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MODEL OF A WEAKLY NON-LOCAL RELAXING COMPRESSIBLE MEDIUM* 

A.B. ROSHCHIN and L.M. TRUSKINOVSKII 

A model of a weakly non-local relaxing medium with viscous dispersion is 
considered. The relaxation kinetics are described by a Ginzburg-Landau 
/l/ equation which has been generalized to the case of a compressible 
medium. The special features of the propagation of planar acoustic waves 
in the medium are studied. The latter medium has an internal time scale 
which arises from the description of the relaxation kinetics and a 
spatial scale which characterizes the degree of the non-localness of the 
medium. General methods for constructing models of equilibrium non-local 
media have been developed in /2-5/. The generalization of these methods 
to the case of a relaxing medium enables one to describe the structure of 
a non-equilibrium phase discontinuity and to calculate the dissipation on 
the conversion front /6/. 

1. Let us assume that the internal energy u of a unit mass is a function of the system 
of parameters 

S@g'j~E_,, Ea.7 V&r vj~i~cc~~~~ (1.1) 

where s is the entropy per unit mass of the medium, p is the density, g+j are the con- 
travariant components of the metric tensor in the Euclidean Eulerian system of coordinates 
xi (i = 1, 2, 3), &-(a = 1, . . ., n) are additional scalar parameters (internal degreesof freedom), 
the total derivative with respect to time is denoted by a dot and Vi is a covariant derivative 
in the coordinate system xi. The thermal influx equation can be written in the farm /3, 6, 7/ 

au = p+- Pgij + tij + @) vjvi dt - p-lvk(qk + p) dt (1.2) 
where p is the pressure, ?J are the components of the viscous stress tensor, vi are the 
components of the velocity vector of the medium, $ are the components of the thermal flux 
vector, Qk are the components of the vector describing the flux of non-thermal forms of 
energy, otj are the components of the reactive stress tensor and Q" and & are functions 
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of the system of parameters (1.1). The entropy balance equation has the form 

ds = p-‘V,Jkdt f dis (1.3) 

where Jk are the components of the entropy flux vector which we shall assume to be equal to 
qk/T and dis is the entropy production due to irreversible processes occurring in the 
medium. By making use of the fact that d,s is non-negative, we find /6/ 

T=$, 
au 

P=PzdpI 

Qk=-p-&& 
ka 

au au au 

aSa’ 
zp=v=...= 

avjV,sa 
0 (1.4) 

f Yk (s, fJ, g”j7 &_a7 V&CL~ VjGiEa . . .) 

VkYk = 0, aij= --p & vita 

Hence, the assumptions which have been made eliminate spatial derivatives higher than 
the first order from the list of arguments of the specific internal energy while only retain- 
ing them in the expression for the function I" which, by virtue of the penultimate relation- 
ship of (1.4) only appears in the boundary conditions. It can be made to disappear by a 

corresponding redefinition of the vectors qk and Jk. As a consequence of the invariance of 
the internal energy with respect to solid rotations of the coordinate system z',the reactive 
stress tensor, aij, is symmetric. The inclusion of the derivatives Visa' among the 
arguments of Qk leads to a model of a moment medium with an asymmetric stress tensor. In 
this case, 

2. We will now consider the treatment of the dissipative 
(1.4), we have 

effects. From equations (l-2)- 

(the expression for the variational derivative is shown in brackets /6/). We note that 
internal energy U(S,p,g'j, &,Vi&) on the right-hand side of Eq.(2.1) may be replaced by 
another thermodynamic potential such as g (P, T, $7 Ea, ViEa) = n -'Z'S + p/p. 

