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Active stabilization in systems with zero or negative stiffness is an essential element of a wide variety
of biological processes. We study a prototypical example of this phenomenon and show how active rigidity,
interpreted as a formation of a pseudowell in the effective energy landscape, can be generated in an overdamped
stochastic system. We link the transition from negative to positive rigidity with time correlations in the additive
noise, and we show that subtle differences in the out-of-equilibrium driving may compromise the emergence of
a pseudowell.
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I. INTRODUCTION

The response of biological systems to mechanical loading
depends not only on the load bearing properties of their
constituents, their connectivity and the temperature, but also on
the presence of nonthermal endogenous driving. For instance,
ATP-driven molecular motors can both stiffen the cytoskeleton
and fluidize it [1–4]. While it is clear that the nonequilibrium
environment modifies the nature of the statistical forces acting
in driven systems, the mesoscale thermomechanics of such
systems is not well understood, even in the case of steady
states [5–7].

At the level of a single cell, active rigidity may be
the outcome of tensegrity-type tightening [8], connectivity
change [9], steric interactions [10], or a general motor-induced
prestress coupled with extreme nonlinearity of the passive
response [11,12]. An example of ATP-induced stiffening at
larger scales is the Frank-Starling effect in cardiac muscles,
which cannot be explained by a simple filament overlap change
[13].

One of the most striking effects of active rigidity is the
stable mechanical functioning of the systems with negative
passive stiffness, as in the case of hair cells [14–16] and muscle
half-sarcomeres [17–19]. In these and other similar systems,
metabolic resources are used to modify the mechanical
susceptibility of the system and stabilize configurations that
would not have existed in the absence of ATP hydrolysis
[20–22].

The goal of this paper is to study the effect of an internal
driving on the pseudoelastic moduli that characterize the
slow mechanical response of active systems [23]. We show
that active rigidity, or, more generally, active susceptibility,
can emerge at the microscale through resonant nonthermal
excitation of molecular degrees of freedom. Our inspiration
comes from the inverted Kapitza pendulum [24], except
that in biological systems the inertial stabilization has to be
replaced by its overdamped analog. In both cases, however,
the macroscopic mechanical stiffness can be controlled by a
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time-correlated noise, which in a biological setting may serve
as a mechanical representation of a nonequilibrium chemical
reaction [25].

In the interest of analytical transparency, we limit our
attention to mean-field systems that can be described by
a single degree of freedom. In such systems, active sta-
bilization can be viewed as a creation of a noise-induced
pseudowell in an effective energy landscape. The proposed
mechanism of rigidity generation requires a finite distance
from thermodynamic equilibrium and is therefore different
from conventional entropic stabilization, which operates, for
instance, in rubber elasticity [26] and serves for stabilization
of body-centered-cubic (bcc) structures [27]. Our main result
is that the emergence of pseudowells is not an automatic
consequence of the violation of detailed balance but is a
phenomenon that is highly sensitive to the fine stochastic
signature of the nonequilibrium driving.

To justify our mean-field model, we consider in some
detail the case of skeletal muscle cells [28], where we
neglect the detachment of active cross-linkers (cross-bridges)
and model an elementary series element (half-sarcomere)
as a parallel array of molecular motors operating in stall
conditions. Due to the rigid connection between elements,
the interactions in this system are of long-range type, which is
responsible for negative passive stiffness of half-sarcomeres in
physiologically relevant conditions [19,29–31]. This creates a
stability problem for a myofibril, given that it can be viewed as
a series connection of half-sarcomeres, and one of the goals of
our paper is to link the stability of affine configurations in this
system [32,33] with the presence of directionless endogenous
noise fueled by ATP hydrolysis.

More specifically, we model attached myosin motors as
bistable springs, with two energy wells corresponding to pre-
and post-power-stroke configurations. Each “snap-spring” of
this kind acts against a linear spring, representing a structural
filament. The system is exposed to both uncorrelated agitation
(scaled with temperature-type parameter D) and a correlated
noise representing ATP hydrolysis (scaled with affinity-type
parameter A).

Building upon the idea of active drift [34], we consider
a family of stall states in this system parametrized by a
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mesoscopic measure of the total deformation. We compute
the time- and ensemble-averaged potential at the fixed value
of the deformation parameter, and we interpret the deformation
derivative of this potential as an effective stiffness. We show
that a nonequilibrium phase diagram in the space of parameters
(D,A) exhibits three different dynamic phases, including
the one associated with the activity-induced pseudoenergy
well. The overall behavior of the model is controlled by a
tricritical point with transitions of second order due to entropic
stabilization and of first order due to active stabilization.

We systematically study the sensitivity of the phenomenon
of active stabilization to the stochastic nature of the nonequi-
librium reservoir. We show that while in periodic (P) or
dichotomous (DC) environments, the pseudowell exists in an
extended domain of the parameter space; active stabilization
disappears if the noise is of Ornstein-Uhlenbeck (OU) type.
The sensitive dependence of the mechanical performance of
the molecular scale devices on the shape of the power spectrum
of the noise was observed in some studies of active drift
[35,36], and here we broaden the picture by covering molecular
machines generating active rigidity. Various features captured
by our minimal model are in common not only with inertial
stabilization [24], but also with the performance of the Ising
model in periodic magnetic field [37], the folding/unfolding of
proteins subjected to periodic forces [38], and the parametric
behavior of more complex actively driven systems [39–41].

The paper is organized as follows. In Sec. II we intro-
duce the simplest zero-dimensional system exhibiting active
stabilization, and we justify it from the perspective of
muscle mechanics. In Sec. III we study numerically the
finite-temperature behavior of the system subjected to three
different types of nonequilibrium driving: P, DC, and OU.
The analytically transparent zero-temperature limits in all
three problems are presented separately in Sec. IV. Our
conclusions are summarized in Sec. V. A short announcement
of our main results can be found in Ref. [42].

II. THE PROBLEM

We begin with a formal justification of a prototypical model
that we later study in full detail. While it schematizes a broad
class of active phenomena in endogenously driven nonequi-
librium systems, in this paper we justify it in the context of
mean-field modeling of muscle half-sarcomeres [43].

A. Mean-field model

As in typical experiments [3,4,25,44], we consider a probe
characterized by a (microscopic) coordinate x and placed in an
active environment. The probe is attached through an elastic
spring to a measuring device characterized by a (mesoscopic)
variable y. We assume that the variable y is slow and treat it
as a control parameter. Instead, the variable x(t) will undergo
fast stochastic motion that will have to be averaged out.

In the absence of noise, the environment will be character-
ized by the potential V (x), and we assume that the probe is
placed in an unstable configuration. One way to satisfy this
condition is to assume that V (x) has a double-well structure
with the reference position of a probe in a spinodal state.
We further assume that the probe is exposed to a fluctuating
surrounding medium with a quickly relaxing component rep-

resented by an equilibrium thermostat and a relatively slower
relaxing component describing a nonequilibrium environment.
We study the mesoscopic force exerted by the probe on
the measuring device, which implies the transition from the
environment potential V (x) to the effective potential for the
measuring device F (y).

To be specific, consider the stochastic dynamics of a
variable x(t) described by a dimensionless Langevin equation,

ẋ = −∂xE(x,y,t) +
√

2Dξ (t), (1)

where ξ (t) is a standard white noise and D is a temperature-like
characteristic of the equilibrium thermostat. The potential
E(x,y,t) = Ep(x,t) + Em(x,y) is a sum of two components:
Ep(x,t) = V (x) − xf (t), describing the probe in an out-of-
equilibrium environment, and Em(x,y) = k(x − y)2/2, de-
scribing the linear elastic coupling with a measuring device
characterized by stiffness k. We assume that the energy is
supplied to the system through the rocking force f (t) with
zero average, which is characterized by an amplitude A and a
time scale τ . To obtain analytical results, we need to assume
further that the potential V (x) is biquadratic,

V (x) = (|x| − 1/2)2/2. (2)

A similar framework has been used before in the studies of
directional motion of molecular motors [35].

To compute the effective potential F (y), we use an
observation that if the “measurements” are performed at a time
scale larger that τ , the resulting force is T (y) = k[y − 〈x〉],
where the averaging is over the ensemble and time,

〈x〉 = lim
t→∞(1/t)

∫ t

0

∫ ∞

−∞
xp(x,t)dx dt.

Here p(x,t) is the probability distribution for the variable
x, which solves an associated Fokker-Plank equation. The
primitive of the averaged tension,

F (y) =
∫ y

T (s)ds, (3)

can then be viewed as a nonequilibrium analog of the free
energy [45–48]. While in our case the mean-field nature of the
model ensures potentiality of the averaged tension, in a more
general setting the averaged stochastic forces will lose their
gradient structure, and even the effective “equations of states”
relating averaged forces with the corresponding generalized
coordinates may not be well defined [7,49–53].

