the coupling between the
external and the internal degrees of freedom.
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Fig. 4.41 Comparison of the efficiency in the three models loaded in the soft device with fext =
−0.1; (a) X ratchet. (b) Y ratchet. (c) XY ratchet. The parameters k0 = 1.5, k1 = 0.43, l =
0.3, L = 1, λ1 = 0.7, Vmax = 1.5, α = 1, τ = 30
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Fig. 4.42 (a) An illustration of the steric effect associated with the power-stroke; (b) sketch of the
mechanical model

4.7.1 The Model

We identify the external degree of freedom with the variable x representing the
location of actin binding face on the actin filament. We recall that the natural internal
degree of freedom, describing the configurational state of the power-stroke element,
is y−x, where the variable y was defined in the Introduction. By adding the second
internal variable z, characterizing the separation of the myosin head and the actin
filament, we attempt to capture the higher-dimensional effects of detachment in the
simplest 1D setting.

The role of different variables is clear from the way we write the energy of the
system

Ĝ(x, y, z) = z�(x)+ V (y − x), (4.26)

where �(x) is a non-polar periodic potential representing the binding strength of
the actin filament and V (y − x) is a double-well potential describing the power-
stroke element. The two-well structure of the potential implies that the power-stroke
mechanism can be either folded into the post-power-stroke state or unfolded into the
pre-power-stroke state. For simplicity, we assume that the two wells of the potential
V (y − x) are symmetric which eliminates a redundant polarity.

The coupling between the state of the power-stroke element y − x and the
spatial position of the motor x is implemented through the internal variable z. In
the simplest version of the model z is assumed to be a function of the state of the
power-stroke element

z(x, y) = �(y − x). (4.27)

This function must have a particular structure in order to mimic the underlying steric
interaction, see Fig. 4.43. We assume that when a myosin head executes the power-
stroke it moves away from the actin filament and therefore the control function
�(y − x) should progressively switch off the actin potential. Similarly, when the
power-stroke is recharging the myosin head moves closer to the actin filament and
the function �(y − x) should bring the actin potential back into on configuration.
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Fig. 4.43 The coupling function �(y − x) linking the degree of attachment z with the state of the
power-stroke element y − x

Fig. 4.44 The energy landscapes: Ĝ(x, y, 1), describing the attached state where �(y − x) = 1,
and Ĝ(x, y, 0), describing the detached state, where �(y − x) = 0

We observe that since the double-well potential V (y − x) is fully symmetric,
the assignment of the wells to pre- or post-power-stroke states is arbitrary. Had we
decided to invert the choice presented in Fig. 4.43 by relabeling the energy wells,
we would have to replace �(s) by �(−s). As we see later in the paper, such switch
results in a simple reversal of the directionality of the motion.

By using the coupling (4.27) we can simply eliminate the variable z and introduce
the redressed potential

G(x, y) = Ĝ(x, y,�(y − x)). (4.28)

As it tracks the state of the power-stroke element the potential G(x, y) effectively
“flashes” between the periodic and flat (in x) configurations, see Fig. 4.44. However,
in contrast to conventional flashing ratchets, the switch here is not imposed from
outside but results from the coupling with a fluctuating internal variable.

The overdamped stochastic dynamics of the system with energy (4.28) is
described by the following 2D system of (dimensionless) Langevin equations

⎧
⎨
⎩
dx/dt =− ∂xG(x, y)− f (t)+√

2Dξx(t),

dy/dt =− ∂yG(x, y)+ f (t)+√
2Dξy(t).

(4.29)
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Here ξ(t) is a conventional white noise with 〈ξi (t)〉 = 0, and 〈ξi(t)ξj (s)〉 = δij δ(t−
s). The parameter D = kBθ/E is a dimensionless measure of temperature θ and kB
is the Boltzmann constant; for simplicity the viscosity coefficients are assumed to be
the same for variables x and y. The force couple f (t) with zero average represents
a correlated component of the noise and characterizes mechanistically the degree of
non-equilibrium in the external reservoir (the abundance of ATP).

We can say that the system (4.29) describes the power-stroke-driven ratchet
because the correlated noise f (t) acts on the relative displacement y − x. It
effectively “rocks” the bi-stable potential and the control function�(y−x) converts
such “rocking” into the “flashing” of the periodic potential �(x). Various other
types of rocked-pulsated ratchet models have been previously studied in [99, 102].

The goal of any ratchet design is to generate a systematic drift v =
limt→∞〈x(t)〉/t without applying a biasing force. This is possible in the model
governed by Eq. (4.29) because of an implicit symmetry breaking imposed by the
control function (4.27).

To justify this claim, let us for simplicity set f (t) = 0 and rewrite (4.29) in
the variables representing the position of the center of mass q = (x + y)/2 and the
power-stroke configuration r = y−x, which is a conventional step in such problems
[32]. The new potential is

G(q, r) = �(r)�(q − r/2)+ V (r),

and if we recall that the equilibration of the variable r takes place at much faster
time scale than the overall drift, we can adiabatically eliminate it and obtain a one
dimensional stochastic system with an effective periodic potential

Geff (q) ∼ ln

[∫ ∞

−∞
exp (−G(q, r)/D)dr

]
.

In the absence of the feedback �(s) = 0 this potential is symmetric Geff (q) =
Geff (−q) because �(s) = �(−s) and V (s) = V (−s). When �(s) �= �(−s),
it loses symmetry because pre- and post-power-stroke configurations are no longer
equivalent. It is also clear that by reverting the control function �(s) → �(−s), we
change the directionality of the average motion, see Fig. 4.48 below.

To understand the dependence of the average velocity on the parameters of the
model, we studied the system (4.29) numerically. In our computational illustrations
we use again a periodic extension of the symmetric triangular potential �(x) with
amplitude �max and period L, see Fig. 4.42a

�(x) =

⎧
⎪⎪⎨
⎪⎪⎩

2�max

L
x if 0 ≤ x < L/2,

2�max

L
(L− x) if L/2 ≤ x < L.
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The symmetric potential V (y − x) is assumed to be bi-quadratic with the same
stiffness k in both phases. The distance between the bottoms of the wells is denoted
by a, see Fig. 4.42b, so

V (y − x) =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
k (y − x + a/2)2 if y − x < 0,

1

2
k (y − x − a/2)2 if y − x � 0.

The correlated component of the noise f (t) is again interpreted as the simplest
ac driving described by a periodic extension of a rectangular shaped function with
amplitude A and period τ

f (t) = A(−1)n(t) with n(t) = �2t/τ ,

where brackets � denote integer part. Finally, the steric control ensuring the gradual
switch of the actin potential is described by a gradual step function

�(s) = (1/2) [1 − tanh (s/ε)] , (4.30)

where ε is a small parameter.
To fix the parametrization, we need to specify the dimensional scales. It is natural

to use the distance between the bottoms of the wells in the bi-stable potential as the
length scale l so a = 1. We have also made a standard assumption that the separation
between the binding cites along the actin filament is of the same order as the power-
stroke size and therefore L = 1. The height of the barrier between the binding sites
was chosen as the energy scale E, so we put �max = 1. The relaxation time scale
was set by the viscosity coefficient η and therefore τ � = ηl2/E. To ensure that the
ac driving is slow at the scale of internal relaxation we took τ = 10. The curvature
of the energy wells in the bistable potential should be comparable with E/l2 and
therefore we took a generic value k = 1.5. In the computations we used the value of
the small parameter ε = 0.2 which made the attachment and the detachment events
sufficiently sharp.

To integrate the system (4.29) numerically, we used the simplest Euler–Maryama
scheme [63] with a constant time step �t = 0.5 × 10−3. The ensemble averaging
was performed over N = 104 stochastic realizations.

Our numerical results are summarized in Fig. 4.45. First of all, we see that the
drift is absent (v = 0) when the noise is uncorrelated and the external reservoir is
in equilibrium (A = 0). This is an obvious consequence of the potential nature of
this holonomic model. Indeed, the stationary probability flux satisfies ∇J = 0 and
J = fF−D∇f where f (x, y) is the stationary probability distribution and F is the
internal force. Since F = −∇G, one can use periodicity in x and growth in y − x

(of the potential G) to show that J = 0, see also [73, 93, 130].
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Fig. 4.45 The dependence of the average velocity v on temperature D and the amplitude of the
ac signal A in the model with coupling (4.30). The pre- and post-power-stroke states are labeled in
such a way that the purely mechanical ratchet would move to the left

It is then clear that the drift in this model is exclusively due to A �= 0. When A is
small, the drift velocity shows a maximum at finite temperatures which implies that
the system exhibits stochastic resonance [41]. At high amplitudes of the ac driving,
the motor works as a purely mechanical ratchet and the increase of temperature
always worsens the performance [49, 58, 95].

As we have already seen, the direction of motion in this model is decided by
the choice of steric biasing of the otherwise symmetric bi-stable potential. the
chosen directionality can be either enhanced or suppressed if we consider polar
actin filaments. To illustrate this point, we show in Fig. 4.46 how the drift velocity
depends on the parameter characterizing the spatial asymmetry of the actin track. In
particular, we see that on a polar filament with sufficient asymmetry our motor can
be stopped and even steered in the opposite direction.

