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Power-stroke-driven actomyosin contractility
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In ratchet-based models describing actomyosin contraction the activity is usually associated with actin binding
potential while the power-stroke mechanism, residing inside myosin heads, is viewed as passive. To show that
contraction can be propelled directly through a conformational change, we propose an alternative model where
the power stroke is the only active mechanism. The asymmetry, ensuring directional motion, resides in steric
interaction between the externally driven power-stroke element and the passive nonpolar actin filament. The
proposed model can reproduce all four discrete states of the minimal actomyosin catalytic cycle even though it
is formulated in terms of continuous Langevin dynamics. We build a conceptual bridge between processive and
nonprocessive molecular motors by demonstrating that not only the former but also the latter can use structural
transformation as the main driving force.
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I. INTRODUCTION

Active contractility in actomyosin networks results from
stochastic interaction between individual myosin cross-
bridges and the adjacent actin filaments. It includes cyclic
attachment of myosin heads to actin binding sites together with
a concurrent conformational change in the core of the myosin
catalytic domain (of folding-unfolding type). A lever arm
amplifies this structural transformation producing the power
stroke, which is believed to be the crucial part of a mechanism
allowing the attached cross-bridges to generate macroscopic
forces [1,2].

A prototypical biochemical model of the myosin ATPase re-
action in solution, linking together the attachment-detachment,
the power stroke, and the hydrolysis of adenosine triphosphate
(ATP), is known as the Lymn-Taylor cycle [3]; see Fig. 1.
While this minimal description of enzyme kinetics is common
for most myosins motors [4], its association with microscopic
structural details and its relation to micromechanical interac-
tions remains a subject of debate [5–7].

In physiological literature it is usually implied that force
generation is, to a large degree, driven by the power stroke,
which is then perceived as an active mechanism [8]. This
opinion is supported by observations that both the power stroke
and the reverse power stroke can be induced by ATP even in
the absence of actin filaments [6], that contractions can be
significantly inhibited by antibodies which impair lever arm
activity [9], that sliding velocity in mutational myosin forms
depends on the lever arm length [10], and that the directionality
can be reversed as a result of modifications in the lever arm
domain [11,12].

A perspective that the power stroke is the driving force
of active contraction was challenged by the suggestion that
myosin catalytic domain could operate as a Brownian ratchet,
which means that it can move and produce contraction
without assistance from the power-stroke mechanism [13–15].
In this interpretation the contraction is driven directly by
the attachment-detachment machinery which can rectify
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correlated noise and select directionality following, for in-
stance, the polarity of actin filaments [16,17].

Although the simplest models of Brownian ratchets neglect
the conformational change in the head domain, some phases
of the attachment-detachment cycle can be interpreted as
the power stroke if the actin potential undergoes additional
externally driven horizontal shifts [18,19]. Ratchet models
were also proposed where the periodic spatial landscape
is supplemented by a reaction coordinate, representing the
conformational change [20,21]. In all these models, however,
the role of the power stroke was viewed as secondary and
the contraction could be generated even if the power-stroke
mechanism was disabled. The main functionality of the power-
stroke mechanism is attributed in this approach to fast passive
force recovery. The power stroke then plays the role of a
passive folding-unfolding mechanism which can be activated
by loading but is not directly ATP driven [22–24].

The conflicting viewpoint that the power-stroke mechanism
consumes chemical energy is the underpinning of the broadly
accepted phenomenological chemomechanical models that
assign active roles to both the attachment-detachment and
the power stroke [25,26]. These models pay great attention
to structural details and in their most comprehensive ver-
sions faithfully reproduce the main experimental observations
[27,28]. The chemomechanical models, however, are not
transparent mechanistically because they deal with elastic
interactions implicitly. In these models chemical states are
interpreted as continuous manifolds (parameterized by the
strain) and to characterize jump processes between the points
on these manifolds the authors choose the transition rate
functions phenomenologically. While this functional freedom
compensates the lack of knowledge of the underlying mul-
tidimensional energy landscape, the inherent arbitrariness of
some of these choices limits the ultimate predictive power of
this approach.

In an attempt to reach a synthetic description, several
hybrid models, allowing chemical states to coexist with
springs and forces, have been also proposed [29–31]. The
phenomenological side of these models is minimal; however,
they still combine continuous dynamics with jump transitions
which makes the precise identification of structural prototypes
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FIG. 1. Schematic illustration of the four-step Lymn-Taylor cycle
showing the power stroke A → B, the detachment B → C, the
recocking of the power stroke C → D, and the final reattachment
D → A, which brings the system back into the original state.

and the underlying micromechanical interactions challenging.
In this class of models the power stroke in an individual
cross-bridge was reproduced most faithfully by Geislinger and
Kawai, who introduced a 2D energy landscape by coupling a
bistable potential with a symmetric periodic potential [32]. In
their model both the attachment-detachment mechanism and
the power-stroke mechanism were effectively endowed with
activity; however, the ATP hydrolysis was still represented by
a flashing energy landscape.

