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a b s t r a c t

Motility initiation in crawling cells requires transformation of a symmetric state into a
polarized state. In contrast, motility arrest is associated with re-symmetrization of the
internal configuration of a cell. Experiments on keratocytes suggest that polarization is
triggered by the increased contractility of motor proteins but the conditions of re-sym-
metrization remain unknown. In this paper we show that if adhesion with the extra-
cellular substrate is sufficiently low, the progressive intensification of motor-induced
contraction may be responsible for both transitions: from static (symmetric) to motile
(polarized) at a lower contractility threshold and from motile (polarized) back to static
(symmetric) at a higher contractility threshold. Our model of lamellipodial cell motility is
based on a 1D projection of the complex intra-cellular dynamics on the direction of lo-
comotion. In the interest of analytical transparency we also neglect active protrusion and
view adhesion as passive. Despite the unavoidable oversimplifications associated with
these assumptions, the model reproduces quantitatively the motility initiation pattern in
fish keratocytes and reveals a crucial role played in cell motility by the nonlocal feedback
between the mechanics and the transport of active agents. A prediction of the model that
a crawling cell can stop and re-symmetrize when contractility increases sufficiently far
beyond the motility initiation threshold still awaits experimental verification.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The ability of cells to self-propel is essential for many biological processes. In the early life of an embryo, stem cells move
to form tissues and organs. During the immune response, leukocytes migrate through capillaries to attack infections. Wound
healing requires the motion of epithelial cells. While the biochemistry of such motility is rather well understood, the un-
derlying mechanics of active continuum media is still in the stage of development (Bray, 2000; Mogilner, 2009; Carlsson and
Sept, 2008; Joanny and Prost, 2011; Adler and Givli, 2013; Ziebert and Aranson, 2013; Giomi and DeSimone, 2014; Recho
et al., 2014; Cox and Smith, 2014).

At a very general level, a cell can be viewed as an elastic ‘bag’ whose interior is separated from the exterior by a bi-layer
lipid membrane. The membrane is attached from inside to a thin cortex – an active muscle-type layer maintaining the cell's
shape. The interior is filled with a passive medium, the cytosol, where all essential cell organelles are immersed. The active
machinery inside the cytosol ensuring self-propulsion is contained in the cytoskeleton: a perpetually renewed network of
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actin filaments cross-linked by myosin motors that can inflict contractile stresses. The cytoskeleton can be mechanically
linked to the cell exterior through adhesion proteins (Alberts et al., 2002).

The elementary mechanisms responsible for the steady crawling of keratocytes (flattened cells with fibroblastic func-
tions) have been identified (Abercrombie, 1980; Bell, 1984; Stossel, 1993; Bellairs, 2000). The advance starts with protrusion
driven by active polymerization of the actin network in the frontal area of the cell (the lamellipodium) with a simultaneous
formation of adhesion clusters at the advancing edge. After the adhesion of the protruding part of the cell is secured, the
cytoskeleton contracts thanks to the activity of myosin motors. This contraction leads to the detachment at the rear and
lessening of the actin network through de-polymerization. All these active phenomena are driven by ATP hydrolysis and are
highly synchronized which allows the cell to move with a stable shape and relatively constant velocity (Barnhart et al.,
2011).

The initiation of such motility requires a polarization of the cell which is a process that discriminates the leading edge
from the trailing edge. The implied symmetry breaking turns a symmetric stationary configuration of a cell into a polar
motile configuration. While both contraction and protrusion contribute to steady state cell migration, contraction appears to
be the dominating mechanism of polarization: it has been shown experimentally that motility initiation in keratocytes may
be triggered by raising the contractility of myosin (Verkhovsky et al., 1999; Csucs et al., 2007; Lombardi et al., 2007; Yam
et al., 2007; Vicente-Manzanares et al., 2009; Poincloux et al., 2011). It is also known that cells may self-propel by con-
traction only (Keller et al., 2002).

In physical terms, the contraction-driven polarization/motility is performed by ‘pullers’ (contractile agents) while
‘pushers’ (protrusive agents) remain largely disabled. Some numerical models suggest that the relative role of ‘pushers’ and
‘pullers’ in cellular motility may be tightly linked to the task to be performed (Simha and Ramaswamy, 2002; Saintillan and
Shelley, 2012) and even to the nature of the cargo (Recho and Truskinovsky, 2013). However, it is still not fully understood
why in case of keratocytes the motility initiation is primarily contraction-driven. In contrast to motility initiation, the re-
ciprocal process of motility arrest is associated with re-symmetrization and such symmetry recovery is a typical precursor of
cell division (Stewart et al., 2011; Lancaster et al., 2013; Lancaster and Baum, 2014). It is not yet clear whether re-sym-
metrization is also predominantly contraction-driven and if yes, whether it requires contractility reduction or contractility
increase beyond the motility initiation threshold. It is, however, known that some cells can switch from static to motile state
as a result of a decrease in the level of contractility (Liu et al., 2010; Hur et al., 2011).

A large variety of modeling approaches targeting cell motility mechanisms can be found in the literature, see the reviews
by Rafelski and Theriot (2004), Carlsson and Sept (2008), Mogilner (2009), and Wang et al. (2012). In some models, the actin
network is viewed as a highly viscous active fluid moving through a cytoplasm by generating internal contractile stresses
(Alt and Dembo, 1999; Oliver et al., 2005; Herant and Dembo, 2010; Kimpton et al., 2014). In other models, the cytoskeleton
is represented by an active gel whose polar nature is modeled in the framework of the theory of liquid crystals (Kruse et al.,
2005; Joanny et al., 2007; Jülicher et al., 2007; Joanny and Prost, 2011; Callan-Jones and Jülicher, 2011). The active gel theory
approach, which we basically follow in this study without an explicit reference to local orientational order, was particularly
successful in reproducing rings, asters, vortices and some other sub cellular structures observed in vivo (Doubrovinski and
Kruse, 2007; Sankararaman and Ramaswamy, 2009; Doubrovinski and Kruse, 2010; Du et al., 2012). At sufficiently fast time
scales, the cytoskeleton can be also modeled as an active solid with a highly nonlinear scale-free rheology (Broedersz and
MacKintosh, 2014; Pritchard et al., 2014).

Various specific sub-elements of the motility mechanism have been subjected to careful mechanical study. Thus, it was
shown that in some cases the plasmic membrane with an attached cortex can be viewed as a passive elastic surface and
modeled by phase field methods allowing one to go smoothly through topological transitions (Wang et al., 2012; Giomi and
DeSimone, 2014). In other cases, the membrane may also play an active role, for instance, an asymmetric distribution of
channels on the surface of the membrane can be responsible for a particular mechanism of cell motility relying on variation
of osmotic pressure (Stroka et al., 2014). While most models assume that the cell membrane interacts with the exterior of
the cell through passive viscous forces, active dynamics of adhesion complexes has recently become an area of intense
research driven in part by the finding of a complex dependence of the crawling velocity on the adhesive properties of the
environment (DiMilla et al., 1991; Novak et al., 2004; Deshpande et al., 2008; Gao et al., 2011; Lin et al., 2008; Ronan et al.,
2014; Lin, 2010; Ziebert and Aranson, 2013). The account of other relevant factors, including realistic geometry, G-actin
transport, Rac/Rho-regulation, etc., have led to the development of rather comprehensive models that can already serve as
powerful predictive tools (Rubinstein et al., 2009; Wolgemuth et al., 2011; Tjhung et al., 2012; Giomi and DeSimone, 2014;
Barnhart et al., 2015).

The more focused problem of finding the detailed mechanism of motility initiation is most commonly addressed in the
framework of theories emphasizing polymerization-driven protrusion (Mogilner and Edelstein-Keshet, 2002; Dawes et al.,
2006; BernheimGroswasser et al., 2005; Schreiber et al., 2010; Campas et al., 2012; Hodge and Papadopoulos, 2012). With
such emphasis on ‘pushers’, spontaneous polarization was studied by Kozlov and Mogilner (2007), Callan-Jones et al. (2008),
John et al. (2008), Hawkins et al. (2009b), Hawkins and Voituriez (2010), Doubrovinski and Kruse (2011), and Blanch-
Mercader and Casademunt (2013). In Banerjee and Marchetti (2011), Ziebert et al. (2012) and Ziebert and Aranson (2013),
polarization was interpreted as a result of an inhomogeneity of adhesive interactions. Yet another group of authors have
successfully argued that cell polarity may be induced by a Turing-type instability (Mori et al., 2008; Altschuler et al., 2008;
Vanderlei et al., 2011; Jilkine and Edelstein-Keshet, 2011). Such a variety of modeling approaches is a manifestation of the
fact that very different mechanisms of motility initiation are engaged in cells of different types.
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The observation that contraction may be the leading factor behind the polarization of keratocytes has been broadly
discussed in the literature. It was realized that active contraction creates an asymmetry-amplifying positive feedback be-
cause it causes actin flow which in turn carries the regulators of contraction (Kruse et al., 2003; Ahmadi et al., 2006;
Salbreux et al., 2009; Recho et al., 2013; Barnhart et al., 2015). In constrained conditions such positive feedback generates
peaks in the concentration of stress activators (myosin motors) (Bois et al., 2011; Howard et al., 2011) and this patterning
mechanism was used to model polarization induced by angular cortex flow (Hawkins et al., 2009a, 2011). Closely related
heuristic models of the Keller–Segel type (Perthame, 2012) describing symmetry breaking and localization were in-
dependently proposed by Kruse and Jülicher (2003) and Calvez et al. (2010). In all these models, however, the effect of
contraction (pullers) was obscured by the account of other mechanisms, in particular, polymerization induced protrusion
(pushers), and the focus was on generation of internal flow and the resulting pattern formation, rather than on the problem
of ensuring steady translocation of a cell.

This shortcoming was overcome in more recent models of contraction-induced polarization relying on splay instability in
an active gel (Tjhung et al., 2012, 2015; Giomi and DeSimone, 2014). In these models, however, ‘pushers’ were not the only
players, in particular, polarization was induced by a local phase transition from non-polar to polar gel. In Callan-Jones and
Voituriez (2013), the motility initiation was attributed to a contraction-induced instability in a poro-elastic active gel per-
meated by a solvent. Here again the non-contractile active mechanism was involved as well and therefore the domineering
role of contraction could not be made explicit.

The goal of the present paper is to focus on the special role of bare contraction in symmetry breaking processes by
studying a minimalistic, analytically transparent model of motility initiation in a segment of an active gel. Following pre-
vious work, we exploit the Keller–Segel mechanism, but now in a free boundary setting, and show that the underlying
symmetry breaking instability is fundamentally similar to an uphill diffusion of the Cahn–Hilliard type. In contrast to most
previous studies, our contraction driven translocation of a cell is caused exclusively by the internal flow generated by
molecular motors (pullers) and no other active agents are involved. Each ‘puller’ contributes to the stress field and si-
multaneously undergoes biased random motion resulting in an uphill diffusion along the corresponding stress gradient. In
other words our ‘pullers’ (active cross-linkers) use the continuum environment (passive actin network) as a medium
through which they interact and self-organize.