The next question concerns the compatibility of the proposed model with the
minimal bio-chemical ATPase cycle shown in Fig. 4.1. The traditional identification
of chemical and structural states, detailed in this figure, suggests that the motor
must pass through the following four mechanical transients: “attached pre-power-
stroke”, “attached post-power-stroke”, “detached post-power-stroke” and “detached
pre-power-stroke”. It is immediately clear that not all of these states can be reached
by the model with coupling (4.30). Indeed, the detachment takes place when the
“striking” element is positioned exactly between the two energy wells and therefore
the power-stroke cannot be completed in the attached state. As a result, the model
reproduces reliably only two structural configurations: the attached pre-power-
stroke state and the detached post power-stroke state.
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Fig. 4.46 The dependence of the drift velocity v on the filament polarity � = λ1 − λ2 in the
model with coupling (4.30) at fixed temperature D = 0.01

To capture the remaining states shown in Fig. 4.1 we must assume that the
detachment, necessarily implying in our model the motion of the center of mass, is
delayed till the power-stroke is (almost) completed. Similarly, the attachment must
take place only after the power-stroke element has been (almost fully) recharged.
The necessary modification of the model, accounting for such two-way delays, is
discussed in Sect. 4.7.2.

4.7.2 Hysteretic Coupling

To reproduce the whole Lymn–Taylor cycle, we postulate that the switching of the
actin potential from on to off state takes place at different values of the variable y−x,
depending on the direction of the conformational change (folding or unfolding). To
this end, we replace the holonomic coupling (4.27) by a memory operator

z{x, y} = �̂{y(t)− x(t)} (4.31)

whose output depends on whether the system is on the “striking” or on the
“recharging” branch of the trajectory, see Fig. 4.47. Such memory structure can be
also described by a rate independent differential relation of the form

ż = Q(x, y, z)ẋ + R(x, y, z)ẏ, (4.32)

where the implied non-integrability makes the model non-holonomic. Indeed, if we
introduce a vector variable u = (x, y, z), and neglect the time dependent external
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Fig. 4.47 The hysteresis
operator �̂{y(t) − x(t)}
linking the degree of
attachment z with the
previous hystory of the
power-stroke configuration
y(t) − x(t)

noise we can rewrite the system of the governing equations in the form u̇ = F(u),
where F is no longer a gradient. The resulting Brownian motor can potentially
advance even in the absence of the correlated noise by extracting energy directly
from the non-holonomic control mechanism.

By using (4.31) we can now rewrite the energy of the system as a functional of
its history y(t) and x(t)

G{x, y} = �̂{y(t)− x(t)}�(x)+ V (y − x). (4.33)

In the Langevin setting (4.29), the history dependence may mean that the underlying
microscopic stochastic process is non-Markovian (due to, say, configurational
pinning [14]), or that there are additional non-thermalized degrees of freedom that
are not represented explicitly [50]. In general, it is well known that the realistic
feedback implementations always involve delays [36].

To simulate hysteretic response numerically we used two versions of the same
coupling function (4.30) shifted by δ with the branches �(y − x ± δ) identified
sufficiently far away from the hysteresis domain, see Fig. 4.47. Our numerical
experiments show that the performance of the model is not sensitive to the shape
of the hysteresis loop and depends mostly on its width characterized by the small
parameter δ.

In Fig. 4.48 we illustrate the “gait” of the motor with the hysteretic cou-
pling (4.31). The center of mass advances in steps and during each step the
power-stroke mechanism gets released and then gets recharged again, which takes
place concurrently with attachment-detachment. By coupling the attached state with
either pre- or post-power-stroke state, we can vary the directionality of the motion.
The average velocity increases with the width of the hysteresis loop which shows
that the motor can extract more energy from the coupling mechanism system with
longer delays.

The results of the parametric study of the model are summarized in Figs. 4.49 and
4.50. First observe that the motor can move even in the absence of the correlated
noise, at A = 0, because the non-holonomic coupling (4.33) breaks the detailed
balance by itself. At finite A the system can use both sources of energy (hysteretic
loop and ac noise) and the resulting behavior is much richer than in the non-
hysteretic model.
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Fig. 4.48 Stationary particle trajectories in the model with the hysteretic coupling (4.31). Differ-
ent ways of biasing lead to different directions of drift and large hysteresis loops produce faster
moving motors. Other parameters are: D = 0.02 and A = 1.5

Fig. 4.49 The dependence of the average velocity v on temperature D in the hysteretic model with
δ = 0.5

For instance, if the holonomic ratchet with a fixed coupling bias always advances
in one direction, the non-holonomic ratchet can self-propell in both directions. At
large A the hysteretic motor exhibits the same directionality as the non-hysteretic
motor and the average velocity is only mildly affected by the presence of the
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Fig. 4.50 The dependence of the average velocity v on amplitude of the ac driving A in the
hysteretic model with δ = 0.5

hysteresis. At small A the situation changes and now the direction of the drift
is controlled by the hysteresis and is reversed comparing to the case of a non-
hysteretic motor. As we see, in the hysteretic power-stroke-driven ratchet different
active mechanisms dominate at different values of A. This opens an interesting
possibility for these molecular machines to flip “engines” and in this way reverse
the directionality by simply changing the intensity of the external energy supply.

The A dependence of the drift velocity is shown in more detail in Fig. 4.50.
At zero temperature the system is pinned and the drift is blocked till the driving
amplitude reaches a threshold beyond which the system can work as a mechanical
ratchet. At finite temperatures the pinning disappears because of the noise-induced
barrier crossing. At small A the motor drifts in the direction opposite to the direction
of the mechanical ratchet. The velocity of this drift shows a characteristic peak at
finite A revealing stochastic resonance. The current reversal, indicating the change
of the mechanism from hysteresis-dominated to correlation-dominated, takes place
near the depinning point A ∼ 2.5.

To illustrate the mechanism of the hysteresis-dominated drift it is sufficient to
consider the case when A = 0. This disables an alternative ac driven ratchet
mechanism. In Fig. 4.51 we compare two realizations of particle trajectories in
the 3D space (x, y − x, z): for the model without hysteresis (4.27) and with
hysteresis (4.31). The loops obtained by projecting these trajectories on the 2D plane
(y−x, z) describe the structure of the corresponding “strokes” in the configurational
space. In the holonomic case (4.27) the area of the projected loop is equal to zero and
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Fig. 4.51 Single particle trajectories in the space {y − x, z, x} and their projections on the plane
(y−x, z): (a) non-hysteretic coupling (b) hysteretic coupling. The parameters are: D = 0.2, A = 0
and δ = 0.5

we observe diffusion without drift (in Fig. 4.51a the average of x is equal to zero).
Instead, in the non-holonomic case (4.31) the projected trajectory spans a finite
area and the drift velocity is finite (see Fig. 4.51b). Similar dependence of the drift
velocity on the area of the “stroke” is known in the theory of Stokes swimmers where
non-holonomic control is also the factor responsible for the directional motion (in
“violation” of the scallop theorem [4]).

The mechanical “stroke” in the space of internal variables z, y − x can
be compared with the minimal biochemical acto-myosin cycle shown in
Fig. 4.1. The chemical states constituting this cycle are identified with structural
configurations (obtained from crystallographic reconstructions) in the following
way [72]: A(attached, pre-power-stroke → AM*ADP*Pi), B(attached, post-power-
stroke → AM*ADP), C(detached, post-power-stroke → M*ATP), D(detached,
pre-power-stroke → M*ADP*Pi). In our model the jump events are replaced by
continuous transitions and the association of chemical states with particular regimes
of stochastic dynamics is not straightforward.

In Fig. 4.52a, we show a fragment of the averaged trajectory of a steadily
advancing motor projected on the (x, y−x) plane. In Fig. 4.52b the same trajectory
is shown in the (x, y−x, z) space with fast advances in the z direction intentionally
schematized as jumps. By using the same letters A,B,C,D as in Fig. 4.1 we
establish a basic connection between the chemical/structural states and the transient
mechanical configurations of the advancing motor.

Suppose that we start at point A corresponding to the end of the negative cycle
of the ac driving f (t). The system is in the attached, pre-power-stroke state and
z = 1. As the sign of the force f (t) changes, the motor undergoes a power-stroke
and reaches point B while remaining in the attached state. When the configurational
variable y − x passes the detachment threshold, the myosin head detaches which
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Fig. 4.52 (a) A steady-state cycle in the hysteretic model projected on the x, y − x plane; red
path if f (t) > 0 and blue path if f (t) < 0; (b) representation of the same cycle in the z, x, y − x

space with identification of the four chemical statesA,B,C,D constituting the Lymn–Taylor cycle
shown in Fig. 4.1. The level sets represent the energy landscape G at z = 0 (detached state) and
z = 1 (attached state). The parameters are: D = 0.02, A = 1.5, and δ = 0.75

leads to a transition from point B to B ′ on the plane z = 0. Since the positive
cycle of the force f (t) continues, the motor completes the power-stroke by moving
from B ′ to point C. At this moment, the rocking force changes sign again which
leads to recharging of the power-stroke mechanism in the detached state, described
in Fig. 4.1 as a transition from C to D. In point D, the variable y − x reaches the
attachment threshold. The myosin head reattaches and the system moves to point
D′ where z = 1 again. The recharging continues in the attached state as the motor
evolves from D′ to a new state A, shifted by one period.

In this way the chemical states constituting the minimal enzyme cycle can
be linked to the mechanical configurations traversed by our stochastic dynamical
system. The detailed mechanical picture, however, looks more complicated than
in the simplest Lymn–Taylor scheme. It is clear that at least in some regimes one
can use the Kramers approximation to perform a controlled transition from our
continuous dynamics to a description in terms of a discrete set of chemical reactions.
However, it is also clear that more chemical states than in the minimal Lymn–Taylor
model will be needed to describe the detailed mechanical “stroke”.