(2.1) 

the 

By using the phenomenological approach to the thermodynamics of irreversible processes 

/B/, we establish kinetic relationships which determine r+j (97 a. k E * Let us now consider 
expression (2.1) for the rate of entropy production as a bilinear function of the generalized 
fluxes @iT,q’/T2, p&‘/T and the corresponding generalized forces Vjvi, -V,T, 6,ul6&. Then, 

d3JT = L’jklV,Uk - L’jkVkT - L,:js,ujsE, 

q’/TZ = Lp”V,o, - LifVjT - L,%,u& 

@a’/T = LI&CiUi - L’;,ViT - Laghp~/GEp 

(2.2) 

When account is taken of the fact that Iz’jiT and 
that q’lT2 

TjVi are an odd flux and force and 
and &‘IT and --6,Ui& are even fluxes and forces, the Onsager relations 

have the form 

Ltjkl Lk’i, Ltj = ~fi 
, La, = L,, (2.3) 

L;Ik = _ L’3k Lpa=_L i3 a 3 L;a = L,i 

Then tensors Lifk’, Lijk and Laij must be symmetrical with respect to ij (by virtue 
of the symmetry 

Let us now 
coefficients 

which figure in 

of T"). 
consider the case when a = 1. As the arguments of the phenomenological 

Lijkl , ~~~~~ ~‘j, Laij, L,~, L,, (2. ft) 

(2.2), we select the following quantities 

s, p, g, I QI> Yi, g’j 
1 cg ( = (G,ge)‘I*, vi = rig] VE 1 
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The dependence of the coefficients (2.4) on the tensor arguments vi, R" can be explicitly 
indicated /2/. Then, 

Tij = (&Xk + p3eklvkv'- yIvkvkT -&&/6E)+ 2p((eij-'/$kkg'j)+ 

2pI(ejkvivk + eik&k) + (p36?kk + p&,.,Vkv'-_yavkVRT - 

&LIB~)Vtv~ - yS (dvjT + VWT) 

q’ = - Xv’T - (Ty3ekk + Ty2eklvkd + X1vkvkT + 

Ty,Q&) Vi - T (ylvkh, + ysvk~,~‘) 

pc’ = - &zkk - taek,vkv’ - y4vkVkT - pI&u/~E 

(eij z ‘/* (ViUj + VjUi)) 

(2.5) 

Generally speaking, there are 14 kinetic parameters, which depend on S, p, E, (Tf, (, in 
the model under consideration. In order to satisfy the condition &S > 0, it is necessary 
and sufficient to impose the following constraints on them. 

P, Pl. l&T 59 x9 X19 r > 0; 5P2 2 P32, PXF > Y4 

We note that no constraints whatsoever are imposed on the quantities 51, 52, Yl? Yz9 YS 
since the corresponding terms in (2.5) do not make any contribution to the entropy production. 

For simplicity, we shall subsequently neglect the dependence of the fluxes r’j!T and 

PS'IT on ViT and also assume that qk =qk(s,p,E,IVEI,gijrViT), In this case the model is 
characterized by nine kinetic parameters, the number of which is reduced to six if the medium 
can be assumed to be incompressible (ekk = 0). 

3. Let us now consider the state of isothermal equilibrium. The distributions of p 
and Ea are described by the system of equations 

z_Lv [p&)=o, vjpij+pP=o (3.1) 

f (p, T,, $j,&z, Vi&z) = u - T,s 
af ” PZl A - p”-&__g’l _ p 

where f is the Helmholtz free energy of unit mass of the medium. It is obvious that the 
stress tensor is not spherical and the system of Eqs.(3.1) is therefore redefined. As a 
consequence of the special structure of the stress tensor of Eq.(3.1), they have a first 
integral 

g - @J = eonst (3.2) 

where g (P, T,, gij, Sa, VA,) = f + PIP is the specific Gibbs energy and @ is the potential due 
to external mass forces. 

The Bernoulli integrals for stationary flows and the Cauchy-Lagrange integrals for non- 
stationary potential flows may be established on the basis of formula (3.2) in connection 
with isothermal flows of an ideal equilibrium medium in the field of external potential 
forces. The fact that the integrals exist is independent of the maximum order of the 
derivatives of the parameters E, which are the arguments of the free energy function (cf. 
/9/J and, at the same time, in the case f =f@, To, g'!e,,v&,, V.V,C ), the second equation of 
(3.1) remains true and the stress tensor acquires the form 

I I-*Z'... 