We emphasize that the contraction mechanism of polarization and motility (Recho et al., 2013, 2014) is conceptually very
close to chemotaxis, however, instead of chemical gradients, the localization and motility is ultimately driven by the self-
induced mechanical gradients. More specifically, the pullers propel the passive medium by inflicting contraction which
creates an autocatalytic effect since the pullers are themselves advected by this medium (Mayer et al., 2010). The inevitable
build up of mechanical gradients in these conditions is limited by diffusion which resists the runaway and provides the
negative feedback. After the symmetry of the static configuration is broken in the conditions where matter can circulate, the
resultant contraction-driven flow ensures the perpetual renewal of the network and then frictional interaction with the
environment allows for the steady translocation of the cell body.

The next natural question is how such steady translocations can be halted. For instance, if motility initiation is con-
traction-driven, can motility arrest be also contraction driven and what a steadily moving cell can do in order to stop and
symmetrize? Several computational models provided an indication that motility initiation and motility arrest may be re-
lated to a re-entrant behavior of the same branch of motile regimes (Kruse and Jülicher, 2003; Tjhung et al., 2012; Recho
et al., 2013; Giomi and DeSimone, 2014). To make the link between motility initiation and motility arrest more transparent
we study in this paper an analytically tractable problem which captures the complexity of the underlying physical phe-
nomena. While most of the elements of the proposed model (Recho et al., 2013, 2014) have been anticipated by some
comprehensive computational approaches (e.g. Rubinstein et al., 2009), it was previously not apparent that the initiation of
motility, steady translocation and the arrest of motility can be all captured in such a minimal setting.

Our model of lamellipodial cell motility is based on a 1D projection of the complex intra-cellular dynamics on the
direction of locomotion. In the interest of analytical transparency, we decouple the dynamics of actin and myosin by as-
suming infinite compressibility of the cross-linked actin network (Jülicher et al., 2007; Rubinstein et al., 2009). To ensure
that the crawling cell maintains its size, we introduce a simplified cortex/osmolarity mediated quasi-elastic interaction
between the front and the back of the self-propelling fragment (Banerjee and Marchetti, 2012; Barnhart et al., 2010; Du
et al., 2012; Loosley and Tang, 2012); a comparison of such mean field elasticity with more conventional bulk elasticity
models can be found in Recho and Truskinovsky (2013). We remark that the coupling between the front and the rear of the
fragment may also have an active origin resulting from different rates of polymerization and depolymerization at the ex-
tremities of the lamellipodium (Recho and Truskinovsky, 2013; Étienne et al., 2015). In other respects we neglect active
protrusion (pushers). We also view adhesion as fully passive.

Despite the unavoidable oversimplifications associated with these assumptions, we show that our model reproduces
quantitatively the motility initiation pattern in fish keratocytes and reveals a crucial role played in cell motility by the
nonlocal feedback between the mechanics and the transport of active agents. It also provides compelling evidence that both,
the initiation of motility and its arrest, may be fully controlled by the average contractility of motor proteins.

More precisely, we show that the increase of contractility beyond a well defined threshold leads to a bifurcation from a
static symmetric solution of the governing system of equations (of Keller–Segel type) to an asymmetric traveling wave (TW)
solution corresponding to steadily moving cells. While several TW regimes may be available at the same value of para-
meters, we show that stable TW solutions localize motors at the trailing edge of the cell in agreement with observations
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(Verkhovsky et al., 1999; Csucs et al., 2007; Lombardi et al., 2007; Yam et al., 2007; Vicente-Manzanares et al., 2009;
Poincloux et al., 2011). Moreover, we show that if adhesion with the extra-cellular substrate is sufficiently low, the increase
of motor-induced contraction may induce transition from the steady state TW solution back to a static solution. This re-
symmetrization transition, leading to the motility arrest, can be directly associated with the behavior of keratocytes prior to
cell division and our model shows that such re-entrant behavior can be ensured by ‘pullers’ without any engagement of
either active protrusion or liquid crystal elasticity.

The paper is organized as follows. In Section 2, we present a discrete “model of a model”which conveys the main ideas of
our approach in the simplest form. In Section 3, we develop a continuum analogue of the discrete model, study its
mathematical structure and pose the problem of finding the whole set of TW solutions incorporating both static and motile
regimes. In Section 4, all static solutions of the TW problem are found analytically. In Section 5, we study the fine structure
of multiple bifurcations producing motile solutions from the static ones and identify parametric regimes when these bi-
furcations become re-entrant. In Section 6, we investigate numerically the initial value problem which allows us to qualify
some of the motile TW solutions as attractors. The reconstruction of the background turnover of actin, which takes place in
our model without active protrusion at the leading edge, is discussed in Section 7. In Section 8, we demonstrate that our
model can quantitatively match the experiments carried on keratocytes. The last section highlights our main conclusions
and mentions some of the unsolved problems; three appendices contain material of technical nature.

Some of the results of this paper have been previously announced in two pre-publications (Recho et al., 2013, 2014) but
without any details. In addition to providing a necessary background for Recho et al. (2013, 2014), here we develop a new
discrete model, investigate the nonlocal nature of the coupling between mechanics and diffusion of active agents, give a
thorough analysis of the static regimes, study the bifurcation points by using the Lyapunov–Schmidt reduction technique,
investigate the non-steady problem numerically, generalize the model to account for nonlinear dependence of contractile
stress on motor concentration and provide a detailed quantitative comparison of the model with experiment.

2. The discrete model

Our point of departure is a conceptual discrete model elucidating the mechanism of contraction-driven crawling and
emphasizing the role of symmetry breaking in achieving the state of steady self-propulsion. This “model of a model” allows
us to clarify the role of different components of the contraction-dominated motility machinery and link the proposed
mechanism with the previous work on optimization of the crawling stroke irrespective of the underlying microscopic
processes (e.g. DeSimone and Tatone, 2012; Noselli et al., 2014). It does not, however, address directly the main issues of
motility initiation and motility arrest that require more elaborate constructions.

Recall that in crawling cells, the ‘motor part’ containing contracting cytoskeleton (lamellipodium) is a thin active layer
located close to the leading edge of the cell, see Fig. 1. We assume that all mechanical action originates in lamellipodium and
that from the mechanical viewpoint the rest of the cell, including the nucleus, can be interpreted as cargo. The main task
will be to develop a model of freely moving lamellipodium which we schematize as a segment of active gel in viscous
contact with a rigid background. The actin network inside the gel is contracted by myosin motors which leads to an internal
flow opposed by the viscous interaction with the background. The unidirectional motion in a layer adjacent to the back-
ground that ultimately propels the cell is a result of the asymmetry of contraction.

A toy model elucidating this point involves three rigid blocks of size lb placed in a frictional contact with a rigid support,
characterized by the viscous drag coefficient ξ. The neighboring blocks are connected by active pullers (force dipoles) ex-
erting contractile forces. The essential long range interactions representing global volume constraint (due to passive elastic
structures and osmotic effects, see Section 3) are modeled by a linear spring with stiffness k connecting the first and the last
block. To regularize the problem we place in parallel with contractile elements additional dashpots characterized by the
viscosity coefficient η. In the absence of inertia, we can then write the force balance equations in the form

Fig. 1. Conceptual discrete model of the motility mechanism in a crawling keratocyte cell.
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where x t x t x t, ,1 2 3( ) ( ) ( ) are the current positions of the blocks and L0 is the reference length of a linear spring. This spring
describes the membrane-cortex ‘bag’ around the lamellipodium allowing the inhomogeneous contraction to be transformed
into a protruding force. We assume that polarization has already taken place and therefore the contractile force dipoles

01χ ≥ and 02χ ≥ acting between the two pairs of blocks are not the same 1 2χ χ≠ . The polarization itself requires additional
constructs and will be addressed later.

System (1) can be rewritten as three decoupled equations for the length of our active segment L t x t x t3 1( ) = ( ) − ( ), its
geometric center G t x t x t /23 1( ) = ( ( ) + ( )) and the position of a central block x t2 ( ) representing the internal flow:
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where l /0 η ξ= is the hydrodynamic length scale which will ultimately play the role of a regularizing parameter. The first
equation shows that the length is converging to a steady state value:

L L k1 / 2 .0 1 2χ χ= [ − ( + ) ( )]∞

Notice that in order to avoid the collapse of the layer due to contraction, it is necessary to ensure that the spring has
sufficiently large stiffness k /2.1 2χ χ> ( + ) We also observe that independently of the value of the evolving length L(t), the
velocity of the geometrical center of our train of blocks V is always the same
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One can see that the system can move as a whole only if 1 2χ χ≠ , which emphasizes the crucial role for motility of the
polarization and the ensuing inhomogeneity of contraction.

We observe that the middle block moves in the direction opposite to the motion of the center of the system with a
constant velocity x V2 .2̇ = − Therefore, it takes a finite time L V/ 3∼ ( )∞ for the central block to collide with the block at the
rear. After this time, system (1) formally collapses and additional assumptions are needed to extend the dynamics beyond
the collision point. The origin of the problem is our focus on the layer adjacent to the rigid background and the neglect of the
global flow of actin.

To make the model more adequate we have to take into consideration that while the flow of F-actin (polymerized or
filamentous actin) is continuous along the contact surface, the cytoskeletal network disintegrates into G-actin (un-
polymerized monomers) at the trailing edge and reintegrates from the available G-actin at the leading edge. The poly-
merization induced depletion of G-actin at the leading edge is compensated by the diffusive counter-flow of actin mono-
mers from the back of the cell to its front. This counter-flow cannot be described directly in the 1D setting.

It can be modeled, however, in an indirect way by mass and momentum preserving periodic boundary conditions al-
lowing F-actin to disappear at the rear and reappear in the front. This situation is rather typical for continuum mechanics
where unresolved spatial scales are often replaced by balance-law-preserving jump/singularity conditions as in the case of
shock waves, crack tips and boundary layers.

More specifically, to account for global circulation (turnover) of the cytoskeleton in a one dimensional setting, we assume
that there is a singular source of actin at the front of the cell that is compensated by the equivalent singular mass sink of
actin at the rear of the cell. This assumption allows us to close the treadmilling cycle, even though the details of the
discontinuous part of the cycle, involving both the polymerization reaction and the diffusive transport of monomers, are not
explicitly resolved in the model. We essentially postulate that there is a pool of G-actin which is replenished as fast as it is
depleted and that the resulting reverse flow of actin is synchronous with the direct flow. Under these assumptions the
reverse flow is viewed as passive and is assumed to be driven exclusively by inhomogeneous contraction. In particular, we
neglect active propulsion on free boundaries due to growth and lessening of the network.

We describe these processes in our toy model by assuming the possibility of creation and destruction of the blocks. Our
goal is to account for the fact that actin polymerizes at the leading of the cell (where blocks are assembled) and depoly-
merizes at the trailing edge of the cell (where blocks are disassembled). We offer two interpretations of the underlying
continuous process in terms of discrete blocks emphasizing different sides of such passive treadmilling.
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In a first interpretation, we assume that as a result of each collision a block at the rear is instantaneously removed from
the chain and at the same time an identical block is added at the front. In other words, each (equilibrium) de-polymerization
event at the rear is matched by an (equilibrium) polymerization event at the front. Here we implicitly refer to the existence
of a stationary gradient of chemical potential of actin monomers and of a large pool of monomers ready to be added to the
network at the front as soon as one of them is released at the rear. The ’instantaneous’ reappearance of the disappearing
blocks should be understood as a mean to model the overall continuity of the flow.