So far we have been dealing with motors overcoming viscous friction but not
carrying cargoes. The next step is to see how fast the same motor can move
against an external force fext . Two different mechanical configurations of the
motor carrying cargo correspond to the cases when fext > 0, v < 0 and fext <

0, v > 0, see Fig. 4.53. Since the non-hysteretic motor is designed to move to the
left, the mechanical configuration shown in Fig. 4.53a can be somewhat arbitrarily
characterized as “pushing”. Given that the motor with the hysteretic coupling can
move in both directions, the configuration shown in Fig. 4.53b also corresponds to a
steady regime which can be then interpreted as “pulling”. Since our motor does not
have explicit leading and trailing edges, we assume that the force fext acts in both
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Fig. 4.53 Schematic representation of the power stroke driven motor carrying cargo: (a) pushing
regime, (b) pulling regime

Fig. 4.54 The force-velocity relation in the model with hysteretic coupling at different amplitudes
of the ac driving A and different temperatures D. The hysteresis width is δ = 0.5

cases on the variable y which amounts to tilting of the potential (4.33) along the y

direction

G{x, y} = �̂{y(t)− x(t)}�(x)+ V (y − x)− yfext . (4.34)

However, the actual architecture of a half sarcomere is asymmetric and the forces
are transmitted through passive cross-linkers imposing a particular polarity on
the loading. Therefore, despite the ambiguity, we find the association of the two
mechanical regimes shown in Fig. 4.53 with pushing and pulling appropriate.

A stochastic system with energy (4.34) was studied numerically and in Fig. 4.54
we show the computed force-velocity relations. The light quadrants in the (fext , v)
plane correspond to two domains of dissipative behavior where R = fext v > 0.
Here the direction of the force agrees with the direction of motion and the motor is
being dragged by the applied load (while exhibiting both passive and active friction).
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The shaded quadrants indicate the two domains where the system is anti-dissipative
and R = fext v < 0. In these regimes the motor produces work and the motion can
be of two types: when the motor overcomes the opposing pushing force and drives
the cargo ahead of itself (fext > 0, v < 0) and when it carries the cargo attached
from behind acting against a pulling force (fext < 0, v > 0). Since in the hysteretic
model the current can be reversed by changing the amplitude of the ac noise A, our
motor can perform two types of useful work.

Observe that at low temperatures the convexity properties of the force-velocity
relations in active pushing and active pulling regimes are different. In the case
of pulling the typical force-velocity relation is reminiscent of the Hill’s curve
describing isotonic contractions [51]. In the case of pushing, the force-velocity
relation can be characterized as convex-concave and such behavior has been also
observed in muscles [30, 31, 71]. The difference is due to the dominance of
physically non-equivalent mechanisms in the corresponding parameter domains.

For instance, in the pushing regimes, the motor activity fully depends on
ac driving and at large amplitudes of this driving it performs as a mechanical
ratchet. Instead, in the pulling regimes, associated with small amplitudes of external
driving, the motor advances because of the delayed feedback exemplified by the
hysteretic mechanism. We may speculate that both mechanisms can be operative
in acto-myosin systems which would then provide an explanation for occasionally
counterintuitive drift directions.

We also mention that dissimilarity of convexity properties of the force-velocity
relations in pushing and pulling regimes has been recently discussed in the context
of cell motility where acto-myosin contractility is known to be one of the main
driving forces [94]. The direct quantitative comparison is, however, premature since
in our minimal setting the model deals with a single cross bridge and still neglects
important collective effects [19].

4.7.3 Non-potential Models

The performance of the power-stroke driven ratchet can be considerably enhanced if
the feedback between the power-stroke and the attachment-detachment mechanisms
is made non-conservative even in the absence of hysteresis. This would happen,
for instance, if the configurational state of the power-stroke element affected the
position of a myosin head with respect to actin filament, while the reverse influence
remained insignificant, in other words, if the coupling between the power-stroke
element and the actin potential was one-sided. In this case instead of a passive
control we are dealing with an active control represented by a Maxwell demon-type
mechanism [18, 35].
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Fig. 4.55 Temperature dependence of the drift velocity v in the non-potential model (4.35)
without hysteresis

The governing equations describing such ratchet can be written in the form

⎧⎨
⎩
dx/dt = − z∂x�(x)− ∂xV (y − x)− f (t)+ √

2Dξx(t)

dy/dt = − ∂yV (y − x)+ f (t)+√
2Dξy(t),

(4.35)

where the notations are the same as in (4.29). The results of the numerical study of
the system (4.35) are summarized in Fig. 4.55.

The overall behavior of the non-potential system (4.35) is similar to the behavior
of the potential system with hysteretic coupling (4.33). Since the ratchet can now
receive energy from the active controlling device [73, 93], a nonzero drift takes place
already at A = 0. The direction of the current can be again reversed by varying the
amplitude of the driving. At large values of A, we obtain our usual mechanical
ratchet which does not see the non-potentiality of the model. At small A the ratchet
exploits the non-potentiality of the model in the essential way. As in the case of
hysteretic system, the direction of the drift is now opposite to the one picked up by
the mechanical ratchet. Notice also that at moderate values of A the directionality
of the drift can be reversed by the variation of temperature.

The non-potential ratchet shows the highest performance in combination with
the hysteretic feedback (4.33), see Fig. 4.56. The behavior of such hybrid system at
A = 0 is similar to what we have seen in the case of the system with energy (4.33)
which means that in this regime the response is dominated by hysteresis. As A

increases we observe a new effect: around A ∼ 1.5 the system appear to be in
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Fig. 4.56 Temperature dependence of the drift velocity v in the non-potential model (4.35) with
hysteresis, δ = 1

a resonant state and works as a quasi-mechanical ratchet, however now, the non-
potentiality is the principle driving factor, see Fig. 4.56. With further increase of A
we observe a reversal of the current and the system enters the regime where the
main driving force is again the ac noise. At large A the mechanical ratchet behavior
prevails again, however, it is fundamentally different from the quasi-mechanical
ratchet behavior observed around A ∼ 1.5.

In Fig. 4.57 we illustrate the effect of the amplitude A on the drift velocity
in more detail. In contrast to the potential case, the ratchet can now move at
zero temperatures in both directions equally fast if the amplitude of the ac signal
is chosen appropriately. The current reversal takes place in the narrow range of
amplitudes A where the transition from a mechanical to a quasi-mechanical ratchet
mechanism takes place.

At finite temperatures we see a complex interplay of all three active mechanisms.
The detailed study of the underlying stochastic system, allowing one to precisely
map the parametric domains where particular mechanisms dominate, will be
presented elsewhere.

To better understand the effects of non-potentiality we also compute the Péclet
number Pe = Lv/De , characterizing the relative strength of the drift (over
diffusion). The effective diffusion coefficient is defined by Reimann et al. [97],
Lindner et al. [70], and Khoury et al. [61]

De = 1

2
lim
t→∞

〈[x(t)− 〈x(t)〉]2〉
t

, (4.36)
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Fig. 4.57 The dependence of the average velocity v on the amplitude A of the ac signal in the
non-potential model with hysteresis, δ = 1

so the stochastic transport is most coherent when the absolute value of the Péclet
number is larger than one. From Fig. 4.58 we see that only in the non-potential
model the motion at small values of the driving amplitude A can be viewed as truly
directional.

Suppose now that a load is attached to the motor with non-potential hysteretic
coupling. The typical force-velocity relations are shown in Fig. 4.59. As in the
potential case, the motor can operate in two anti-dissipative regimes either by
working against a pushing force or by pulling a cargo. At both small and large values
ofA the behavior of the potential and the non potential motors is similar. Expectedly,
an anomaly takes place in the pulling regime (fext < 0, v > 0) at A ∼ 1.5 where the
motor behaves as a quasi-mechanical ratchet. Here the non-potentiality dominates
and the force-velocity relation shows an unusually sharp convexity change. It is
interesting that in this regime the behavior near the stall force is reminiscent of the
one observed in skeletal muscles [53].

4.8 Active Rigidity

In this section we show that effective rigidity or, more generally, effective sus-
ceptibility in a bundle of elastically coupled cross-bridges, can emerge from the
activity localized at the level of the power stroke machinery. Consider again a
skeletal muscle cell [53] where we neglect detachment of active cross-linkers (cross-
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Fig. 4.58 The Péclet number in the potential model with hysteresis (δ = 0.5 as in Fig. 4.50) and
in the non-potential model with hysteresis (δ = 1 as in Fig. 4.57); D = 0.1

Fig. 4.59 The force-velocity relation in the non-potential model with hysteresis at different
temperatures D and different driving amplitudes A; δ = 1
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bridges) and model an elementary series element (half-sarcomere) as a parallel
array of molecular motors operating in stall conditions. As in other sections,
we model attached myosin motors as bi-stable springs, with two energy wells
corresponding to pre and post power stroke configurations. Each ‘snap-spring’ of
this kind acts against a linear spring, representing a structural filament. The system
is exposed to both uncorrelated agitation (scaled with temperature-type parameter
D) and a correlated noise representing ATP hydrolysis (scaled with affinity-type
parameter A).

4.8.1 Macroscopic Problem

We start with an assumption that a muscle myofbril can be viewed as a chain of half-
sarcomeres arranged in series with each half-sarcomere represented by a parallel
array of N cross-bridges interacting with a single actin filament [54, 120], see
Fig. 4.60. We assume again that the nontrivial dynamics of attached cross-bridges is
due exclusively to the conformational change in myosin heads (power stroke) and
model cross-bridges as bi-stable elements in series with linear springs, see Fig. 4.61.
We therefore stay with our original paradigm that the nonequilibrium driving is
provided through the rocking of the bi-stable elements [108].