In the present paper, drawing upon these earlier insights, we
propose a model which shows that the power stroke can be, in
principle, the main driving force behind muscle contraction.
The model is fully mechanistic in the sense that all jump
processes are replaced by continuous Langevin dynamics in a
simple energy landscape. To emphasize the idea of an active
power stroke, driven directly by the ATP hydrolysis, we in-
tentionally simplify the real picture and model actin filaments
as passive nonpolar tracks. The power-stroke mechanism is
represented by a symmetric bistable potential associated with
an internal degree of freedom and the ATP activity is modeled
as a center-symmetric correlated force with zero average
acting on the corresponding configurational variable. We show
that the model renders a fully mechanical interpretation of
all four chemical states in the minimal Lymn-Taylor cycle,
which opens an interesting perspective of building artificial
engineering devices mimicking enzymatic activity.

To justify the proposed coupling of the power-stroke
machinery with the attachment-detachment mechanism, we
argue that the conformational state of the power-stroke element
provides steric regulation of the distance between the myosin
head and the actin filament. More specifically, we assume that
when the lever arm swings, the interaction of the head with
the binding site weakens; see Fig. 2(a). This and other aspects
of steric rotation-translation coupling in ratchet models have
been previously discussed in Refs. [32–34].

A schematic representation of the proposed model is
shown in Fig. 2(b), where x is the observable position of
a myosin head, y is the internal variable characterizing the
phase configuration of the power-stroke element, and z is
another internal variable responsible for the coupling. The

FIG. 2. (a) An illustration of the steric effect associated with the
power stroke; (b) sketch of the mechanical model.

“macroscopic” variable x sees a symmetric energy landscape
and is not directly affected by the ATP hydrolysis. Both
asymmetry and driving can then originate only from the
coupling between the external and the internal degrees of
freedom.

The idea that the symmetry breaking mechanism and the
source of nonequilibrium may be resting exclusively in internal
degrees of freedom [35,36] is borrowed from the theory of
processive motors [37–40]. Thus, in the description of dimeric
motors it is usually assumed that ATP hydrolysis induces a
conformational transformation which then changes the relative
position of the motor legs ensuring motility [41]. In our study,
we use the same idea to describe a nonprocessive motor with a
single leg that remains on track due to the presence of a thick
filament.

The two-legged version of our motor, shown in Fig. 3,
would then work similarly to the models of kinesin motors
[37]; in particular, such a motor will be able to advance
along the track without being guided by a thick filament. By
placing emphasis on active role of the conformational change
in nonprocessive motors, we bring closer the descriptions of
porters and rowers as it has been envisaged in Ref. [42].

The proposed framework allows for three different modes
of power-stroke-driven contractility which may operate simul-
taneously.

The first mode is activated only if correlations are present
in the additive noise as in the conventional rocking ratchets
[43]. The peculiarity of our rocking ratchet is that the periodic
potential is symmetric and time independent. The correlated
component of the noise affects the bistable potential and, since
it is also symmetric, the directional motion is due exclusively
to an asymmetry induced by the coupling between the internal
degrees of freedom and the center of mass of the motor.

The second mode does not necessitate correlations in the
noise but instead requires that the coupling between the power-
stroke element and the actin filament is hysteretic. The motor
can then extract energy directly from the delay mechanism
which represents a nonequilibrium reservoir. We show that the

FIG. 3. A simplified representation of a processive, two-legged
version of the nonprocessive motor shown in Fig. 2(b).
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two active mechanisms, correlations induced and hysteresis
induced, can favor motions in different directions and can play
complimentary roles.

Finally, the third mode functions if the internal forces
acting between the myosin head and the actin filament are
nonpotential even without being hysteretic [15,20,44]. This
assumption introduces another active mechanism which can
drive the motor even if the thermostat is in equilibrium.
The correlations-induced and non-potentiality-induced mech-
anisms can again impose opposite directionality; in particular,
they can be used in combination to slow down and even to stop
the motor.

The variety of the available regimes is particularly rich
when the forces are nonpotential and the coupling between
the power stroke and the actin filament is hysteretic. The
resulting ratchet shows complex reversals of current depending
on the amplitude of the external driving and temperature.
The importance of the hysteretic coupling is revealed by the
observation that only in this case can the model reproduce all
four steps of the Lymn-Taylor cycle.

The paper is organized as follows. In Sec. II, we introduce
the collective coordinates describing the motor position and
the internal configuration of the myosin head. We proceed
by studying the continuous Langevin dynamics in the cor-
responding energy landscape driven by the ac forcing of
the power-stroke element (mode 1). In Sec. III, we consider
hysteretic coupling (mode 2) and show that the ensuing motor
can actively advance in both directions depending on the
amplitude of the ac noise. We then demonstrate that the
mechanical cycle of a hysteretic motor can be mapped on
the biochemical cycle of the actomyosin enzyme and explain
how the particular mechanical transients can be identified with
the basic chemical states observed in solution. In Sec. IV,
we study the nonpotential model (mode 3) and compare it
with the hysteretic model by juxtaposing the force-velocity
relations and the Péclet numbers. Finally, we present examples
of the interplay between all three active mechanisms. The last
section, Sec. V, summarizes our results and lists some open
problems.

Throughout the paper we use dimensionless variables
normalized by the scales of lengths l, time τ , and energy E

which we specify in Sec. II.

II. ACTIVE POWER STROKE

The idea to treat an individual myosin head as a mechanical
system with configurational degrees of freedom is rather old
[22,25]. The challenge, however, is to find a minimal descrip-
tion capturing the most important mechanical interactions. Our
attempt at such schematization is presented in Fig. 2(b).

