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Asymmetry between pushing and pulling for crawling cells
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Eukaryotic cells possess motility mechanisms allowing them not only to self-propel but also to exert forces
on obstacles (to push) and to carry cargoes (to pull). To study the inherent asymmetry between active pushing
and pulling we model a crawling acto-myosin cell extract as a one-dimensional layer of active gel subjected
to external forces. We show that pushing is controlled by protrusion and that the macroscopic signature of
the protrusion dominated motility mechanism is concavity of the force-velocity relation. In contrast, pulling is
driven by protrusion only at small values of the pulling force and it is replaced by contraction when the pulling
force is sufficiently large. This leads to more complex convex-concave structure of the force-velocity relation;
in particular, competition between protrusion and contraction can produce negative mobility in a biologically
relevant range. The model illustrates active readjustment of the force generating machinery in response to changes
in the dipole structure of external forces. The possibility of switching between complementary active mechanisms
implies that if necessary “pushers” can replace “pullers” and vice versa.
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I. INTRODUCTION

Most eukaryotic cells, including, for instance, fish ker-
atocytes, self-propel by advancing the front and retracting
the rear. A prototypical scheme of such motility includes
polymerization of actin, facilitated by dynamic assembly of
focal adhesions, motor-driven contraction of an acto-myosin
cytoskeletal network, and, finally, the detachment of adhesive
contacts followed by depolymerization of actin that closes
the treadmilling cycle [1–7]. All three main components
of the motility mechanism (polymerization, contraction, and
adhesion) are active and require intricate regulation as well
as a continuous supply of energy. While the general crawling
scheme described above is compatible with both oscillatory
and steady translocation of the cell body, in this paper we
focus on steady motility modes.

The molecular and biochemical basis of cell motility is
basically known; however, the qualitative understanding of
the mechanical interplay between different active components
is hidden behind complex computational schemes involved in
modeling of cell motility [8–14]. In particular, the relative
mechanical role of contraction and protrusion in exerting
forces on obstacles (pushing) and carrying cargoes (pulling) is
usually obscured by geometrical and chemical complexity of
the comprehensive mathematical models.

Protrusion is known to be the main mechanism of pushing
which, for instance, plays a dominant role in Listeria propul-
sion [15]. In contrast, contraction is believed to be crucial for
the ability of cells to pull organelles. An inherent functional
disparity between protrusion-contraction components of the
motility mechanism suggests a fundamental difference in
the structure of the force-velocity relations associated with
pushing and pulling. In experimental studies pushing and
pulling are often difficult to distinguish, and most of the
measured force-velocity data are attributed to pushing [16–19].

To separate contributions of protrusion and contraction we
use the simplest model of an active gel and view lamellipodium
as a one-dimensional (1D) fluid body [20]. The actomyosin
cell extract represented by such a gel is assumed to be limited
by free boundaries where the external loads are applied (see

Fig. 1). Actin treadmilling also takes place on these boundaries
and is modeled as an influx of mass at the front and its
disappearance at the rear. Active contraction is represented by
a spatially homogeneous prestress generated at the microscale
by molecular motors. Adhesion is assumed to be passive and is
modeled in this minimal setting by viscous friction on a rigid
background.

Our main result is that the roles of protrusion and contrac-
tion may by interchangeable depending on the character of the
mechanical task performed by the cell (pushing or pulling). We
identify an experimentally observable macroscopic signature
of the dominance of each of the two mechanisms by demon-
strating that the pushing-dominated force-velocity relation is
concave while the pulling-dominated force-velocity relation
may be convex-concave with an interval of negative mobility.

An explicit solution of the mechanical problem shows
that in the presence of a cargo the minimal fluid model is
singular, and we regularize it by accounting for an overall
stiffness. The latter may be ascribed either to a membrane or
to the elastic components of the cytoskeleton [21–24]. Such
augmentation removes singularities but preserves the main
qualitative predictions of the minimal model.

To further challenge the minimal model we study the effects
of spatially inhomogeneous (graded) adhesion and distributed
(bulk) depolymerization, and we consider the dependence of
contractile stress on actin density. We show that the main
qualitative results regarding the convexity structure of the
force-velocity relation remain unchanged.

While even our augmented minimal model still underrep-
resents some physical effects (e.g., active adhesion, transport
of motors, complex membrane dynamics, 3D geometry, etc.
[8–14]) it allows one to go beyond force-velocity relations and
study the efficiency of cargo-pulling machinery. In particular,
we show that a competition between protrusion and contraction
can result in a bimodal structure of the load-efficiency relation.
By using the minimal model we could also compare the
conventional kinematic mode of driving through given poly-
merization/depolymerization velocities with a direct control
of external energy supplies responsible for protrusion and
contraction.
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FIG. 1. (Color online) Schematic representation of an advancing
lamellopodium subjected to a pushing force q+ and a pulling force q−.

Regarding the general behavior of active media, we have
shown that an interplay between “pushers” and “pullers”
[25–27] can lead to observable effects in the presence of
applied loads. The importance of the idea that different active
mechanisms can swap roles depending on the task goes far
beyond the subject of cell motility.

The paper is organized as follows. In Sec. II we formulate
the minimal model, find explicit traveling wave solutions
describing steadily advancing cells, and study stability of
these solutions. By solving the associated transport problem
we reconstruct actin density profiles in different loading
regimes and reveal the mechanism behind the possibility of
infinite density localization. We then study the distribution
of active force dipoles in the moving cell and present an
interpretation of the negative motility regime in terms of
a crossover between protrusion-dominated and contraction-
dominated regimes. Elastic regularization of the minimal
model is introduced in Sec. III where we consider separately
the mean field (spring) model, the Kelvin-Voigt model, and
the Maxwell model. Other extensions of the minimal model
incorporating inhomogeneous adhesion, distributed depoly-
merization, and density-dependent contraction are analyzed in
Sec. IV. In Sec. V we explore the energetics of the protrusion-
contraction mechanism and study the load dependence of its
efficiency. The possibility of a nonkinematic driving of the
moving cell is discussed in Sec VI. Section VII contains our
conclusions.

II. THE MINIMAL MODEL

Our starting point is the balance of forces in a 1D layer
of active gel placed on a rigid surface [20,28]. While active
dynamics of adhesion complexes is notoriously complex [29],
a usual assumption made in the context of cell motility
is that the time-averaged tension generated by constantly
engaging and disengaging focal adhesions is proportional to
the velocity of the retrograde flow [12,13,28,30–33]. If we
neglect the biphasic effect [2,7,34–38] and assume that the
friction coefficient ξ > 0 is constant we obtain

∂xσ = ξv, (1)

where v(x,t) is the velocity and σ (x,t) is the stress. Here and
throughout the paper we denote by ∂a a partial derivative with
respect to a.

By using the constitutive model of an infinitely compress-
ible viscous active fluid we can write [20,28]

σ = χ + η∂xv, (2)

where η > 0 is a bulk viscosity and χ > 0 is a constant
active prestress. This minimal constitutive description is
clearly singular because the cell can be infinitely stretched
or compressed, and it is quite remarkable that this setting is
already sufficient to capture the essence of active competition
between treadmilling and contraction.

Combining (1) and (2) we obtain a second-order differential
equation which we need to solve on a domain with free bound-
aries l+(t) and l−(t) representing the front and the rear limits of
a cell. To solve this problem on a domain with fixed boundaries
we need to impose two mechanical boundary conditions

σ (l±(t),t) = q±.

These conditions introduce asymmetric loading which is
the central concept of this paper. In our notations q+ < 0
corresponds to pushing (at the front) and q− > 0 to pulling
(at the rear). To find the unknown functions l+(t) and l−(t)
we need to impose two additional boundary conditions. The
conventional choice is a pair of kinematical constraints [20,28]

v(l±(t),t) − l̇± = v±,

where v+ > 0 and v− > 0 are the polymerization and the
depolymerization velocities, respectively. The prescribed sign
of these velocities introduces implicit polarization of the cell
which is necessary for initiation of motility in the absence of
applied forces.