The structure of the resulting stroke in the t x, plane and in the x x x x,2 1 3 2− − plane is shown in Fig. 2. One can see that
each block maintains its identity through the whole cycle and that its trajectory involves a succession of continuous seg-
ments described by (1) that are interrupted by instantaneous frictionless jumps from the rear to the front. Notice that in this
interpretation the blocks can change order and the condition x x x1 2 3< < is not always satisfied. For instance, when the
blocks x1 and x2 collide at point B, the block x1 disappears at the back (point B) and reappears at the front (point C) ahead of
the block x3. This jump mimics the frictionless part of the treadmilling cycle. Similarly, when the block x3 collides with the
block x2 at point D, the latter reappears at the point E ahead of the block x1. This interpretation is attractive because it allows
one to trace the trajectories of the blocks through subsequent treadmilling cycles. It is, however, a bit misleading because in
reality the block that disappears at the back and the block which instantaneously reappears at the front are definitely not
the same even though they are identical.

According to a second interpretation, illustrated in Fig. 3, the middle block is the only one to undergo cycling motion. As a
result, the ordering x x x1 2 3< < is always preserved and the distances between the first two blocks l x x1 2 1= − and the last
two blocks l x x2 3 2= − can be only positive. We can alternatively say that now the notations x x x, ,1 2 3 indicate positions only
and can refer to different blocks in different times. In this interpretation, when the middle blocks hit the rear one, it is the
middle block that gets recycled to the front while the rear one keeps moving continuously.

In coordinates l l,1 2( ) the cycle collapses on a single line, which is traveled continuously in one direction and dis-
continuously in the other direction, see Fig. 3(a). Notice that the internal parameters l t1( ) and l t2 ( ) undergo a periodic
sequence of extensions and contractions which resemble the mechanism propelling the swimming sheet (Taylor, 1951) and
its crawling analogue (DeSimone and Tatone, 2012). The main difference is that in our case the propulsion is achieved
because of the asymmetry of friction forces acting in the different phases of the stroke. More specifically, we assume that
during the continuous phase of the cycle the blocks move with friction (polymerized filaments experience effective drag
transmitted by focal contacts), while during the discontinuous phase the dissipation (associated with reaction and diffusion)

Fig. 2. (a) Schematic representation of the motion of individual particles (blocks) forming the motor part of a crawler in a steady state regime (three
particle case). Trajectories in space time coordinates of the particles x1 (magenta, OBCEF), x2 (green, ABDEG) and x3 (red, ACDFG); dashed lines show the
jump parts of the crawling cycle. Continuous flows have to overcome friction while the jumps are assumed to be friction free. (b) A closed loop constituting
one full stroke in the parameter space x x x x,2 1 3 2( − − ). The time of one full stroke (A to G) is T L V/s = ∞ and the distance traveled by the crawler per stroke is
VT Ls = ∞. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. Schematic representation of the continuous ,α β( ) and the jump ,β α( ) part of the crawling stroke. The zero area loop in l l,1 2 plane illustrating the
stroke is shown in (a). The loop is not symmetric because continuous flow have to overcome friction while the jumps are assumed to be friction free. The
‘tank thread’ analogy in (b) is not fully adequate because the ‘departing’ blocks at point β, that enter the pool of actin monomers, and the arriving blocks at
point α, that are simultaneously taken from the same pool, are not the same.
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can be neglected. The situation is remotely analogous to that of a rotating ‘tank tread’, see Fig. 3(b), even though in reality
the disappearing block and the appearing block are not the same. This interpretation is closer to the physical picture where
the points of the membrane (cortex) represented by two side blocks move with a constant speed ensuring that the cell
maintains its length. We reiterate that both discrete interpretations are schematic and will be backed later in the paper by
an appropriate continuum modeling.

Since the obtained expression for velocity (3) remains finite in the limit l l/ 0b0 → it appears that the dashpots play a
redundant role in this model and can be dropped. To illustrate the role of the dashpots we now consider the case of N
coupled blocks. Then, the force balance for the central blocks j N2, 1∈ [ − ] reads

l x
x x

l
x x

l
0.b j j j

j j

b

j j

b
1

1 1ξ χ χ η η− ̇ − + −
̇ − ̇

−
̇ − ̇

=−
− +

This system of equations can be written in the matrix form,

Tx b, 4̇ = ( )

where we denoted by ẋ the unknown vector x x, , N1̇ … ̇ . The tri-diagonal matrix

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

T

2 1 0 0 0

1 2 1 0 0

0 0

0 0 1 2 1

0 0 0 1 2

l

l

l

l

l

l

l

l

b

b

b

b

2

0
2

2

0
2

2

0
2

2

0
2

=

− ( + )

− ( + )

⋱ ⋱ ⋱
− ( + )

− ( + )

describes the viscous coupling and frictional interaction with the background while the vector

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

l
l

x

x

b b

l

l

N N

N
l

l N

0
2

1 0 1

1 2

2 1

1 0

b

b

0
2

0
2

ξ

χ σ
χ χ

χ χ

χ σ

=

− + − ̇
−
⋮
−

− − ̇

ξ

ξ
− −

−

with k x x L L/N0 1 0 0σ = − ( − − ) carries the information about the active forcing, the mean field type elasticity and the
boundary layer effects. To find the solution ẋ , we need to invert the matrix T and then solve a system of two coupled linear
equations x R b1 1̇ = ( ) and x R bN Ṅ = ( ) where R T 1= − . The components of the matrix R can be found explicitly (Meurant, 1992)

R N j i N j i
N

cosh 1 cosh 1
2 sinh sinh 1

,i j,
λ λ

λ λ= (( + − − ) ) − (( + − | − |) )
( ) (( + ) )

where l larccosh 1 / 2 .b
2

0
2λ = ( + ( )) Knowing the ‘velocity field’, we can now compute the steady state value of the length

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟L L

j N

j N k
1

cosh /2

cosh /2
.j

N
j

j
N0

1
1

1
1

λ χ
λ

= −
∑ ( ( − ))
∑ ( ( − ))

∞
=
−

=
−

From this formula we see again that a finite stiffness is necessary to prevent the collapse of the system under the action of
contractile stresses: assuming for instance that iχ χ= ¯ we obtain the low bound for the admissible elasticity modulus k χ> ¯ .

The steady velocity V x x /2N 1= ( ̇ + ̇ ) of the geometrical center of the system can be also computed explicitly

V
l j N

N

sinh /2

2 sinh /2
.

b j
N

j1
1 λ χ
η λ= −

∑ ( ( − ))
( )

=
−

When N is even, by denoting M N/2= , we can rewrite this expression in the form

V
l j

M

sinh

2 sinh
b j

M
M j M j1

1 λ χ χ
η λ= −

∑ ( )( − )
( )

=
−

+ −

from where it is clear that (as in the case of three blocks) the symmetry of the vector χ with respect to the center must be
broken for the system to be able to self-propel.

If we now formally drop the dashpots by assuming that l 00 = we obtain similar expressions for the velocity and for the
steady state length as in the three block (N¼3) case
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⎛
⎝⎜

⎞
⎠⎟V

l
L L

k2
, 1

2
.

5
N

b

N1 1
0

1 1χ χ
ξ

χ χ= − = − +
( )

−
∞

−

The reason behind this similarity is that, in this limit, the ‘flow’ fully localizes in the two boundary elements, the only ones
present in the case N¼3. More precisely, the solution of the discrete problem depends singularly on the ratio l l/b

2
0
2 and

becomes progressively more concentrated around the boundary elements as l l/b
2

0
2 → ∞. Such localization presents a certain

analytical problem if we consider the continuum limit when N → ∞ and l 0b → while Nl Lb → , where L is the continuum
length of the self-propelling segment. Indeed, in this limit the size of boundary layers tends to zero and the discrete solution
converges to a distribution. The viscosity, introducing a length scale l0, is thus needed to preserve the regularity of solutions
in the continuum limit.

Observe also that the limits l 00 → (dropping dashpots) and l 0b → (continuum approximation) do not commute. For
instance, if we choose in (5) the motor distribution with all 0iχ = except for one 02χ χ= >⁎ we obtain V¼0 for any value of
lb, in particular, when l 0b → we still have V 0→ . If instead we first perform the continuum limit while keeping l0 finite we
obtain

⎛

⎝

⎜⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

⎞

⎠

⎟⎟⎟L L
x L l x dx

kl L l
1

cosh /2 /

2 sinh / 2
6

L

0
0 0

0 0

∫ χ
= −

( − ) ( )

( )
( )

∞
∞

∞

∞

and

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦V
x L l x dx

L l

sinh /2 /

2 sinh / 2
.

7

L

0 0

0

∫ χ

η
= −

( − ) ( )

( ) ( )

∞

∞

∞

If we now take a distribution of motors x 0χ χ δ( ) = ⁎ where δ0 is the Dirac mass at x¼0, which can be viewed as a continuum
analog of the discrete distribution considered above, we obtain that V l/ 2 0

2χ ξ= ( )⁎ . Then in the limit l 00 → we obtain that
V → ∞ which is in conflict with our previous assertion that V¼0, obtained when the order of limits was reversed. Assume
now that l Nb

1∼ − and hence l l N/ 1/b
2

0
2 2η∼ ( ). One can see that the crossover scaling N 2η ∼ − separates the two non-commuting

limiting regimes. For l l/b
2

0
2 → ∞ (which is a dimensionless version of N 2η⪡ − ) the internal flow localizes in the boundary layers

whose thickness disappears when 0η → ; when we dropped the dashpots in the three element model we could not detect
this localization because the two boundary links were the only ones present in the system. In the other limit l l/ 0b

2
0
2 →

(dimensionless version of N 2η⪢ − ) the viscosity dominates the dynamics and the internal flow becomes uniform.
In the next sections the formulas (6) and (7) will be obtained directly from the continuum model. We will also see more

clearly how the introduction of the viscosity-related internal length scale and the associated nonlocality regularizes the
continuum model which otherwise has only singular solutions.

3. The continuum model

We model the lamellipodium as a one dimensional continuum layer in frictional contact with a rigid background, see
Fig. 4. Assuming that the drag is viscous and neglecting inertia we can write the force balance in the form

v, 8xσ ξ∂ = ( )

where x t,σ ( ) is the axial stress and v x t,( ) is the velocity of the cytoskeleton (actin network). Eq. (8) is the continuous analog
of the system (4) in the discrete problem.

As in the discrete model, we denoted by ξ the coefficient of viscous drag. Such representation of active adhesion is usual
in the context of cell motility (Rubinstein et al., 2009; Larripa and Mogilner, 2006; Jülicher et al., 2007; Shao et al., 2010;

Fig. 4. Schematic representation of a continuum model simulating lamellopodial contraction-driven crawling.
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Doubrovinski and Kruse, 2011; Hawkins et al., 2011). It implies that the time-averaged shear stress generated by constantly
engaging and disengaging focal adhesions is proportional to the velocity of the retrograde flow, see Tawada and Sekimoto
(1991) for a microscopic justification. There is evidence (both experimental Gardel et al., 2008, 2010; Mogilner, 2009; Bois
et al., 2011; Schwarz and Gardel, 2012 and theoretical DiMilla et al., 1991; Mi et al., 2007) that this assumption describes the
behavior of focal adhesions accurately only when the retrograde flow is sufficiently slow. The behavior of adhesion strength
in the broader range of velocities is biphasic and since we neglect this effect, we potentially misrepresent sufficiently fast
dynamics. Observe though that for both keratocytes and PtK1 cells the rate of lamellar actin retrograde flow varies from 5 to
30 nm s"1 in usual experimental conditions (Schwarz and Gardel, 2012) and in this range a direct proportionality re-
lationship between traction stress and actin retrograde flow has been confirmed experimentally (Gardel et al., 2008;
Fournier et al., 2010; Barnhart et al., 2011). The characteristic velocity of the flow in our problem is 20 nm s"1 which falls
well into the aforementioned interval where the biphasic behavior can be neglected.