We identify the external degree of freedom with the
variable x representing the location of actin binding face
on the actin filament. The most natural internal degree of
freedom, describing the configurational state of the power-
stroke element, is y − x, where the variable y was defined in
the Introduction. By introducing the second internal variable,
z, characterizing the separation of the myosin head and the
actin filament, we attempt to capture the higher-dimensional
effects of detachment in the simplest 1D setting.

FIG. 4. The coupling function �(y − x) linking the degree of
attachment z with the state of the power-stroke element y − x.

The role of different variables is clear from the way we
write the energy of the system,

Ĝ(x,y,z) = z�(x) + V (y − x), (1)

where �(x) is a nonpolar periodic potential representing the
binding strength of the actin filament and V (y − x) is a double-
well potential describing the power-stroke element. The two-
well structure of the potential implies that the power-stroke
mechanism can be either folded into the post-power-stroke
state or unfolded into the pre-power-stroke state. For simplic-
ity, we assume that the two wells of the potential V (y − x)
are symmetric, which eliminates a redundant polarity.

The coupling between the state of the power-stroke element
y − x and the spatial position of the motor x is implemented
through the internal variable z. In the simplest version of the
model z is assumed to be a function of the state of the power-
stroke element,

z(x,y) = �(y − x). (2)

This function must have a particular structure in order to
mimic the underlying steric interaction; see Fig. 4. We assume
that when a myosin head executes the power stroke it moves
away from the actin filament and therefore the control function
�(y − x) should progressively switch off the actin potential.
Similarly, when the power stroke is recharging, the myosin
head moves closer to the actin filament and the function
�(y − x) should bring the actin potential back into the on

configuration.
We observe that since the double-well potential V (y − x)

is fully symmetric, the assignment of the wells to pre- or
post-power-stroke states is arbitrary. Had we decided to invert
the choice presented in Fig. 4 by relabeling the energy wells,
we would have to replace �(s) by �(−s). As we see later
in the paper, such switch results in a simple reversal of the
directionality of the motion.

By using the coupling (2) we can eliminate the variable z

and introduce the redressed potential,

G(x,y) = Ĝ(x,y,�(y − x)). (3)

As it tracks the state of the power-stroke element the potential
G(x,y) effectively “flashes” between the periodic and flat
(in x) configurations; see Fig. 5. However, in contrast to
conventional flashing ratchets, the switch here is not imposed
from outside but results from the coupling with a fluctuating
internal variable.

The overdamped stochastic dynamics of the system with
energy (3) is described by the following 2D system of
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FIG. 5. The energy landscapes: Ĝ(x,y,1), describing the attached
state where �(y − x) = 1, and Ĝ(x,y,0), describing the detached
state, where �(y − x) = 0.

(dimensionless) Langevin equations:

ẋ = −∂xG(x,y) − f (t) +
√

2Dξx(t)
(4)

ẏ = −∂yG(x,y) + f (t) +
√

2Dξy(t).

Here ξ (t) is a conventional white noise with 〈ξi(t)〉 = 0
and 〈ξi(t)ξj (s)〉 = δij δ(t − s). The parameter D = kBθ/E is
a dimensionless measure of temperature θ and kB is the
Boltzmann constant; for simplicity the viscosity coefficients
are assumed to be the same for variables x and y. The
force couple f (t) with zero average represents a correlated
component of the noise and characterizes mechanistically
the degree of nonequilibrium in the external reservoir (the
abundance of ATP).

We can say that the system (4) describes the power-stroke-
driven ratchet because the correlated noise f (t) acts on the
relative displacement y − x. It effectively “rocks” the bi-stable
potential and the control function �(y − x) converts such
“rocking” into the “flashing” of the periodic potential �(x).
Various other types of rocked-pulsated ratchet models have
been previously studied in Refs. [45,46].

The goal of any ratchet design is to generate a systematic
drift,

v = lim
t→∞

〈x(t)〉
t

, (5)

without applying a biasing force. This is possible in the model
governed by Eq. (4) because of an implicit symmetry breaking
imposed by the control function (2).

To justify this claim, let us, for simplicity, set f (t) = 0
and rewrite (4) in the variables representing the position
of the center of mass q = (x + y)/2 and the power-stroke
configuration r = y − x, which is a conventional step in such
problems [47]. The new potential is

G(q,r) = �(r)�(q − r/2) + V (r),

and if we recall that the equilibration of the variable r takes
place at much faster time scale than the overall drift, we
can adiabatically eliminate it and obtain a one-dimensional
stochastic system with an effective periodic potential,

Geff(q) ∼ ln

[∫ ∞

−∞
exp (−G(q,r)/D)dr

]
.

FIG. 6. The functions �, V , and f used in numerical experiments.

In the absence of the feedback �(s) = 0 this potential is
symmetric Geff(q) = Geff(−q) because �(s) = �(−s) and
V (s) = V (−s). When �(s) �= �(−s), it loses symmetry
because pre- and post-power-stroke configurations are no
longer equivalent. It is also clear that by reverting the control
function �(s) → �(−s), we change the directionality of the
average motion; see Fig. 10.