If we now normalize length by
√

η/ξ , time by η/χ ,
and stress by χ , we obtain a free-boundary problem which
depends on four dimensionless parameters. Two of them, v±,
characterize internal driving and the other two, q±, describe
external loading. It is natural, however, to work with a slightly
different set of parameters. Thus, parameter

Vm = v− + v+
2

� 0

prescribes polarity of the cell and, as we show later in the
paper, gives the scale of the maximal velocity. The remaining
kinematic parameter

�V = v+ − v−

introduces the asymmetry between polymerization and de-
polymerization and, as we show later in the paper, quantifies
the degree of engagement of the contractile mechanism. It will
also be convenient to define the resultant force

Q = q− − q+ � 0,

which we assume to be positive and acting against the polar-
ization direction induced by protrusion. We also introduce the
force asymmetry factor

ε = q− + q+
Q

,

which characterizes the first moment of the external force
distribution. We notice that −1 � ε � 1 with ε > 0 corre-
sponding to pulling and ε < 0 to pushing.
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The resulting dynamic problem has a peculiar structure
due to an implicit assumption about separation of time scales.
More specifically, the neglect of inertia means that mechanical
equilibrium is reached instantaneously at the time scale of the
motion of the free boundaries (Stokes flow). The rate limiting
factor is then kinetics of the free boundaries characterized by
parameters v± that can be naively interpreted as describing the
treadmilling process only. However, as we show later in the
paper, only their sum Vm can be linked to treadmilling proper
while their difference �V is a characteristic of contraction.

A. Traveling wave solutions

The transparency of the minimal model is due to the
fact that our linear force balance equation with mechanical
boundary conditions can be integrated in elementary functions,
as was first observed in Refs. [20,28] for a cell without cargo.
When cargo is present the velocity profile can also be found
explicitly:

v(x,t) = A− cosh[l−(t) − x] + A+ cosh[l+(t) − x]

sinh[l+(t) − l−(t)]
, (3)

where

A± = ±[1 − Q(ε ± 1)/2]. (4)

Knowledge of the spatial dependence and the use of kinematic
boundary conditions allow one to obtain explicit equations
for the functions l+(t) and l−(t). Moreover, by using the total
length L(t) = l+(t) − l−(t) we can obtain a closed dynamical
problem,

L̇ = �V + (εQ − 2) tanh

(
L

2

)
. (5)

After this equation is solved the position of the geometrical
center of the cell G(t) = [l+(t) + l−(t)]/2 can be found by
integrating a decoupled equation with the known right-hand
side,

Ġ = Vm − Q

2 tanh(L/2)
. (6)

To specify solutions of Eqs. (5) and (6) we need to supply the
initial conditions L(0) and G(0) that also fix the initial velocity
profile through (3).

In this paper we are interested in traveling wave (TW)
solutions of Eq. (5) describing steadily translocating cells.
These solutions correspond to stable critical points of Eq. (5)
with L̇ = 0 that exist if and only if

0 < �V < 2 − εQ. (7)

When these conditions are satisfied the length of the cell
stabilizes as t → ∞ at the value

L∞ = 2 tanh−1

(
�V

2 − εQ

)
> 0.

Alongside, the function Ġ converges to a constant V given by
the following force-velocity relation:

V = Vm − Q

�V
+ εQ2

2�V
. (8)

Notice that the cell moves to the right against the load if
V > 0 and is dragged backwards by the load if V < 0. The

maximum velocity V ∗ = Vm is achieved when there is no load
Q = 0 and the corresponding reference length will be denoted
by L∗

∞ = L∞(Q = 0).
Since the TW regimes are stable only if 2 − εQ > 0,

pushing (ε < 0) contributes to stability while pulling (ε > 0)
plays a destabilizing role. We also observe that at �V = 0 the
loaded cell shrinks to a point, while at �V = 2 − εQ its length
diverges. For singular solutions with L∞ = ∞ which are only
elevant in the case of pulling, the force-velocity relation can
be continuously extended by using (6):

V = Vm − Q/2. (9)

In Sec. III we show that these singular solutions of the minimal
model are physically meaningful and can be viewed as limits
of the nonsingular solutions in the model with finite internal
stiffness.

At large times we can characterize convergence of the
initial configuration to the TW profile (transient regime) by
the formula

|L(t) − L∞| ∼ e−t/τ ,

where the characteristic time of relaxation to the steady state,

τ = 2(2 − εQ)

(2 − εQ)2 − �V 2
,

can be measured experimentally. After this time, which
depends on both the mechanical loading and the kinematic
driving, the cell can be expected to acquire the velocity
predicted by the steady force-velocity relations (8) and (9).

B. Force-velocity relation

The structure of the obtained force-velocity relation in the
(V,Q) plane is illustrated in Figs. 2(a) and 2(b). One can
see that it is markedly different for ε > 0 (pulling) and ε <

0 (pushing). The main feature distinguishing pushing from
pulling is the curvature of the force-velocity relation, which in
the regular regimes (8) is given by

∂2V

∂Q2
= ε

�V
,

and in the singular (pulling) regimes by

∂2V

∂Q2
= 0.

One can see that the curvature is always negative in pushing
regimes with ε < 0, which means that the corresponding force-
velocity relation is concave. Under pulling loads with ε > 0
the force-velocity curve is convex for regular regimes and is
linear for singular regimes.

In the pushing regimes the force-velocity curve is character-
ized by the stall force Q∗ = (1 − √

1 − 2ε�V Vm)/ε and the
maximum velocity V ∗ = Vm; see Fig. 2(b). The concavity of
the force-velocity relation in this case agrees with experiments
[16–19]. In the case of pulling, the force-velocity relation
is convex for Q < Qc = (2 − �V )/ε, where L∞ < ∞, and
is linear for Q > Qc, where L∞ = ∞; see Fig. 2(a). In the
convex range the function V (Q) is nonmonotone when �V <

1 and one can distinguish two regimes: the branch Q < Qn =
1/ε where the mobility is positive, V (Q) ∼ Vm − Q/�V ,
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FIG. 2. (Color online) The typical force-velocity relations in pure
pulling (a) and pushing (b) regimes. Stress, velocity, and density
profiles corresponding to points A, B, C, D, α, and β are shown in
Figs. 5 and 4. Driving parameters are v− = 1.7 and v+ = 2.

and, as we show later in the paper, protrusion dominates;
and the branch Qc > Q > Qn where the mobility is negative,
V (Q) ∼ εQ2/(2�V ), and the dominant active mechanism
is contraction. Along the negative mobility branch the cell
elongates to support larger loads till the length diverges
at a critical value Q = Qc. Beyond this value, we obtain
configurations with infinitely separated boundary layers and
mobility becomes again positive.

C. Density distribution

To interpret complex behavior of the force-velocity relation
in pulling regimes we first need to reconstruct the (actin)
density distribution inside the moving cell. The assumption
of infinite compressibility allows one to decouple the problem
of finding density distribution from the problem of determining
stress and velocity profiles.

After a “statically determinate” mechanical problem,
Eqs. (1) and (2), is solved, the density ρ(x,t) can be obtained
from the mass transport equation,

∂tρ + ∂x(ρv) = 0, (10)

where the function v(x,t) is given by Eq. (3). Equation (10)
must be supplemented by a single boundary condition,

ρ(l+(t),t)v+ = ρ(l−(t),t)v−, (11)

which ensures that the exterior treadmilling mechanism con-
serves the incoming mass flux

ṁ(t) = −ρ(l−(t),t)v− < 0.

FIG. 3. (Color online) Schematic structure of a particle trajectory
inside a cell as it approaches the steady-state TW regime. Dotted
lines indicate instantaneous treadmilling of particles from the rear
boundary of the cell to its front boundary.