Fig. 4.60 (a) Schematic representation of a muscle myofibril as a series connection of half
sarcomeres; (b) Model of a single half-sarcomere with attached cross-bridges arranged in parallel.
Shaded boxes in (b) represent bi-stable snap-springs shown in Fig. 4.61

Fig. 4.61 Schematic representation of a bi-stable snap-spring in series with a linear spring
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A half-sarcomere in this model, see Fig. 4.60b, can be described by the system
of non-dimensional Langevin equations

{
dxi/dt = −∇xi�+√

2Dξ(t),

νdy/dt = −∇y�,
(4.37)

where y is a macro-scopic variable characterizing the strain at the level of the half-
sarcomere whose dynamics is slow due to the large value of the relative viscosity ν.
The variable y is coupled with N fast soft-spin type variables xi through identical
springs with stiffness k. The potential energy is � = ∑N

i=1 E(xi, y, t) − fexty,

where fext(t) is a slowly varying macro-scopic force. The ensuing problem is a soft
spin generalization [76] of the Huxley-Simmons model [54] and we recall that its
applications extend far beyond muscles mechanics, from hair cell gating [77] and
binding of cell-adhesion patches [33] to mechanical denaturation of RNA and DNA
hairpins [128] and unzipping of biological macromolecules [47].

The equation for y in (4.37) can be re-written as

ν

N

dy

dt
= k

(
1

N

N∑
i=1

xi − y

)
+ fext

N
, (4.38)

which makes the mean field nature of the interaction between y and xi explicit. If
N is large, we can replace 1

N

∑N
i=1 xi by 〈x〉 using the fact that the variables xi are

identically distributed and exchangeable [34]. If ν0 = ν/N and gext = fext/(kN)

remain finite in the limit N → ∞, we can write

ν0dy/dt = k[(〈x〉 − y)+ gext(t)].
Assume for determinacy that the function f (t) is periodic and choose its period

τ in such a way that � = ν0/k " τ . Since gext(t) is a slowly varying function at the
time scale τ , we can split the force k(〈x〉 − y) acting on y into a slow component
kψ(y) = k(〈x〉 − y) which originates from our effective potential and a slow-fast
component kφ(y, t) = k(〈x〉−〈x〉)which in the steady regime becomes a τ periodic
function of time with zero average. We can then write

�
dy

dt
= ψ(y)+ φ(y, t)+ gext. (4.39)

The next step is to average (4.39) over the time scale τ . To this end we introduce a
decomposition y(t) = z(t)+ ζ(t), where z is the averaged (slow) part of the motion
and ζ is a fast varying perturbation (with time scale τ ) that is small compared to z.
Then, expanding 4.39 up to first order in ζ , we obtain,

�

(
dz

dt
+ dζ

dt

)
= ψ(z)+ ∂zψ(z)ζ+

φ(z, t)+ ∂zφ(z, t)ζ + gext.

(4.40)
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Since gext(t) # τ−1
∫ t+τ

t
gext(u)du, we obtain at fast time scale [13]

�
dζ

dt
= φ(z, t).

Integrating this equation between t0 and t ≤ t0 + τ we can assume that z is fixed
and therefore ζ(t) − ζ(t0) = �−1

∫ t

t0
φ(z(t0), u)du. Given that φ is τ periodic with

zero average, we conclude that ζ(t) is also τ periodic with zero average.
If we now average (4.40) over the fast time scale τ , we obtain

�dz/dt = ψ(z) + r + gext,

where

r = (�τ)−1
∫ τ

0

∫ t

0
∂zφ(z, t)φ(z, u)dudt.

Since both φ(z, t) and ∂zφ(z, t) are bounded, we can write |r| ≤ (τ/�)c � 1,
where the ‘constant’ c depends on z but not on τ and �. Therefore, if N " 1 and
ν/(kN) " τ , the equation for

z(t) = τ−1
∫ t+τ

t

y(u)du

can be written directly in terms of the effective potential

(ν/N)dz/dt = −∂zF + fext/N.

To find the potential F(z) we need to average the ensuing mean field model over the
fast and slow-fast dynamics in (4.41) while keeping the variable y fixed.

4.8.2 Mean Field Model

The implied mean field model can be viewed as a description of a probe character-
ized by a (microscopic) coordinate x which is placed in an active environment. The
probe is attached through an elastic spring to a measuring device associated with
a (meso-scopic) variable y. We assume that the variable y is slow and treat it as
a control parameter. Instead, the variable x(t) will undergo fast stochastic motion
which will have to be averaged out.

In the absence of noise, the environment will be introduced through the potential
V (x) and we assume that the probe is placed in an unstable configuration. One
way to satisfy this condition is to assume that V (x) has a double well structure
with the reference position of a probe in a spinodal state. We further assume
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that the probe is exposed to a fluctuating surrounding medium with a quickly
relaxing component represented by an equilibrium thermostat and a relatively
slower relaxing component describing non-equilibrium environment. We study the
meso-scopic force exerted by the probe on the measuring device which implies the
transition from the environment potential V (x) to the effective potential for the
measuring device F(y).

To be more specific, consider the stochastic dynamics of a variable x(t) described
by a dimensionless Langevin equation

dx/dt = −∂xE(x, y, t)+
√

2Dξ(t), (4.41)

where ξ(t) is a standard white noise and D is a temperature-like characteristic of
the equilibrium thermostat. The potential E(x, y, t) = Ep(x, t)+ Em(x, y) is sum
of two components: Ep(x, t) = V (x) − xf (t), describing the probe in an out of
equilibrium environment and Em(x, y) = k(x− y)2/2, describing the linear elastic
coupling with a measuring device characterized by stiffness k. We assume that the
energy is supplied to the system through the rocking force f (t) with zero average
which is characterized by an amplitude A and a time scale τ . To have analytical
results, we need to further assume that the potential V (x) is bi-quadratic

V (x) = (|x| − 1/2)2 /2. (4.42)

Similar framework has been used before in the studies of directional motion of
molecular motors [25].

To compute the effective potential F(y) we use an observation that if the
‘measurements’ are performed at a time scale larger that τ , the resulting force is
T (y) = k[y − 〈x〉], where the averaging is over ensemble and time

〈x〉 = lim
t→∞(1/t)

∫ t

0

∫ ∞

−∞
xp(x, t)dxdt.

Here p(x, t) is the probability distribution for the variable x which solves the
associated Fokker–Plank equation. The primitive of the averaged tension

F(y) =
∫ y

T (s)ds, (4.43)

can be then viewed as a non-equilibrium analog of the free energy [6, 66, 100, 129].
While in our case, the mean-field nature of the model ensures potentiality of the
averaged tension, in a more general setting, the averaged stochastic forces will lose
their gradient structure and even the effective “equations of states” relating averaged
forces with the corresponding generalized coordinates may not be well defined [9,
12, 44, 56, 110, 114].

It is clear that the effective potential F(y) will depend not only on V (x) but
also on the stochastic properties of the driving f (t). The question we pose is
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whether there exists a non-biased stochastic driving which ensures stabilization
of spinodal configurations that would be unstable in the absence of the noise. In
the equilibrium case, when f (t) = 0, such stabilization is possible because of
entropic effects but only at sufficiently large temperature D. The challenge is to
find a correlated (colored) noise f (t) which ensures stabilization at arbitrary small
D. The possibility of bi-modality of the marginal probability distribution p(x, t)

in single-well potentials is known for DC and Levi type noises [28, 29], however,
this effects disappears after ensemble averaging involved in the computation of the
effective potential F(y).

4.8.3 Non-dimensionalization

Equation (4.41), which constitutes the basis of our prototypical model, is dimension-
less. To translate the results back into muscles context we need to use the time scale
τ � = η/k0 ∼ 0.1 ms where η ∼ 0.38 ms. pN/nm is the micro-scale viscosity [19]
and k0 ∼ 3 pN/nm is the passive stiffness of the equivalent energy wells. The spatial
scale is then l� = a where a ∼ 10 nm is the distance between two minima of the pre
and post power stroke wells [69] and the energy scale is ε� = k0a

2 ∼ 300 pN · nm.
Following [19] we also assume that k = km/k0 ∼ 0.6, where km ∼ 2 pN/nm

is the stiffness of the elastic part of the myosin motor [7, 67]. Hence D =
kB"/(k0a

2) ∼ 0.01 where kB = 4.10 pN · nm is the Boltzmann constant,
" ∼ 300 K is the ambient temperature, and a = 10nm is the characteristic size of
a motor power-stroke [69]. For the active driving we obtain τ = τa/(η/k0) ∼ 100
where τa = 40 ms is the characteristic time of ATP hydrolysis [53]. We can now
write that A = √

�μ/(k0a2) ≈ 0.5 where �μ = 20kB" is the typical value of
degree of non-equilibrium in terms of the affinity of ATP hydrolysis reaction [53].

The knowledge of the set of dimensionless parameters A,D and τ will be
sufficient to locate the muscle system on the phase (regime) diagram. Such diagrams
will be constructed in Sect. 4.8.4 for three different types of active driving.

4.8.4 Phase Diagrams

In this Section we consider the general problem (4.41) at finite temperature (D >

0) when both equilibrium and nonequilibrium reservoirs are contributing to the
microscopic dynamics simultaneously. The limiting case of zero temperatures (D =
0) will be analyzed separately in Sec. 4.8.5.