To illustrate the dependence of the average velocity (5)
on the parameters of the model, we studied the system (4)
numerically. In our computational experiments we use a
periodic extension of the symmetric triangular potential �(x)
with amplitude Q and period L [see Fig. 6(a)],

�(x) =
{ 2Q

L
x if 0 � x < L/2,

2Q

L
(L − x) if L/2 � x < L.

The symmetric potential V (y − x) is assumed to be bi-
quadratic with the same stiffness k in both phases. The distance
between the bottoms of the wells is denoted by a [see Fig. 6(b)],
so

V (y − x) =
{

1
2k (y − x + a/2)2 if y − x < 0

1
2k (y − x − a/2)2 if y − x ≥ 0.

The correlated component of the noise f (t) is interpreted as
the simplest ac driving described by a periodic extension of
a rectangular-shaped function with amplitude A and period T

[shown in Fig. 6(c)],

f (t) =
{ + A if 0 � t � T/2,

− A if T/2 � t � T .

Finally, the steric control ensuring the gradual switch of the
actin potential is described by a gradual step function,

�(s) = (1/2) [1 − tanh (s/ε)] , (6)

where ε is a small parameter; see Fig. 4.
To fix the parametrization, we need to specify the dimen-

sional scales. It is natural to use the distance between the
bottoms of the wells in the bistable potential as the length
scale l so a = 1. We have also made a standard assumption
that the separation between the binding cites along the actin
filament is of the same order as the power-stroke size and
therefore L = 1. The height of the barrier between the binding
sites was chosen as the energy scale E, so we put Q = 1.
The relaxation time scale was set by the viscosity coefficient
η and therefore τ = ηl2/E. To ensure that the ac driving is
slow at the scale of internal relaxation we took T = 10. The
curvature of the energy wells in the bistable potential should
be comparable with E/l2 and therefore we took a generic
value k = 1.5. In the computations we used the value of the
small parameter ε = 0.2 which made the attachment and the
detachment events sufficiently sharp.
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FIG. 7. The dependence of the average velocity v on temperature
D and the amplitude of the ac signal A in the model with coupling
(6). The pre- and post-power-stroke states are labeled in such a way
that the purely mechanical ratchet would move to the left.

To integrate the system (4) numerically, we used the
simplest Euler-Maryama scheme [48] with a constant time step
�t = 0.5 × 10−3. The ensemble averaging was performed
over N = 104 stochastic realizations.

Our numerical results are summarized in Fig. 7. First, we
see that the drift is absent (v = 0) when the noise is uncor-
related and the external reservoir is in equilibrium (A = 0).
This is an obvious consequence of the potential nature of
this holonomic model. Indeed, the stationary probability flux
satisfies ∇J = 0 and J = f F − D∇f , where f (x,y) is the
stationary probability distribution and F is the internal force.
Since F = −∇G, one can use periodicity in x and growth
in y − x (of the potential G) to show that J = 0; see also
Refs. [15,20,44].

It is then clear that the drift in this model is exclusively
due to A �= 0. When A is small, the drift velocity shows a
maximum at finite temperatures which implies that the system
exhibits stochastic resonance [49]. At high amplitudes of the
ac driving, the motor works as a purely mechanical ratchet and
the increase of temperature always worsens the performance
[13,14,16].

As we have already seen, the direction of motion in this
model is decided by the choice of steric biasing of the otherwise
symmetric bistable potential. The chosen directionality can
be either enhanced or suppressed if we consider polar actin
filaments. To illustrate this point, we show in Fig. 8 how
the drift velocity depends on the parameter characterizing the
spatial asymmetry of the actin track. In particular, we see that
on a polar filament with sufficient asymmetry our motor can
be stopped and even steered in the opposite direction.

The next question concerns the compatibility of the pro-
posed model with the minimal biochemical ATPase cycle
shown in Fig. 1. The traditional identification of chemical
and structural states, detailed in this figure, suggests that
the motor must pass through the following four mechanical
transients: “attached pre power stroke,” “attached post power

FIG. 8. The dependence of the drift velocity v on the filament
polarity � = λ1 − λ2 in the model with coupling (6) at fixed
temperature D = 0.01.

stroke,” “detached post power stroke,” and “detached pre
power stroke.” It is immediately clear that not all of these
states can be reached by the model with coupling (6). Indeed,
the detachment takes place when the “striking” element is
positioned exactly between the two energy wells and therefore
the power stroke cannot be completed in the attached state. As
a result, the model reproduces reliably only two structural
configurations: the attached pre-power-stroke state and the
detached post-power-stroke state.

To capture the remaining states shown in Fig. 1 we must
assume that the detachment, necessarily implying in our model
the motion of the center of mass, is delayed until the power
stroke is (almost) completed. Similarly, the attachment must
take place only after the power-stroke element has been
(almost fully) recharged. The necessary modification of the
model, accounting for such two-way delays, is discussed
in Sec. III.