Then the total mass M = ∫ l+(t)
l−(t) ρ(x,t)dx is constant, and

all actin depolymerized at the rear is instantaneously re-
polymerized at the front:

dM

dt
= ρ(l+(t),t)v+ − ρ(l−(t),t)v− = 0.

Given an initial condition ρ(x,0) = ρi(x) the mass transport
problem inside the cell can be solved by the method of
characteristics. The initial density distribution prescribes the
total mass M which can be absorbed into the scaling of ρ if
we define dimensionless density ρ/ρ0 with ρ0 = M/

√
η/ξ .

The distribution ρi is transported in finite time along the
characteristics from [l−(0),l+(0)] to the rear boundary of
the cell. The arriving mass, characterized by the distribution
ρ(l−(t),t), is then (instantaneously) transported by the tread-
milling mechanism (11) from the back of the cell l−(t) to the
front of the cell l+(t). From there the mass is again transported
by characteristics towards the rear boundary of the cell. This
construction is then repeated indefinitely as we show in Fig. 3.

To be more specific, consider, for instance, a characteristic
curve x = φt0 (t) originating at l+(t0). The function φt0 (t) is a
solution of the initial value problem

dφt0 (t)

dt
= v(φt0 (t); l−(t),l+(t)), φt0 (t0) = l+(t0). (12)

The characteristic curve x = φt0 (t) reaches the back of the
cell at t = t1 which can be found from the condition φt0 (t1) =
l−(t1). The density evolution along the characteristic curve can
now be recovered from the transportation condition

ρ(φ(t),t) = ρ(φ(t0),t0)e− ∫ t

t0
∂xv(φ(u);l−(u),l+(u))du

.

In the traveling wave regime both density and velocity
depend only on the comoving coordinate y = x − V t, with
0 � y � L∞. In particular, ρ(x,t) = ρ(y). We must also have

l−(t) = V t, l+(t) = L∞ + V t.

Now the mass balance equation can be integrated explicitly,
and we obtain

ρ(y) = ṁ

v(y) − V
, (13)
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FIG. 4. (Color online) Stress, velocity, and density profiles for point α in Fig. 2 where ε = ±1, Q = 0, V = V ∗ = 1.85 and for point β in
Fig. 2 where ε = −1, Q = Q∗ = 0.45, V = 0. Parameters are v− = 1.7 and v+ = 2.

where ṁ is a constant mass flux and the function v(y) is given
explicitly by Eq. (3). Since the dimensionless total mass of the
cell is equal to unity, we obtain

ṁ =
(∫ L∞

0

dy

v(y) − V

)−1

. (14)

This allows us to write the final expression for the steady-state
density profile in the form

ρ(y) =
(

[v(y) − V ]
∫ L∞

0

du

v(u) − V

)−1

.

An internal configuration of a cell at zero load (Q = 0,
V = V ∗), which is typical for both weak pushing and pulling,
is shown in Fig. 4(α). Similar profiles for stress and velocity
have been already presented in Refs. [20,28] and here we
complement the picture by presenting the associated density
profile. The density accumulation at the back of the cell is
in agreement with the relative velocity distribution v(y) − V

in the comoving frame. One can see that this flow is globally
retrograde with higher absolute value of velocity at the leading
edge than at the trailing edge.

Adding loads generates a nonzero mean flow in the
comoving frame and makes the profile steeper in pushing
regimes and more shallow in pulling regimes. For instance, in
Fig. 4(β) we show the configuration corresponding to (severe)
pushing at the stall force conditions Q = Q∗. In this and
similar regimes shown in Figs. 5(A) and 5(D), the relative
flow with respect to the average velocity is prograde at the rear
and retrograde at the front. Instead, the distribution v(y) − V

is globally retrograde, slowing down at the rear of the cell
where the density profile has a maximum; see also Ref. [20].

A fundamentally different set of regimes, signifying, as
we show in the next section, a transition from protrusion-
dominated to contraction-dominated motility, is shown for the

case of pulling in Figs. 5(B) and 5(C). Here the relative flow
with respect to the mean velocity is retrograde at both rear
and front and is prograde in the central part of the cell. The
distribution v(y) − V continues to be globally retrograde with
strongest flow at the back and at the front of the cell, and
it slows down in the middle part of the cell. This velocity
redistribution pushes the density maximum from the back
towards the center of the cell. In Fig. 5(C) we show that, as
the length of the cell diverges, both stress and velocity profiles
flatten everywhere outside infinitely narrow boundary layers.

D. Pushers and pullers

In this section we discuss physical phenomena behind the
observed differences in the structure of force-velocity relations
in the regimes of pushing and pulling.

We begin with an observation [20,39] that the global force
balance, stating that the applied force is resisted by the friction
force, ∫ L∞

0
v = −Q,

does not distinguish between pushing and pulling. To see the
role of different active agents we need to consider the balance
of couples, and by referring to asymmetric cargo we imply
different signs of the dipole component of the distributed load.

By multiplying the force-balance equation (1) in the TW
regime by y − L∞/2 and integrating over the body of the cell
we obtain

Q
ε

2
− 1

L∞

∫ L∞

0

(
y − L∞

2

)
v(y)dy = 1

L∞

∫ L∞

0
σ (y)dy.

The first term on the left-hand side,

Te = Q
ε

2
,
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FIG. 5. (Color online) Stress, velocity, and density distribution inside a cell moving with the same velocity V = 0.95 in four different
loading regimes indicated as A, B, C, and D in Fig. 2. The dashed line shows elasticity-regularized profiles corresponding to point C ′ in Fig. 8.

is the moment of external forces. Since we assumed that
Q > 0, pulling is associated with a positive applied dipole
while pushingis associated with a negative applied dipole. The
second term on the left-hand side,

Tf = − 1

L∞

∫ L∞

0

(
y − L∞

2

)
v(y)dy,

represents a frictional dipole which may have different signs.
The integral on the right-hand side defines the active dipole,
which can be also rewritten as

Ta = 1

L∞

∫ L∞

0
(1 + ∂yv)dy.

This term can be further decomposed into the sum Ta = Tc +
Tp, where the contraction component can be written in the TW
regime as

Tc = 1 > 0

and the protrusion component as

Tp = −�V

L∞
< 0.

The opposite signs of these two terms suggest that the
underlying active mechanisms are inherently different. By
using the terminology of the theory of active suspensions
[25,26] we can interpret the protrusion term as representing
distributed pushers and the contraction term as representing
distributed pullers.

We observe that, due to the presence of contraction
(positive) force dipole, the rear boundary of the cell is pulled
forward while the front boundary is pulled backward. As a
compensation, contraction produces internal retrograde flow
at the rear and prograde flow at the front. In contrast, a
protrusion (negative) force dipole pushes the rear of the cell
backward while the front of the cell is pushed forward. This
is compensated internally by retrograde flow at the front and
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prograde at the rear. These flows must be superimposed with
the mean flow v̄ = −Q/L∞, which is associated solely with
the total applied force and is therefore always retrograde.

We can now identify separate contributions of pushers
and pullers in building the internal configurations of the cell
displayed in Figs. 4(α) and 4(β) and in Figs. 5(A)–5(D). For
instance, knowing that in the protrusion (pusher) dominated
regime the velocity gradient must be negative (retrograde at
the front and prograde at the rear, plus a constant) we can
conclude that pushers dominate in the configurations shown in
Figs. 4(α) and 4(β) and in Figs. 5(A) and 5(D). Similarly, if we
consider regular pulling regimes exhibiting negative mobility
at Qc > Q > Qn, see Fig. 5(B), we can conclude that here
pushers are challenged by pullers that enforce positive velocity
gradient (retrograde at the rear and prograde at the front, plus
a constant). The situation remains qualitatively similar in the
singular pulling regimes illustrated in Fig. 5(C).