Periodic (P) Driving Suppose first that the non-equilibrium driving is represented
by a periodic (P), square shaped external force f (t) = A(−1)n(t) with n(t) =
�2t/τ , where brackets denote the integer part. While this choice of periodic driving
ensures certain analytical simplicity, the obtained results will be generic.
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It will be convenient to rewrite the dynamic equation (4.41) in the form

dx/dt = −∂xṼ (x, z)+ f (t)+√
2Dξ(t), (4.44)

where

Ṽ (x, z) = 1

2
(|x| − 1/2)2 + 1

2
k(x − z)2.

The associated Fokker–Planck equation for the time dependent probability distribu-
tion p(x, t) reads

∂tp = ∂x [p∂xE(x, t)+D∂xp] . (4.45)

First of all we note that explicit solution of (4.45) can be found in the adiabatic
case when the correlation time τ is much larger than the escape time for the bi-
stable potential V [48, 74]. The idea of this approximation is that the time average
of the steady state probability can be computed from the mean of the stationary
probabilities with constant driving force (either f (t) = A or f (t) = −A).

It is obvious, that the adiabatic approximation becomes exact in the special case
of an equilibrium system with A = 0 when the stationary probability distribution is
known explicitly:

p0(x) = Z−1e−Ṽ (x)/D,

where Z = ∫ ∞
−∞ exp(−Ṽ (x)/D)dx. The tension elongation curve can then be

computed analytically, since we know

〈x〉 = 〈x〉 =
∫ ∞

−∞
xp0(x)dx. (4.46)

The resulting curve T (z) and the corresponding potential F(z) are shown in
Fig. 4.62a. At zero temperature the equilibrium system with A = 0 exhibits negative
stiffness at z = 0 where the effective potential F(z) has a maximum (spinodal
state). As temperature increases we observe a standard entropic stabilization of the
configuration z = 0, see Fig. 4.62a.

Computing solution of the equation ∂zT |z=0 = 0, we find an explicit expression
for the critical temperature De = r/[8(1 + k)] where r is a root of a transcendental
equation 1 + √

r/πe−1/r/[1 + erf(1/
√
r)] = r/(2k). The behavior of the roots of

the equation T (z) = −k(〈x〉 − z) = 0 at A = 0 is shown in Fig. 4.63b. It illustrates
a second order phase transitions taking place at D = De.

In the case of constant force f ≡ A the stationary probability distribution is also
known [98]

pA(x) = Z−1e
−

(
Ṽ (x)−Ax

)
/D
,
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Fig. 4.62 Tension elongation curves T (z) in the case of periodic driving (adiabatic limit). The
equilibrium system (A = 0) is shown in (a) and out-of-equilibrium system (A �= 0)—in (b). The
insets show the effective potential F(z). Here k = 0.6

Fig. 4.63 The parameter dependence of the roots of the equation T (z) = 0 in the adiabatic limit:
(a) fixed D = 0.04 and varying A, first order phase transition (line CA − MA in Fig. 4.64a); (b)
fixed A = 0 and varying D, second order phase transition (line De−CA in Fig. 4.64a). The dashed
lines correspond to unstable branches. Here k = 0.6

where again Z = ∫ ∞
−∞ exp(−Ṽ (x)/D)dx. In adiabatic approximation we can write

the time averaged stationary distribution in the form,pAd(x) = 1
2 [pA(x)+p−A(x)],

which gives

〈x〉 = 1

2
[〈x〉(A)+ 〈x〉(−A)] . (4.47)

In this equation the expression for 〈x〉(A) can be written explicitly

〈x〉(A) = Z−1
∑
i=1,2

P(ui)[√πuierfc(ui)− (−1)ie−u2
i ],
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where

P(u) = (D/(1 + k))e
− 1

2D

(
1
4+kz2−2Du2

)
,

u1,2 = (A± 1/2 + kz)/
√

2D(1 + k),

Z = √
(1 + k)π/(2D)

∑
i=1,2

P(ui)erfc((−1)iui),

and erfc is the complementary error function.
The force-elongation curves T (z) and the corresponding potentialsF(z) obtained

for A �= 0 are shown in Fig. 4.62b. It demonstrates the main effect: as the degree
of non-equilibrium, characterized by A, increases, not only the stiffness in the state
z = 0 where the original double well potential V had a maximum changes from
negative to positive but also the effective potential F(z) develops around this point
the third well. We interpret this phenomenon as the emergence of active rigidity
because the new equilibrium state becomes possible only at a finite value of the
driving parameter A while the temperature parameter D can be arbitrarily small.
The behavior of the roots of the equation T (z) = −k(〈x〉 − z) = 0 at A �= 0
is shown in Fig. 4.63a. It illustrates the first order phase transitions taking place at
increasing A (and small fixed D).

The full steady state regime map (dynamic phase diagram) summarizing the
results obtained in adiabatic approximation is presented in Fig. 4.64a. There, the
‘paramagnetic’ phase I describes the regimes where the effective potential F(z) is
convex, the ‘ferromagnetic’ phase II is a bi-stability domain where the potential
F(z) has a double well structure and, finally, the ‘Kapitza’ phase III is where
the function F(z) has three convex sections separated by two concave (spinodal)
regions. Note that the boundaries of the domain occupied by phase III in this
diagram are not defined by the number of the roots of T (z) = 0, as it is usually done

Fig. 4.64 Phase diagram in (A,D) plane showing phases I,II and III: (a) adiabatic limit, (b)
numerical solution at τ = 100 (b). CA is the tri-critical point, De is the point of a second order
phase transition in the passive system. The “Maxwell line” for a first order phase transition in the
active system is shown by dots. Here k = 0.6
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in the study of magnetic systems, but by the counting of the number of the effective
“energy wells” linked to convexity properties of the whole effective potential F(z).

In view of the structure of the bifurcation diagrams shown in Fig. 4.63, we can
interpret the boundary CA −De separating phases I and II as a line of (zero force)
second order phase transitions and the dashed line CA −MA as a Maxwell line for
the (zero force) first order phase transition, see Fig. 4.63. Then CA can be interpreted
as a tri-critical point near which the system can be described by an non-equilibrium
(active) Landau potential of the form

F(z) = F0 + rz2 + qz4 + pz6,

where r, q, p are pseudo-thermodynamic parameters. Indeed, while r represents
the usual measure of temperature D and p > 0 is a constant, the A dependent
parameter q is an uncoventional measure of the intensity of active driving. Similar
tri-critical point appears in the periodically driven mean field Suzuki-Kubo model of
magnetism which can be interpreted in our terms as a description of the zero tension
behavior [115].

The adiabatic approximation fails at low temperatures (small D) where the
escape time diverges and in this range the phase diagram has to be corrected
numerically, see Fig. 4.64b. By simulating directly Eq. (4.41) we obtain that even
the moderate temperature features of the diagram (tri-critical point, point De and
the vertical asymptote of the boundary separating phases I and III at large values of
A) are captured adequately by the adiabatic approximation. For instance, the value
of temperature corresponding to point N (at infinite A) obtained from the adiabatic
approximation is DN = q/[8(1 + k)] where q is a solution of a transcendental
equation q − k = q3/2/[√q + e1/q√π(1 + erf(1/q))] which agrees with our
numerics.

The new feature of the non-adiabatic phase diagram is a dip of the boundary
separating Phases II and III at some D < De leading to an interesting re-entrant
behavior (cf. [89, 118]). This is an effect of stochastic resonance which is not
captured by adiabatic approximation.

To verify our numerical results in the low temperature domain D → 0 we used
Kramers approximation, valid when the rocking period τ is much smaller than the
typical escape time of the bi-stable potential V .

It allows one to compute explicitly the location of point K (A = 1/2) and point
M (A = 1/2 + k/4), which we found to be in full agreement with our numerical
simulations, see Fig. 4.64b. Because of incompatibility of the limits D → 0 and
τ → ∞ these points are rather far from the corresponding adiabatic predictions KA

and MA shown in Fig. 4.64a.
Force-elongation relations characterizing the mechanical response of the system

at different points on the (A,D) plane (Fig. 4.64b) are shown in Fig. 4.65 where the
upper insets illustrate the typical stochastic trajectories and the associated cycles
in {〈x(t)〉, f (t)} coordinates. We observe that while in phase I thermal fluctuations
dominate periodic driving and undermine the two wells structure of the potential, in
phase III the jumps between the two energy wells are fully synchronized with the



188 R. Sheshka and L. Truskinovsky

Fig. 4.65 (a–c) Typical tension-length relations in phases I, II and III. Points α, β and γ are the
same as in Fig. 4.64b; (d) shows the active component of the force. Inserts show the behavior of
stochastic trajectories in each of the phases at z # 0 (gray lines) superimposed on their ensemble
averages (black lines); the stationary hysteretic cycles, the structure of the effective potentials F(z)
and the active potential Fa(z) defined as a primitive of the active force Ta(z). The parameters:
k = 0.6, τ = 100

rocking force. In phase II the system shows intermediate behavior with uncorrelated
jumps between the wells.

In Fig. 4.65d we illustrate the active component of the force Ta(z) = T (z;A)−
T (z; 0) in phases I, II and III. A salient feature of Fig. 4.65d is that active force
generation is significant only in the resonant (Kapitza) phase III. A biologically
beneficial plateau (tetanus) is a manifestation of the triangular nature of a pseudo-
well in the active landscape Fa(z) =

∫ z
Ta(s)ds; note also that only slightly bigger

(f,< x >) hysteresis cycle in phase III, reflecting a moderate increase of the
extracted work, results in considerably larger active force. It is also of interest that
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the largest active rigidity is generated in the state z = 0 where the active force is
equal to zero.