III. HYSTERETIC COUPLING

To reproduce the whole Lymn-Taylor cycle, we postulate
that the switching of the actin potential from the on to the
off state takes place at different values of the variable y − x,
depending on the direction of the conformational change
(folding or unfolding). To this end, we replace the holonomic
coupling (2) by a memory operator,

z{x,y} = �̂{y(t) − x(t)}, (7)

whose output depends on whether the system is on the
“striking” or on the “recharging” branch of the trajectory;
see Fig. 9. Such memory structure can be also described by a
rate-independent differential relation of the form

ż = Q(x,y,z)ẋ + R(x,y,z)ẏ, (8)

where the implied nonintegrability makes the model nonholo-
nomic. Indeed, if we introduce a vector variable u = (x,y,z)
and neglect the time-dependent external noise we can rewrite
the system of the governing equations in the form u̇ = F(u),
where F is no longer a gradient. The resulting Brownian motor
can potentially advance even in the absence of the correlated
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FIG. 9. The hysteresis operator �̂{y(t) − x(t)} linking the degree
of attachment z with the previous history of the power-stroke
configuration y(t) − x(t).

noise by extracting energy directly from the nonholonomic
control mechanism.

By using (7) we can now rewrite the energy of the system
as a functional of its history y(t) and x(t),

G{x,y} = �̂{y(t) − x(t)}�(x) + V (y − x). (9)

In the Langevin setting (4), the history dependence may
mean that the underlying microscopic stochastic process is
non-Markovian (due to, say, configurational pinning [50]) or
that there are additional nonthermalized degrees of freedom
that are not represented explicitly [51]. In general, it is well
known that the realistic feedback implementations always
involve delays [52].

To simulate hysteretic response numerically we used two
versions of the same coupling function (6) shifted by δ with the
branches �(y − x ± δ) identified sufficiently far away from
the hysteresis domain; see Fig. 9. Our numerical experiments
show that the performance of the model is not sensitive to the
shape of the hysteresis loop and depends mostly on its width
characterized by the small parameter δ.

In Fig. 10 we illustrate the “gait” of the motor with the
hysteretic coupling (7). The center of mass advances in steps
and during each step the power-stroke mechanism gets released
and then gets recharged again, concurrently with attachment-
detachment. By coupling the attached state with either the

FIG. 10. Stationary particle trajectories in the model with the
hysteretic coupling (7). Different ways of biasing lead to different
directions of drift and large hysteresis loops produce faster moving
motors. Other parameters are D = 0.02 and A = 1.5.

FIG. 11. The dependence of the average velocity v on tempera-
ture D in the hysteretic model with δ = 0.5.

pre- or post-power-stroke state, we can vary the directionality
of the motion. The average velocity increases with the width
of the hysteresis loop, which shows that the motor can extract
more energy from the coupling mechanism system with longer
delays.

The results of the parametric study of the model are
summarized in Figs. 11 and 12. First, observe that the motor
can now move even in the absence of the correlated noise, at
A = 0, because the nonholonomic coupling (9) breaks the
detailed balance by itself. At finite A the system can use
both sources of energy (hysteretic loop and ac noise) and the
resulting behavior is much richer than in the nonhysteretic
model.

For instance, if the holonomic ratchet with a fixed coupling
bias always advances in one direction, the nonholonomic
ratchet can self-propel in both directions. At large A the
hysteretic motor exhibits the same directionality as the
nonhysteretic motor and the average velocity is only mildly
affected by the presence of the hysteresis. At small A the
situation changes and now the direction of the drift is controlled

FIG. 12. The dependence of the average velocity v on amplitude
of the ac driving A in the hysteretic model with δ = 0.5.
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FIG. 13. Single-particle trajectories in the 3D space (y − x,z,x) and their projections on the plane (y − x,z): (a) nonhysteretic coupling
and (b) hysteretic coupling. The parameters are D = 0.2, A = 0, and δ = 0.5.

by the hysteresis and is reversed comparing to the case of
a nonhysteretic motor. As we see, in the hysteretic power-
stroke-driven ratchet different active mechanisms dominate at
different values of A. This opens an interesting possibility for
these molecular machines to flip “engines” and in this way
reverse the directionality by simply changing the intensity of
the external energy supply.

The A dependence of the drift velocity is shown in more
detail in Fig. 12. At zero temperature the system is pinned
and the drift is blocked until the driving amplitude reaches a
threshold beyond which the system can work as a mechan-
ical ratchet. At finite temperatures the pinning disappears
because of the noise-induced barrier crossing. At small A

the motor drifts in the direction opposite to the direction of
the mechanical ratchet. The velocity of this drift shows a
characteristic peak at finite A, revealing stochastic resonance.
The current reversal, indicating the change of the mechanism
from hysteresis dominated to correlation dominated, takes
place near the depinning point, A ∼ 2.5.

To illustrate the mechanism of the hysteresis-dominated
drift, it is sufficient to consider the case when A = 0. This
disables an alternative ac-driven ratchet mechanism. In Fig. 13
we compare two realizations of particle trajectories in the 3D
space (x,y − x,z) for the model without hysteresis (2) and
with hysteresis (7). The loops obtained by projecting these
trajectories onto the 2D plane (y − x,z) describe the structure
of the corresponding “strokes” in the configurational space. In
the holonomic case (2) the area of the projected loop is equal
to zero and we observe diffusion without drift [in Fig. 13(a)
the average of x is equal to zero]. Instead, in the nonholonomic
case (7), the projected trajectory spans a finite area and the drift
velocity is finite [see Fig. 13(b)]. Similar dependence of the
drift velocity on the area of the “stroke” is known in the theory
of Stokes swimmers where nonholonomic control is also the
factor responsible for the directional motion in “violation” of
the scallop theorem [53].