Therefore, we can identify the point Qn in Fig. 2(a)
with a crossover from pusher-dominated to puller-dominated
regimes. This interpretation is supported by comparing the
magnitudes of the two competing active couples. For instance,
in the realistic case �V = 0.3 [20], illustrated in Fig. 2(a), a
condition that the magnitude of the contraction couple is twice
as big as the magnitude of the protrusion couple, |Tc| ∼ 2|Tp|,
gives the value of the force 2 − �V/ tanh(�V ) = 0.97, which
is quite close to the threshold Qn = 1/ε = 1. Here it is
important to mention that at Q = 0 we have |Tc| ∼ |Tp|, which
allows the cell to eliminate the frictional couple and achieve
maximum velocity.

The observed crossover correlates with the transition from
positive to negative mobility which also takes place at Qn.
Negative mobility has been discussed previously in the
context of individual [40–43] and interacting [44,45] Brownian
motors. The regimes where velocity of the crawling cell
increases with an opposing pulling force at the rear have
been envisioned in Ref. [46], where negative mobility was

attributed to the coupling between the velocity of retraction
and the applied force v−(Q) [47]. In our model such coupling
is absent, which shows that negative mobility may also have a
different origin.

To make quantitative predictions we use the data from [20]:
χ = 103 Pa, ξ = 5 × 1016 Pa m−2 s, η = 5 × 104 Pa s, v+ =
2, and v− = 1.7. This gives for the dimensional velocity of
the unloaded cell (χ/

√
ξη)V ∗ = 0.37 × 10−7 m s−1 and for

its dimensional length
√

ηξL∗
∞ = 0.3 × 10−7 m. This length

scale is of the right order of magnitude while the velocity
scale is at least an order of magnitude smaller than the values
recorded for keratocytes and fibroblasts [18,48]. In the case
of pure pushing ε = −1, we can use the area S = 10−12 m2

to obtain the dimensional value of the stall force χSQ∗ =
1nN , which is realistic [16–19]. Based on these estimates we
conclude that negative motility may be expected in the interval
of pulling force values 1–1.7nN , and this prediction can be
tested experimentally.

E. Formation of singularities

Formula (14) shows a possibility of the two types of
degeneracies associated with reaching the condition ṁ = 0.
In such singular regimes the treadmilling flow becomes fully
blocked.

The first type of singular behavior takes place when the
length of the cell diverges. Here we refer to the infinite
spreading of a cell in pulling regimes with Q > Qc illustrated
in Fig. 5(C). As we show in the next section, this problem can
be fixed if elastic stiffness is taken into consideration.

The second type of degeneracy is associated with nonin-
tegrability of [v(y) − V ]−1 even for cells with finite lengths.
Such a singularity can take place when there exists a point
y0 where v(y0) = V . To illustrate the possibility of this type
of singular behavior, consider the whole set of pure pulling
regimes shown in Fig. 6(a). Notice that the line ṁ = 0 in the

FIG. 6. (Color online) (a) Various pulling regimes in the parameter space (Vm,�V ). In the domain V > 0 the cell moves against the load
while if V < 0 the cell is dragged by the load. Along the line XY the cell is static resisting the load (stall force conditions). The singular
regimes correspond to the lines ZX (infinite localization) and XR (infinite spreading). (b) Density localization along the path indicated in
(a) by the solid line which ends with the formation of a singularity at point W . The loading is ε = 1 and Q = 1.6. For �V = 0.3 the singularity
is located at y1/L∞ � 0.4.
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FIG. 7. (Color online) Sketch of particles trajectories as the
steady-state (TW) mass flux approaches zero; see Fig. 6 for the
related density profiles. (a) At small values of ṁ each particle
spends considerable time in a small region near a line x = y0 + V t .
(b) When ṁ = 0 all particle trajectories converge to the line x =
y0 + V t , which leads to a blowup singularity.

(Vm,�V ) plane consists of two segments: XR and ZX. The
segment XR is associated with infinite spreading of the cell as
discussed above. In contrast, along the segment ZX the length
of the cell remains finite while the density localizes infinitely
in a single point inside the cell.

To locate this point consider a regular (ṁ 	= 0) density
profile with a local maximum at y = y1 where ∂yρ(y1) = 0.
Such a point can be found from the equation

A− sinh(y1) = A+ sinh(L∞ − y1).

One can see that y1 does not depend on Vm, and if we lower
the value of Vm till the regime with ṁ = 0 is reached [see the
solid trajectory ending at W in Fig. 6(a)] we obtain y0 = y1.
The associated phenomenon of infinite mass concentration at
the point y = y1 = y0 is illustrated in Fig. 6(b). Below the
line (ZWX) the reconstruction of mass density is not possible
because of the interpenetration of matter.

The phenomenon of infinite density localization can be
also illustrated through the behavior of the characteristics
(particle trajectories). In Fig. 7 we show how characteristics
in the TW regime concentrate as one approaches point W in
Fig. 7(a). Even before reaching the regime W the particles
spend considerable time around the line x = y0 + V t ; see
Fig. 7(a). At the point W where ṁ = 0, the mass flow gets
completely blocked as we show in Fig. 7(b). Notice also
that, due to decoupling of mechanical and mass transport
problems in the minimal problem, the velocity field in such
singular regimes remains regular. Similar to the case of infinite
spreading, the problem of infinite localization can be resolved
if we take into consideration internal stiffness of the cell body.

III. ELASTIC REGULARIZATION

A natural way to regularize the minimal model is to
introduce an intermediate-time stiffness of the cell. Such
stiffness prevents the unloaded cells from contraction-induced
collapse and sets the rest length, and it also keeps this length
from diverging in the case of pulling.

Elasticity may be associated either with the cytoskeleton or
with the cell membrane. Membrane and cortex elasticity can
be modeled in a prototypical setting as a mean field elastic
feedback provided by elastic springs linking different parts
of the cell [23,24]. Viscoelastic properties of cytoskeleton
strongly depend on the characteristic time of the problem
[49–51], and the corresponding corrections to the active gel
model in the bulk of the cell are usually incorporated either
in the framework of a short-time (Maxwell) elastic model
[28,30,52–54] or a long-time (Kelvin-Voigt) elastic model
[31,55,56].

A. Mean field elasticity

The simplest elastic regularization of the minimal model is
through mean field coupling between the leading and trailing
edges of a cell [21–24]. If this coupling is linear elastic, the
applied loads become

q± → q± + k
L − L0

L0
,

where k > 0 is a dimensionless stiffness and L0 is a prescribed
dimensionless reference length. The meaning of parameter
L0 is clear from the fact that for k > 1 and Vm = �V = 0
there exists a nontrivial static solution with L∞ = L0(1 − 1/k)
(preferred shape).

In dynamics the steady-state (TW) solution is now stable
for all �V > 0, and to find L∞(Q) one needs to solve

�V =
(

2 − εQ + 2k
L∞ − L0

L0

)
tanh

(
L∞
2

)
.

Then, the force-velocity relation can be found from the relation

V (Q) = Vm − Q

2 tanh
(

L∞(Q)
2

)
and its k dependence is illustrated in Fig. 8. We observe that,
independently of the value of k, all force-velocity curves cross
at Q = 0 where V = V ∗. The second common intersection
point at

QI = 1

ε

(
2 − �V

tanh
(

L0
2

))

exists when ε > 0 and L0 > L∗
∞.

The salient feature of the regularized model is that at k → 0
the mean field force-velocity curves approach their minimal
model counterparts, including both the regular regimes with
finite cell lengths and the singular regimes with infinite cell
lengths. However, despite similarity in shape between the
force-velocity curves in the minimal model and in the regular-
ized model with k ∼ 0, the length of the cell in the regularized
model is always finite so that infinite stretching, undermining
the minimal model, does not take place. Unfortunately, by
using the mean field elasticity model one cannot also remove
the localization singularity in the minimal model because in
this regularized setting the force balance remains independent
from the mass balance.

