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Power law fluctuations and scale-free spatial patterns are known to characterize steady state plastic flow

in crystalline materials. In this Letter we study the emergence of correlations in a simple Frenkel-

Kontorova-type model of 2D plasticity which is largely free of arbitrariness, amenable to analytical study,

and is capable of generating critical exponents matching experiments. Our main observation concerns the

possibility to reduce continuum plasticity to an integer-valued automaton revealing inherent discreteness

of the plastic flow.
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At the macroscale one usually assumes that crystalline
materials flow plastically when averaged stresses exceed
yield thresholds. At the microscale plasticity evolves
through a sequence of slow-fast events involving collective
pinning and depinning of dislocational structures. Classical
engineering theory has been very successful in reproducing
the most important plasticity phenomenology such as
yield, hardening, and shakedown; however, a fully quanti-
tative link between the phenomenological theory and the
microscopic picture of plasticity remains elusive. The main
reason is that the phenomenological approach implies
spatial and temporal averaging in the system with poorly
understood long-range correlations.

The presence of such correlations has been confirmed by
numerous experiments revealing intermittent character of
plastic activity with power law statistics of avalanches and
self-similar structure of dislocation cell structures [1]. The
emergence of power laws suggests that in plasticity the
relation between the microscopic and the macroscopic
models is more akin to turbulence than to elasticity [2].
Similar critical features of stationary nonequilibrium states
have been observed in a variety of other driven systems
with threshold nonlinearity and rate independent dissipa-
tion; however, the problem of classifying the universality
classes remains largely open [3]. In this situation, finding
the minimal representation of each class that is amenable
to rigorous analysis is of significant general interest.

The experimental evidence of plastic criticality has been
corroborated by several numerical models [4]. The two
main microscopic approaches are discrete dislocation dy-
namics (DDD), accounting for dislocation interactions on
different slip planes [5–7], and a pinning-depinning model
dealing with plasticity on a single slip plane [8,9].
Different mesoscopic continuum models implying partial
averaging have also been shown to generate power law
statistics of avalanches with realistic exponents [2,10].
Since scale-free dislocation activity is expected to be in-
dependent of either microscopic or macroscopic details,
one can try to maximally simplify the underlying physics

while still capturing the observed exponents and even
characteristic shape functions [11]. Presently the only an-
alytically tractable models of plasticity are the mean field
theory [12,13], the renormalization group models of elastic
depinning [14], and the Abelian automata of sandpile type
[15]. In this group only the automata models have a poten-
tial of capturing the whole complexity of the dislocation
patterning, and the goal of this Letter is to propose a formal
reduction of a realistic plasticity model to a spin model
with discrete time evolution. Instead of straightforward
time discretization of continuum dynamics [16], we search
for inherent temporal discreteness hidden behind the con-
ventional gradient flow dynamics [17].
While the 1D automata, describing successfully plastic

hysteresis and rate independent dissipation, fall short of
capturing plastic criticality [17], the 2D automaton-based
models may already be adequate at least for fcc and
hexagonal crystals; it is also noteworthy that intermittency
has been mostly observed under single slip conditions
[12,18]. In such cases one can get a realistic model by
assuming that plasticity proceeds through the motion of a
set of parallel edge dislocations. We further neglect the
vectorial nature of the problem and reduce the crystal to an
array of coupled Frenkel-Kontorova (FK) chains [19]. In
contrast to more conventional DDD modeling [5], where
nucleation and propagation rules are not associated with
the same thresholds, the FK-type models describe ade-
quately both the multiplication of the defects and their
kinetics including the finite size of the Peierls stress [20].
To describe the model we first recall that classical con-

tinuum dislocation mechanics deals with the energy
�ðuÞ ¼ R

��ðruÞ, where uðxÞ is the displacement field

and the function �� is quadratic. The displacement field is
allowed to have finite discontinuities [u] whose evolution
is governed by phenomenological kinetic relations [21].
The atomic structure of dislocations can be addressed by
introducing an internal length scale a (Burgers parameter)
and replacing continuum energy by the discrete one, which
can be schematically represented as�ðuÞ ¼ a

P
�ð½u�=aÞ
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where now u is a lattice field, [u] is a discrete increment,
and the function � is periodic with infinite symmetry
group [22]. Assuming that the order parameter is
scalar, one can minimize out remaining linear strain vari-
ables: the simplest example of the resulting dressed de-
scription is the one-dimensional FK model. Our minimal
2D setting can be viewed as an array of coupled FK chains
with the energy [19,20] �ðuÞ ¼ P

i;j�ð�; �Þ, where

�ði; kÞ ¼ uðiþ 1; kÞ � uði; kÞ is an axial strain and
�ði; kÞ ¼ uði; kþ 1Þ � uði; kÞ is a shear strain; the dis-
placement field uði; kÞ is defined on a N � N square lattice
(a ¼ 1). The potential � is assumed to be quadratic in �
and periodic in � (see Fig. 1); to avoid synchronization we
also added quenched disorder �ð�; �Þ ¼ gð�Þ þ K

2 ð�Þ2�
h1�� h2�, where h1;2ði; jÞ are independent Gaussian ran-

dom variables. Observe that the variables � and � are not
independent and the long-range interactions can be re-
vealed through minimizing out the nonorder parameter
variable � [23].