If we now estimate the non-dimensional parameters of the model by using the
data on skeletal muscles, see Sect. 4.8.3, we obtain A = 0.5,D = 0.01, τ = 100.
This means that muscle myosins in stall conditions (isometric contractions), may
be functioning in resonant phase III. Our simple model can therefore contribute to
the explanation of the observed stability of skeletal muscles in the negative stiffness
regime [19]; similar mechanism may be also behind the titin-based force generation
at long sarcomere lengths [103].

Dichotomous (DC) Driving The P driving is only one among correlated signals
that can serve as a mechanical representation of an out of equilibrium chemical
reservoir. To ascertain the robustness of the results obtained in the case of P driving
we now consider another type of correlated forcing which is also characterized by
two parameters, the amplitude A and the characteristic time τ . It is given by the
explicit formula f (t) = A(−1)n(t), where n(t) is a Poisson process with P(n) =
e−λλn/n! with λ = 1/(2τ ) and is known as symmetric dichotomous (DC) noise
or random telegraph signal [55, 86]. For this Markov process we have 〈f (t)〉 =
A exp(−t/τ ) and 〈f (t), f (s)〉 = A2 exp(−|t − s|/τ).

The probability distribution can be written in the form p(x, t) = p−(x, t) +
p+(x, t) where p±(x, t) are the probability densities to be in a state x at time t

given that f = ±A. The DC driven system (4.41) is described by the two coupled
Fokker–Planck equations [10],

∂tp± = ∂x(∂xE±p± +D∂xp±)+ λ(∓p± ± p∓) (4.48)

where E±(x) = Ṽ (x) ∓ Ax. Note that in this interpretation the DC noise appears
as a chemical reaction violating the detailed balance [91]. The stationary version
of the system (4.48) can be written in a transparent form if in addition to p(x) =
p−(x) + p+(x) we introduce a complimentary variable d(x) = p+(x) − p−(x).
Then we obtain

∂xṼ p −D∂xp − Ad = 0,
τ∂x(∂xṼ d −D∂xd − Ap) = d.

(4.49)

The numerical study of (4.41) with DC noise shows that the qualitative structure
of the phase diagram in the (A,D) plane remains the same as in the case of P driving,
see Fig. 4.66. We again observe phases I, II and III and the tri-critical point at about
the same location as in the case of P noise.

To interpret the numerical results, it is instructive to consider analytically
tractable special cases. First of all, Eq. (4.49) can be used to obtain the adiabatic
(τ → ∞) limit when the two equations decouple and the steady state probability
distributions take the form p±(x) ∼ exp(−E±(x)/D) as in the case of P driving.
The resulting phase diagrams are therefore identical, see section “Periodic (P)
Driving”.
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Fig. 4.66 (a) Phase diagram in the case of DC driving. The identification of phases I, II, and III
is the same as in Fig. 4.64a, b. (b) Typical tension-length relations in different phases (b). Here
τ = 100 and k = 0.6

The second case, when the analytic results are available, is the zero temperature
limit D → 0 considered in detail in Sect. 4.8.5.

Finally, the third analytically tractable case is τ → 0, A → ∞, with D̃ = A2τ

remaining finite. In this limit we obtain that the non-equilibrium component of

the noise is represented by a Gaussian white noise f (t) =
√

2D̃ξa(t) with the
temperature D̃ that is different from the temperature of the equilibrium reservoir
D, for instance, one can think about a system exposed to a thermostat with
temperature D and a chemostat with temperature D̃. The combined excitations
are again represented by a white noise

√
2D∗ξn(t) with effective temperature

D∗ =
√
D2 + D̃2.

In contrast to the zero temperature case, now the Kapitza phase III, describing
active stabilization, is absent. We obtain only phases I and II separated by a second

order phase transition line
√
D2 + D̃2 = De with the universal asymptotic behavior

D̃ ∼ (De − D)1/2 near equilibrium, see Fig. 4.67. The system in this limit can

Fig. 4.67 Phase diagram for the case when the chemical reaction is modeled by an effective
temperature D̃. Here k = 0.6
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undergo entropic stabilization only which means that the two temperature model
does not capture the same range of phenomena as the D = 0 model. Note that other
two temperature models can exhibit destabilization of a single well system[44].

Ornstein–Uhlenbeck (OU) Driving We have seen that the overall effect of the
two bounded noises on a mechanical system may be similar even though one of
them is highly correlated and non-Markovian and another one is weakly correlated
and Markovian. To show that not all noises are ‘mechanically equivalent’ we now
consider an Ornstein–Uhlenbeck (OU) process which is also characterized by two
parameters A and τ [8, 86].

In the case of OU driving, the function f (t) is a solution of the stochastic
equation

df (t)/dt = −1

τ
f (t)+ A

√
2

τ
ξf (t). (4.50)

Exactly as in the case of the DC noise we have for the first two moments f̄ (t) =
〈f (t)〉 = A exp(−t/τ ), and 〈f (s)f (t)〉 = A2 exp(−|t − s|/τ), where we assumed
for determinacy that f (0) = A. The resulting process is also Markovian, however
now it is unbounded and is defined on a continuous state space.

The Fokker–Planck equation for the probability density p(x, f, t) takes the form

∂tp = ∂x(p∂xE +D∂xp)+ τ−1∂f (fp + A2∂f p). (4.51)

Our numerical results for the system driven by OU noise are summarized in
Fig. 4.68a. At small intensity of driving A we observe the conventional picture of
entropic stabilization. A striking feature of this diagram is the absence of phase
III, which means that in contrast to the cases of P and DC driving, the OU driven
system does not support the phenomenon of active stabilization. To understand these

Fig. 4.68 (a) Phase diagram in the case of OU driving. The identification of phases I, II is the
same as in Fig. 4.64a, b. (b) The typical tension-length relations in different phases. Here τ = 100
and k = 0.6
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numerical results it is instructive to consider the already mentioned three limiting
cases that can be treated analytically.

In the adiabatic limit (τ → ∞), Eq. (4.51) simplifies and can be integrated. Then
we obtain that p(x) ∼ exp(−E(x)/D) which shows that in this limit only entropic
stabilization remains possible.

Another analytically tractable limit is D → 0, which shows again that in contrast
to the cases of P and DC driving, only phases I and II are present at zero temperature
phase diagram.

Finally, we can consider the double limit τ → 0, A → ∞, with D̃ = A2τ fixed.
As in the case of DC noise, we recover in this limit a system subjected to an effective
temperature and showing phases I and II only, see Fig. 4.67.

The analysis of these special cases supports our numerical results suggesting that
in the OU driven system the tri-critical point is absent. We can link the failure to
generate active rigidity in such system with the unbounded nature of the OU noise
allowing the eventual escape from a neighborhood of any resonant state.

4.8.5 Zero Temperature Limit

To understand better the differences between our three representations of non-
equilibrium driving, we now compare the behavior of the system in the analytically
tractable limit when the temperature of an equilibrium thermostat is equal to zero,
D = 0. In this limit the role of passive stabilization is minimized, which allows one
to make the effect of active terms more transparent. When D = 0 we are left with
two non-dimensional parameters: the correlation time τ and the amplitude of the
active signal A. We found, however, that using another pair (τ, D̃), with D̃ = A2τ ,
is more convenient.

Dichotomous (DC) Driving In the case of DC driving with D = 0 the stationary
solution of the Fokker–Plank equation (4.49) can be written in the form [64]

p(x)∂xṼ (x)+ A2
[

1

τ
− ∂x

(
∂xṼ (x)·

)]−1

∂xp(x) = 0, (4.52)

where the notation ∂x

(
∂xṼ ·

)
should be understood in the sense of differential

operators. The formal solution of ((4.52)) satisfying zero boundary conditions at
infinity can be written in quadratures [48, 64]

p(x) = Z−1

A2 − (∂xṼ (x))2
exp

(
−1

τ

∫ x ∂yṼ (y)

A2 − (∂yṼ (y))2
dy

)
,
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where we still need to find the normalizing constant Z. For this solution to be valid
we must also satisfy the inequality

|∂xṼ (x)| < A. (4.53)

When A = 0, we recover the deterministic case where condition (4.53) selects
between the points x0,1(0) where the force vanishes.

In principle, the choice depends on the initial condition but in the limit of
vanishing D and large time t , the trajectory x(t) converges to the point minimizing
the potential Ṽ . The resulting tension elongation relation can be then obtained by
setting

〈x〉 = x0(0)+ x1(0)

2
+ sign(z)

x1(0)− x0(0)

2
.

The effective energy F(z) emerges as a symmetric two parabolic bi-stable potential
where z = 0 is a singular spinodal point separating the energy wells at z = ±1/2.

Another simple case is when τ → 0 with A2τ = D̃ remaining finite. In this
limit activity disappears and driving becomes equilibrium with temperature D̃.
The steady state probability distribution is given by p(x) ∼ exp(−Ṽ (x)/D̃) and
the effective energy exhibits a transition from phase II to phase I at the critical
temperature De.