It is clear that the effective potential F (y) will depend not
only on V (x) but also on the stochastic properties of the
driving f (t). The question we pose is whether there exists
a nonbiased stochastic driving that ensures stabilization of
spinodal configurations that would be unstable in the absence
of the noise. In the equilibrium case, when f (t) = 0, such
stabilization is possible because of entropic effects but only
at sufficiently large temperature D. The challenge is to find
a correlated (colored) noise f (t) that ensures stabilization
at arbitrarily small D. The possibility of bimodality of the
marginal probability distribution p(x,t) in single-well poten-
tials is known for DC and Levi-type noises [54,55], however
this effect disappears after ensemble-averaging involved in the
computation of the effective potential F (y).
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FIG. 1. Schematic representation of a bistable snap-spring in
series with a linear spring.

Before we turn to the systematic study of the prototypical
problem (1), we present in the next section a justification of
this model from the viewpoint of the microscopic multibody
mechanics of skeletal muscles. In the case of muscles, the
mean-field interactions are due to the presence of parallel con-
nections between actomyosin cross-bridges realized through
relatively rigid myosin backbones [19].

B. Microscopic problem

According to Huxley-Simmons theory [43], individual half-
sarcomeres in skeletal muscles with attached cross-bridges can
be expected to operate in an unstable (spinodal) or near-critical
regime [18,19]. This warrants strain inhomogeneities at the
level of a myofibril [32,33] that have not been systematically
observed. Purely entropic stabilization is excluded in this
case because the temperature alone is not sufficiently high
to ensure positive stiffness of individual half-sarcomeres [18].
Here we discuss a possibility that the relative homogeneity
of the myofibril deformation is due to active stabilization of
individual half-sarcomeres.

Following [18,43], we present a myofibril as a chain of
half-sarcomeres arranged in series with each half-sarcomere
represented by a parallel array of N cross-bridges interacting
with a single actin filament; see Fig. 2. We assume that
the nontrivial dynamics of attached cross-bridges is due
exclusively to the conformational change in myosin heads
(power stroke) and model cross-bridges as bistable elements
in series with linear springs; see Fig. 1. We further assume that
the nonequilibrium driving is provided through the rocking of
the bistable elements [56].

A half-sarcomere in this model [see Fig. 2(b)] can be de-
scribed by the system of nondimensional Langevin equations

dxi/dt = −∇xi
� +

√
2Dξ (t),

νdy/dt = −∇y�,
(4)

FIG. 2. (a) Schematic representation of a muscle myofibril as a
series connection of half sarcomeres; (b) model of a single half-
sarcomere with attached cross-bridges arranged in parallel. Shaded
boxes in (b) represent bistable snap-springs shown in Fig. 1.

where y is a macroscopic variable characterizing the strain
at the level of the half-sarcomere whose dynamics is slow
due to the large value of the relative viscosity ν. The
variable y is coupled with N fast soft-spin-type variables
xi through identical springs with stiffness k. The potential
energy is � = ∑N

i=1 E(xi,y,t) − fexty, where fext(t) is a
slowly varying macroscopic force. The ensuing problem is a
soft-spin generalization [29] of the Huxley-Simmons model
[43], and its applications are known to extend far beyond
muscles mechanics, from hair cell gating [15] and binding
of cell-adhesion patches [57] to mechanical denaturation of
RNA and DNA hairpins [58] and unzipping of biological
macromolecules [59].

The equation for y in Eq. (4) can be rewritten as

ν

N

dy

dt
= k

(
1

N

N∑
i=1

xi − y

)
+ fext

N
, (5)

which makes the mean-field nature of the interaction between
y and xi explicit. If N is large, we can replace 1

N

∑N
i=1 xi by 〈x〉

using the fact that the variables xi are identically distributed
and exchangeable [60]. If ν0 = ν/N and gext = fext/(kN )
remain finite in the limit N → ∞, we can write

ν0
dy

dt
= k[(〈x〉 − y) + gext(t)].

Assume for determinacy that the function f (t) is periodic
and choose its period τ in such a way that � = ν0/k � τ .
Since gext(t) is a slowly varying function at the time scale
τ , we can split the force k(〈x〉 − y) acting on y into a
slow component kψ(y) = k(〈x〉 − y), which originates from
our effective potential, and a slow-fast component kφ(y,t) =
k(〈x〉 − 〈x〉), which in the steady regime becomes a τ periodic
function of time with zero average. We can then write

�
dy

dt
= ψ(y) + φ(y,t) + gext. (6)

The next step is to average (6) over the time scale τ . Toward
that end, we introduce a decomposition y(t) = z(t) + ζ (t),
where z is the averaged (slow) part of the motion and ζ is
a fast varying perturbation (with time scale τ ) that is small
compared to z. Then, expanding (6) up to first order in ζ , we
obtain

�

(
dz

dt
+ dζ

dt

)
= ψ(z) + ∂zψ(z)ζ + φ(z,t) + ∂zφ(z,t)ζ + gext. (7)

Since gext(t) 	 τ−1
∫ t+τ

t
gext(u)du, we obtain at a fast time

scale [61]

�
dζ

dt
= φ(z,t).

Integrating this equation between t0 and t � t0 + τ , we
can assume that z is fixed and therefore ζ (t) − ζ (t0) =
�−1

∫ t

t0
φ(z(t0),u)du. Given that φ is τ -periodic with zero

average, we conclude that ζ (t) is also τ -periodic with zero
average.

If we now average (7) over the fast time scale τ , we obtain

�dz/dt = ψ(z) + r + gext,
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where

r = (�τ )−1
∫ τ

0

∫ t

0
∂zφ(z,t)φ(z,u)du dt.

Since both φ(z,t) and ∂zφ(z,t) are bounded, we can write
|r| � (τ/�)c 
 1, where the “constant” c depends on z but
not on τ and �. Therefore, if N � 1 and ν/(kN ) � τ , the
equation for

z(t) = τ−1
∫ t+τ

t

y(u)du

can be written directly in terms of the effective potential
introduced in Eq. (3)

(ν/N)ż = −∂zF + fext/N.

To find the potential F (z), we need to average over the fast
and slow-fast dynamics in Eq. (1) while keeping the variable
y fixed.

C. Nondimensionalization

Equation (1), which constitutes the basis of our prototypical
model, is dimensionless. To translate the results back into
the context of muscles, we need to use the time scale τ � =
η/k0 ∼ 0.1 ms, where η ∼ 0.38 ms. pN/nm is the microscale
viscosity [19] and k0 ∼ 3 pN/nm is the passive stiffness of
the equivalent energy wells. The spatial scale is then l� = a,
where a ∼ 10 nm is the distance between two minima of the
pre- and post-power-stroke wells [62] and the energy scale is
ε� = k0a

2 ∼ 300 pN nm.
Following [19], we also assume that k = km/k0 ∼ 0.6,

where km ∼ 2 pN/nm is the stiffness of the elastic part of
the myosin motor [63,64]. Hence D = kB�/(k0a

2) ∼ 0.01,
where kB = 4.10 pN nm is the Boltzmann constant, � ∼
300 K is the ambient temperature, and a = 10 nm is the
characteristic size of a motor power-stroke [62]. For the active
driving, we obtain τ = τa/(η/k0) ∼ 100, where τa = 40 ms
is the characteristic time of ATP hydrolysis [28]. We can now
write that A =

√
�μ/(k0a2) ≈ 0.5, where �μ = 20kB� is

the typical value of the degree of nonequilibrium in terms of
the affinity of the ATP hydrolysis reaction [28].

The knowledge of the set of dimensionless parameters A,
D, and τ will be sufficient to locate the muscle system on the
phase (regime) diagram. Such diagrams will be constructed in
Sec. III for three different types of active driving.

III. PHASE DIAGRAMS

In this section, we consider the general problem (1) at finite
temperature (D > 0) when both equilibrium and nonequilib-
rium reservoirs are contributing to the microscopic dynamics
simultaneously. The limiting case of zero temperatures (D =
0) will be analyzed separately in Sec. IV.

A. Periodic (P) driving

Suppose first that the nonequilibrium driving is repre-
sented by a periodic (P) square-shaped external force f (t) =
A(−1)n(t) with n(t) = 2t/τ�, where the brackets denote the
integer part. While this choice of periodic driving ensures

FIG. 3. Tension elongation curves T (z) in the case of periodic
driving (adiabatic limit). The equilibrium system (A = 0) is shown
in (a) and the out-of-equilibrium system (A �= 0) is shown in (b). The
insets show the effective potential F (z). Here k = 0.6.

a certain analytical simplicity, the obtained results will be
generic.