Following Kruse et al. (2006), Jülicher et al. (2007), Bois et al. (2011) and Howard et al. (2011), we assume that the
cytoskeleton is a viscous gel with active pre-stress. We neglect the bulk elastic stresses that relax over a time scale of 1–10 s
(Rubinstein et al., 2009; Wottawah et al., 2005; Kole et al., 2005; Panorchan et al., 2006; Mofrad, 2009; Recho and Trus-
kinovsky, 2013) which is much shorter than characteristic time scale of motility experiments (hours). We can then describe
the constitutive behavior of the gel in the form

v c, 9xσ η χ= ∂ + ( )

where η is the bulk viscosity, c x t,( ) is the mass concentration of motors and 0χ > is a contractile pre-stress (per motor)
representing internal activity. The constitutive relation (9) generalizes the parallel bundling of dashpots and contractile
units in the discrete model. The important new element is that the strength of the contractile elements may now vary in
both space and time.

In the discrete model the concentration of motors c was given as a function of x. To obtain a more self-consistent
description we assume that the function c x t,( ) satisfies a convection–diffusion equation (Rubinstein et al., 2009; Bois et al.,
2011; Barnhart et al., 2011; Wolgemuth et al., 2011; Hawkins et al., 2011)

c cv D c, 10t x xx∂ + ∂ ( ) = ∂ ( )

where D is the diffusion coefficient. Behind (10) is the assumption that myosin motors, actively cross-linking the actin
network, are advected by the network flow and can also diffuse which accounts for thermal fluctuations.

To justify this model, consider a simple mixture model with two species representing attached and detached motors. The
attached motors are advecting with the velocity of actin filaments and can detach. The detached motors are freely diffusing,
and can also attach. Suppose that the attachment–detachment process can be described by a first order kinetic equation.
Then the system of equations governing the evolution of the concentrations of attached ca and detached cd motors can be
written as

c c v k c k c

c D c k c k c
t a x a d a

t d xx d a d

on off

off on

∂ + ∂ ( ) = −
∂ − ˜∂ = −

where kon and koff are the chemical rates of attachment and detachment and D̃ is the diffusion coefficient of detached
motors in the cytosol. Now suppose that the attachment–detachment process is chemically equilibrated and hence c c K/ ,a d =
where K k k/on off= is the reaction constant. Then for the attached motors performing contraction we obtain

K
K

c c v D
K

c1 0.t a x a xx a
+ ∂ + ∂ ( ) −

˜
∂ =

Our Eq. (10) is obtained in the limit K → ∞ (fast attachment) and D K D/˜ → (fast diffusion).
Denote by l t( )− and l t( )+ the rear and front boundaries of our gel segment. To account for cortex/membrane elasticity we

assume, as in the discrete model, that the boundaries are linked through a linear spring (Barnhart et al., 2010; Du et al.,
2012; Loosley and Tang, 2012; Recho and Truskinovsky, 2013). This assumption affects the values of the stress in the moving
points l t( )− and l t( )+ :

l t t k L t L L, / .0 0σ ( ( ) ) = − ( ( ) − )±

Here L t l t l t( ) = ( ) − ( )+ − is the length of the segment, k is the effective elastic stiffness and L0 is the reference length. As we
have seen in the discrete model, the presence of an elastic interaction plays a crucial role in preventing the collapse of the
segment due to contractile activity of motors.

Our next assumption is that the external boundaries of the self-propelling segment are isolated in the sense that they
move with the internal flow l v l .̇ = ( )± ± We imply here that the addition and deletion of F-actin particles inserted at the front
and taken away at the rear does not contribute to propulsion. We also impose a zero exterior flux condition for motors

c l t t, 0x∂ ( ( ) ) =± ensuring that the average concentration of motors

c
L

c x t dx1 ,
11l

l
0

0
∫= ( ) ( )−

+
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is conserved. To complete the setting of the problem we need to impose the initial conditions l l0 0( ) =± ± and c x c x, 0 .0( ) = ( )
Our assumption that the bulk stiffness of the cytoskeleton is equal to zero (also known as the infinite compressibility

assumption Jülicher et al., 2007; Rubinstein et al., 2009) allowed us to uncouple the force balance problem (which becomes
statically determinate) from the mass transport problem. Then by solving the main system of governing equations (8)–(11)
we can obtain the velocity field and the concentration of motors. To recover the mass distribution of the cytoskeleton we
need to solve a decoupled mass balance equation with a kinematically prescribed velocity field (Recho and Truskinovsky,
2013; Recho et al., 2013).

Indeed, suppose that by solving the system (8)–(11) we found the velocity field v x t,( ). This means that we also know the
trajectories of the free boundaries l t( )− and l t( )+ . To find the mass density of actin x t,ρ ( ) in the gel, we need to solve the mass
balance equation

v 0 12t xρ ρ∂ + ∂ ( ) = ( )

with initial condition x x, 0 0ρ ρ( ) = ( ). Here we neglected the diffusion of actin which is weak comparing to the diffusion of
myosin. Now, since both the leading and the trailing edges of the moving lamellipodium coincide with the trajectories of
particles, the total mass M is conserved

M x t dx, .
l t

l t∫ ρ= ( )
( )

( )

−

+

To address the problem of continuous circulation and to close the cycle of the cytoskeleton flow we need to interpret the
points of density singularities as actin (mass) sources and sinks. In Section 7 we show how the solutions can be regularized
if we cut out small regularization domains around the sources and sinks and appropriately reconnect the incoming and the
outgoing flows of matter.

Dimensionless problem: If we now normalize length by L0, time by L D/0
2 , stress by k, concentration by c0 and density by

M L/ 0, we can rewrite the main system of equations in dimensionless form (without changing the notations)

A 7
2

c

c c c

,

. 13
xx

t x x xx

σ σ
σ

− ∂ + =
∂ + ∂ ( ∂ ) = ∂ ( )

Here we introduced three main dimensionless constants of the problem:

A L/ ,0
2η ξ= ( )

the ratio of viscous and elastic length scales;

2 k D/ ,ξ= ( )

the ratio of stiffness induced agglomeration over diffusion and finally

7 c k/ ,0χ=

the dimensionless measure of motor contractility. One can discern in (13) the structure of the Keller–Segel system from the
theory of chemotaxis (e.g. Perthame, 2012). The role of the distributed chemical attractant is played in our case by the stress
field s whose gradient is the driving force affecting the ‘colony’ of myosin motors.

The main mathematical difference between our formulation and the standard chemotaxis problem is that we have free
boundaries. Using dimensionless variables we can rewrite the boundary conditions in the form

2l t l t t, , 14xσ̇ ( ) = ∂ ( ( ) ) ( )± ±

l t t L t, 1 , 15σ ( ( ) ) = − ( ( ) − ) ( )±

c l t t, 0. 16x∂ ( ( ) ) = ( )±

The integral constraint (11) reduces to

c x t dx, 1. 17l

l∫ ( ) = ( )−

+

In dimensionless variables the mass balance equation (12) takes the form

2 0,t x xρ ρ σ∂ + ∂ ( ∂ ) =

and the total mass gets normalized

x t dx, 1.
18l t

l t∫ ρ ( ) = ( )( )

( )

−

+

Non-local reformulation: Since the first of Eq. (13) is linear, it can be solved explicitly for s
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A
A

7
A

x t L G x
L

x y c y dy, 1 cosh /
cosh / 2

, ,
19l

l∫σ Ψ( ) = − ( − ) [( − ) ]
[ ( )]

+ ( ) ( )
( )−

+

where

A A
A

Ax y l x y l
L

H y x y x, sinh / sinh /
sinh /

sinh / .Ψ ( ) = [( − ) ] [( − ) ]
( )

− ( − ) [( − ) ]+ −

We introduced the notations: H(x) – the Heaviside function and G t l t l t /2( ) = [ ( ) + ( )]− + is the position of the geometric center
of the moving fragment. By eliminating s from (13)2 we obtain a single non-local partial differential equation with quadratic
non-linearity for c x t,( )

2 72
A

⎛
⎝⎜

⎞
⎠⎟c x t L x c x t x y c y t c x t dy c x t, 1 , , , , , ,

20
t x x

l

l
xx∫θ φ∂ ( ) − ( − )∂ [ ( ) ( )] + ∂ ( ) ( ) ( ) = ∂ ( )

( )−

+

where the auxiliary velocity field

A
A

x x G
L

sinh /
cosh / 2

θ ( ) = [( − ) ]
[ ( )]

describes advective flow induced by the elastic coupling between the rear and the front of the active segment. The feedback
behind contraction-driven motility is contained in the kernel

A A
A

Ax y l x y l
L

H y x y x, cosh / sinh /
sinh /

cosh / ,φ ( ) = − [( − ) ] [( − ) ]
( )

+ ( − ) [( − ) ]+ −

which is due to viscosity-induced bulk interactions in the system and the effect of the boundaries. Notice that this kernel has
the action/reaction symmetry x y l l x l l y, ,φ φ( ) = − ( + − + − )+ − + − which is a fundamental constraint imposed by the bal-
ance of momentum (Kruse and Jülicher, 2003, 2000; Torres et al., 2010).

Inviscid limit: To distinguish the bulk mechanical interactions from the effects of the boundaries, we use the following
asymptotic expansion (Ren and Truskinovsky, 2000):

A

A

⎧
⎨
⎪⎪

⎩
⎪⎪

y x x G y G

x y x y

y x x y

lim ,

1
2

exp if 0

exp if 0.
21

b
L

φ φ( − ) = ( + + )

=
( − ) − <

− ( − ) − >
( )

→∞

In Fig. 5, we compare our viscosity induced interaction kernel with a long range kernel proposed in Kruse and Jülicher
(2003, 2000) and Torres et al. (2010), as a model of steric interactions between actin filaments with half size ls

⎧
⎨⎪
⎩⎪

x y
y x x y l

x y l

1
2

sgn if

0 if 22
s

s

s

φ ( − ) = ( − ) | − | ≤

| − | > ( )

The length ls plays in Kruse and Jülicher (2003, 2000) and Torres et al. (2010), the same role as our viscous length l /0 η ξ=
represented in (21) by the dimensionless parameter A.

Fig. 5. Comparison of the bulk part of the viscosity induced interaction kernel φb (continuous line) with its mean field analog φs (dashed line) proposed in
Kruse and Jülicher (2003).
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Recall that in Section 2 we anticipated a non-trivial limit in the continuum theory when the bulk viscosity η goes to zero.
Now we see that when A 0→ the kernel φb becomes singular and the nonlocality in the mechanical part of the model
disappears. From (13) we also notice that parameter A enters as a coefficient in front of the highest derivative. Therefore,
outside the boundary layers of size Z∼ one can formally assume that 7cσ = which makes the main dynamic equation (20)
local

72c x t c x t c x t c x t, , , , . 23t x x xx∂ ( ) + ∂ ( ( )∂ ( )) = ∂ ( ) ( )

At small A the non-bulk contributions to the kernel x y,φ ( ) will play a role only around the extremities of the moving
segment and in the limit A 0→ will affect only the boundary conditions.