The mechanical “stroke” in the space of internal variables
z,y − x can be compared with the minimal biochemical
actomyosin cycle shown in Fig. 1. The chemical states

constituting this cycle are identified with structural config-
urations (obtained from crystallographic reconstructions) in
the following way [3]: A (attached, pre power stroke →
AM*ADP*Pi), B (attached, post power stroke → AM*ADP),
C (detached, post power stroke → M*ATP), and D (detached,
pre power stroke → M*ADP*Pi). In our model the jump events
are replaced by continuous transitions and the association of
chemical states with particular regimes of stochastic dynamics
is not straightforward.

In Fig. 14(a), we show a fragment of the averaged trajectory
of a steadily advancing motor projected on the (x,y − x) plane.
In Fig. 14(b) the same trajectory is shown in the (x,y − x,z)
space with fast advances in the z direction intentionally
schematized as jumps. By using the same letters A, B, C,
and D as in Fig. 1 we establish a basic connection between
the chemical and structural states and the transient mechanical
configurations of the advancing motor.

FIG. 14. (a) A steady-state cycle in the hysteretic model projected
on the x,y − x plane; the black line corresponds to f (t) > 0 and the
gray line to f (t) < 0. (b) Representation of the same cycle in the
z,x,y − x space with identification of the four chemical states A, B,
C, and D constituting the Lymn-Taylor cycle shown in Fig. 1. The
level sets represent the energy landscape G at z = 0 (detached state)
and z = 1 (attached state). The parameters are D = 0.02, A = 1.5,
and δ = 0.75.
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FIG. 15. Schematic representation of the power-stroke-driven
motor carrying cargo: (a) pushing regime and (b) pulling regime.

Suppose that we start at point A corresponding to the end
of the negative cycle of the ac driving f (t). The system
is in the attached, pre-power-stroke state and z = 1. As the
sign of the force f (t) changes, the motor undergoes a power
stroke and reaches point B while remaining in the attached
state. When the configurational variable y − x passes the
detachment threshold, the myosin head detaches which leads
to a transition from point B to B′ on the plane z = 0. Since the
positive cycle of the force f (t) continues, the motor completes
the power stroke by moving from B′ to point C. At this
moment, the rocking force changes sign again, which leads
to recharging of the power-stroke mechanism in the detached
state, described in Fig. 1 as a transition from C to D. In point
D, the variable y − x reaches the attachment threshold. The
myosin head reattaches and the system moves to point D′,
where z = 1 again. The recharging continues in the attached
state as the motor evolves from D′ to a new state, A, shifted
by one period.

As we see the chemical states constituting the minimal
enzyme cycle can be linked to the mechanical configurations
traversed by our stochastic dynamical system. The detailed
mechanical picture, however, looks more complicated than
in the simplest Lymn-Taylor scheme. It is clear that at least
in some regimes one can use the Kramers approximation
to perform a transition from our continuous dynamics to a
description in terms of a discrete set of chemical reactions.
However, it is also clear that more chemical states than in the
minimal Lymn-Taylor model will be needed to describe the
detailed mechanical “stroke.”

So far we have been dealing with motors overcoming
viscous friction but not carrying cargoes. The next step is to see
how fast the same motor can move against an external force
fext. Two different mechanical configurations of the motor
carrying cargo correspond to the cases when fext > 0,v < 0
and fext < 0,v > 0; see Fig. 15. Since the nonhysteretic motor
is designed to move to the left, the mechanical configuration
shown in Fig. 15(a) can be somewhat arbitrarily characterized
as “pushing.” Given that the motor with the hysteretic coupling
can move in both directions, the configuration shown in
Fig. 15(b) can be then interpreted as “pulling.” Since our motor
does not have explicit leading and trailing edges, we assume
that the force fext acts in both cases on the variable y, which
amounts to tilting of the potential (9) along the y direction,

G{x,y} = �̂{y(t) − x(t)}�(x) + V (y − x) − yfext. (10)

We recall that the actual architecture of a half sarcomere is
asymmetric and the forces are transmitted through passive
cross-linkers imposing a particular polarity on the loading.
Therefore, despite the ambiguity, the association of the two

FIG. 16. The force-velocity relation in the model with hysteretic
coupling at different amplitudes of the ac driving A and different
temperatures D. The hysteresis width is δ = 0.5.

mechanical regimes shown in Fig. 15 with pushing and pulling
is appropriate.

A stochastic system with energy (10) was studied numer-
ically and in Fig. 16 we show the computed force-velocity
relations. The light quadrants in the (fext, v) plane correspond
to two domains of dissipative behavior where R = fextv > 0.
Here the direction of the force agrees with the direction of
motion and and the motor is being dragged by the applied
load (while exhibiting both passive and active friction). The
shaded quadrants indicate the two domains where the system is
antidissipative and R = fextv < 0. In these regimes the motor
produces work and the motion can be of two types: when
the motor overcomes the opposing pushing force and drives
the cargo ahead of itself (fext > 0, v < 0) and when it carries
the cargo attached from behind acting against a pulling force
(fext < 0, v > 0). Since in the hysteretic model the current can
be reversed by changing the amplitude of the ac noise A, our
motor can perform both types of useful work.