It will be convenient to rewrite the dynamic equation (1) in
the form

dx

dt
= −∂xṼ (x,z) + f (t) +

√
2Dξ (t), (8)

where

Ṽ (x,z) = 1
2 (|x| − 1/2)2 + 1

2k(x − z)2.

The associated Fokker-Planck equation for the time-dependent
probability distribution p(x,t) reads

∂tp = ∂x[p∂xE(x,t) + D∂xp]. (9)

First of all, we note that an explicit solution of (9) can be
found in the adiabatic case when the correlation time τ is much
larger than the escape time for the bistable potential V [65,66].
The idea of this approximation is that the time average of the
steady-state probability can be computed from the mean of
the stationary probabilities with constant driving force [either
f (t) = A or f (t) = −A]. The domain of applicability of the
adiabatic approximation in the case of bi-quadratic potential
is discussed in Appendix A.

It is obvious that the adiabatic approximation becomes exact
in the special case of an equilibrium system with A = 0 when
the stationary probability distribution is known explicitly:

p0(x) = Z−1e−Ṽ (x)/D,

where Z = ∫ ∞
−∞ exp[−Ṽ (x)/D]dx. The tension elongation

curve can then be computed analytically, since we know

〈x〉 = 〈x〉 =
∫ ∞

−∞
xp0(x)dx

The resulting curve T (z) and the corresponding potential
F (z) are shown in Fig. 3(a). At zero temperature the
equilibrium system with A = 0 exhibits negative stiffness
at z = 0 where the effective potential F (z) has a maximum
(spinodal state). As temperature increases, we observe a
standard entropic stabilization of the configuration z = 0; see
Fig. 3(a).

Computing the solution of the equation ∂zT |z=0 = 0, we
find an explicit expression for the critical temperature De =
r/[8(1 + k)], where r is a root of a transcendental equation
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FIG. 4. The parameter dependence of the roots of the equation
T (z) = 0 in the adiabatic limit: (a) fixed D = 0.04 and varying A,
first-order phase transition [line CA − MA in Fig. 5(a)]; (b) fixed
A = 0 and varying D, second-order phase transition [line De − CA

in Fig. 5(a)]. The dashed lines correspond to unstable branches. Here
k = 0.6.

1 + √
r/πe−1/r/[1 + erf(1/

√
r)] = r/(2k). The behavior of

the roots of the equation T (z) = −k(〈x〉 − z) = 0 at A = 0 is
shown in Fig. 4(b). It illustrates a second-order phase transition
taking place at D = De.

In the case of constant force f ≡ A, the stationary proba-
bility distribution is also known [67],

pA(x) = Z−1e−(Ṽ (x)−Ax)/D,

where again Z = ∫ ∞
−∞ exp[−Ṽ (x)/D]dx. In the adiabatic

approximation, we can write the time-averaged stationary
distribution in the form pad(x) = 1

2 [pA(x) + p−A(x)], which
gives

〈x〉 = 1
2 [〈x〉(A) + 〈x〉(−A)]. (10)

In this equation, the expression for 〈x〉(A) can be written
explicitly as

〈x〉(A) = Z−1
∑
i=1,2

P (ui)[
√

πuierfc(ui) − (−1)ie−u2
i ],

where

P (u) = [D/(1 + k)]e− 1
2D ( 1

4 +kz2−2Du2),

u1,2 = (A ± 1/2 + kz)/
√

2D(1 + k),

Z =
√

(1 + k)π/(2D)
∑
i=1,2

P (ui)erfc[(−1)iui],

and erfc is the complementary error function.
The force-elongation curves T (z) and the corresponding

potentials F (z) obtained for A �= 0 are shown in Fig. 3(b). It
demonstrates the main effect: as the degree of nonequilibrium,
characterized by A, increases, not only does the stiffness in
the state z = 0 where the original double-well potential V

had a maximum change from negative to positive, but also
the effective potential F (z) develops the third well around
this point. We interpret this phenomenon as the emergence
of active rigidity because the new equilibrium state becomes
possible only at a finite value of the driving parameter A while
the temperature parameter D can be arbitrarily small. The
behavior of the roots of the equation T (z) = −k(〈x〉 − z) = 0
at A �= 0 is shown in Fig. 4(a). It illustrates the first-order
phase transitions taking place at increasing A (and small
fixed D).

FIG. 5. Phase diagram in the (A,D) plane showing phases I, II,
and III: (a) adiabatic limit, (b) numerical solution at τ = 100 (b).
CA is the tricritical point, De is the point of a second-order phase
transition in the passive system. The “Maxwell line” for a first-order
phase transition in the active system is shown by dots. Here k = 0.6.

The full steady-state regime map (dynamic phase diagram)
summarizing the results obtained in the adiabatic approxi-
mation is presented in Fig. 5(a). There, the “paramagnetic”
phase I describes the regimes where the effective potential
F (z) is convex, the “ferromagnetic” phase II is a bistability
domain where the potential F (z) has a double-well structure,
and, finally, the “Kapitza” phase III is where the function F (z)
has three convex sections separated by two concave (spinodal)
regions. Note that the boundaries of the domain occupied by
phase III in this diagram are not defined by the number of
roots of T (z) = 0, as is usually done in the study of magnetic
systems, but by counting the number of effective “energy
wells” linked to convexity properties of the whole effective
potential F (z).

In view of the structure of the bifurcation diagrams shown
in Fig. 4, we can interpret the boundary CA − De separating
phases I and II as a line of (zero force) second-order phase
transitions and the dashed line CA − MA as a Maxwell line
for the (zero force) first-order phase transition; see Fig. 4.
Then CA can be interpreted as a tricritical point near which the
system can be described by a nonequilibrium (active) Landau
potential of the form

F (z) = F0 + rz2 + qz4 + pz6,

where r,q,p are pseudothermodynamic parameters. Indeed,
while r represents the usual measure of temperature D and
p > 0 is a constant, the A-dependent parameter q is an
unconventional measure of the intensity of active driving.
A similar tricritical point appears in the periodically driven
mean-field Suzuki-Kubo model of magnetism, which can be
interpreted in our terms as a description of the zero tension
behavior [68].

The adiabatic approximation fails at low temperatures
(small D) where the escape time diverges, and in this range
the phase diagram has to be corrected numerically; see
Fig. 5(b). By simulating directly Eq. (1), we obtain that even
the moderate temperature features of the diagram (tricritical
point, point De, and the vertical asymptote of the boundary
separating phases I and III at large values of A) are captured
adequately by the adiabatic approximation. For instance, the
value of temperature corresponding to point N (at infinite A)
obtained from the adiabatic approximation is DN = q/[8(1 +
k)], where q is a solution of a transcendental equation q − k =
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FIG. 6. (a)–(c) Typical tension-length relations in phases I, II,
and III. Points α, β, and γ are the same as in Fig. 5(b). Part (d)
shows the active component of the force. Insets show the behavior
of stochastic trajectories in each of the phases at z 	 0 (gray lines)
superimposed on their ensemble averages (black lines): the stationary
hysteretic cycles, the structure of the effective potentials F (z), and
the active potential Fa(z) defined as a primitive of the active force
Ta(z). The parameters are k = 0.6, τ = 100.

q3/2/{√q + e1/q
√

π [1 + erf(1/q)]}, which agrees with our
numerics; for additional details, see Appendix A.

The new feature of the nonadiabatic phase diagram is a dip
of the boundary separating phases II and III at some D < De

leading to an interesting reentrant behavior (cf. [69,70]). This
is an effect of stochastic resonance that is not captured by the
adiabatic approximation.

To verify our numerical results in the low-temperature
domain D → 0, we used Kramers’ approximation, valid when
the rocking period τ is much smaller than the typical escape
time of the bistable potential V (see Appendix B and Sec. IV
for details). It allows one to compute explicitly the location of
point K (A = 1/2) and point M (A = 1/2 + k/4), which we
found to be in full agreement with our numerical simulations;
see Fig. 5(b). Because of the difference of the limits D → 0
and τ → ∞, these points are rather far from the corresponding
adiabatic predictions KA and MA shown in Fig. 5(a).

Force-elongation relations characterizing the mechanical
response of the system at different points on the (A,D) plane
[Fig. 5(b)] are shown in Fig. 6, where the upper insets illustrate
the typical stochastic trajectories and the associated cycles
in the {〈x(t)〉,f (t)} coordinates. We observe that while in
phase I thermal fluctuations dominate periodic driving and
undermine the two-well structure of the potential, in phase III
the jumps between the two energy wells are fully synchronized
with the rocking force. In phase II, the system shows
intermediate behavior with uncorrelated jumps between the
wells.