By using a new variable 27w c1= − , we can rewrite Eq. (23) in the form

w x t w w x t, , 0.t x x∂ ( ) + ∂ ( ∂ ( )) =

Here we recognize the porous flow equation which is, however, unusual because the field w x t,( ) may be sign-indefinite. In
particular, in the regimes with 27c 1> ( )− one can expect an uphill diffusion similar to that of spinodal decomposition. A
systematic study of the inviscid case, requiring the knowledge of the boundary conditions in the limiting problem, will be
done elsewhere.

Cell velocity: Using the boundary conditions (14) we find from (19) an explicit formula for the (time dependent) velocity
of the center of our active segment (see also Eq. (7) in Section 2)

27
A

A

A

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

G

G x

L
c x t dx

2

sinh

sinh
2

, .

24

l

l∫̇ =

−

( )

( )
−

+

Similarly we obtain an equation for the evolving length of the segment (see also Eq. (6) in Section 2)

2
A A

27
A

A

A

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

L L L
G x

L
c x t dx2 1 tanh

2

cosh

cosh
2

, .

25

l

l∫̇ = − ( − ) ( ) −

−

( )

( )
−

+

Notice that in (24) only the odd component of the function c x t,( ) (with respect to the moving center G(t)) contributes to the
integral while in (25) only the even component matters. In particular, if the concentration of motors is an even function of x
then G 0̇ = and the segment does not move as a whole. This conclusion is a direct analog of Purcell's theorem (Purcell, 1977)
in the case of a crawling body. Notice that for crawling the emphasis is made on spatial asymmetry which replaces the
emphasis on temporal asymmetry in Purcell's interpretation of swimming.

From (24) we infer that the maximal velocity of the self-propelling segment is equal to 27 A/ 2( ). If we use the data from
Jülicher et al. (2007), Bois et al. (2011), and Howard et al. (2011), we obtain the estimates c 10 Pa0

3χ ≃ , L 10 m0 = μ and
3 10 Pa s4η = × . For the maximal velocity, this gives L c / 2 10 m/min0 0χ η( ) ≃ μ which is rather realistic in view of the data

presented by Jilkine and Edelstein-Keshet (2011) and Schreiber et al. (2010).
Traveling waves: Given our interest in the steady modes of cell motility, which are typical for keratocytes (Barnhart et al.,

2011), we need to study the traveling wave (TW) solutions of the main system (13). To find such solutions we assume that
the front and the rear of our segment travel with the same speed l t V̇ ( ) ≡± , ensuring the constancy of the length L t L( ) ≡ , and
that both the stress and the myosin concentration depend on x and t through a combination u x Vt L/= ( − ) only. Using this
ansatz we find that Eq. (13)2 can be solved explicitly

c u s u VLu

L s u VLu du

exp

exp
.

260

1∫
( ) = [ ( ) − ]

[ ( ) − ] ( )

Here for convenience we introduced a new stress variable 2s u u L 1σ( ) = [ ( ) + ( − )] which represents the inhomogeneous
contribution to internal stress field due to active pre-stress. The system (13) reduces to the single nonlocal equation

A 2 27
L

s u s u L s u LVu

L s u VLu du
1 exp

exp
,

27
2

0

1∫
− ″( ) + ( ) − ( − ) = [ ( ) − ]

[ ( ) − ] ( )

supplemented by the boundary conditions

s s s s LV0 1 0 and 0 1 . 28( ) = ( ) = ′( ) = ′( ) = ( )

The two ‘additional’ boundary conditions in (28) allow one to determine parameters V and L along with the function s(u).
After the problem (27), (28) is solved, the motor concentration profile can be found explicitly by using (26).

P. Recho et al. / J. Mech. Phys. Solids 84 (2015) 469–505480



4. Static regimes

Initiation of motility is associated with a symmetry breaking instability of a static (non-motile) configuration. To identify
non-motile configurations we need to find solutions of (27) with V¼0. These solutions may still characterize the states with
nontrivial active internal rearrangements of both actin and myosin. Static solutions with periodic boundary conditions were
studied in Bois et al. (2011) and here we complement and extend their analysis.

If V¼0, Eq. (27) simplifies considerably

A 2 27
L

s s L s

L s u du
1 exp

exp
.

29
2

0

1∫
− ″ + − ( − ) = ( )

( ( )) ( )

The nonlocal equation (29) was studied extensively in many domains of science from chemotaxis (Senba and Suzuki, 2000)
to turbulence (Caglioti et al., 1992) and gauge theory (Struwe and Tarantello, 1998). In our case, this equation, where
parameter L remains unknown, has to be solved with three boundary conditions s s s0 0 1 0′( ) = ( ) = ( ) = because the forth
boundary condition s 1 0′( ) = is satisfied automatically.

We begin with the study of the regular solutions of (29). Instead of 2 and 7 , it will be convenient to use another set of
parameters 2A L 1 0≔ ( − ) ≤ and 27B L s u du/ exp 0

0

1∫≔ ( [ ( )] ) ≥ . In terms of parameters (A, B) the problem (29) reads

A
L

s s A B s s s sexp with 0 0 1 0. 302− ″ + − = ( ) ′( ) = ( ) = ( ) = ( )

A trivial homogeneous solution of this problem s u 0( ) = exists when A B 0+ = which is equivalent in the 7 2,( ) para-
metrization to L L= ^

± with,

7L 1 1 4 /2. 31^ = ( ± − ) ( )±

The sub-branches with longer and shorter lengths 7L̂ ( )+ and 7L̂ ( )− , respectively, that meet at point α where 7 7L L^ ( ) = ^ ( )− + are
illustrated in Fig. 6.

To obtain nontrivial static solutions we multiply (30) by s′, integrate and use the boundary conditions to obtain the
‘energy integral’ s W s2′ = ( ), where

A
W s L s As B s2 2 exp 1 .

2
2( ) = ( − − [ ( ) − ])

The general solution of this equation can be expressed as a quadrature, u W r dr
s u 1/2∫= ± ( )( ) − where we recall that u

designates the normalized space variable. A detailed analysis of this equation is given in Appendix A, where different
families of static solutions are identified as Sm

± and Sm( )′± . The index 7 specifies the L̂± trivial branch from which a particular

solution bifurcates: the associated lengths L̂± are defined in (31). The integer valued index m corresponds to the number of
spikes in the configuration s(u). The prime differentiates between two subfamilies belonging to the same bifurcated branch
with primed subfamily having a length L larger than in the trivial configuration and non-primed subfamily having the length
L smaller than in the trivial configuration. Fig. 22 illustrates the families S1

+ and S2
+. For each family we plot the length of the

fragment L as a function of one of the controlling parameters, in Fig. 7.
In addition to regular solutions described above Eq. (29) has measure-valued solutions corresponding to collapsed cells

with length L 00
^ = . First of all, as we see in Fig. 6, 7L 0^ ( ) →− when 7 0→ (point α′) and the limiting distribution of motors is

concentrated on an infinitely small domain. To characterize the asymptotic structure of the singular solutions we suppose

Fig. 6. Three families of trivial static solutions L L,^ ^
+ − and L0

^ parameterized by 7 . Solid lines show stable branches while dotted lines correspond to unstable
branches. Arrows depict the basin of attraction of each branch (see Section 6).
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that L 1⪡ and that the maximum of s is of order L. Then, by ignoring high order terms, we deduce from (29) a simplified
boundary value problem

27 As L s u du s s s/ 1 with 0 0 1 0. 320

1∫− ″ ≈ ( [ + ( )] ) ′( ) = ( ) = ( ) = ( )

Then 27 As u Lu u1 / 2( ) ≈ ( − ) ( ) and the remaining boundary condition s 0 0′( ) = is automatically satisfied in the limit L 0→ .
We can then conclude that the singular solutions are of the form

s x Lf x Llim /
L 0

( ) = ( )
→

where 27 Af u u u1 / 2 .( ) = ( − ) ( ) Singular solutions of this type can be implicated in the description of cell splitting in a
cortical geometry (Turlier et al., 2014); they are also known in other fields where stationary states are described by Eq. (29)
(Caglioti et al., 1992; Chen and Lin, 2001; Ohtsuka, 2002; Gladiali et al., 2012). The presence of such solutions is a sign that in
a properly augmented theory, accounting for a vanishing internal length, one can expect localization with active contraction
balanced by a regularization mechanism, which may be, for instance, active treadmilling (Recho and Truskinovsky, 2013).
Our numerical solutions of a non-steady problem, which are naturally regularized because of the finite mesh size (see
Section 6), show that the almost singular solutions of the type described above are indeed attractors for initial data with
L L< ^

− when 7 1/4< . Moreover, numerical experiments suggest that they are the only attractors for 7 1/4> . This means
that even in the presence of a cortex-type spring, an active segment fragment necessarily collapses after the contractility
parameter reaches the threshold 7 1/4max = .

5. Re-entrant bifurcations

We first show that motile branches with V 0≠ can bifurcate only from trivial static solutions with s u 0( ) = , V¼0 and
L L= ^

±. For V 0≠ equation, multiplying (27) by s VL′ − , we find the relation

LV LV s u VLu du1 exp exp . 330

1∫− ( − ) = [ ( ) − ] ( )

Then in the limit V 0→ we obtain that s u duexp 1
0

1∫ ( ( )) = . Since static solutions s(u) must be necessarily sign definite, see
Appendix A, Eq. (33) implies that the corresponding static solution can only be trivial s u 0( ) = . As we have seen in Fig. 6,
there are two non-singular families of trivial solutions: one with longer (L̂+ family) and the other with shorter (L̂− family)
lengths.