The dynamic equations are taken in the form of the
overdamped gradient flow � _u ¼ �@�ðuÞ=@u, where � is
the ratio of the internal time scale and the time scale
of the driving [17]. The driving in shear is performed
through the displacement controlled boundary conditionP

N�1
k¼0 �ði; kÞ ¼ t, where t is the slow time playing the role

of loading parameter; in the longitudinal direction we
assume the periodic boundary condition

P
N�1
i¼0 �ði;kÞ¼0.

In our numerical experiments we took K ¼ 2, N ¼ 512,
and gð�Þ ¼ ð2�Þ�2½1� cosð2��Þ�. The initial state was
dislocation-free and the dispersion of disorder varied in the
range 0.01–0.2. For computations we used an implicit-
explicit fast-Fourier-transform method [24].

The results of direct numerical simulations (automaton
reduction is discussed later) are presented in Fig. 2(a),
where we show the macroscopic strain-stress curves cover-
ing the first two cycles of loading and unloading in the hard
device. Notice that hysteresis loops converge, indicating
that the system exhibits plastic shakedown. Reaching
steady state is marked by the stabilization of dislocation
density, which also shows a characteristic nucleation
related overshoot [see Fig. 2(b)]. Steady state yielding is
characterized by the formation of stable dislocation struc-
tures (cells) with plastic activity limited to intermittent
dislocational exchanges between the clusters; the latter
remain mostly stable from one cycle to another but have

a finite lifetime as in observations [25]. To separate indi-
vidual avalanches we introduce an irrelevant threshold and
define the avalanche energy by integrating viscous dissi-
pation over its duration: E ¼ N�2

P
i;j

R
_u2dt. We observe

that the probability distribution PðEÞ stabilizes after sev-
eral cycles (see Fig. 3), exhibiting a robust power law
behavior with exponent � � 1:6� 0:05 obtained by the
maximum likelihood method [26]. This value is in perfect
agreement with experiments in ice crystals and fits the
generally accepted range of 1.4–1.6 [1,6]; most remark-
ably, it is also consistent with the value obtained for 2D
colloidal crystals [27]. The approximate proportionality
between the plastic slip size and the dissipated energy
ensures that acoustic emission measurements would ex-
hibit the same exponent �.
The spatial counterpart of the observed time correla-

tions is the fractal structure of dislocational patterns.
The dislocation rich regions (clusters) can be identified
by the localized peaks of the energy density landscape
[see inset in Fig. 4(a)], and the corresponding probabi-
lity density shows a power law structure with exponent
1:45� 0:1 [Fig. 4(a)]. Another way to quantify the fractal
clustering is to compute the correlation function of the
dislocation distribution CðrÞ � rD [28]. We observe that
during the first loading cycle D� 2:0, which is expected

FIG. 1 (color online). Periodic dependence of energy on shear
strain: continuous and piecewise quadratic potentials. One elas-
tic domain is shadowed.

FIG. 3 (color online). Probability distribution of dissipated
energy in a steady state; the inset shows the structure of fluctua-
tions during a typical cycle.

FIG. 2 (color online). (a) Macroscopic strain-stress curve
showing plastic hysteresis and shakedown. The inset illustrates
a fragment of the deformed lattice with two dislocation dipoles
nucleated around an imperfection: red and blue colors corre-
spond to dislocations of different sign. (b) Evolution of disloca-
tion density with cycling. The inset shows fluctuations.
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given the random nature of the quenched disorder. With
cycling the long-range correlations develop [see Fig. 4(b)],
and in the shakedown regime we record D� 1:74 inde-
pendently of initial disorder. Note that dislocation patterns
withD � 1:64–1:79 have been observed experimentally in
crystals with multiple slip systems; in simulations with a
single slip system, fractal patterning has been previously
linked to the possibility of dislocation multiplication [29],
which is operative in our model.

Despite the conceptual transparency of the above model,
the mechanism of reaching the critical regime remains
obscure. The model, however, can be simplified further if
we notice that in the quasistatic limit � ! 0 the relaxation
is instantaneous and the system remains almost always in
equilibrium @�=@u ¼ 0. In order to solve the equilibrium
equations analytically, we can replace the smooth periodic
potential by a piecewise quadratic potential (see Fig. 1)
defined in each period [ðd� 1Þ�0, ðdþ 1Þ�0] as gð�Þ ¼
1
2 ð�� dÞ2, where d is the new integer-valued spin variable

describing a quantized slip; since at given lattice field
dði; jÞ the equilibrium equations are linear, the strain field
can be found analytically (cf. [30]). The Fourier image