In Fig. 6(d) we illustrate the active component of the
force Ta(z) = T (z; A) − T (z; 0) in phases I, II, and III. A
salient feature of Fig. 6(d) is that active force generation
is significant only in the resonant (Kapitza) phase III. A
biologically beneficial plateau (tetanus) is a manifestation of
the triangular nature of a pseudowell in the active landscape
Fa(z) = ∫ z

Ta(s)ds; note also that only a slightly bigger
(f,〈x〉) hysteresis cycle in phase III, reflecting a moderate
increase of the extracted work, results in a considerably larger
active force. It is also of interest that the largest active rigidity
is generated in the state z = 0, where the active force is equal
to zero.

If we now estimate the nondimensional parameters of the
model by using the data on skeletal muscles (see Sec. II C),
we obtain A = 0.5, D = 0.01, and τ = 100. This means that
muscle myosins in stall conditions (isometric contractions)
may be functioning in resonant phase III. Our simple model
can therefore contribute to the explanation of the observed
stability of skeletal muscles in the negative stiffness regime
[19]; a similar mechanism may also be behind the titin-based
force generation at long sarcomere lengths [71].

B. Dichotomous (DC) driving

P driving is only one of the correlated signals that can
serve as a mechanical representation of an out-of-equilibrium
chemical reservoir. To ascertain the robustness of the results
obtained in the case of P driving, we now consider another
type of correlated forcing that is also characterized by two
parameters, namely the amplitude A and the characteristic
time τ . It is given by the explicit formula f (t) = A(−1)n(t),

where n(t) is a Poisson process with P (n) = e−λλn/n! with
λ = 1/(2τ ) and is known as symmetric dichotomous (DC)
noise or a random telegraph signal [72,73]. For this Markov
process, we have 〈f (t)〉 = A exp(−t/τ ) and 〈f (t),f (s)〉 =
A2 exp(−|t − s|/τ ).

The probability distribution can be written in the form
p(x,t) = p−(x,t) + p+(x,t), where p±(x,t) are the probabil-
ity densities to be in a state x at time t given that f = ±A.
The DC driven system (1) is described by the two coupled
Fokker-Planck equations [74],

∂tp± = ∂x(∂xE±p± + D∂xp±) + λ(∓p± ± p∓), (11)

where E±(x) = Ṽ (x) ∓ Ax. Note that in this interpretation,
the DC noise appears as a chemical reaction violating the
detailed balance [75]. The stationary version of the system
(12) can be written in a transparent form if in addition to
p(x) = p−(x) + p+(x) we introduce a complimentary vari-
able d(x) = p+(x) − p−(x). Then we obtain

∂xṼ p − D∂xp − Ad = 0,

τ∂x(∂xṼ d − D∂xd − Ap) = d. (12)

The numerical study of (1) with DC noise shows that the
qualitative structure of the phase diagram in the (A,D) plane
remains the same as in the case of P driving; see Fig. 7. We
again observe phases I, II, and III and the tricritical point at
about the same location as in the case of P noise.

To interpret the numerical results, it is instructive to con-
sider analytically tractable special cases. First of all, Eq. (11)
can be used to obtain the adiabatic (τ → ∞) limit when
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FIG. 7. (a) Phase diagram in the case of DC driving. The
identification of phases I, II, and III is the same as in Figs. 5(a)
and 5(b). (b) Typical tension-length relations in different phases (b).
Here τ = 100 and k = 0.6.

the two equations decouple and the steady-state probability
distributions take the form p±(x) ∼ exp[−E±(x)/D] as in the
case of P driving. The resulting phase diagrams are therefore
identical; see Sec. III A. The second case, when the analytic
results are available, is the zero-temperature limit D → 0
considered in detail in Sec. IV A. Finally, the third analytically
tractable case is τ → 0, A → ∞, with D̃ = A2τ remaining
finite. In this limit, we obtain that the nonequilibrium com-
ponent of the noise is represented by a Gaussian white noise
f (t) =

√
2D̃ξa(t) with the temperature D̃ that is different from

the temperature of the equilibrium reservoir D. For instance,
one can think about a system exposed to a thermostat with
temperature D and a chemostat with temperature D̃. The
combined excitations are again represented by a white noise√

2D∗ξn(t) with effective temperature D∗ =
√

D2 + D̃2.
In contrast to the zero-temperature case, now the Kapitza

phase III, describing active stabilization, is absent. We obtain
only phases I and II separated by a second-order phase
transition line

√
D2 + D̃2 = De with the universal asymptotic

behavior D̃ ∼ (De − D)1/2 near equilibrium; see Fig. 8. The
system in this limit can undergo entropic stabilization only,
which means that the two-temperature model does not capture
the same range of phenomena as the D = 0 model. Note that
other two-temperature models can exhibit destabilization of a
single-well system [51].

C. Ornstein-Uhlenbeck driving

We have seen that the overall effect of the two bounded
noises P and DC on a mechanical system may be similar even

FIG. 8. Phase diagram for the case when the chemical reaction is
modeled by an effective temperature D̃. Here k = 0.6.

FIG. 9. (a) Phase diagram in the case of OU driving. The
identification of phases I and II is the same as in Figs. 5(a) and
5(b). (b) The typical tension-length relations in different phases. Here
τ = 100 and k = 0.6.

though one of them is highly correlated and non-Markovian
and the other is weakly correlated and Markovian. To show
that not all noises are “mechanically equivalent,” we now
consider an Ornstein-Uhlenbeck (OU) process, which is also
characterized by two parameters A and τ [73,76].

In the case of OU driving, the function f (t) is a solution of
the stochastic equation

df (t)

dt
= − 1

τ
f (t) + A

√
2

τ
ξf (t). (13)

As in the case of the DC noise, we have for the first two
moments f̄ (t) = 〈f (t)〉 = A exp(−t/τ ) and 〈f (s)f (t)〉 =
A2 exp(−|t − s|/τ ), where we assumed for determinacy that
f (0) = A. The resulting process is also Markovian, however
now it is unbounded and is defined on a continuous state space.

The Fokker-Planck equation for the probability density
p(x,f,t) takes the form

∂tp = ∂x(p∂xE + D∂xp) + τ−1∂f (fp + A2∂f p). (14)

Our numerical results for the system driven by OU noise are
summarized in Fig. 9(a). At small intensity of driving A, we
observe the conventional picture of entropic stabilization. A
striking feature of this diagram is the absence of phase III,
which means that in contrast to the cases of P and DC driving,
the OU driven system does not support the phenomenon of
active stabilization. To understand these numerical results, it
is instructive to consider the already mentioned three limiting
cases that can be treated analytically.

In the adiabatic limit (τ → ∞), Eq. (14) simplifies and can
be integrated. Then we obtain that p(x) ∼ exp[−E(x)/D],
which shows that in this limit only entropic stabilization
remains possible.

Another analytically tractable limit is D → 0 (see
Sec. IV C), which shows again that in contrast to the cases
of P and DC driving, only phases I and II are present at the
zero-temperature phase diagram.

Finally, we can consider the double limit τ → 0, A → ∞,
with D̃ = A2τ fixed. As in the case of DC noise, we recover
in this limit a system subjected to an effective temperature and
showing phases I and II only; see Fig. 8.

The analysis of these special cases supports our numerical
results suggesting that in the OU-driven system the tricritical
point is absent. We can speculate that the failure to generate
active rigidity in such a system is due to the unbounded
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nature of the OU noise allowing the eventual escape from
a neighborhood of any resonant state.

IV. ZERO-TEMPERATURE LIMIT

To understand better the differences between our three
representations of nonequilibrium driving, we now compare
the behavior of the system in the analytically tractable limit
when the temperature of an equilibrium thermostat is equal
to zero, D = 0. In this limit, the role of passive stabilization
is minimized, which allows one to make the effect of active
terms more transparent. When D = 0, we are left with two
nondimensional parameters: the correlation time τ and the
amplitude of the active signal A.