pfL_p*$gfj_p al 

i avj%, 
_fVk paf 

i aYkvj%a 1 i_ 
+vl(,p. dYk~~VzFa ) -. . .) vf%a - p(* - f v+ av,oqlv~%)+* . .jx 

rrvfj,- P ( af 
BV,VkVJ%, -. . . j VIVkVi%, 

while the equilibrium condition (the first relation of (3.1)) is transformed into 

af _ 1 
0% T- 

Vi (,I A) -t $ cqv; ip *j -. . . = O 

4. The features of the propagation of acoustic waves in a local relaxing medium are 
well-known /lo/. The appearance in the theory of a time scale associated with the relaxation 
kinetics ensures the dispersion of the waves and their anomalous attenuation at a character- 
istic frequency. We will now show what changes occur when the non-local character is taken 
into account. We begin with the case of a non-viscous, non-thefmally conducting medium and 
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consider the simplest expression for the internal energy, which depends on V&/6, 7/ 

n = no (s, P, 5) + 'I$ (W (4.1) 

where s>O is the parameter describing the non-local nature of the medium. We assume 
that the initial equilibrium state is homogeneous: s~s,,P= PO, EE E*(sO,Po). The function 

E* 6, P) describes the dependence of the equilibrium values of the parameter 5 on the 
specific entropy and density. We require that 

(8Wa~~), > 0, (2pCWap + p2aW@z),>0 

The system of equations which describes the motion of a non-viscous, non-thermally con- 
ducting relaxing medium with an energy (4.1) has the form 

r3p/at + vi (pu’) = 0, pdv’idt = -$I - rj @pVEVjE) 
dE/dt = -I? (ck/L% - E (A5 + ('%p-'VP))) 

dsldt = r @ula~ - p-‘8, (&pVjE))', p = p2Wdp 

By linearizing this system with respect to the initial state of equilibrium, we arrive 
at equations which describe (to a first approximation) an isentropic perturbation of the 
parameters in the acoustic wave. As conditions for the existence of solutions proportional 
to exp i (kr -cot), we get the dispersion relationship 

Au4 + (1 - B - iq - Aq2) 12 - qa (1 - in) = 0 (4.2) 

0 = C-T 1 k 1, n = ~7, A = 1,V12, B = 1 - c,=/c.as 

z = l/(r (awa~y,), 1 = CJ, le = (E/(awaE”),)“~ 

Cm = @plap),“*, c* = (aplap + @p/X) aE*@P)o~'. 

where u and n are the dimensionless wavenumber and the cyclic frequency, A and B are the 
main dimensionless criteria of the problem, 7 and 1 are the characteristic (kinetic) time 
and spatial scales, le is the spatial scale associated with the non-local nature of the 
medium and cm and c* are the quenched and equilibrium velocities of sound. The dimensionless 
parameters A and B characterize the measure of the non-local nature of the medium and the 
difference between the quenched and equilibrium velocities of sound. 

The solution of Eq.(4.2) has two branches 

a* = @A)-’ {A$ + iq - (1 - B) f [(Aqa + iq - (1 - (4.3) 

B))* + 4Aq2 (1 - iq)l”.} 

one of which (that with the plus sign) corresponds to the usual acoustic wave in an ideal 
relaxing compressible fluid while the other (that with the minus sign) is spherical in the 
case of the non-local medium being considered. Both wave modes correspond to longitudinal 
vibrations. The classical theory /ll/ is obtained in the limit as A -to. 

For the acoustic branch in the low-frequency domain (rl< I)# we have 

The first two terms of this asymptotic form are identical with those obtained in /ll/ 
while, apart from terms of the order of n', the phase velocity of the acoustic wave(o/Re jk I) 
is equal to c*, the dimensionless absorption coefficient (lm o) is of the order of nz and 
the perturbations p‘, E' and v' in the wave are connected by the relationships 

In the high-frequency 

B"zp'/p, + E' = 0, 1 v’ 1 = c*p’/po 

case (n >I), we have 

u+=,+&$+J&$ 

The phase velocity of the acoustic wave tends to cm (as in the classical case when 

(4.5) 
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A =O), the dimensionless absorption coefficient decays in proportion to q-' (it is con- 
stant in a classical sense) (Fig.1) while the perturbations of the parameters in the wave, to 
a first approximation with respect to q-' satisfy the relations 

E' = 0, I v’ I = c,p’/p, 

The dependence of the dimensionless absorption coefficient at the wavelength (y = Ima/ 
Re u) of the acoustic branch (I, on the cyclic frequency q is shown in Fig.2. The 
characteristic frequency of maximum absorption of sound is practically independent of A. The 
values A = 0 and 10e4 (when B = 0.5) correspond to curves 1 and 2 in the figures. 