Bifurcation points: To find the bifurcation points along the trivial branch 7s V L L0, 0,( = = = ^ ( ))± , we introduce in-
finitesimal perturbations s uδ ( ), Vδ , Lδ and linearize (27) together with boundary conditions (28). We obtain the boundary
value problem

A A
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟s s L

L L

L

L
L L L u V

1

2 1 1
2

2 1 ,
34

2
2

2

2
2

3

δ ω δ ω ω δ δ″ − = − ^
^ (^ − )

^ −
^ +

^ (^ − ) ( − )
( )

s s s s L V0 1 0, 0 1 . 35δ δ δ δ δ( ) = ( ) = ′( ) = ′( ) = ^ ( )

Fig. 7. Bifurcation diagram for the L̂+ branch at fixed 7 0.245= and A 1= . See also Fig. 9(a).
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Here we introduced the notation

27 AL L / . 362
2

ω = (^ − ^) ( )

Since ω¼0 at the trivial branch s V L 0δ δ δ= = = , we can assume that 0ω ≠ . The general solution of the problem (34), (35)
can be written explicitly

A A
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟s u C u C u L

L L

L

L
L L L u Vsinh cosh

1

2 1 1
2

2 1 .
37

1 2
2

2

2
2

2
3

δ ω ω ω
ω

ω δ δ( ) = ( − ) + ( − ) − − ^
^ (^ − )

^ −
^ +

^ (^ − ) ( − )
( )

From boundary conditions, non-trivial solutions branch from the trivial ones if the matrix

A

A

A

A

A

A

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

L L

L L
L L

L L

L L
L L

L

L

1 0
2 1

1

1
2

1

cosh sinh
2 1

1

1
2

1

0 0

sinh cosh 0
38

2
2

3

2

2

2
2

3

2

2

3

2

3

2

ω

ω

ω ω
ω

ω

ω ω

ω ω ω ω ω

( ^ − ) ^ −

(^ − )^
^(

^
− )

( ) ( )
( ^ − ) ^ −

(^ − )^
^( −

^
)

−
^

( ) ( ) −
^

( )

has a zero determinant. This gives a transcendental equation for ω

27L2 cosh 1 sinh 0. 39ω ω ω^[ ( ) − ] − ( ) = ( )

The detailed analysis of this equation is presented in Appendix B. The full locus of bifurcation points in the 2 7,( ) plane is
shown in Fig. 8. The lines of bifurcation points þ and " originating on the trivial sub-branches L̂+ and L̂− smoothly connect
at 7 1/4= , see Fig. 6. When parameter 7 is held constant while 2 is changing each family Di and Si in Fig. 8 is represented

Fig. 8. Locus of the bifurcation points in the 2 7,( ) plane forA 1= . Insert shows a zoom on the D1 branch around the turning point at 7 1/4= where L̂− and
L̂− branches meet. The detailed bifurcation diagrams for 7 0.245= and 2 70= and 100 are shown in Figs. 9(a) and 10 fromwhere the meaning of labels β, γ,
β′ γ′ becomes clear. The bifurcation points related to the cut 2 2600= (red dashed line) in the 7 L,( ) space are shown in Fig. 6. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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by two points. For solutions bifurcating from the trivial branch L̂+, we have 2 A 7L L/
2

2ω= (^ − ) ( ^ )+ + + , which gives points
D S D S, , , ,1 1 2 2 …+ + + + and for the branch L̂−, we have 2 A 7L L/

2
2ω= (^ − ) ( ^ )− − − which gives points D S D S, , , ,1 1 2 2 …− − − − . Notice that the

total number of bifurcation points increases to infinity as 2 → ∞. Now consider the case when 2 const= and 7 is varied. A
line 2 const= in the 2 7,( ) plane cuts again each line of the bifurcation points Di and Si in two points which we denote
D S, ,1 1 …⁎ ⁎ (solutions with longer lengths) and D S, ,1 1 …⁎⁎ ⁎⁎ (solutions with shorter lengths), see Figs. 6 and 8. In most cases, one
of these two points is a bifurcation originating from the L̂− trivial solution while the other is from the L̂+ trivial solution.
However, as we show in the inset in Fig. 8, the two points may also bifurcate from the same branch L̂+. As we show later in
the paper such bifurcations are of particular interest because they describe both motility initiation and motility arrest.

Structure of bifurcations: After the bifurcation points are known one can use the Lyapunov–Schmidt reduction technique
to identify the nature of the corresponding bifurcations (Nirenberg, 1974; Koiter, 1976; Amazigo et al., 1970). The analysis
presented in Appendix C shows that the bifurcations from the trivial to the nontrivial static branch are always transcritical.
The bifurcations to motile branches can be either subcritical or supercritical. In particular, at a given 2 , the bifurcation from
a static homogeneous solution with longer length is always supercritical while the bifurcation from a static homogeneous
solution with smaller length can be either subcritical or supercritical depending on the value of 2 , see Appendix C.

Bifurcated branches: To illustrate different types of bifurcations we constructed the nonlinear continuation of the bi-
furcated branches by solving the boundary value problem (27)–(28) numerically for successive values of parameters 2 and
7 (tracking algorithm, see Doedel et al., 2007). In Fig. 9(a), we show the continuation in 2 for both static and motile
configurations at fixed 7; the corresponding profiles of motor concentration, stress and velocity are shown in Fig. 9(b). One
can see that each pitchfork (for motile branches) and each transcritical (for static branches) bifurcation points gives rise to
two nontrivial solutions. For instance, along the static branch L̂+, the bifurcation point D1

+ is associated with two motile
supercritical branches whereas the point S1

+ is associated with two transcritical static branches. Each pair of motile solutions
is symmetric with two opposite polarizations corresponding to two different signs of the velocity. Along the first motile
branch originating at D1

+, the myosin motors concentrate at the trailing edge. For the second motile branch originating at D2
+,

there is an additional peak in the concentration profile, see Fig. 9(b). In contrast, the static bifurcation point S1
+ gives rise to

two symmetric configurations with different lengths and with myosin motors concentrated either in the middle of the cell
or near the boundaries, see Fig. 9(b). As one would expect, the higher order static and motile bifurcation points produce
solutions with more complex internal patterns. For the branches bifurcating from the trivial configurations belonging to L̂−
family, the picture is similar, see Fig. 9(a).

In Fig. 10, we show in more detail the nontrivial solutions originating from the motile bifurcation points D1 at two values
of parameter 2 which correspond to two sections αβ and αβ′ shown in Fig. 8 (insert). Notice that a single solution connects
the bifurcation points D1

⁎ (supercritical) and D1
⁎⁎ (sub- or supercritical) which may belong either to one family L̂+ (αβ where

D1
⁎ is the same as D1

+ and D1
⁎⁎ is the same is D1

+) or to two different families L̂+ and L̂− (αβ′ where D1
⁎ is the same as D1

+ and D1
⁎⁎

is the same as D1
−). In the former case, the nontrivial motile branch has a turning point at a finite value of 7 1/4< giving rise

to a re-entrant behavior. Similar behavior was also observed in some other nonlocal models (e.g. Kruse and Jülicher, 2003;
Tjhung et al., 2012; Giomi and DeSimone, 2014).

As illustrated in Fig. 10 and shown more clearly in a phase diagram in Fig. 11(a), in the re-entrant regime (sufficiently low
2 ), the increase of the average concentration of myosin (increase of 7 at fixed 2 ) first polarizes the cell and initiates

Fig. 9. (a) Bifurcation diagramwith 2 as a parameter showing nontrivial solutions branching from families of homogeneous static solutions L̂+ and L̂−. The
value 7 0.245= and A 1= are fixed. Solid lines show stable motile branches while all the dotted lines correspond to unstable solutions. The internal
configurations corresponding to branches indicated by numbers (1, 1 , 2, 2′ ′, etc.) are shown in Fig. 9(b). The projection of the bifurcation diagram on the
2 L,( ) plane is also shown below. (b) Internal profiles associated with successive bifurcated solutions shown in Fig. 9(a) for 7 0.245= and A 1= . Our
notation (1,3) correspond to asymmetric motile branches while (2,4) describe symmetric static branches.
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motility, but then, if the contractility is increased further, the cell may become symmetric again by re-stabilizing in another
static homogeneous configuration (see Fig. 10, 2 70= ). We reiterate that re-symmetrization and arrest prior to division
(known also as ‘mitotic cell rounding’) is a common feature of almost all animal cells (Stewart et al., 2011; Lancaster et al.,
2013; Lancaster and Baum, 2014). In this respect, it is interesting that if contractility 7( ) is increased further, the cell col-
lapses to a point because our effective ‘size preserving spring’ cannot support the contraction any more. Following Turlier
et al. (2014), we can associate such collapse with cell division. We can then argue that our deliberately minimalistic model
succeeds in reproducing a rather general pattern of cell behavior by showing that symmetrization (stabilization) in space
immediately precedes the division.

While the physical meaning of the non-dimensional parameter 7 in this discussion is rather clear (contractility measure),
the significance of varying 2 at fixed A is less obvious because both these parameters depend on frictional strength of the
background. Adhesivity of the cell to the substrate is known to be a crucial parameter for motility initiation and arrest for

Fig. 10. Bifurcation diagrams along parameter 7 showing motile branches connecting points D1
⁎ and D1

⁎⁎. Corresponding bifurcation points are shown in
insert in Fig. 8. Solid lines show stable motile branches while all the dotted lines correspond to unstable solutions. The projection of the bifurcation diagram
on the 7 L,( ) plane is also shown. Parameter 2 is fixed in each graph to 2 70= and 2 100= . Internal profiles on the two symmetric motile branches are
also shown for 2 100= . Parameter A 1= .

Fig. 11. (a) Phase diagram of the system (13) in the parameter plane 2 7,( ) at fixedA 1= . (b) Phase diagram of the same system (13) in the parameter plane
7 2, 1/( ) at fixed A 2/ 0.015= . The solid (red) line indicates the motile bifurcation point (D1

+ similar to Fig. 8), while the black dashed lines indicate the
collapse threshold 7 1/4max( = ). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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various cell types (Banerjee and Marchetti, 2011; Löber et al., 2014). To explicitly expose the role of friction, it is instructive
to interpret parameter 21/ as a measure of adhesivity while maintaining at a constant level the parameter A 2/ , which does
not have any relation to surface friction and is just a ratio of diffusive and viscous time scales.

The resulting phase diagram in the 7 2, 1/( ) plane at fixed A 2/ is shown in Fig. 11(b). In this diagram a horizontal path
extending from left to right means fixed adhesivity and increasing contractility. One can see that at high adhesivity motility
regimes cease to exist and static solutions collapse as contractility increases. If the adhesivity is below a certain threshold,
the contractility increase first causes polarization of a static configuration and motility initiation; further increase of con-
tractility causes re-symmetrization, arrest and eventually collapse. An interesting regime corresponds to the very tip of the
motile domain shown in Fig. 11(b). Near this ‘critical’ point the motility can be sustained in a narrow ‘homeostatic window’

of parameters and can be easily arrested by either increase or decrease of contractility.
Very recently new experimental results elucidating motility initiation in fish keratocytes have appeared (Barnhart et al.,

2015). According to these experiments, at a fixed contractility level (fixed 7 in our model), the increase of surface adhesivity
(increase of 21/ in our model) promotes static configurations while lowering adhesivity initiates motility. As it follows from
Fig. 11(b), these observations are in agreement with our predictions. Our model also explains another observation made in
Barnhart et al. (2015) that at a fixed adhesivity, a blebbstatin (a contractility inhibitor) treatment promotes arrest of the cells
while a calyculin A treatment (a contractility stimulator) initiates motility. The question whether a more substantial increase
of contractility in experiment can lead to re-symmetrization and arrest remains open. It is promising in this respect that
some cells are known to undergo static to motile transformation in response to a decrease in the level of contractility (Liu
et al., 2010; Hur et al., 2011). The minimal model presented in Barnhart et al. (2015) is exactly a 2D version of the one
formulated in Recho et al. (2013) and further developed in the present paper. While active protrusion and non-linear
regulation of adhesion were also accounted for in Barnhart et al. (2015) to get a realistic cell shape, it is rather remarkable
that the fundamental pattern of motility initiation (including its dependence on contractility and adhesivity) can be already
captured within our much more transparent setting, see Fig. 11(b) and Section 8.