A. Dichotomous (DC) driving

In the case of DC driving with D = 0, the stationary
solution of the Fokker-Plank equation (12) can be written in
the form [77]

p(x)∂xṼ (x) + A2

[
1

τ
− ∂x(∂xṼ (x)·)

]−1

∂xp(x) = 0, (15)

where the notation ∂x(∂xṼ ·) should be understood in the
sense of differential operators. The formal solution of (15)
satisfying zero boundary conditions at infinity can be written
in quadratures [66,77],

p(x) = Z−1

A2 − [∂xṼ (x)]2
exp

(
− 1

τ

∫ x ∂yṼ (y)

A2 − [∂yṼ (y)]2
dy

)
,

where we still need to find the normalizing constant Z. For
this solution to be valid, we must also satisfy the inequality

|∂xṼ (x)| < A. (16)

When A = 0, we recover the deterministic case in which
condition (16) selects between the points x0,1(0) where the
force vanishes; see the precise definition in Appendix A. In
principle, the choice depends on the initial condition, but
in the limit of vanishing D and large time t , the trajectory
x(t) converges to the point minimizing the potential Ṽ . The
resulting tension elongation relation can then be obtained by
setting

〈x〉 = x0(0) + x1(0)

2
+ sgn(z)

x1(0) − x0(0)

2
.

The effective energy F (z) emerges as a symmetric two-
parabolic bistable potential where z = 0 is a singular spinodal
point separating the energy wells at z = ±1/2.

Another simple case is when τ → 0 with A2τ = D̃ re-
maining finite. In this limit, activity disappears and driving
becomes equilibrium with temperature D̃. The steady-state
probability distribution is given by p(x) ∼ exp[−Ṽ (x)/D̃] and
the effective energy exhibits a transition from phase II to phase
I at the critical temperature De defined in Sec. III A.

To compute p(x) in the general case, we identify
the admissible set, where (16) holds, as ]x0(−A),
x0(A)[

⊔
]x1(−A),x1(A)[, where parameters x0,1(±A) are in-

troduced in Appendix A. We can now integrate p(x) on each of

the segments ]x0(−A),x0(A)[ and ]x1(−A),x1(A)[. The result
can be written in the form

p(x) = C0�0(x)[2τ (1+k)]−1−11]x0(−A),x0(A)[(x)

+C1�1(x)[2τ (1+k)]−1−11]x1(−A),x1(A)[(x), (17)

where �0(x) = A2 − [(1 + k)x − kz + 1/2]2 and �1(x) =
A2 − [(1 + k)x − kz − 1/2]2.

If the domain of definition is connected as in, say, case 2,
when x0(A) = x1(−A) = 0, a continuity condition relates C0

and C1:

C0 = Z−1�1(0)[2τ (1+k)]−1
,

C1 = Z−1�0(0)[2τ (1+k)]−1
. (18)

If instead either x0(A) or x1(−A) is different from zero, the
two sets ]x0(−A),x0(A)[ and ]x1(−A),x1(A)[ are separated by
a segment where the probability is equal to zero. This means
that the passage from one region to the other is impossible.
In this case, the coefficients C0 and C1 depend on the initial
probability distribution as in the periodic case (at D = 0).
These cases are referred to as cases 1, 3, and 4 in Appendix B.

If we regularize the problem by adding a weak white
noise (small D �= 0), the choice of constants again becomes
unambiguous as we can associate the support of the distribu-
tion with the side (0 or 1) opposite to the smallest potential
barrier. We can then write explicitly C1 = Z−1max(0,sgn(z))
and C0 = Z−1 − C1. In all cases, the constant Z is found from
normalization.

We illustrate the stationary probability distributions p(x)
in Fig. 10(a) for several choices of parameters. The analytical
expression for the tension elongation curves T (z) involves
hypergeometric functions and is too complex to be presented
here. The resulting curves are illustrated in Fig. 10 for small
and large values of the correlation time. The phase diagram,
shown in Fig. 11(a), exhibits all three phases I, II, and III with
a tricritical point C ′ located at τC ′ = [2(k + 1)]−1 and D̃C ′ =
De + [2(k + 1)]−1/4. The behavior of the force-elongation
relations in different phases is illustrated in Fig. 11(b). As
we see, the DC-driven dynamics is sufficiently rich to capture
both active and entropic stabilization phenomena even in the
absence of the equilibrium reservoir (at D = 0).

B. Periodic (P) driving

The numerical simulations for the problem with P driving
and D → 0 show only phases II and III even for rapidly
oscillating external fields; see Fig. 11(c). To understand this
result, we can use Kramers’ approximation developed in
Appendix B under the assumption that the rocking period is
short compared to at least one of the escape times τ0,1(±A).
The use of such an antiadiabatic limit is consistent with the
observation that in the limit D → 0 the escape times from the
energy wells diverge; see Appendix A.

A study of the purely mechanical problem with P driving
reveals that, since the potential E can have up to four
local minima, the dynamical system (8) can have up to
four stationary solutions. In the four cases introduced in
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FIG. 10. (a) Examples of stationary probability distributions in the case of DC driving with A = 0.6. Dotted line: τ = 0.1, z = −0.5.
Dashed line: τ = 1, z = −0.5. Solid line: τ = 1, z = 0. (b),(c) Tension elongation relations for different values of τ .

Appendix B, these solutions give the following:

Case 1: 〈x〉 = [x0(−A) + x0(A)]/2.
Case 2: 〈x〉 = [x0(−A) + x1(A)]/2.
Case 3: 〈x〉 = [x1(−A) + x1(A)]/2.
Case 4:

〈x〉 =
{

1
2 [x0(−A) + x0(A)] if z < 0,

1
2 [x1(−A) + x1(A)] if z > 0.

To justify, for instance, the last expression (case 4), we use
(B2) to obtain

〈n0〉 ∼ e
(−min

±A
[�E1(±A)]+ min

±A,1,0
[�E0,1(±A)])/D

.

Then either min±A�E1(±A) = min±A,1,0�E0,1(±A) and
〈n0〉 = 1 or min±A�E1(±A) > min±A,1,0�E0,1(±A)

FIG. 11. (a) Zero-temperature phase diagram in the case of DC
driving. The identification of phases I, II, and III is the same as in
Figs. 5(a) and 5(b). Tension-elongation relations in the case of DC
driving in different phases (b). Zero-temperature phase diagram in
the case of P driving (c) and OU driving (d). Parameters are k = 0.6
and D = 0.

and 〈n0〉 = 0. The condition min±�E1(±A) >

min±,1,0�E0,1(±A) introduces the dependence of the
stationary distribution on z. In the limit D → 0, the
distributions p0,1(x; ±A) become δ functions concentrated at
the points x0,1(±A), which gives our formula for 〈x〉.

If we now substitute the values for x0,1(±A), given in
Appendix A, we obtain the analytic expressions for the tension
T (z). Then, by solving the equation T (z) = 0, we can locate
the line of the first-order phase transition separating phases II
and III and show that A = 1

2 at point K and that A = 1
2 (1 + k

2 )
at point M , both in agreement with the numerical phase
diagram presented in Fig. 12(c). The qualitative difference be-
tween the predictions of the adiabatic approximation implying
that D is large and the Kramers approximations corresponding
to small D is illustrated in Fig. 12.

In coordinates (τ,D̃), the phase diagram for the P-driven
system with zero temperature shows a single phase boundary
separating phases II and III; see Fig. 11(c). The entropically
stabilized phase II is absent because there is no stochastic
contribution allowing the system to cross arbitrary barriers.
For the same reason, the phase boundary between phases II
and III in the P-driven system is shifted compared to the case
of DC driving as the point De does not exist anymore. This is
in contrast to the fact that at finite D the two systems (with P
and DC driving) behave quite similarly. In particular, they are
indistinguishable in the adiabatic limit τ → ∞.

C. Ornstein-Uhlenbeck (OU) driving

In the case of OU driving with D = 0, an analytical
approximation of the stationary probability distribution is
available when τ 
 1 [66]. The main idea is to combine
Eqs. (8) and (13) to obtain a new equation for a noisy inertial
oscillator,

d2x

dt2
+ dx

dt
[1 + τ∂xxṼ (x)] + ∂xṼ (x) = A

√
2τξf (t), (19)

where ξf is a standard white noise. At large times, the inertial
dynamics with additive noise (19) can be approximated by the
overdamped dynamics with multiplicative noise,

dx

dt
= [1 + τ∂xxṼ (x)]−1(−∂xṼ (x) + A

√
2τξf (t)),
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FIG. 12. (a) Examples of the stationary probability distributions in the case of P driving in adiabatic (dotted line) and Kramers (solid line)
approximations at A = 0.2, z = −0.01, D = 0.002. (b) Tension elongation relations for D = 0.01 and A = 0.2 expressed by the Kramers
solution (solid line) and the adiabatic solution (dotted line). (c) Tension elongation relations in the limit D → 0 for several value of A. For
0 < A < K , all curves collapse (dotted line) since the energy injected by the rocking is not sufficient to overcome the potential barriers.

which must be interpreted in the Stratanovitch sense [66]. The
corresponding Fokker-Planck equation

∂tp = ∂x

(
∂xṼ

1 + τ∂xxṼ
p

)

+ ∂x

[
1

1 + τ∂xxṼ
∂x

(
A2τ

1 + τ∂xxṼ
p

)]
(20)

has an explicit stationary solution [66]:

p(x) = Z−1|1 + τ∂xxṼ (x)| exp

(
− Ṽ (x) + τ [∂xṼ (x)]2/2

A2τ

)
.