To compute p(x) in the general case, we identify the admissible set, where
((4.53)) holds, as ]x0(−A), x0(A)[⊔]x1(−A), x1(A)[ where

x0(−A) = min(0, −1/2+kz−A
1+k

) ≤ x0(A)

x0(A) = min(0, −1/2+kz+A
1+k

) ≤ 0

x1(−A) = max(0, 1/2+kz−A
1+k

) ≥ 0

x1(A) = max(0, 1/2+kz+A
1+k

) ≥ x1(−A)

We can now integrate p(x) on each of the segments ]x0(−A), x0(A)[ and
]x1(−A), x1(A)[. The result can be written in the form

p(x) = C0�0(x)
(2τ (1+k))−1−11]x0(−A),x0(A)[(x)

+ C1�1(x)
(2τ (1+k))−1−11]x1(−A),x1(A)[(x),

(4.54)

where�0(x) = A2−[(1+k)x−kz+1/2]2 and �1(x) = A2−[(1+k)x−kz−1/2]2.
If the domain of definition is connected as in, say, Case 2, when x0(A) =

x1(−A) = 0, a continuity condition relates C0 and C1:

C0 = Z−1�1(0)(2τ (1+k))−1
,

C1 = Z−1�0(0)(2τ (1+k))−1
.

(4.55)
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If instead either x0(A) or x1(−A) is different from zero, the two sets
]x0(−A), x0(A)[ and ]x1(−A), x1(A)[ are separated by a segment where the
probability is equal to zero. This means that the passage from one region to the
other is impossible. In this case the coefficients C0 and C1 depend on the initial
probability distribution as in the periodic case (at D = 0).

If we regularize the problem by adding a weak white noise (small D �= 0), the
choice of constants becomes again unambiguous as we can associate the support of
the distribution with the side (0 or 1) opposite to the smallest potential barrier. We
can then write explicitly C1 = Z−1max(0, sign(z)) and C0 = Z−1−C1. In all cases
the constant Z is found from normalization.

We illustrate the stationary probability distributions p(x) in Fig. 4.69a for several
choices of parameters. The analytical expression for the tension elongation curves
T (z) involve hypergeometric functions and is too complex to be presented here.
The resulting curves are illustrated in Fig. 4.69 for small and large values of the
correlation time. The phase diagram, shown in Fig. 4.70a, exhibits all three phases
I, II and III with a tri-critical point C′ located at τC ′ = [2(k + 1)]−1 and D̃C ′ =
De + [2(k + 1)]−1/4. The behavior of the force-elongation relations in different
phases is illustrated in Fig. 4.70b. As we see, the DC driven dynamics is sufficiently
rich to capture both active and entropic stabilization phenomena even in the absence
of the equilibrium reservoir (at D = 0).

Periodic (P) Driving The numerical simulations for the problem with P driving and
D → 0 show only phases II and III even for rapidly oscillating external fields, see
Fig. 4.70c.

To understand this result we can use Kramers approximation which can be
developed under the assumption that the rocking period is short comparing to at least
one of the escape times τ0,1(±A). The use of such anti-adiabatic limit is consistent
with the observation that in the limit D → 0 the escape times from the energy wells
diverge.

Fig. 4.69 (a) Examples of stationary probability distributions in the case of DC driving with A =
0.6. Dotted line: τ = 0.1, z = −0.5. Dashed line: τ = 1, z = −0.5. Solid line: τ = 1, z = 0.
(b–c) Tension elongation relations for different values of τ
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Fig. 4.70 (a) Zero temperature phase diagram in the case of DC driving. The identification of
phases I, II and III is the same as in Fig. 4.64a, b. Tension-elongation relations in the case of DC
driving in different phases (b). Zero temperature phase diagram in the case of P driving (c) and OU
driving (d). Parameters k = 0.6, D = 0

A study of the purely mechanical problem with P driving reveals that, since the
potential E can have up to four local minima, the dynamical system 4.44 can have
up to four stationary solutions. We have four main cases:

• Case 1: 〈x〉 = [x0(−A)+ x0(A)] /2
• Case 2: 〈x〉 = [x0(−A)+ x1(A)] /2
• Case 3: 〈x〉 = [x1(−A)+ x1(A)] /2
• Case 4:

〈x〉 =
⎧⎨
⎩

1
2 [x0(−A)+ x0(A)] , if z < 0

1
2 [x1(−A)+ x1(A)] , if z > 0.
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To justify, for instance, the last expression (Case 4) we can apply the rate theory
for rocked bi-stable system. Then we obtain for n0(t) (the number of particle in the
well 0 at the moment t) the expression

〈n0〉 ∼ e

(
−min±A

[�E1(±A)]+ min±A,1,0
[�E0,1(±A)]

)
/D
.

Here either min±A
�E1(±A) = min±A,1,0

�E0,1(±A) and 〈n0〉 = 1, or min±A
�E1(±A) >

min±A,1,0
�E0,1(±A) and 〈n0〉 = 0. The condition min± �E1(±A) > min±,1,0

�E0,1(±A)

introduces the dependence of the stationary distribution on z. After time averaging,
the steady state probability distribution takes the form:

p(x) = 〈n0〉
2

[p0(x; −A)+ p0(x;A)]

+ 1 − 〈n0〉
2

[p1(x; −A)+ p1(x;A)] ,
(4.56)

where

p0(x; ±A) = exp (−E0(x; ±A)/D)

0∫
−∞

exp (−E0(x; ±A)/D) dx

p1(x; ±A) = exp (−E1(x; ±A)/D)
∞∫
0

exp (−E1(x; ±A)/D) dx

.

In the limit D → 0 the distributions p0,1(x; ±A) become delta functions concen-
trated at the points x0,1(±A) which gives our formula for 〈x〉.

If we now use the computed values for x0,1(±A), we can obtain the analytic
expressions for the tension T (z). Then, by solving the equation T (z) = 0 we can
locate the line of the first order phase transition separating phases II and III and
show that A = 1

2 at point K and that A = 1
2

(
1 + k

2

)
at point M, both in agreement

with the numerical phase diagram presented in Fig. 4.71c. The qualitative difference
between the predictions of the adiabatic approximation implying that D is large and
the Kramers approximations corresponding to small D is illustrated in Fig. 4.71.

In coordinates (τ, D̃) the phase diagram for the P driven system with zero temper-
ature shows a single phase boundary separating phases II and III, see Fig. 4.70c. The
entropically stabilized phase II is absent because, despite the presence of the noise,
it is bounded and there is no stochastic contribution allowing the system to cross
arbitrary barriers. Because of the same reason the phase boundary between phases
II and III in the P driven system is shifted comparing to the case of DC driving as
the point De does not exist any more. This is in contrast to the fact that at finite D

the two systems (with P and DC driving) behave quite similarly, in particular, they
are indistinguishable in the adiabatic limit τ → ∞.
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Fig. 4.71 (a) Examples of the stationary probability distributions in the case of P driving in
adiabatic (dotted line) and Kramers (solid line) approximations at A = 0.2, z = −0.01, D =
0.002. (b) Tension elongation relations for D = 0.01 and A = 0.2 expressed by Kramers solution
(solid line) and adiabatic solution (dotted line). (c) Tension elongation relations in the limitD → 0
for several value of A. For 0 < A < K , all curves collapse (dotted line) since the energy injected
by the rocking is not sufficient to overcome the potential barriers

Ornstein–Uhlenbeck (OU) Driving In the case of OU driving with D = 0 an
analytical approximation of the stationary probability distribution is available when
τ << 1 [48]. The main idea is to combine Eq. (4.44) and Eq. (4.50) to obtain a new
equation for a noisy inertial oscillator

d2x

dt2
+ dx

dt
(1 + τ∂xxṼ (x))+ ∂xṼ (x) = A

√
2τξf (t), (4.57)

where ξf is a standard white noise. At large times the inertial dynamics with
additive noise (4.57) can be approximated by the overdamped dynamics with
multiplicative noise

dx

dt
= (1 + τ∂xxṼ (x))−1

(
−∂xṼ (x)+ A

√
2τξf (t)

)

which must be interpreted in the Stratanovitch sense [48]. The corresponding Fokker
Planck equation

∂tp = ∂x

(
∂xṼ

1 + τ∂xxṼ
p

)

+ ∂x

(
1

1 + τ∂xxṼ
∂x

(
A2τ

1 + τ∂xxṼ
p

))
,

(4.58)

has an explicit stationary solution [48]:

p(x) = Z−1|1 + τ∂xxṼ (x)| exp

(
− Ṽ (x)+ τ (∂xṼ (x))2/2

A2τ

)
.
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Fig. 4.72 (a) Examples of stationary probability distributions in the case of OU driving at A =
0.5; dotted line: τ = 1, z = −0.5; dashed line: τ = 1, z = 0; solid line: τ = 0.1, z = −0.5. (b–c)
Tension elongation relations in the OU cases for small (b) and large (c) correlation times. Large
correlation times are formally outside of the domain of validity of the approximation

Notice again that when τ → 0 with D̃ = τA2 fixed, f (t) becomes a white noise
and the distribution p(x) takes the classical Boltzmann form.

In Fig. 4.72a we show examples of the stationary distributions for specific values
of parameters. The corresponding tension curves T (z) are illustrated in Fig. 4.72b,
c for large and small correlation times.

Our Fig. 4.70d shows the resulting phase diagram which, as expected, exhibits
only phases I and II. This is again a confirmation of the fact that in the case of
OU driving the crucial phase III, describing the phenomenon of active regidity, is
absent. When τ is small (at a fixed D̃), the OU noise becomes a white noise and, as
in the case of the DC driving, the phase boundary separating phases I and II passes
through the point De.

The comparison of all three phase diagrams, shown in Fig. 4.70a, c, d suggests,
that at zero temperature the system with DC driving is an intricate amalgam of the
systems with OU and P drivings.