�̂ðqÞ of the shear strain �ði;jÞ reads �̂ðqÞ¼ ðsþy ðqÞ
s�y ðqÞd̂ðqÞþĤðqÞÞ=�̂ðqÞ, where q ¼ ðqx; qyÞ ¼ ð2�k=N;

2�l=NÞ is the wave number. Here we defined

ĤðqÞ ¼ s�x ðqÞsþx ðqÞĥ1ðqÞ þ s�y ðqÞsþy ðqÞĥ2ðqÞ and �̂ðqÞ¼
2K½cosðqxÞ�1�þs�y ðqÞsþy ðqÞ, where s�a ðqÞ ¼ �½1�
cosðqaÞ � i sinðqaÞ� with a ¼ x; y. Notice also that we

control the average shear strain �̂0ðqÞ ¼ t�ðqÞ and that
the quenched disorder becomes the source of the residual

strain �̂hðqÞ ¼ ĤðqÞ=�̂ðqÞ.
It is now straightforward to reformulate the model as an

integer-valued automaton. Observe that the variable �� ¼
�� ð�0 þ �hÞ representing shear strain fluctuations must
be confined between the thresholds ��0 � �ðh; tÞ<
��ði; jÞ< �0 � �ðh; tÞ, where �ðh; tÞ ¼ ½�̂h��1

q þ t and

½���1
q denotes the inverse Fourier transform. When ��

reaches the threshold, the integer parameter d is updated
d ! dþMð��Þ, where

Mð��Þ ¼
8<
:
þ1; if �� > �t � �ðh; tÞ
�1; if �� <��t � �ðh; tÞ
0; otherwise:

After each increment of loading t we recheck the stability
until all the units are stabilized; the dissipated energy
during an avalanche is the difference of the total energies
for two subsequent stable states.
The use of cellular automaton representation greatly

reduces the complexity of numerical computations while
the behavior of the system remains the same, including the
shape of the stress strain hysteresis, the evolution of the
dislocation density, and the structure of spatial and tempo-
ral correlations. To illustrate the statistics we show in Fig. 5
the finite-size scaling collapse of energy dissipation at the
critical state; here we assumed that PðEÞ ¼ E��’ðE=EcÞ
with universal cutoff function ’ and the cutoff energy
which diverges in the thermodynamic limit as Ec � N�.
Our computations show that again � � 1:6� 0:05 and that
� � 1:2� 0:1, which is close to the value � � 1 obtained
for plastic strain increments in [6,31]. These exponents are
insensitive to the degree of disorder in the studied range;
for larger disorder we observed a cutoff which is no longer
size dependent. Based on our computations we conclude
that both models, the one with continuous dynamics and
smooth potential and the one with discrete dynamics and
piecewise quadratic potential, belong to the same univer-
sality class. This behavior is markedly different from the

FIG. 4 (color online). (a) Probability distribution of dislocation
rich regions in the shakedown state; the inset shows spatial
distribution of the energy density �ð�; �Þ. (b) Correlation func-
tion CðrÞ after the first cycle (squares) and after the fifth cycle
(circles); the inset shows a characteristic stress field during
steady yielding.

FIG. 5 (color online). Scaling collapse of the dissipated energy
in automaton model for different system sizes N. The inset
displays the kernel Lðx; yÞ.
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prediction of the mean field theory where smooth and
cusped potentials lead to different universality classes [32].

An important question is whether the toppling rules in
our automaton are Abelian, meaning that the outcome of
the instability in multiple sites does not depend on the
toppling order. The update of the ‘‘slope’’ field ��

can be represented in Fourier space as �̂� ! �̂��
L̂ðqÞM̂ð��Þ, where

L̂ðqÞ ¼ sinðqy=2Þ2
sinðqy=2Þ2 þ K sinðqx=2Þ2

is the analog of the toppling matrix in the sandpile models.
The corresponding kernel Lðx; yÞ in the real space is highly
anisotropic, long range, and conservative (see inset in
Fig. 5). We compared numerically all conventional updat-
ing strategies and found that the microscopic configuration
shows some small dependence on the choice of the strategy
while the macroscopic observables, including the shake-
down hysteresis loop and the statistics of avalanches (criti-
cal exponents), remain unaffected. One can conclude that
our automaton has a weak (statistical) form of Abelian
symmetry which may still be helpful for the mathematical
analysis [15]. Another important property of our autom-
aton model is that it necessarily lowers the energy during
each avalanche. The dissipative structure is obvious in the
continuum model and is inherited by the automaton model.

In conclusion, to elucidate the origin of self-organized
criticality in plasticity we reduced a realistic continuous
dynamics to an integer automaton by replacing the fast
dissipative stages with jump discontinuities controlled by
random thresholds. The fact that despite the long-range
character of elastic interaction the computed exponents are
different from the predictions of the mean field theory may
mean that at least for some crystal classes plasticity is
effectively a 2D phenomenon lying below the upper criti-
cal dimension.
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