Notice again that when τ → 0 with D̃ = τA2 fixed, f (t)
becomes a white noise and the distribution p(x) takes the
classical Boltzmann form.

In Fig. 13(a), we show examples of the stationary distri-
butions for specific values of parameters. The corresponding
tension curves T (z) are illustrated in Figs. 13(b) and 13(c) for
large and small correlation times.

Figure 11(d) shows the resulting phase diagram, which,
as expected, exhibits only phases I and II. This is again a
confirmation of the fact that in the case of OU driving, the
crucial phase III, describing the phenomenon of active rigidity,
is absent. When τ is small (at a fixed D̃), the OU noise
becomes a white noise and, as in the case of the DC driving, the
phase boundary separating phases I and II passes through the
point De.

The comparison of all three phase diagrams, shown in
Figs. 11(a), 11(c), and 11(d), suggests that at zero temperature
the system with DC driving is an intricate amalgam of the
systems with OU and P driving.

V. CONCLUSIONS

Our model of a molecular device generating active rigidity
complements the existing models of molecular machines
generating active force. Instead of a single stall state, we study
a family of stall states depending on a parameter, and we
quantify the energetic cost of varying this parameter. Since in
our case this parameter is mesoscopic strain, the associated
derivative of the time-averaged energy is the effective rigidity.

The prototypical model presented in this paper shows that
by controlling the degree of nonequilibrium in the system,
one can stabilize apparently unstable or marginally stable me-
chanical configurations, and in this way modify the structure
of the effective energy landscape (when it can be defined).
The associated pseudoenergy wells with a resonant nature
may be crucially involved not only in muscle contraction but
also in hair cell gating [14], integrin binding [57], and other
internally driven biological and nonbiological phenomena
[39–41]. While it is often assumed that the mechanical effect
of a nonequilibrium chemical reservoir is a colored noise, our
analysis supports the idea that apparently similar noises can
generate qualitatively different mechanical effects that may be

FIG. 13. (a) Examples of stationary probability distributions in the case of OU driving at A = 0.5. Dotted line: τ = 1, z = −0.5. Dashed
line: τ = 1, z = 0. Solid line: τ = 0.1, z = −0.5. (b),(c) Tension elongation relations in the OU cases for small (b) and large (c) correlation
times. Large correlation times are formally outside of the domain of validity of the approximation.
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ultrasensitive to the higher order correlations of the stochastic
forces.

The experimental verification of the proposed model
requires quantitative monitoring of the rigidity of a biological
system (say, a cytoskeleton) combined with the control of
activity elements (say, molecular motors), and the correspond-
ing experimental techniques are already available [4,44]. The
mastery of tunable rigidity will open interesting prospects not
only in biomechanics [78] but also in engineering design,
incorporating negative stiffness [79] or aiming at synthetic
materials involving dynamic stabilization [80,81].
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APPENDIX A: ADIABATIC APPROXIMATION FOR
SQUARE-SHAPED PERIODIC DRIVING

In the case of biquadratic potential, the driving time scale τ

should be compared with the mean exit times from each of the
energy wells at both positive and negative values of the tilting
force. To find these times, one may consider the four auxiliary
potentials (see Fig. 14),

E0,1(x,±A) = Ṽ0,1(x) ∓ Ax,

where

Ṽ (x) =
{

Ṽ0(x) if x � 0,

Ṽ1(x) if x � 0.

Notice that the bottoms of these quadratic potentials are
located at x0,1(±A), where

x0(−A) = min

(
0,

−1/2 + kz − A

1 + k

)
� x0(A),

x0(A) = min

(
0,

−1/2 + kz + A

1 + k

)
� 0,

x1(−A) = max

(
0,

1/2 + kz − A

1 + k

)
� 0,

x1(A) = max

(
0,

1/2 + kz + A

1 + k

)
� x1(−A).

The four mean exit times τ0,1(±A) can then be written in the
form [82]

τ0(±A) = 1

D

∫ 0

x0(±A)
e

E0(x;±A)
D

∫ x

−∞
e− E0(y;±A)

D dy dx,

τ1(±A) = 1

D

∫ 0

x1(±A)
e

E1(x;±A)
D

∫ x

∞
e− E1(y;±A)

D dy dx.

For the adiabatic approximation to work, we need to require
that

τ � τ0,1(±A).

First, it is clear that the adiabatic approximation holds for
sufficiently large D because in this case τ0,1(±A) → 0. It also
works when τ � 1 and A � 1 as in this case

τ0(A) = τ1(−A) = 0 and

τ1(A) = τ0(−A) ∼ 1

D

∫ 0

−A

e
−Ax
D

∫ x

−∞
e

Ay

D dy dx = 1.

APPENDIX B: KRAMERS APPROXIMATION FOR
SQUARE-SHAPED PERIODIC DRIVING

Here we assume that τ 
 τ0,1(±A), where the escape
times τ0,1(±A) were introduced in Appendix A. With the four
potentials E0,1(±A) discussed in Appendix A, we associate
four activation barriers �E0,1(±A). We then distinguish the
four cases illustrated in Fig. 14:

Case 1: If x1(−A) = 0 and x0(A) < 0, then �E1(−A) does
not exist.

Case 2: If x1(−A) = 0 and x0(A) = 0, then both �E1(−A)
and �E0(A) do not exist.

Case 3: If x1(−A) > 0 and x0(A) = 0, �E0(A) does not
exist.

Case 4: If x1(−A) > 0 and x0(A) < 0 and all four barriers
exist:

�E0(±A) = (1 ± 2A − 2kz)2

8(1 + k)
,

�E1(±A) = (1 ± 2A + 2kz)2

8(1 + k)
.

We first consider the generic Case 4, in which we can
apply the rate theory for a rocked bistable system [83,84].

FIG. 14. Four typical potentials E(±A). Case 1: x1(−A) = 0 and x0(A) < 0; �E1(−A) does not exist. Case 2: x1(−A) = 0 and x0(A) = 0;
�E1(−A) and �E0(A) do not exist. Case 3: x1(−A) > 0 and x0(A) = 0; �E0(A) does not exist. Case 4: x1(−A) > 0 and x0(A) < 0; all four
barriers exist.
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Denote by n0(t) the number of particles in the 0 well. When
D 
 � = E0,1(±A), we can write the reaction equation

ṅ0 = −(W1 + W0)n0 + W1. (B1)

Here W1(t) and W0(t) are the reaction rates given by [85]

W0(t) = U0(t)e− [1+2A(−1)n(t)−2kz]2

8(1+k)D

and

W1(t) = U1(t)e− [1+2A(−1)n(t)+2kz]2

8(1+k)D ,

where

U0(t) = 1

2

√
(1 + k)[1/2 + A(−1)n(t) − kz]

2πD

and

U1(t) = 1

2

√
(1 + k)[1/2 + A(−1)n(t) + kz]

2πD
.

In what follows, we also use the notation W̄ = W0 + W1 and
introduce four characteristic times: W0,1(A) = 1/τ0,1(A) when
n(t) is even and W0,1(−A) = 1/τ0,1(−A) when n(t) is odd.
In the limit τW̄ (±A) 
 1 (high-frequency rocking), we can
formally average (B1) over a period of the driving force [84]
to obtain

d〈n0〉
dt

= −1

2
(W̄+ + W̄−)〈n0〉 + 1

2
(W+

1 + W−
0 ).

Then in the steady state,

〈n0〉 = W1(A) + W1(−A)

W̄ (A) + W̄ (−A)
. (B2)

After time-averaging, the steady-state probability distribution
takes the form

p(x) = 〈n0〉
2

[p0(x; −A) + p0(x; A)]

+ 1 − 〈n0〉
2

[p1(x; −A) + p1(x; A)], (B3)

where

p0(x; ±A) = exp[−E0(x; ±A)/D]∫ 0
−∞ exp[−E0(x; ±A)/D]dx

,

p1(x; ±A) = exp[−E1(x; ±A)/D]∫ ∞
0 exp[−E1(x; ±A)/D]dx

.

Now consider cases 1, 2, and 3 when at least one of the
barriers is absent.