4.9 Conclusions

In these lecture notes we discussed the possibility that acto-myosin contraction is
driven exclusively by the power-stroke. We developed several mechanistic models
built on the assumption that the microscopic stochastic dynamics can be described
by a set of continuous equations of mechanics with the equilibrium thermal
environment modeled by a uncorrelated noise and internal activity modeled in
different ways, in particular, by a correlated noise. The correlations associated with
nonthermal such noise would then reflect the nonequilibrium nature of the external
reservoir.

To model the full cross-bridge mediated actin-myosin interaction we developed
three-dimensional phase space framework coupling a periodic potential with a bi-
stable potential. In this perspective, the periodic potential represents myosin/actin
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interaction; the conformational change responsible for the power stroke is described
by a double-well potential. The mechanical approach allowed us to reveal the impor-
tant difference between the soft and hard device loading conditions. We mention that
this asymmetry remained under-appreciated in the conventional chemo-mechanical
models.

Our starting point was the observation that in the currently accepted mechanistic
representations of acto-myosin systems, the power-stroke is undermined as a passive
folding-unfolding mechanism while the attachment-detachment is given a primary
role as the main driver of contraction. Since active sites are located inside motor
domains, the external forces, representing the ATP activity, are typically introduced
as conjugates to macroscopic positions of these domains and such ratchets are
essentially attachment-detachment-driven. The implied mechanisms may be indeed
operative during muscle contractions but then they would be complimentary to the
ones studied here. In our approach the thrust of the ATP activity was shifted towards
the internal variable characterizing the state of the power-stroke element.

Depending on the particular sub-unit where the external correlated force is
applied, we introduced three basic designs of the force generating ratchet machinery.
By localizing the effect of the correlated rocking on a single internal degree of
freedom, we defined three basic models: X-tilted, Y-tilted and XY-tilted ratchets.

The X-tilted ratchet is the conventional mechanism where the external activity is
concentrated in the actin filament. We have shown that with X-tilted ratchet design
one cannot simulate the full four-state Lymn–Taylor cycle because the detachment
of the cross-bridge head and the recharge of the power stroke are always combined.
Another shortcoming of this model is that it does not treat adequately the detached
configuration of the acto-myosin system.

In the Y-tilted ratchet model the correlated noise acts on the internal variable
located inside the power stroke mechanism making both the power stroke and the
actin filament active. The resulting ratchet performs four-state cycle in the soft
device and either two-state or four-state cycle in the hard device. This suggests that
the Y-tilted ratchet framework is capable in principle of mimicking the complete
Lymn–Taylor cycle, however the mechanistic interpretation of such internal drive in
term of the molecular structure of the cross-bridge remains ambiguous.

Finally, the XY-tilted ratchet model can be viewed as a mechanistic system which
is driven entirely through the activity concentrated in the power stroke element
while the actin filament is interpreted as passive. By treating the power stroke
as the primary mechanism we delegated to the attachment/detachment process
the secondary role of a machinery securing translational character of the motion.
However, since the XY-tilted ratchet was shown to generate only three-state cycle it
remains fundamentally incompatible with the existing biochemical models.

The main limitation of all these models is that the detached state is represented as
a maximum of the periodic and therefore the detachment takes place very quickly.
To overcome this problem we developed a synthetic model where the XY tilted
ratchet mechanism was augmented by taking into consideration the explicit steric
separation of thick and thin filaments. To make a clear distinction between our
model and the conventional models of Brownian ratchets we assumed that the actin
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track is non-polar and that the bi-stable element is unbiased. The symmetry breaking
was then achieved exclusively through the coupling of these two sub-systems.

Our synthetic model accounting for steric effects was based on the assumption
that the multiplicative feedback is acting on the space-periodic potential �(x).
In this model the conformational state of the power stroke mechanism regulates
the distance of the myosin head form actin filament. We associated the pre-power
stroke with a detached state (no interaction with the spatial periodic potential �(x))
and the post power stroke—with the attached state (the system interacts strongly
with the space periodic potential �(x)). In this way the detached state was fully
integrated into the mechanical cycle. The resulting model reproduced all four states
of the Lymn–Taylor cycle where the individual states were interpreted as transient
mechanical configurations.

By considering three classes of models of this type we exposed three different
ways of how a power-stroke-driven ratchet can receive energy of the ATP hydrol-
ysis and presented mechanical representations of the associated non equilibrium
chemical reservoirs. In the first, traditional, representation, a mechanical action of
the chemical reaction was modeled by a correlated component of the noise. The
second representation was based on the idea that the coupling between internal
and external degrees of freedom is hysteretic. Here in contrast to what is usually
observed in macroscopic systems, hysteresis was used as a source rather than a sink
of energy. The third representation implied that the internal degrees of freedom have
an inherently chemical origin and therefore the source of non-equilibrium is in the
lack of potentiality of these forces. We have shown that only the hysteretic design
allows one to reproduce fully adequately the complete four state Lymn–Taylor cycle.

In the last section of these lecture notes we assumed that attachment detachment
machinery is disabled and addressed the question whether a power stroke driven
molecular device can generate effective rigidity. Instead of a single stall state, the
proposed model was shown to exhibit a family of stall states and we quantified the
energetic cost of moving from one member of the family to another. Since in our
case the implied parameter had the meaning of meso-scopic strain, the derivative of
the (time averaged) energy with respect to this parameter could be interpreted as the
effective rigidity.

Our prototypical mean field model of active rigidity supports the idea that by
controlling the degree of non-equilibrium in the system, one can stabilize apparently
unstable or marginally stable mechanical configurations and in this way modify
the structure of the effective energy landscape (when it can be defined). Our
analysis, however, reveals that apparently similar noises can generate qualitatively
different mechanical effects and that the very possibility of the power-stroke driven
stabilization of an unstable state may be ultra-sensitive to the higher moments of the
stochastic forces.

To summarize, we provided compelling evidence that a relatively simple
mechanical system is able to generate complex stochastic dynamics imitating
muscle contractions. In particular, we showed that such system can mechanistically
reproduce the complete Lymn–Taylor cycle. This opens a way towards structural
interpretation of the chemical states, known from the studies of the catalytic cycle
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in solution, and determining functionality of the particular transient mechanical
configurations of the acto-myosin complex. The implied identification is a
precondition for the bio-engineering reproduction of a wide range of cellular
processes, where myosin cross-bridges play the dominant role, from movement
of cells to cytokinesis. Given that the mechanisms involved in our model can be
mimicked artificially at a super-cellular scale, the proposed schematization of the
contraction phenomenon can be viewed as a step towards building engineering
devices imitating acto-myosin enzymatic activity.

It is also important to mention that starting from the existing approach of rocking
ratchets and reinventing it in the framework of the power stroke activity, we were
able to unify the description of a single processive molecular motor such as Kinesin,
with the description of the collectively operating non-processive molecular motors
such as myosin. In this way we built a bridge between theoretical description
myosin and Kinesin motors that have so far been treated as fundamentally different.
In support of the idea that both processive and non-processive motors can be
driven through a conformational change, we mention that the general shape of
the force-velocity relations obtained in this paper is compatible with the available
measurements not only for non-processive motors but also for processive motors
[27, 60, 80, 123].

We showed, in particular, that while the most realistic XY tilted ratchet can
perform a positive mechanical work, it is less efficient than X and Y ratchets. To
understand why such seemingly inefficient device may be selected by evolution, it is
important to remember that alternative, more efficient strategies include mechanical
activity of actin filaments which is mechanically rather ambiguous.

The main limitation of the discussed picture of contraction is that it was devel-
oped for a single cross-bridge while important collective effects were neglected,
see Fig. 4.73. A theory accounting for the implied collective effects has been so
far developed only for passive response of skeletal muscles involving mechanically
induced power stroke but not the attachment-detachment [19] and in active regimes
one can expect a variety of interesting phenomena from coherent fluctuations
[26, 45, 59, 121] to self-tuning towards criticality [5, 106]. Yet another reason for

Fig. 4.73 Schematic representation of collectively interacting myosin motors: (a) hard device
configuration. (b) soft device configuration
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the observed inefficiency of the XY ratchet may be the neglect of quenched disorder
whose account allows one to build a link between muscle architecture and the theory
of spin glasses and reveal a tight relation between actomyosin disregistry and the
optimal mechanical performance of the force generating machinery [21].

The schematic nature of the proposed models, allowing one to identify only
the main mechanisms, is the main reason why we did not attempt to perform a
systematic quantitative comparison of our predictions with experiment. Extending
the proposed framework towards the account of collectively interacting cross-
bridges will open the possibility to calibrate the model using experimental data.
Given the purely mechanical nature of our modeling, one can then consider building
the actual artificial molecular size devices based on the principles developed in these
lecture notes.

The proposed framework also raises some specific issues which need to be
addressed in future work. One challenge is to understand the microscopic nature of
the hysteretic element and of the active mechanism ensuring the non-potential force
structure. Another challenge is to find the optimal interaction of our three active
mechanisms ensuring the highest performance of the power-stroke driven motor.
The third challenge is to study the effects of short range interaction of elastically
coupled power-stroke-driven motors.

The experimental verification of the proposed model of active rigidity requires
quantitative monitoring of the mechanical properties of a biological system (say,
cytoskeleton) combined with the control of activity elements (say, molecular
motors) and the corresponding experimental techniques are already available [1, 37].
The mastery of actively tunable rigidity will open interesting prospects not only in
biomechanics [92] but also in engineering design incorporating negative stiffness
[39] or aiming at synthetic materials involving dynamic stabilization [16, 101].
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