The phenomenon of negative mobility for the pulled cells
survives in the mean field model and disappears only at
a critical value of the stiffness k = k∗(�V ); see Fig. 9.
The qualitative difference in convexity between pulling and
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FIG. 8. (Color online) Force-velocity relations in pure pushing
and pulling modes with different k1,2,3,4 = {0,0.01,0.1,1} and L0 =
1. Driving parameters are v− = 1.7 and v+ = 2. Internal profiles
corresponding to points C and C ′ are presented in Fig. 5(C). The
minimal model is recovered at k = 0.

pushing persists beyond k∗(�V ); see for instance the regime
with k = 1 in Fig. 8. However, at k 
 k∗(�V ) the force-
velocity relations associated with pushing and pulling regimes
become similar.

The available data on static configurations [21–24] suggest
that the dimensionless parameter k (normalized by χ ) must
be in the range 1–10 which apparently excludes the negative
mobility regimes. However, many models of cell dynamics
are built under the assumption that long-time elasticity is
negligible, and essentially assume that k = 0 [20,30,52,54].
The ambiguity may be due to the ability of the cytoskeleton
to fluidize by engaging active cross-linkers that can modify its
stiffness over at least two orders of magnitude [57–59].

In view of such broad rheological flexibility of the cy-
toskeleton, the effective stiffness may easily reach below the
threshold k = 1, which means that negative motility regimes
cannot be excluded in vivo and probably can be artificially
engineered in vitro through partial suppression of the stiffening
components of the acto-myosin network. If we use numerical
values of parameters from Sec. II A, we find that χSQI �
1.3nN which gives the scale of pulling forces where negative
mobility can be expected. Notice that this value is above the
resolution of an atomic force microscopy cantilever, which has
been used previously in the measurements of force-velocity
curves [17].

FIG. 9. (Color online) Domain of negative mobility in the param-
eter space (k,�V ). The boundary between regimes with positive and
negative mobility is given by the function k = k∗(�V ).

B. Kelvin-Voigt elasticity

Instead of using the spring-based elastic regularization
considered above we can directly incorporate distributed
elasticity into the constitutive model. The closest to the mean
field model is the Kelvin-Voigt model accounting for the elastic
response at long time scales. In the 1D setting we need to
assume that

σ = χ + η∂xv − p(ρ),

where p(ρ) is the stress-density relation. In our version of
Kelvin-Voigt model we further assume that this relation is
linear,

p(ρ) = E

(
ρ

ρr

− 1

)
,

where ρr is the reference density and E the elastic modulus
[49,51]. The resulting system of coupled non-dimensional
equations can be written as

∂tρ + ∂x(ρ∂xσ ) = 0, −∂xxσ + σ = 1 − K(ρ/ρ̂r − 1),

where we introduced two new nondimensional parameters
K = E/χ and ρ̂r = ρr/ρ0. To find the steady-state (TW)
regimes we need to solve a simpler system,

−∂yyσ + σ = 1 − K

(
ρ

ρ̂r

− 1

)
,

ρ(y) =
[

[∂yσ (y) − V ]
∫ L∞

0

du

∂uσ (u) − V

]−1

,

with mechanical boundary conditions σ (0) = q− and
σ (L∞) = q+, and kinematic boundary conditions V = v− +
∂yσ (0) and V = v+ + ∂yσ (L∞).

The ensuing force-velocity relations are shown in Fig. 10
for different values of K . Qualitatively, these curves are quite
similar to their analogs in the mean field model; in particular,
the negative mobility regimes persist for sufficiently small K .
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FIG. 10. (Color online) Force-velocity curves for the Kelvin-
Voigt model with different K1,2,3,4 = {0,0.1,1,5}. Other parameters
are ρ̂r = 1, v− = 1.7, and v+ = 2. The minimal model is recovered
at K = 0.

However, the problem with the divergence of the cell length at
finite Q does not disappear, which means that Kelvin-Voigt
regularization of tension is weaker than in the mean field
model. The reason is that the linear stress density dependence
in the bulk does not penalize sufficiently the infinite stretching
of the gel layer.

We observe, however, that in the framework of linear
Kelvin-Voigt elasticity the density singularities shown in
Fig. 6(b) disappear, which means that this model regularizes
infinite compression adequately, something the mean field
model could not accomplish. This suggests that the Kelvin-
Voigt model and the mean field models show complimentary
features and should be used in combination.

C. Maxwell elasticity

In contrast to two elastic regularization schemes considered
above, the Maxwell model associates elasticity with fast time
scales. In the interpretation of this model with the corotational
(Jaummann) convective derivative [28,52,53] the dimensional
problem can be written as

∂tρ + ∂x(ρv) = 0, ξv = ∂xσ,
(15)

(η/E)∂tσ + v∂xσ + σ = χ + η∂xv,

FIG. 11. (Color online) Force-velocity curves for the Maxwell
model with different λ1,2,3 = {0,0.1,1}. Other parameters are ρ0 = 1,
v− = 1.7, and v+ = 2. The minimal model is recovered at λ = 0.

where E is the (infinite frequency) elastic modulus. One can
see that in this setting the mechanical problem decouples again
from the mass transport problem.

A single dimensionless equation describing steady-state
(TW) regimes takes the form

λ∂yσ (∂yσ − V ) − ∂yyσ + σ = 1, (16)

where the new nondimensional parameter is λ = η/E and
experimental data suggest that λ = 0.02–0.2 [30,51,60–62].
Equation (16), which is nonlinear in contrast to what we have
had in the minimal model, must be again supplemented by two
mechanical boundary conditions, σ (0) = q− and σ (L∞) =
q+, and two kinematic boundary conditions, ∂yσ (0) − V =
−v− and ∂yσ (L∞) − V = −v+.

The nonlinear boundary value problem (16) was studied
numerically, and in Fig. 11 we show the force-velocity
relations corresponding to different values of λ. One can see
that the negative motility regimes survive at finite λ, which
suggests that the qualitative behavior observed in the minimal
model is stable under this regularization.

Introducing Maxwell elasticity, however, fails to regularize
the infinite stretching singularity. Moreover, the Maxwell
model does not allow for static equilibria describing the
rest state of a cell, and there is a numerical evidence that
the problem with infinite localization of mass also persists.
We can then conclude that at least in the study of steady
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motility regimes the combination of Kelvin-Voigt and mean
field elasticity should be preferred to the use of Maxwell elastic
regularization.

IV. MISCELLANEOUS

To check the robustness of our predictions we study
in this section three different extensions of the minimal
model not dealing with elasticity. The first extended model
allows for inhomogeneous friction; in the second model
depolymerization is assumed to be taking place everywhere
in the bulk of the cell body and in the third active contractile
prestress becomes a function of actin density.

A. Inhomogeneous friction

Assume that in the steadily moving cell the friction
coefficient ξ is graded from rear to front. For instance, ξ may
be viewed as proportional to the steady-state density of focal
contacts which are known to concentrate in the frontal part of
the advancing lamellipodium [30,63,64].

More specifically, suppose that ξ = ξκ(z) where z = y −
L∞/2 and −L∞/2 � z � L∞/2. The dimensionless mechan-
ical equations describing TW regimes takes the form

−∂z

(
∂zσ

κ(z)

)
+ σ = 1. (17)

While this equation is still linear, it now has a variable coeffi-
cient. The mechanical boundary conditions remain the same as
in the minimal model σ (−L∞/2) = q− and σ (L∞/2) = q+,
but the kinematic boundary conditions get modified:

V = ∂zσ

κ
(−L∞/2) + v− = ∂zσ

κ
(L∞/2) + v+.

A semiexplicit solution of the resulting Sturm-Liouville
problem can be expressed in terms of two linearly independent
functions A(z) and B(z) solving the following elementary
subproblems [65]:

A′′ = κ(z)A, A′(−L∞/2) = 1 = A′(L∞/2),

and

B ′′ = κ(z)B, B ′(−L∞/2) = 1 and B ′(L∞/2) = −1.