Observe that at low temperatures the convexity properties of
the force-velocity relations in active pushing and active pulling
regimes differ. In the case of pulling, the typical force-velocity
relation is reminiscent of the Hill’s curve describing isotonic
contractions [54]. In the case of pushing, the force-velocity
relation can be characterized as convex-concave and such
behavior has been also observed in muscle contraction exper-
iments [55–57]. The difference between these force-velocity
curves is due to the dominance of physically nonequivalent
mechanisms in the corresponding parameter domains.

For instance, in the pushing regimes, the motor activity
fully depends on ac driving and at large amplitudes of this
driving it performs as a mechanical ratchet. Instead, in the
pulling regimes, associated with small amplitudes of external
driving, the motor advances because of the delayed feedback
exemplified by the hysteretic mechanism. We may speculate
that both mechanisms can be operative in actomyosin systems,
which would then provide an explanation for occasionally
counterintuitive drift directions.

012708-8



POWER-STROKE-DRIVEN ACTOMYOSIN CONTRACTILITY PHYSICAL REVIEW E 89, 012708 (2014)

We also mention that dissimilarity of convexity properties
of the force-velocity relations in pushing and pulling regimes
has been recently discussed in the context of cell motility where
actomyosin contractility is known to be one of the main driving
forces [58]. The direct quantitative comparison is, however,
premature since in our minimal setting the model deals with
a single cross-bridge and still neglects important collective
effects [24].

IV. NONPOTENTIAL MODELS

The performance of the power-stroke-driven ratchet can be
considerably enhanced if the feedback between the power-
stroke and the attachment-detachment mechanisms is made
nonconservative even in the absence of hysteresis. This would
happen, for instance, if the configurational state of the power-
stroke element affected the position of a myosin head with
respect to actin filament, while the reverse influence remained
insignificant; in other words, if the coupling between the
power-stroke element and the actin potential was one sided.
In this case, instead of a passive control, we are dealing
with an active control represented by a Maxwell demon-type
mechanism [59,60].

The governing equations describing such ratchet can be
written in the form

ẋ = − z∂x�(x) − ∂xV (y − x) − f (t) +
√

2Dξx(t)

ẏ = − ∂yV (y − x) + f (t) +
√

2Dξy(t),
(11)

where the notations are the same as in (4). The results of the
numerical study of the system (11) are summarized in Fig. 17.

The overall behavior of the nonpotential system (11) is
similar to the behavior of the potential system with hysteretic
coupling (9). Since the ratchet can now receive energy from the
active controlling device [20,44], a nonzero drift takes place
already at A = 0. The direction of the current can be again
reversed by varying the amplitude of the driving. At large
values of A, we obtain our usual mechanical ratchet which does
not see the nonpotentiality of the model. At small A the ratchet

FIG. 17. Temperature dependence of the drift velocity v in the
nonpotential model (11) without hysteresis.

FIG. 18. Temperature dependence of the drift velocity v in the
nonpotential model (11) with hysteresis, δ = 1.

exploits the nonpotentiality of the model in the essential way.
As in the case of hysteretic system, the direction of the drift is
now opposite to the one picked up by the mechanical ratchet.
Notice also that at moderate values of A the directionality of
the drift can be reversed by the variation of temperature.

The nonpotential ratchet shows the highest performance
in combination with the hysteretic feedback (9); see Fig. 18.
The behavior of such a hybrid system at A = 0 is similar to
what we have seen in the case of the system with energy (9),
which means that in this regime the response is dominated
by hysteresis. As A increases we observe a new effect:
Around A ∼ 1.5 the system appears to be in a resonant state
and works as a quasimechanical ratchet; however, now, the
nonpotentiality is the principle driving factor; see Fig. 18. With
further increase of A we observe a reversal of the current and
the system enters the regime where the main driving force is
again the ac noise. At large A the mechanical ratchet behavior
prevails again; however, it fundamentally differs from the
quasimechanical ratchet behavior observed around A ∼ 1.5.

In Fig. 19 we illustrate the effect of the amplitude A on
the drift velocity in more detail. In contrast to the potential
case, the ratchet can now move at zero temperatures in both
directions equally fast if the amplitude of the ac signal is chosen
appropriately. The current reversal takes place in the narrow
range of amplitudes A where the transition from a mechanical
to a quasimechanical ratchet mechanism takes place.

At finite temperatures we see a complex interplay of all
three active mechanisms. The detailed study of the underlying
stochastic system, allowing one to precisely map the paramet-
ric domains where particular mechanisms dominate, will be
presented elsewhere.

To better understand the effects of nonpotentiality we also
compute the Péclet number Pe = Lv/De, characterizing the
relative strength of the drift (over diffusion). The effective
diffusion coefficient is defined by [61–63]

De = 1

2
lim
t→∞

〈[x(t) − 〈x(t)〉]2〉
t

, (12)
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FIG. 19. The dependence of the average velocity v on the
amplitude A of the ac signal in the nonpotential model with hysteresis,
δ = 1.

so the stochastic transport is most coherent when the absolute
value of the Péclet number number is larger than 1. From
Fig. 20 we see that only in the nonpotential model the motion
at small values of the driving amplitude A can be viewed as
truly directional.