Case 1: Each time the rocking flashes to −A, all particles
that are in the 1 side are drifted toward the 0 side before the
rocking flashes to +A again. As both �E0(A) and �E0(−A)
exist, particles stay much longer to the 0 side, and even if they
go the 1 side, they would drift back when the rocking flashes
to −A again. So all particles get “ratcheted” to the 0 side, and
the stationary (averaged over time) probability reads

pKr(x) = p0(x; −A)/2 + p0(x; A)/2.

Case 2: Each time the rocking flashes to −A, as �E+(−A)
does not exist, a particle in the 1 gets to the 0 side. In the same
way, each time the rocking flashes to +A, as �E0(A) do not
exist, a particle in the 0 side gets to the 1 side. The stationary
distribution averaged over time reads

pKr(x) = p0(x; −A)/2 + p1(x; A)/2.

Case 3: This case is symmetric to case 1. The stationary
distribution reads

pKr(x) = p1(x; −A)/2 + p1(x; A)/2.

The tension curves for small D can now be computed
using the first moment of probability density (B3), ¯〈x〉 =∫ ∞
−∞ xpKr(x)dx.
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[68] T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251 (1990).
[69] C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys. Rev.

Lett. 73, 3395 (1994).
[70] K. R. Pilkiewicz and J. D. Eaves, Soft Matter 10, 7495 (2014).
[71] G. Schappacher-Tilp, T. Leonard, G. Desch, and W. Herzog,

PloS One 10, e0117634 (2015).
[72] A. Ichiki, Y. Tadokoro, and M. I. Dykman, Phys. Rev. E 85,

031106 (2012).
[73] K. H. Nagai, Y. Sumino, R. Montagne, I. S. Aranson, and
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L. Schimansky-Geier and T. Pöschel (Springer, Berlin, 1997),
pp. 68–80.

[77] V. Klyatskin, Radiofiz. 20, 562 (1977).

052604-13

http://dx.doi.org/10.1007/BF00123366
http://dx.doi.org/10.1007/BF00123366
http://dx.doi.org/10.1007/BF00123366
http://dx.doi.org/10.1007/BF00123366
http://dx.doi.org/10.1016/S0006-3495(03)74522-6
http://dx.doi.org/10.1016/S0006-3495(03)74522-6
http://dx.doi.org/10.1016/S0006-3495(03)74522-6
http://dx.doi.org/10.1016/S0006-3495(03)74522-6
http://dx.doi.org/10.1103/PhysRevLett.110.248103
http://dx.doi.org/10.1103/PhysRevLett.110.248103
http://dx.doi.org/10.1103/PhysRevLett.110.248103
http://dx.doi.org/10.1103/PhysRevLett.110.248103
http://dx.doi.org/10.1016/j.bpj.2010.09.048
http://dx.doi.org/10.1016/j.bpj.2010.09.048
http://dx.doi.org/10.1016/j.bpj.2010.09.048
http://dx.doi.org/10.1016/j.bpj.2010.09.048
http://dx.doi.org/10.1103/PhysRevLett.113.028102
http://dx.doi.org/10.1103/PhysRevLett.113.028102
http://dx.doi.org/10.1103/PhysRevLett.113.028102
http://dx.doi.org/10.1103/PhysRevLett.113.028102
http://dx.doi.org/10.1073/pnas.1417113112
http://dx.doi.org/10.1073/pnas.1417113112
http://dx.doi.org/10.1073/pnas.1417113112
http://dx.doi.org/10.1103/RevModPhys.85.1327
http://dx.doi.org/10.1103/RevModPhys.85.1327
http://dx.doi.org/10.1103/RevModPhys.85.1327
http://dx.doi.org/10.1103/RevModPhys.85.1327
http://dx.doi.org/10.1088/1751-8113/44/29/295202
http://dx.doi.org/10.1088/1751-8113/44/29/295202
http://dx.doi.org/10.1088/1751-8113/44/29/295202
http://dx.doi.org/10.1088/1751-8113/44/29/295202
http://dx.doi.org/10.1103/PhysRevE.90.042724
http://dx.doi.org/10.1103/PhysRevE.90.042724
http://dx.doi.org/10.1103/PhysRevE.90.042724
http://dx.doi.org/10.1103/PhysRevE.90.042724
http://dx.doi.org/10.1038/nature01829
http://dx.doi.org/10.1038/nature01829
http://dx.doi.org/10.1038/nature01829
http://dx.doi.org/10.1038/nature01829
http://dx.doi.org/10.1103/PhysRevE.81.051915
http://dx.doi.org/10.1103/PhysRevE.81.051915
http://dx.doi.org/10.1103/PhysRevE.81.051915
http://dx.doi.org/10.1103/PhysRevE.81.051915
http://dx.doi.org/10.1016/j.jmps.2014.11.010
http://dx.doi.org/10.1016/j.jmps.2014.11.010
http://dx.doi.org/10.1016/j.jmps.2014.11.010
http://dx.doi.org/10.1016/j.jmps.2014.11.010
http://arxiv.org/abs/arXiv:1510.03011
http://dx.doi.org/10.1016/S0022-5096(99)00006-X
http://dx.doi.org/10.1016/S0022-5096(99)00006-X
http://dx.doi.org/10.1016/S0022-5096(99)00006-X
http://dx.doi.org/10.1016/S0022-5096(99)00006-X
http://dx.doi.org/10.1177/1081286514551504
http://dx.doi.org/10.1177/1081286514551504
http://dx.doi.org/10.1177/1081286514551504
http://dx.doi.org/10.1177/1081286514551504
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1103/PhysRevLett.72.2984
http://dx.doi.org/10.1103/PhysRevLett.72.2984
http://dx.doi.org/10.1103/PhysRevLett.72.2984
http://dx.doi.org/10.1103/PhysRevLett.72.2984
http://dx.doi.org/10.1016/0375-9601(94)90989-X
http://dx.doi.org/10.1016/0375-9601(94)90989-X
http://dx.doi.org/10.1016/0375-9601(94)90989-X
http://dx.doi.org/10.1016/0375-9601(94)90989-X
http://dx.doi.org/10.1103/PhysRevE.86.051101
http://dx.doi.org/10.1103/PhysRevE.86.051101
http://dx.doi.org/10.1103/PhysRevE.86.051101
http://dx.doi.org/10.1103/PhysRevE.86.051101
http://dx.doi.org/10.1103/PhysRevE.92.032719
http://dx.doi.org/10.1103/PhysRevE.92.032719
http://dx.doi.org/10.1103/PhysRevE.92.032719
http://dx.doi.org/10.1103/PhysRevE.92.032719
http://dx.doi.org/10.1103/PhysRevLett.85.2589
http://dx.doi.org/10.1103/PhysRevLett.85.2589
http://dx.doi.org/10.1103/PhysRevLett.85.2589
http://dx.doi.org/10.1103/PhysRevLett.85.2589
http://dx.doi.org/10.1140/epjb/e2005-00029-3
http://dx.doi.org/10.1140/epjb/e2005-00029-3
http://dx.doi.org/10.1140/epjb/e2005-00029-3
http://dx.doi.org/10.1140/epjb/e2005-00029-3
http://dx.doi.org/10.1038/nphys2592
http://dx.doi.org/10.1038/nphys2592
http://dx.doi.org/10.1038/nphys2592
http://dx.doi.org/10.1038/nphys2592
http://arxiv.org/abs/arXiv:1509.02753
http://dx.doi.org/10.1038/233533a0
http://dx.doi.org/10.1038/233533a0
http://dx.doi.org/10.1038/233533a0
http://dx.doi.org/10.1038/233533a0
http://arxiv.org/abs/arXiv:1511.00921
http://dx.doi.org/10.1103/PhysRevLett.85.227
http://dx.doi.org/10.1103/PhysRevLett.85.227
http://dx.doi.org/10.1103/PhysRevLett.85.227
http://dx.doi.org/10.1103/PhysRevLett.85.227
http://dx.doi.org/10.1103/PhysRevE.67.066119
http://dx.doi.org/10.1103/PhysRevE.67.066119
http://dx.doi.org/10.1103/PhysRevE.67.066119
http://dx.doi.org/10.1103/PhysRevE.67.066119
http://dx.doi.org/10.1016/j.physrep.2013.06.002
http://dx.doi.org/10.1016/j.physrep.2013.06.002
http://dx.doi.org/10.1016/j.physrep.2013.06.002
http://dx.doi.org/10.1016/j.physrep.2013.06.002
http://dx.doi.org/10.1016/j.cplett.2014.03.062
http://dx.doi.org/10.1016/j.cplett.2014.03.062
http://dx.doi.org/10.1016/j.cplett.2014.03.062
http://dx.doi.org/10.1016/j.cplett.2014.03.062
http://dx.doi.org/10.1103/PhysRevLett.114.198301
http://dx.doi.org/10.1103/PhysRevLett.114.198301
http://dx.doi.org/10.1103/PhysRevLett.114.198301
http://dx.doi.org/10.1103/PhysRevLett.114.198301
http://dx.doi.org/10.1103/PhysRevLett.115.098301
http://dx.doi.org/10.1103/PhysRevLett.115.098301
http://dx.doi.org/10.1103/PhysRevLett.115.098301
http://dx.doi.org/10.1103/PhysRevLett.115.098301
http://dx.doi.org/10.1103/PhysRevE.92.032118
http://dx.doi.org/10.1103/PhysRevE.92.032118
http://dx.doi.org/10.1103/PhysRevE.92.032118
http://dx.doi.org/10.1103/PhysRevE.92.032118
http://dx.doi.org/10.1016/j.cocis.2015.12.003
http://dx.doi.org/10.1016/j.cocis.2015.12.003
http://dx.doi.org/10.1016/j.cocis.2015.12.003
http://dx.doi.org/10.1016/j.cocis.2015.12.003
http://dx.doi.org/10.1103/PhysRevE.93.032605
http://dx.doi.org/10.1103/PhysRevE.93.032605
http://dx.doi.org/10.1103/PhysRevE.93.032605
http://dx.doi.org/10.1103/PhysRevE.93.032605
http://dx.doi.org/10.1140/epjb/e2007-00162-y
http://dx.doi.org/10.1140/epjb/e2007-00162-y
http://dx.doi.org/10.1140/epjb/e2007-00162-y
http://dx.doi.org/10.1140/epjb/e2007-00162-y
http://dx.doi.org/10.1103/PhysRevE.76.041122
http://dx.doi.org/10.1103/PhysRevE.76.041122
http://dx.doi.org/10.1103/PhysRevE.76.041122
http://dx.doi.org/10.1103/PhysRevE.76.041122
http://dx.doi.org/10.1103/PhysRevE.89.012708
http://dx.doi.org/10.1103/PhysRevE.89.012708
http://dx.doi.org/10.1103/PhysRevE.89.012708
http://dx.doi.org/10.1103/PhysRevE.89.012708
http://dx.doi.org/10.1103/PhysRevLett.92.108102
http://dx.doi.org/10.1103/PhysRevLett.92.108102
http://dx.doi.org/10.1103/PhysRevLett.92.108102
http://dx.doi.org/10.1103/PhysRevLett.92.108102
http://dx.doi.org/10.1016/j.cbpa.2008.08.011
http://dx.doi.org/10.1016/j.cbpa.2008.08.011
http://dx.doi.org/10.1016/j.cbpa.2008.08.011
http://dx.doi.org/10.1016/j.cbpa.2008.08.011
http://dx.doi.org/10.1038/nphys2022
http://dx.doi.org/10.1038/nphys2022
http://dx.doi.org/10.1038/nphys2022
http://dx.doi.org/10.1038/nphys2022
http://dx.doi.org/10.1016/0167-7152(95)00131-X
http://dx.doi.org/10.1016/0167-7152(95)00131-X
http://dx.doi.org/10.1016/0167-7152(95)00131-X
http://dx.doi.org/10.1016/0167-7152(95)00131-X
http://dx.doi.org/10.1098/rspb.2009.1498
http://dx.doi.org/10.1098/rspb.2009.1498
http://dx.doi.org/10.1098/rspb.2009.1498
http://dx.doi.org/10.1098/rspb.2009.1498
http://dx.doi.org/10.1529/biophysj.107.119396
http://dx.doi.org/10.1529/biophysj.107.119396
http://dx.doi.org/10.1529/biophysj.107.119396
http://dx.doi.org/10.1529/biophysj.107.119396
http://dx.doi.org/10.1016/j.pbiomolbio.2009.10.003
http://dx.doi.org/10.1016/j.pbiomolbio.2009.10.003
http://dx.doi.org/10.1016/j.pbiomolbio.2009.10.003
http://dx.doi.org/10.1016/j.pbiomolbio.2009.10.003
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevA.41.4251
http://dx.doi.org/10.1103/PhysRevA.41.4251
http://dx.doi.org/10.1103/PhysRevA.41.4251
http://dx.doi.org/10.1103/PhysRevA.41.4251
http://dx.doi.org/10.1103/PhysRevLett.73.3395
http://dx.doi.org/10.1103/PhysRevLett.73.3395
http://dx.doi.org/10.1103/PhysRevLett.73.3395
http://dx.doi.org/10.1103/PhysRevLett.73.3395
http://dx.doi.org/10.1039/C4SM01177E
http://dx.doi.org/10.1039/C4SM01177E
http://dx.doi.org/10.1039/C4SM01177E
http://dx.doi.org/10.1039/C4SM01177E
http://dx.doi.org/10.1371/journal.pone.0117634
http://dx.doi.org/10.1371/journal.pone.0117634
http://dx.doi.org/10.1371/journal.pone.0117634
http://dx.doi.org/10.1371/journal.pone.0117634
http://dx.doi.org/10.1103/PhysRevE.85.031106
http://dx.doi.org/10.1103/PhysRevE.85.031106
http://dx.doi.org/10.1103/PhysRevE.85.031106
http://dx.doi.org/10.1103/PhysRevE.85.031106
http://dx.doi.org/10.1103/PhysRevLett.114.168001
http://dx.doi.org/10.1103/PhysRevLett.114.168001
http://dx.doi.org/10.1103/PhysRevLett.114.168001
http://dx.doi.org/10.1103/PhysRevLett.114.168001
http://dx.doi.org/10.1103/PhysRevE.68.041111
http://dx.doi.org/10.1103/PhysRevE.68.041111
http://dx.doi.org/10.1103/PhysRevE.68.041111
http://dx.doi.org/10.1103/PhysRevE.68.041111
http://dx.doi.org/10.1103/PhysRevLett.72.2652
http://dx.doi.org/10.1103/PhysRevLett.72.2652
http://dx.doi.org/10.1103/PhysRevLett.72.2652
http://dx.doi.org/10.1103/PhysRevLett.72.2652