By using the functions A(z) and B(z), we can write the force-
velocity relation in the following explicit form:

�V = (2 − Qε)[A] + Q{A},
V = Vm + 2 − Qε

2
[B] + Q

2
{B},

where 2[f ] = f (L∞/2) − f (−L∞/2) and 2{f } =
f (L∞/2) + f (−L∞/2).

Suppose, for instance, that κ(z) = 1 + θκ1(z), where θ is
a small parameter and the function κ1(z) is odd. Then, in the
lowest order in θ we obtain

[A] = {B}−1 = − tanh(L∞/2),

{A} = −[B] = − θ

2 sinh(L∞)

∫ L∞/2

−L∞/2
sinh(2z)κ1(z)dz.

The resulting force-velocity relation can be written semi-
explicitly,

�V = (2 − Qε) tanh

(
L∞
2

)

− 2Qθ

sinh(L∞)

∫ L∞/2

0
sinh(2z)κ1(z)dz,

(18)

V = Vm + θ (2 − Qε)

sinh(L∞)

∫ L∞/2

0
sinh(2z)κ1(z)dz

− Q

2 tanh
(

L∞
2

)
.

Observe that if the integral
∫ L∞/2

0 sinh(2z)κ1(z)dz in
Eq. (18) is positive, which means that if there is a frictional
bias at the front, the cell will have larger length and will move
with larger velocity than in the minimal model with θ = 0. If,
instead, the friction is stronger at the back, the cell will have
smaller length and will move slower than in the minimal model.
These results are compatible with the observation that adhesion
complexes predominantly position themselves at the front of
the moving cell [30,63,64] which can then be interpreted as an
optimization of velocity.

In Fig. 12 we show numerical results for finite values of
θ . To ensure that the concentration of adhesive complexes
at the front is four times larger than in the back, which
is plausible for keratocytes [30], we must take θ = 8. From
Fig. 12 we see that at this level of inhomogeneity the general

FIG. 12. (Color online) Force velocity relations in the case of
inhomogeneous friction with θ as a parameter. The minimal model is
recovered at θ = 0.
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shape of the force-velocity curves remain qualitatively the
same as in the minimal model.

B. Delocalized depolymerization

We recall that in the minimal model the mass transport
problem is fully decoupled from the force balance problem.
As a result the density distribution does not affect the force-
velocity relation, and different models of actin transport can
be made compatible with the same force-velocity relation.

To exploit this idea we consider in this section a version
of the minimal model where depolymerization is not localized
at the rear front of the cell. Instead, we assume that depoly-
merization takes place everywhere in the bulk of the cell as
suggested by observations [66–69].

As a first step we exclude localized depolymerization
by putting v− = 0. Then we modify the mass conservation
equation by adding a source term. If we make the simplest
assumption that the rate of depolymerization is a linear
function of density we obtain

∂tρ + ∂x(ρv) = −γ̂ ρ. (19)

The coefficient γ̂ is estimated to be in the range 0.01–0.05 s−1

[30,31,70].
The proposed reformulation of the minimal problem affects

the velocity distribution only through the specific choice of
one of the kinematic fluxes (condition v− = 0) which gives
�V = v+ and Vm = v+/2. The explicit solution (3) and the
general formulas (5) remain valid. The stability condition takes
the form

0 < v+ < 2 − εQ.

One can see that the assumption v+ � 2, which we used
throughout the paper to illustrate the results obtained in the
minimal model, is no longer adequate in the case of pulling.
We therefore assume a smaller value v+ � 1 which is also
plausible in view of Refs. [28,31,67,68]. In the presence of
elasticity penalizing infinite stretching such rescaling is not
necessary.

The treadmilling boundary condition for Eq. (19) can now
be written in the form

ρ(l+(t),t) = γ̂M

v+
. (20)

It ensures that the total mass remains constant,

dM

dt
= −γ̂M + ρ(l+(t),t)v+ = 0.

We can again absorb M into the scaling of ρ by using the
dimensionless variable ρ/ρ0. The ensuing nondimensional
problem depends on the new parameter γ = ηγ̂ /χ which is
estimated to be in the range ∼0.5–2.5.

The dimensionless equation describing the TW regimes
takes the form

∂y(ρ(v − V )) = −γρ (21)

where we recall that y = x − V t . If we now introduce the
treadmilling mass flux ṁ = −γ , we may write the solution of

(21) explicitly:

ρ(y) = ṁ

v(y) − V
exp

(
−

∫ L∞

y

ṁ

v(u) − V
du

)
. (22)

Here the preexponential factor is exactly the same as in the
minimal model (13), while the new exponential term describes
modulation due to distributed depolymerization.

To illustrate the role of this term we now show that in this
new setting we can obtain a peak of density at the front of
the cell and a decay in the back, which is the pattern typically
observed in moving cells [18,67,68]. To this end we explicitly
compute the values of actin density at the front ρ(L∞) and
at the back ρ(0). The first of these quantities can be found
directly,

ρ(L∞) = γ

v+
.

To find the second quantity we need to use an asymptotic
development of the integral term in Eq. (22) at small y,

ρ(y) ∼ 1

A+

A− − A+
−2A+ sinh(L∞)

y
γ

A+ −1
,

where A+ and A− are defined in Eq. (4). From this formula we
see that in the relevant range γ > A+ (the assumption γ > 1
ensures this inequality) we obtain

ρ(0) = 0.

Notice that now we have ρ(0) < ρ(L∞) while in the minimal
model we always had ρ(0) > ρ(L∞).

In Fig. 13 we choose γ = 1.5 and v+ = 1 and show the
typical density profiles for both pure pushing and pure pulling
cases. One can see that even for unloaded cells the distributed
depolymerization leads to a global decay of actin density from
the front to the back. Interestingly, this decay may not be
monotone. It is clear, however, that the fine structure of the
density at the front of the cell is dominated by microscopic
interactions of the actin network with the membrane and
cannot be captured by our simplified model.

C. Density-dependent contraction

The fact that contractile prestress depends on both actin and
myosin densities is well established [36,71–74]. Therefore the
assumption that the corresponding active term is equal to a
constant is one of the main weaknesses of the minimal model.

A rather general theory of active gels implying coupling
between the active prestress and the transport of different
components of the actomyosin network has been developed in
Refs. [75–77]. While it was shown that this coupling induces
a rich variety of dynamic behaviors, the problem was typically
studied in a fixed domain and without external loading. In
particular, the issue of the force-velocity relation was not
addressed.

In this section we study force-velocity relations under the
assumption that contractile stresses depend on cytoskeletal
density representing actin filaments with the same orientation.
At the same time we neglect the important coupling of active
stress with motor density studied in Refs. [32,36,74].

We begin by writing the system of coupled equations of the
model where it is convenient to distinguish three subproblems:
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FIG. 13. (Color online) Density distribution in the pulling and
pushing regimes for the model with delocalized depolymerization.
Parameters: v+ = 1 and γ = 1.5.

(i) Force balance:

−∂xxσ + σ = σa(ρ),
(23)

σ (l−(t),t) = q− and σ (l+(t),t) = q+,

(ii) Polymerization/depolymerization:

l̇− = v− + ∂xσ (l−(t),t), l̇+ = v+ + ∂xσ (l+(t),t),
(24)

l−(0) = l0
− < l+(0) = l0

+,

(iii) Actin transport:

∂tρ + ∂x(ρ∂xσ ) = 0, ρ(l−(t),t)v− = ρ(l+(t),t)v+,
(25)

ρ(x,0) = ρi(x).

The force-velocity relation can be obtained by solving these
equations numerically for different loading conditions and
tracing the solutions till they approach different traveling wave
regimes.