Suppose now that a load is attached to the motor with
nonpotential hysteretic coupling. The typical force-velocity
relations are shown in Fig. 21. As in the potential case, the
motor can operate in two antidissipative regimes, either by
working against a pushing force or by pulling a cargo. At both
small and large values of A the behavior of the potential and
the nonpotential motors is similar. Expectedly, an anomaly
takes place in the pulling regime (fext < 0, v > 0) at A ∼ 1.5
where the motor behaves as a quasimechanical ratchet. Here
the nonpotentiality dominates and the force-velocity relation

FIG. 20. The Péclet number in the potential model with hysteresis
(δ = 0.5 as in Fig. 12) and in the nonpotential model with hysteresis
(δ = 1 as in Fig. 19); D = 0.1.

FIG. 21. The force-velocity relation in the nonpotential model
with hysteresis at different temperatures D and different driving
amplitudes A; δ = 1.

shows an unusually sharp convexity change. It is interesting
that in this regime the behavior near the stall force is
reminiscent of the one observed in skeletal muscles [2].

V. DISCUSSION

In this paper, we developed a prototypical model of the
power-stroke-driven actomyosin contraction. The mechanistic
nature of the model is clear from the fact that the underlying
stochastic dynamics is described by a set of continuous
Langevin equations which are basically the equations of
mechanics.

In the previous mechanistic representations of actomyosin
systems the power stroke was undermined as a passive folding-
unfolding mechanism while the attachment-detachment was
given a primary role as the main driver of contraction. Since
active sites are located inside motor domains, the external
forces, representing the ATP activity, were typically introduced
as conjugates to macroscopic positions of these domains and
such ratchets were essentially attachment-detachment driven
[64]. This conventional ratchet mechanism is complimentary
to the one studied in the present paper where the thrust of
the ATP activity has been shifted towards the internal variable
characterizing the state of the power-stroke element.

To make a clear distinction between our model and the
conventional models of Brownian ratchets we assumed that
the actin track is nonpolar and that the bistable element
is unbiased. The symmetry breaking was then achieved
exclusively through the coupling of these two subsystems.
In the more comprehensive models the polarity of the actin
filament and the asymmetry of pre- and post-power-stroke
states should be taken into consideration as well. This will
contribute to the ratchet effect and improve the efficiency of
energy transduction.

We discussed three different modalities of how a power-
stroke-driven ratchet can receive energy of the ATP hy-
drolysis and presented mechanical analogs of the associated
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nonequilibrium chemical reservoirs. In the first, traditional,
representation, a mechanical action of the chemical reaction
was modeled by a correlated component of the noise. The
second representation was based on the idea that the coupling
between internal and external degrees of freedom is hysteretic.
Here in contrast to what is usually observed in macroscopic
systems, hysteresis was used as a source rather than a sink
of energy. The third representation implied that the internal
degrees of freedom have an inherently chemical origin and
therefore the source of nonequilibrium is in the lack of
potentiality of these forces.

We have shown that the use of the hysteretic design
for the power-stroke-driven motor allows one to reproduce
mechanistically the complete Lymn-Taylor cycle. This opens
a way towards dynamic identification of the chemical states,
known from the studies of the prototypical catalytic cycle in
solution, with particular transient mechanical configurations of
the actomyosin complex. Such identification is a precondition
for the bioengineering reproduction of a wide range of cellular
processes, where myosin cross-bridges play the dominant role,
from movement of cells to cytokinesis. Given that the mech-
anisms involved in our model can be mimicked artificially at
a supercellular scale, the proposed schematization of the con-
traction phenomenon can be viewed as a step towards building
engineering devices imitating actomyosin enzymatic activity.

In our mechanical representation of the nonprocessive,
single-legged motor an internal conformational change played
the role of the main driving force. Since this is the way the
processive motors are operating [37–39], our model brings
these two groups of motors into the same class. To describe
a processive dimeric motor in our framework, we need to

associate the second leg with the variable y (see Fig. 3) and
introduce the matching steric coupling in the potential,

Gdim{x,y} = �̂{y(t) − x(t)}�(x)

+ �̂{x(t) − y(t)}�(y) + V (y − x).

Here to ensure the hand-over-hand motion [2] we flipped the
sign of the argument in the hysteresis operator �̂{y(t) − x(t)}.
In support of the idea that both processive and nonprocessive
motors can be driven through a conformational change, we
mention that the general shape of the force-velocity relations
obtained in this paper is compatible with the available
measurements not only for nonprocessive motors but also for
processive motors [65–68].

The proposed model raises some challenging issues which
need to be addressed in future work. One challenge is to
understand the microscopic nature of the hysteretic element
and of the active mechanism ensuring the nonpotential force
structure. Another challenge is to find the optimal interaction of
our three active mechanisms ensuring the highest performance
of the motor. The third challenge is to study collective
effects associated with activity of many elastically interacting
power-stroke-driven motors. Here one can expect a variety of
interesting regimes from coherent fluctuations [29,69–71] to
self-tuning towards criticality [24,72,73].
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[57] K. A. P. Edman, A. Månsson, and C. Caputo, J. Physiol. 503,

141 (1997).
[58] P. Recho and L. Truskinovsky, Phys. Rev. E 87, 022720

(2013).
[59] F. J. Cao, L. Dinis, and J. M. R. Parrondo, Phys. Rev. Lett. 93,

040603 (2004).
[60] M. Feito, J. P. Baltanás, and F. J. Cao, Phys. Rev. E 80, 031128

(2009).
[61] P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J. M. Rubi,
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