Fig.1 

Fig.2 

I 

0 1 d 2 

Fig.3 

The asymptotic form (4.5) is uniformly suitable in the domain q > A-v*. An intermedkte 
asymptotic form, which is valid when 1 <q(( A-‘la(A <i) can be obtained by passing to the 

limit A + 0, q + + 00, A’lqq = const dA' a in formula (4.3). In this case 

u+ = 11 + V&B + V8 [Ba + 4B (1 - B) + al q-’ - (4.6) 
I/,,, i [B3 + 4B2 (1 - B + a) + 8B ((1 - B + a)” - aB)l q-* + . . . 

As A-to, the left-hand boundary of the domain of applicability of relationship (4.5) 
goes to infinity while formulae (4.4) and (4.6) are transformed into the classical asymptotic 
dispersion relationships /ll/. 

We will now analyse the second branch of relationship (4.3) which describes the rapidly 
decaying sequence parameter waves (SPW). In the low-frequency case ("(1 <I), we have 

u_=i(yy+ 2(1_;,.,.A”.+... (4.7) 

To a first approximation with respect to '1, the phase velocity and the dimensionless 
SPW absorption coefficient are equal to 2A'k, and (1 - B)‘WA’/:. - respectively. 

In the high frequency case (TJ> 1) 

o_ = (q/(2A))“z + i (q/(ZA))“* + . . . 

The phase velocity and the absorption coefficient increase in proportion to +. 
The perturbations in p',E;' and v' in the wave are connected by the relationships 

p'ip, + B’IxE’ = 0, 1 ’ Y 1 = 2A’k *P'iP, 
in the case of low frequencies and 

(4.8) 
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B"$lp, + 5' = 0, 1 v' 1 = (2Aq)"*c,p'/p, 

in the high-frequency case. 
Both in the acoustic wave'and in the SPW, the perturbation of the pressure is determined 

by the formula p’ = cmp’ + pocrn (&~/8~~)~B’f~~‘. 

The results of the numerical calculation of the dependence of the phase velocity and the 
absorption coefficient at the wavelength on the cyclic frequency are shown in Fig.3 for the 
a_ branch of the dispersion relationship (4.3). When B = 0.5, the values A = 1Oma and 1O-3 
correspond to curves 2 and 3. In the limit as B-to, the kinetic equation is separated 
from the remaining equations and, in this case, the perturbations E' and p’,p’,v’ propagate 
independently. 

The contribution to the dispersion and the absorption of the longitudinal acoustic waves 
due to the viscosity of the medium is characterized by the Reynolds number 

Re = P&l(%~, +I+). cLs = CI + PI, pv = 5+-"Isr, + Pz + $3 

The phase velocity of the low-frequency vibrations (n<l) does not change compared 
with the case of a non-viscous medium (Re-+ m) and the dimensionless absorption coefficient 
acquires the form nz (1 - B)_"'2 (B + l/Re)/Z. 

In the low-frequency region, (q > Re, Re > 1) a+ = (ReqlZ)"'+ i (Req/Z)'!t+ . . . 
The phase velocity and the absorption coefficient increase in proportion to n'l*, 
If 1en<Re(Re>l), the viscosity of the medium can be neglected in the first-order of 

approximation with respect to q-1. At the same time, the asymptotic form (4.5) is valid in 
the case when i<llA'l'en 4Re. If, however, 1((n< llA’/‘< Re, then relationship (4.6) is 
satisfied. 

In the low-frequency case, the phase velocity of the SPW has the form ZA”* (1 + E/R@ C. 
and, to a first approximation with respect to n, the absorption coefficient does not change 
compared with the case of a non-viscous medium. In the high-frequency region (n>>)), the 
effect of viscosity on the SPW does not show up in the first approximation with respect to 
n-'/z and the asymptotic form (1.8) therefore remains valid. 

The authors thank V.P. Myasnikov for his interest and also Yu. Yu. Podladchikov for 
useful remarks. 
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