In our numerical experiments we observed that by assuming
a linear dependence of active prestress on actin density
σa(ρ) we do not reach TW regimes, and obtain instead
oscillatory modes of cell motility [77]. The situation changes
if we assume that this dependence is nonmonotone, which
agrees with microscopically motivated models considered in
Refs. [71–73,78]. According to these models, at small actin
densities more filaments allow more motors to bind and
to induce contractile stresses; however, there is a density
threshold after which compaction of the network prevents
further increase of the contractile stresses. By accepting this
reasoning we used the function σa(ρ) proposed in Ref. [78],

FIG. 14. (Color online) Contractile stress σa as a function of actin
density ρ for different choices of parameters ρs and C taken from
Ref. [78]. The minimal model is recovered at C = 1, ρs = ∞.

which in dimensionless form can be written as

σa(ρ) = Cρ2 exp

(
− 2

ρ

ρs

)
. (26)

Here C is a constant and ρs is the actin saturation density; see
Fig. 14.

In our numerical experiments the initial location of the
cell boundaries was at l0

− = 0, l0
+ = 1. The initial density

distribution was chosen to be

ρi(x) = 2

1 + v−/v+

[
1 +

(
v−
v+

− 1

)
x

]
,

which is the simplest way to satisfy the boundary conditions

and the requirement that
∫ l0

+
l0−

ρ = 1. By varying the initial data
we could reach different traveling wave regimes and in this
way recover the full force-velocity relation.

The results are presented in Fig. 15. As we see, the imposed
coupling does not destroy the fundamental difference in con-
vexity properties between the force-velocity curves in pushing
and pulling regimes. We also observe that in the parametric
regimes presented in Fig. 15 the steady density profiles always
lie on the decreasing limb of the density-contractility curve
shown in Fig. 14. Further studies are needed to understand this
phenomenon as well as other effects including oscillatory and
stick-slip -type nonequilibrium steady states [75–77].

V. THE EFFICIENCY OF CARGO TRANSPORT

The simplicity of the minimal model allows one not only
to obtain explicit force-velocity relations but also to study the
energetics of a self-propelling cell carrying a cargo.

If we multiply the force balance equation (1) by v(x,t) and
use the constitutive relation (2) we obtain the global energy
balance equation∫ l+(t)

l−(t)
v2 +

∫ l+(t)

l−(t)
(∂xv)2 +

∫ l+(t)

l−(t)
∂xv = [σv]l+(t)

l−(t).

In this equation we can identify the following terms:
(1) Df = ∫ l+(t)

l−(t) v2 > 0, dissipation rate associated with
surface friction.

(2) Dv = ∫ l+(t)
l−(t) (∂xv)2 > 0, dissipation rate associated with

bulk viscosity.
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FIG. 15. (Color online) Typical force-velocity relations for the
model with actin-dependent contractility. Parameters are v− = 1.7,
v+ = 2. The insets show the steady-state density profiles located on
the decreasing limb of the density-contractility curve; see Fig. 14.
The minimal model is recovered at C = 1, ρs = ∞.

(3) Pc = − ∫ l+(t)
l−(t) ∂xv > 0, rate of energy consumption by

the contractile mechanism.
(4) Pp = (qv)− − (qv)+ > 0, rate of energy consumption

by the protrusion mechanism.
(5) A = (ql̇)− − (ql̇)+, the power expanded against the

external forces.
In the case of TW regimes all these terms can be computed

explicitly. In particular, by using nondimensional quantities
we obtain

Pc = �V, Pp = QVm − εQ�V

2
, A = QV.

In these notations we can write the energy balance in the form

Pp + Pc = A + D, (27)

where D = Df + Dv. The mechanical efficiency of cargo
transportation can then be defined as follows:

� = W/H. (28)

Here the numerator W describes the useful work and may,
in addition to A, contain an additive Stokes term PS = LV 2,

which is nonzero even in the absence of the cargo [79–81].
However, in our problem this correction can be shown to be
small and will be neglected.

The denominator H > 0 describes external energy supply
associated with ATP hydrolysis which drives the motility
process. It is clear that H must include the power HA = Pp +
Pc exerted by active forces on the constraining environment.
It should also contain the “maintenance” term HD which
accounts for energy consumption required to sustain the
active state in the absence of macroscopic motion [82]. By
using terminology introduced in Refs. [28,83] for weakly
nonequilibrium regimes we can identify HA and HA with the
terms that are, respectively, linear and quadratic in the measure
of chemical nonequilibrium �μ. In what follows, we neglect
the “quadratic” term HD (dealing with degrees of freedom
that are invisible in our macroscopic model) comparing to the
“linear” term HA.

By using these simplifying assumptions we can write

� = A

Pp + Pc

. (29)

By using the fact that D > 0 one can showthat 0 < |�| < 1.
In the TW limit the efficiency (29) can be computed explicitly:

� = QV

�V + QVm − εQ�V/2
.

In Fig. 16 we show the efficiency � and the energy
consumption rate Pp + Pc as functions of the total load Q

FIG. 16. (Color online) Rate of energy consumption and effi-
ciency as functions of the load in the cases of pure pulling and pushing
loading modes. The corresponding force-velocity relation is shown
in Fig. 2. Driving parameters are v− = 1.7 and v+ = 2.
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for the TW regimes presented in Fig. 5. First of all we
observe that the divergence of the cell length in the minimal
model in the pulling regimes with Q � Qc does not lead to
singular behavior of any of the energetic measures. Second,
we notice that, while in the case of pushing the function �(Q)
displays a usual single maximum, in the case of pulling the
efficiency-load relation becomes bimodal. The two maxima
can be identified with protrusion-dominated and contraction-
dominated motility mechanisms. Such bimodality may carry
biological advantages, allowing a the cell to switch back and
forth between two highly efficient regimes by controlling, for
instance, the friction experienced by the nucleus.

If we augment the minimal model by adding mean field
elasticity (see Sec. III) the energy balance equation takes the
form

Pp + Pc + Pe = A + D,

where the new term Pe describes the power exerted by
protrusion mechanism against the elastic “spring”:

Pe = −k
L − L0

L0
(L̇ − �V ).

This term remains nonzero in TW regimes where L̇ = 0 and
it should be added to the denominator in the expression of the
efficiency,

� = A

Pp + Pc + Pe

. (30)

In Fig. 17 we show the k dependence of the efficiency (30).
One can see that the two-peak structure of the function
�(Q) survives in the regularized model till a threshold in
k, signifying also the disappearance of the negative mobility
range, is reached.

VI. ALTERNATIVE DRIVING MODES

In the minimal model we used an assumption that the
process of cell motility is driven by the kinematic fluxes
characterized by parameters v+ and v−. This assumption,
illustrated in Fig. 18, means that we impose separately
the velocities of polymerizing (arriving) and depolymerizing
(departing) mass points; see also Refs. [7,20,28,30,31]. The
fact that nothing is said about the densities of the arriving
or departing material allows one to decouple the mechanical
problem from the mass transportation problem, and makes the
analysis fully transparent. This transparency, however, comes
at a cost.

First, it is clear that the treadmilling is characterized by
only one parameter, the mass flux ṁ, so by fixing two
parameters Vm and �V we are implicitly constraining both
treadmilling and contraction. This is also clear from the
fact that parameter �V = v+ − v− serves as a measure of
energy consumption in the contraction mechanism. Second,
by prescribing the kinematic fluxes v+ and v− we have no
direct control of the treadmilling mass flux. As a result we
encounter singular regimes with ṁ = 0 which leads to either
infinite mass localization inside the cell or to infinite spreading
of the cell body. Third, by focusing on kinematic fluxes we do
not put any restrictions on the energy consumption required

FIG. 17. (Color online) Efficiency as a function of the load in
the elasticity-regularized model in pure pushing and pulling regimes
with different k1,2,3,4 = {0,0.01,0.1,1} and L0 = 1. Experimental
data suggest that k = 1–10 (see Refs. [23,24]). Parameters: v− = 1.7
and v+ = 2. The corresponding force-velocity relations are shown in
Fig. 8. The minimal model is recovered at k = 0.

to sustain different active mechanisms, which appears to be a
natural biological constraint.