Nonlinear active stress: The fact that the bifurcation leading to polarization and motility initiation is always a supercritical
pitchfork indicates that this model does not allow for metastability resulting in the coexistence of motile and non-motile
configurations that was observed in other models (e.g. Ziebert and Aranson, 2013; Tjhung et al., 2012; Giomi and DeSimone,
2014). To obtain such a coexistence in the present setting, we need to modify our model only slightly. The main idea is to
consider a more realistic nonlinear dependence of the active stress on motor concentration which is linear for small values
of c but then saturates after around a threshold cn. More specifically, we rewrite the main system of equations in the form

A 7
2

rc r

c c c

/ ,

, 40
xx

t x x xx

σ σ Φ
σ

− ∂ + = ( )
∂ + ∂ ( ∂ ) = ∂ ( )

where, following Bois et al. (2011), we choose a particular form of nonlinearity x x x/ 1Φ ( ) = ( + ) and where we introduce the
new non-dimensional parameter r c c/0= ⁎.

For simplicity we analyze below only the ‘rigid’ limit when k → ∞, L L0→ while the stress on the boundaries k L L/ 10− ( − )
remains finite. Notice that in this limit, which formally means that 7 0→ and 2 → ∞, we have to re-scale the stress by c0χ
instead of k and as a consequence in the rest of the section we denote, with some abuse of notations, 7/σ σ≔ . The new
dimensionless parameter replacing 2 and 7 is 27c D/0λ χ ξ= ( ) = that is assumed to be finite (see also Bois et al., 2011;
Howard et al., 2011; Hawkins et al., 2009a, 2011). In dimensionless variables the residual stress can be written as

77 Llim lim 1 /L0 0 1σ = − ( − )→ → . Then the boundary conditions read

l l

l t t

c l t t

l l t t

0

,

, 0

, .
x

x

0σ σ

λ σ

̇ − ̇ =
( ( ) ) =

∂ ( ( ) ) =
̇ = ∂ ( ( ) )

+ −

±

±

± ±

For TW solutions we can write the analogue of (27)

A
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟s s s

r
r s Vu

s Vu du

exp

exp
,

41
0

0

1∫
λ Φ− ″ + + = ( − )

( − ) ( )

where s 0λ σ σ= ( − ) and s0 0λσ= . The boundary conditions take the form s s0 1 0( ) = ( ) = and s s V0 1′( ) = ′( ) = . The difference
with our static solutions, described in Section 4, is that now we have to find the stress at the boundary s0 instead of the
length L.

The analysis of the motility initiation bifurcation in this case is presented in Appendix D. The results are illustrated in
Fig. 12. As we see, when the nondimensional parameter r is small, which means that we are in the linear regime, the
bifurcation from static to motile regime is a supercritical pitchfork. However, at larger values of r the nature of the bi-
furcation changes from supercritical to subcritical. This creates a domain of parameters where static and motile regimes can
coexist and where the system may exhibit metastability and hysteresis. Another important effect is that in this range of
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parameters the motility initiation/arrest is a discontinuous transition which may explain why experimenters were unable to
observe particularly small velocities of self-propulsion in keratocytes (Barnhart et al., 2011). An alternative explanation of
this experimental fact based on the idea of optimality and compatible with the supercritical nature of the motility initiation
bifurcation was proposed by Recho et al. (2014).

6. Stability of post-bifurcational regimes

Stability of various branches of the TW solutions identified in the previous sections was studied numerically. Since we
have to deal with a moving segment, it is convenient to map system (13) onto the fixed domain 0, 1[ ] which makes the
coefficients of the governing equations time dependent. To this end, we introduce the new space variable
u x t x l t L t, / 0, 1( ) = [ − ( )] ( ) ∈ [ ]− and denote the new unknown functions u t l L t u t, ,σ σ^ ( ) = [ + ( ) ]− and
c u t L t c l L t u t, ,^ ( ) = ( ) [ + ( ) ]− . Then the original problem (13), (15)– (16) takes the form

A 7
L L

c c
L

vc
L

cand 1 1 , 42uu t u uu2 2σ σ− ∂ ^ + ^ = ^ ∂ ^ + ∂ (^^) = ∂ ^
( )

Here we defined the relative velocity 2v L G u L/ 1/2uσ^≔ ∂ ^ − ̇ − ( − ) ̇, where

2
2

G L t t

L L t t

/ 1, 0, /2,

/ 1, 0, . 43
u u

u u

σ σ
σ σ

̇ = ( )[∂ ^( ) + ∂ ^( )]
̇ = ( )[∂ ^( ) − ∂ ^( )] ( )

The remaining boundary conditions can be written as

u t L c u t u, 1 and , 0 at 0, 1 . 44uσ̂ ( ) = − ( − ) ∂ ^( ) = = { } ( )

while the initial data take the form c u c u, 0 ,0^ ( ) = ^ ( ) G G0 0( ) = and L L0 0( ) = .
We integrated the dynamical system (42)–(44) with initial data chosen close to one of the known steady states. The

numerical scheme was based on the finite volume method (LeVeque, 2002). We used two dual regularly spaced grids on the
interval Z0, 1 :[ ] and Zd. Given the initial condition ĉ we solved (42)1 on Z and computed the effective drift term v̂ on Zd. We
then applied the upwind finite volume scheme to (42)2 and updated the concentration profile ĉ on Zwhich provided us with
the new initial data for the next time step. The time interval for each time step was adapted to ensure that the Courant–
Friedrichs–Lewy condition is uniformly satisfied on Zd.

Our numerical experiments suggest that the trivial branch L̂− is unstable together with all nontrivial non-singular static
solutions. The singular static solutions from the L0

^ family appear to be locally stable. To illustrate the attractive nature of the
singular static solutions we choose in Fig. 13 the initial configuration with a length smaller than L̂− with an internal initial
profile biased to the front associated to a motile solution. We observe that the length collapses to zero in finite time and cell
velocity goes to zero. In accordance with the computations made in Section 4, the stress profile converges to

27s u L u u/ 1 /2( ) ∼ ( − ) , velocity to 27v u u 1/2( ) ∼ ( − ) and concentration to c u 1( ) = .
Next, we observed numerically that the dynamic solutions are all unstable except for the branches bifurcating from the

points D1
+ on the trivial branch L̂+. The trivial branch L̂+ branch is locally stable until the first (motile) bifurcation D1

+. Both
symmetric subbranches of D1

+ (subfamilies 1 and 1′ in Fig. 9(a) and (b)) are stable. To illustrate the instability of a nontrivial

Fig. 12. Bifurcation diagrams in the nonlinear model with fixed length (infinite stiffness) (41) showing the possibility of a switch from supercritical to
subcritical bifurcation. Parameters: A 1= . (a) r¼1 and (b) r¼5.
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static solution, we show in Fig. 15 the escape of the phase trajectory from the neighborhood of the trivial static solution L̂−.
Since in this numerical test the value of 2 was chosen to be smaller than the critical value, corresponding to the bifurcation
of the first motile branch D1

+, the system originally placed near L̂− becomes unstable and then re-equilibrates on another
trivial static branch L̂+ without moving its geometrical center.

In Fig. 14 we illustrate motility initiation in two initially almost identical and nearly homogeneous static configurations
which differ by a localized concentration peak introduced either at the rear or at the front of the cell. We see that with time
these two initial profiles converge to the different stable motile solutions D1 and D1′. The initial inhomogeneity is re-
membered and selects the subfamily of the D1 solutions with the same bias. As we see, independently of the direction of

Fig. 13. Cell length L(t), velocity G ṫ ( ) and profiles c L u t/ ,( ), s L u t/ ,( ) and v u t G t,( ) − ̇ ( ) for the test with initial data shown at t¼0 with L 0 0.4( ) = . Parameters
7 0.245= , 2 150= and A 1= as in Fig. 9(a). The layer collapses due to the contractile stress.

Fig. 14. (Color online) Cell length L(t), velocity G ṫ ( ) and profiles c, s and v u t G t,( ) − ̇ ( ) for the test with initial data shown at t¼0 with L 0 0.5( ) = . Parameters
7 0.245= , 2 150= and A 1= as in Fig. 9(a). The layer polarizes to one the motile attractor (depending on the initial bias).
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motion the cell recovers its length after a short transient period.
As in Bois et al. (2011), Howard et al. (2011), and Kruse and Jülicher (2003), who considered the problem with fixed

boundaries, we find that some unstable multi-peaked static and dynamic solutions are long living. This behavior is re-
miniscent of the spinodal decomposition in a 1D Cahn–Hilliard model where the coarsening process gets critically slowed
down near multiple saddle points (Carr and Pego, 1989). To illustrate the long transients near the unstable solutions we
study in Fig. 16 evolution of two initially homogeneous concentration profiles with different initial lengths. We observe that
the phase trajectory first approaches the unstable branch from subfamily 2 from Fig. 9(a) and (b) before being finally
attracted by the stable configuration from the subfamily 1′. Interestingly, the symmetric subfamily 2′ can be also initially
approached if we choose slightly different initial data, however, this regime is abandoned much faster than the solution
from the subfamily 2, see Fig. 16(b). Based on our simulation, we conjecture that the lifespan of an unstable branch is linked
to the distribution of motors and the states with higher localization of motors on the periphery of the cell survive longer
than the states where motors are spread near the center of the cell.

To summarize, we found considerable numerical evidence that in a problem with free boundaries only trivial static
solutions can be stable and only solutions with monotone profiles can describe configurations of steadily moving cells. To
confirm these results a more systematic mathematical analysis of stability of the obtained TW solutions is needed. Cells with
constrained or loaded boundaries may show different stability patterns as it is evidenced by the study of a related problem
with a periodic boundary conditions (Bois et al., 2011; Howard et al., 2011; Kruse and Jülicher, 2003).

7. Mass transport of actin

As we have already mentioned, the infinite compressibility assumption allowed us to decouple the force balance
equation from the mass balance equation. Once the velocity field 2v x t x t, ,xσ( ) = ∂ ( ) is known, the latter can be solved a
posteriori by the method of characteristics.

Denote the trajectories of the mass particles by x t,ϕ ζ= ( ), where l l0 0ζ( ) ≤ ≤ ( )− + is the Lagrangian coordinate at t¼0 and
l t t l t,ϕ ζ( ) ≤ ( ) ≤ ( )− + . The characteristic curves can be found from the equations

d s
ds

v s s, , , . 45
ϕ ζ ϕ ζ( ) = ( ( ) ) ( )

Along these curves we must have

d s s
ds

s s v s s, , , , , , .x
ρ ϕ ζ ρ ϕ ζ ϕ ζ( ( ) ) = − ( ( ) )∂ ( ( ) )

Integration of this equation gives an explicit formula for the mass density

Fig. 15. Cell length L(t), velocity G ṫ ( ) and profiles c, s and v u t G t,( ) − ̇ ( ) for the test with initial data shown at t¼0 with L L0( ) = ^
− and the homogeneous

concentration c u L1/0 ( ) = ^
−. Parameters 7 0.245= , 2 50= and A 1= as in Fig. 9(a). The layer restabilizes from the homogeneous branch L̂− to L̂+.
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⎧⎨⎩
⎫⎬⎭t t v s s ds, , exp , , .

46

t
x0

0
∫ρ ϕ ζ ρ ζ ϕ ζ( ( ) ) = ( ) − ∂ ( ( ) )

( )

As we are going to see below, this solution is applicable only outside the singular points describing the sinks and the
sources.