R. SHESHKA, P. RECHO, AND L. TRUSKINOVSKY PHYSICAL REVIEW E 93, 052604 (2016)

[78] G. Puglisi and L. Truskinovsky, Phys. Rev. E 87, 032714
(2013).

[79] F. Fritzen and D. M. Kochmann, Int. J. Solids Struct. 51, 4101
(2014).

[80] M. Bukov, L. D’Alessio, and A. Polkovnikov, Adv. Phys. 64,
139 (2015).

[81] P. Sarkar, A. Shit, S. Chattopadhyay, and S. K. Banik,
Chem. Phys. 458, 86 (2015).

[82] C. Gardiner, Handbook of Stochastic Methods: For Physics,
Chemistry and the Natural Sciences (Springer Series in Syner-
getics), 3rd ed. (Springer, Heidelberg, 2004).

[83] B. McNamara and K. Wiesenfeld, Phys. Rev. A 39, 4854
(1989).

[84] P. Jung, Phys. Rep. 234, 175 (1993).
[85] Z. Schuss, Theory and Applications of Stochastic Processes,

Vol. 170 (Springer, New York, 2010).

052604-14

http://dx.doi.org/10.1103/PhysRevE.87.032714
http://dx.doi.org/10.1103/PhysRevE.87.032714
http://dx.doi.org/10.1103/PhysRevE.87.032714
http://dx.doi.org/10.1103/PhysRevE.87.032714
http://dx.doi.org/10.1016/j.ijsolstr.2014.07.028
http://dx.doi.org/10.1016/j.ijsolstr.2014.07.028
http://dx.doi.org/10.1016/j.ijsolstr.2014.07.028
http://dx.doi.org/10.1016/j.ijsolstr.2014.07.028
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1016/j.chemphys.2015.07.010
http://dx.doi.org/10.1016/j.chemphys.2015.07.010
http://dx.doi.org/10.1016/j.chemphys.2015.07.010
http://dx.doi.org/10.1016/j.chemphys.2015.07.010
http://dx.doi.org/10.1103/PhysRevA.39.4854
http://dx.doi.org/10.1103/PhysRevA.39.4854
http://dx.doi.org/10.1103/PhysRevA.39.4854
http://dx.doi.org/10.1103/PhysRevA.39.4854
http://dx.doi.org/10.1016/0370-1573(93)90022-6
http://dx.doi.org/10.1016/0370-1573(93)90022-6
http://dx.doi.org/10.1016/0370-1573(93)90022-6
http://dx.doi.org/10.1016/0370-1573(93)90022-6