Notice also that the problem of setting where driving
is performed through parameters v+ and v− contains an
implicit assumption that the material arrives with a particular
density (particular structural organization). Another implicit
assumption is that the departing material has a density which
depends on the activity of the contractile machinery. While
these assumptions are plausible, they may not be the most
natural ones from the biological point of view. Even more

FIG. 18. (Color online) Schematic structure of the treadmilling
cycle showing different densities of arriving (polymerizing) and
departing (depolymerizing) material.
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FIG. 19. (Color online) (a) Various pulling regimes in the parameter space (ṁ,Pc). The singular regimes correspond to the lines ZX (infinite
localization) and to the point X(R) (infinite spreading). (b) Density localization along the path indicated in (a) by the solid line which ends with
the formation of a singularity at point W . The loading is ε = 1 and Q = 1.6. Analog of Fig. 6.

importantly, as we have shown in the previous sections, these
assumptions necessarily lead to singularities.

In this section, to further challenge the robustness of
our conclusions about the asymmetry between pushing and
pulling, we consider an alternative modality of driving by
imposing constraints on energetic rather than kinematic pa-
rameters. The main difficulty in dealing with nonkinematic
driving schemes is that they couple the mechanical and the
mass transport problems already in the minimal setting.

More specifically, we assume that the cell controls the
treadmilling rate, characterized by the total mass flux ṁ < 0,
and the energetics of the contraction process, characterized
by the consumed power Pc = �V . The advantage of this new
parametrization is that protrusion and contraction can now
be controlled independently. If we choose the pair (ṁ,Pc)
as the parameters instead of (Vm,�V ), we again obtain
stable TW solutions given that Pc < 2 − Qε and ṁ < 0. The
proposed driving mode is in fact equivalent to the kinematic
driving mode in the TW regimes because the Jacobian of the
transformation (v−,v+) → (Pc((v−,v+)),ṁ(v−,v+)),

det

(
∂Pc

∂v−
∂ṁ
∂v−

∂Pc

∂v+
∂ṁ
∂v+

)
=

∫ L∞
0

dy

[v(y)−V ]2( ∫ L∞
0

dy

v(y)−V

)2 � 1

L∞
> 0,

is strictly positive for 0 < L∞ < ∞.
By using the parametrization (ṁ,Pc) we can easily avoid the

density localization phenomenon illustrated in Fig. 6 without
introducing elasticity. To illustrate this point we show in Fig. 19
the pulling TW regimes in the parameter plane (ṁ,Pc), where
we again distinguish between regimes where cell carries the
cargo (V > 0) and regimes where it is dragged by the cargo
(V < 0). Figure 19 has to be compared with Fig. 6 where
the same regimes are shown in the (Vm,�V ) space; the only
difference is that now the line XR corresponding to regimes
with L∞ = ∞ collapses on a single point X(R). It is clear
that if the treadmilling flux is prescribed so that ṁ 	= 0, the

singularities associated with the line ZX(R) in Fig. 6 are
automatically excluded.

In Fig. 20 we show the force-velocity relations in the
minimal model with prescribed (ṁ,Pc). One can see that the
qualitative difference between pushing and pulling endures in
this new setting; moreover, we again observe regimes with

FIG. 20. (Color online) Force-velocity relations in pure pushing
and pulling TW regimes when driving is performed by imposing
ṁ = −6.1 and Pc = 0.3. The insets show the ensuing dependences
of v+ and v− on Q.
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negative mobility. It is interesting that by fixing parameters
Pc and ṁ we induce a dependence of the polymerization
and depolymerization rates (v−,v+) on Q (see the insets in
Fig. 20) which agrees qualitatively with the trends suggested
in Ref. [20] based on the polymerization ratchet model. We
also note that at sufficiently strong pulling loads Q > Qc =
(2 − Pc)/ε the cell length L∞ diverges, which suggests that
also in the case of nonkinematic driving the minimal model
should still be elastically regularized.

Finally we remark that instead of the pair (ṁ,Pc) we could
also prescribe another set of energy related parameters, for
instance, (Pp,Pc). Ultimately, the choice of the driving mode
requires an understanding of the microscopic side of the
model, and the answer may depend on the type of the cell,
the environment, and the regime of loading.

VII. CONCLUSIONS

In this paper we used the simplest model of a crawling cell to
study an interplay between contraction and protrusion required
to sustain and carry various cargoes. The model describes
a layer of active gel subjected to external forces. It extends
previous studies focused predominantly on the behavior of
unloaded active media or on problems with fixed boundaries.

By using an analytically transparent framework provided
by the minimal model we demonstrated that contraction
and protrusion mechanisms can interchange their roles as
one varies the dipole component of the external load. Our
model predicts a possibility of a relatively sharp transi-
tion between protrusion-dominated motility and contraction-
dominated motility in response to an increase of the pulling
force. This transition has a macroscopic signature and can be,
in principle, identified experimentally with a negative mobility
range on a force-velocity curve.

The advantage of the minimal setting is that it deliv-
ers explicit steady-state solutions describing asymmetrically
loaded self-propelling cells and allows analytical access to
their stability. Only in such a prototypical framework can
the competition between contraction and treadmilling be
studied in a transparent form without any geometric effects
obscuring the interplay between competing active ingredients
of the model. The simplicity of the model allowed us
to elucidate active adjustment of the force-producing machin-
ery to the subtle changes in the character of external loading.
The possibility of such adjustment implies that “pushers” both
collaborate and compete with “pullers.”

The augmentation of the active gel model involving elastic
stresses in addition to viscous and active stresses was found
to be essential for the removal of singularities inherent
in the minimal model. In particular, mean field elasticity
appears to be the most universal way of introducing a resting
configuration even when treadmilling is absent, and to deal
with infinite spreading at finite pulling loads. Instead, the
Kelvin-Voigt viscoelastic model, while also ensuring the
existence of static configurations and removing infinite density
localization, fails to secure the finite length of the cell in the
whole interval of applied pulling loads. We conjecture that a
combination of mean field and Kelvin-Voigt elastic terms in
the system of equations describing active gels is sufficient to
fully regularize the minimal model.

To make definitive predictions about the feasibility of
the negative mobility regimes, focused measurements of the
effective stiffness associated with different elastic structures
of the cell are necessary. In the situation when elastic coupling
strongly affects the force-velocity relations, studying kinetic
relations for differently loaded cells may be the way to
furnish a set of independent bounds on such stiffness. It
should be emphasized, however, that our conclusions regarding
convexity-concavity structure of the force-velocity relation are
much less sensitive to the value of the stiffness than the very
existence of the negative motility regime. Thus, pushing and
pulling force-velocity relations remain qualitatively different
even when the negative motility regime disappears.

Perhaps our most intriguing finding is that the fine structure
of the force-velocity relation may depend on the modality
of external driving, and we argued that kinematic driving
may not be the only physically and biologically natural
choice. In particular, we suggested that instead of the rates
of polymerization and depolymerization, the cell may be
controlling the energy supplies required for the functioning
of contraction and protrusion mechanisms. We have shown,
however, that while the detailed shape of the force-velocity
relation depends on the choice of the driving mode, its
loading-sensitive convexity-concavity structure is a robust
feature of the model.
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[46] J.-F. Joanny, F. Jülicher, and J. Prost, Phys. Rev. Lett. 90, 168102
(2003).

[47] C. Peskin, G. Odell, and G. Oster, Biophys. J. 65, 316 (1993).
[48] A. Jilkine and L. Edelstein-Keshet, PLoS Comput. Biol. 7,

e1001121 (2011).
[49] D. Boal, Mechanics of the Cell (Cambridge University Press,

Cambridge, UK, 2002).
[50] D. T. N. Chen, Q. Wen, P. A. Janmey, J. C. Crocker, and A. G.

Yodh, Annu. Rev. Condens. Matter Phys. 1, 301 (2010).
[51] M. R. K. Mofrad, Annu. Rev. Fluid Mech. 41, 433 (2009).
[52] A. C. Callan-Jones and F. Jülicher, New J. Phys. 13, 093027
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