Consider a TW solution of (13) which satisfies the boundary conditions l t Vt( ) =− and l t L Vt( ) = ++ . Introducing the

normalized co-moving variable Vt L/ϕ ϕ^ = ( − ) and the normalized Lagrangian variable L/ 0ζ ζ^ = ( ), both in the interval 0, 1[ ],
we obtain that v v ϕ= ( ^) and Eq. (45) reduces to

d t
dt

v t V
L

, , . 47
ϕ ζ ϕ ζ^(^ ) = ( ^(^ )) −

( )

For TW solutions the general formula (46) describing the mass distribution simplifies

L t t v V L v V, , 0 . 480ρ ϕ ζ ϕ ζ ρ ζ ζ( ^ (^ ) ){ ( ^(^)) − } = ( ) (^){ (^) − } ( )

According to (47) the points of the body where v¼V are singular because the relative flow there is stagnated. If at such
point the slope of the function v ϕ( ^) is negative we obtain a sink of particle trajectories ϕ γ^ = + (i.e. an attractor for particles as
t → ∞) whereas if the slope of the function v ϕ( ^) is positive, the singular point ϕ γ^ = − corresponds to a source of particle
trajectories (an attractor as t → − ∞). An important feature of the flows described by (47) is that it takes an infinite time for
a mass particle to reach a sink or to leave a source because v V 1ϕ( ( ^) − )− is not integrable in the neighborhood of γ" and γþ:

d

v V
.∫τ ϕ

ϕ
=

^

| ( ^) − |
= ∞

γ

γ

−

+

This implies that mass density infinitely localizes in the singular points (sources and sinks) because
L v V 0.1ρ ϕ ϕ τ( ^)| ( ^) − | = =− Then all mass points (corresponding to different values of ζ̂ ) come from the sources where the
characteristic curves accumulate at large negative times and disappear in the sinks where the characteristic curves accu-
mulate at large positive time.

For the trivial static solutions characterized by the lengths L̂±, there is no flow (v V 0− = ) and the mass density does not
depend on either space or time. The density profiles for nontrivial static and motile solutions can be illustrated near the
bifurcation points where the velocity profiles are known explicitly.

For instance, in the case of the nontrivial static branches Sm
± introduced in Section 5, we obtain

d t
dt

t, sin , , 49c
ϕ ζ ς ω ϕ ζ
^(^ ) = ( ^(^ )) ( )

where m2cω π= − . For determinacy, we choose the value of the amplitude ς in such a way that the maximum of our
dimensionless velocity field is equal to one. The approximate value of ς can be computed in the vicinity of the bifurcation
point from the amplitude equations presented in Appendix C. In Fig. 17(a) we show sample solutions of (49) corresponding

Fig. 16. Cell length L(t) and velocity G ṫ ( ) for the test with 7 0.245= , 2 400= and A 1= starting from homogeneous initial state with different initial
lengths L 0 0.6( ) = (left) and L 0 0.5( ) = (right). The labels refer to Fig. 9(a), (b). The two non-trivial static branches bifurcating from S1

+ denoted 2 and 2′ in
Fig. 9(a) and (b) have very different kinetic properties.

P. Recho et al. / J. Mech. Phys. Solids 84 (2015) 469–505490



to homogeneous initial conditions , 0ϕ ζ ζ^ (^ ) = ^ for positive and negative values of ς corresponding to the two possible
branching directions. The corresponding density profiles are illustrated in Fig. 18 where the passive treadmilling cycles are
shown by arrows.

Similarly, for the motile branches Dm
± we need to solve the characteristic equation

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭

d t
dt

L t,
cos /2

cos , 1/2 2 sin /2 1 ,
50c c

c c c

2

3
ϕ ζ ς

ω ω
ω ω ϕ ζ ω

^(^ ) = −
( )

( ( ^ (^ ) − )) − ( ) −
( )

whereωc is a solution of Eq. (B.2). Both equations can be solved analytically by separation of variables. In Fig. 17(b), we show
the sample solutions of (50) corresponding to homogeneous initial conditions , 0ϕ ζ ζ^ (^ ) = ^ again for the positive and negative
values of ς.

Fig. 17. (a) Trajectories of particles from sources to sinks for the first two static bifurcation points for initially homogeneously distributed set of particles.
(b) Trajectories of particles from sources to sinks for the first two motile bifurcation points for initially homogeneously distributed set of particles. Labels
1, 1 , 3, 3′ ′ and labels 2, 2 , 4, 4′ ′ are related to Fig. 9(a) and (b).

Fig. 18. Density profiles for the first two motile and static branches for 0ς > , the profiles for 0ς < are the same; only the treadmilling cycles (indicated by
black circles) are going in the opposite direction. Labels are related to Fig. 9(a) and (b). Parameter is 0.01ϵ = .
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We reiterate that this model is singular because in a one dimensional setting we are obliged to over-schematize the
treadmilling of actin. To recover the circulation aspect of the flow in a one-dimensional setting, we need to regularize the
problem near the singular points and make the mass flux finite. For instance, we can cut out small regularizing domains of
size ϵ around sinks and sources. In this way we obtain an effective ‘polymerization zone’ around each source

0, 1 /Γ ϕ ϕ γ= { ^ ∈ [ ] | ^ − | < ϵ}− − and an effective ‘depolymerization zone’ around each sink 0, 1 / .Γ ϕ ϕ γ= { ^ ∈ [ ] | ^ − | < ϵ}+ + We
assume that in the domain Γ" the network is constantly assembled from the abundant monomers while in the domain Γþ

it is constantly disassembled so that the pool of monomers is replenished. The ensuing closure of the treadmilling cycle is
instantaneous (jump process) allowing the monomers to avoid the frictional contact with the environment. More precisely,
we assume that the jump part of the treadmilling cycle is a passive equilibrium process driven exclusively by myosin
contraction. The turnover time

d

v V
∫τ ϕ

ϕ
=

^

| ( ^) − |Γ

Γ

∂

∂

−

+

is now finite and the corresponding density profiles are illustrated in Fig. 18. Notice that the flow between the neighboring
source and sink can be interpreted as a treadmilling cluster. Thus, for the mth static branch, we have 2m such clusters and
for the mth motile branch we have 2m"1 clusters. We reiterate that according to the numerical stability analysis conducted
in Section 6, the only stable motile solutions as the ones with a single treadmilling cycle extending from the leading to the
trailing edge.

8. Experimental verification of the model

We can now compare the predictions of the model with experiments describing motility initiation in keratocytes. For
instance, in the experiment of Verkhovsky et al. (1999), a mechanical force was transiently applied via a micropipette on one
side of a keratocyte fragment. Since the data presented in Fig. 5 of Verkhovsky et al. (1999) (and reproduced with permission
in our Fig. 19) are of one dimensional nature we can directly apply our model after adjusting it to account for mechanical
loading.

In order to make quantitative predictions we need to specify the values of parameters relevant for fish keratocytes. In
Barnhart et al. (2011), we find the values of viscosity 10 Pa s5η ∼ and active stress c 10 Pa0

3χ ∼ . The drag coefficient can vary
over several orders of magnitude depending on the substrate whose physical properties have not been specified in Ver-
khovsky et al. (1999). However, based on the fact that, in Verkhovsky et al. (1999), the velocity of the fragment after

Fig. 19. (a) Comparison of numerics with the experiments performed by Verkhovsky et al. (1999). Parameter values: A 0.0125= , 7 0.1= , 2 20= . In-
tegration is started from an initial cell length of Li¼1.12 with a homogeneous distribution of motors. In insets we show some snapshots of the distribution
of motors obtained by numerical integration. The homogeneous configuration switches fast to a symmetric distribution where motors are relocating at
both sides forming a two opposed lamellipods system. This state is long living but unstable and application of a transient loading leads to a break of
symmetry and the subsequent localization of motors to the trailing edge forming a one lamellipod system. (b) Locus of the first motile bifurcation point
associated to the homogeneous L̂+ branch for A 0.0125= . Red dot shows the experimental data for keratocyte 7 0.1= and 2 20= which belongs to the
motile regime. Such regime would be spontaneously reached under infinitesimal perturbations from a symmetric state but the long living nature of regime
2 (see Fig. 16) makes it necessary to impose a transient asymmetric perturbation to observe motility in experiments. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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initiation of motility was approximately 0.08 m s 1μ − , we can infer from Fig. 5 of Barnhart et al. (2011) that
2 10 Pa s m16 2ξ ∼ × − . From Barnhart et al. (2011) and Luo et al. (2012), we can also obtain the value of the diffusion coef-

ficient D 0.25 10 m s13 2 1∼ × − − and, from Barnhart et al. (2010), Du et al. (2012), and Loosley and Tang (2012), we estimate the
stiffness of the cortex k 10 Pa4∼ . Finally, directly from Verkhovsky et al. (1999), we infer that the characteristic length of the
keratocyte fragment is L 20 10 m0

6∼ × − . Based on these estimates we conclude that A 0.0125∼ , 7 0.1∼ and 2 20∼ .
In Verkhovsky et al. (1999) (Fig. 5), the initially round fragment with diameter L 22 mi = μ was subjected to an applied

stress of the order of q 15 20 kPa= –− . The loading was applied after 830 s and lasted for about 80 s. The additional surface
tractions can be easily incorporated into our model through the boundary condition at the rear of the cell:

l t t L t L q t, / 1 .0σ ( ( ) ) = − [ ( ) − ] − ( )− −
In Fig. 19(a) we present the results of our numerical simulation of the motility initiation experiment of Verkhovsky et al.

(1999). We start with a uniform initial state where motors are distributed homogeneously. We chose a generic value of the
length L 0( ) that is slightly different from the value L̂+ which is unstable in this range of parameters. The length first decays
towards the value corresponding to the branch S1

+ as one could expect based on Figs. 9(a), (b) and 16. This is an unstable
state which we found rather robust to selected perturbations. The distribution of motors remains non-polar with the de-
velopment of two contractile zones characteristic of the nontrivial static regime S2

+. The system then remains in this long
living unstable state until we apply an additional one-sided force on the boundary breaking the symmetry of the S2

+ state.
The destabilized system evolves towards the motile state on the D1

+ branch with both velocity and length well captured by
our model.

We can now compare with experiment the stationary density profiles (for both myosin and actin) generated by the
model. In the static regime, the flow of actin is absent (v¼0) an the model then predicts uniform distribution of actin and
myosin. From Fig. 20 (left), we see that this prediction is in agreement with experimental observations given that we
disregard fluctuations and neglect near-membrane effects.

From Rubinstein et al. (2009), the turnover time of actin can be estimated to be 30 s. Therefore we obtain in non-
dimensional units that τ¼0.018 which leads to the estimate ϵ¼0.015. We recall ϵ accounts for the size of polymerization
source and sink at the leading and trailing edge, see Section 7 for details. Knowing the value of ϵ, we can reconstruct the
mass density distribution uρ ( ) which we show in Fig. 20 (right) together with the motor concentration distribution c(u). One
can see that outside the boundary layers the model captures the main effect: the sweeping of actin towards the de-poly-
merization zone at the back of the cell by the retrograde flow and its regeneration on the polymerization zone at the front of
the cell. A more detailed quantitative comparison with experiment requires an account of the two (or even three) di-
mensional nature of the flow.

Overall, we can conclude that the model reproduces rather well the motility initiation pattern observed in Verkhovsky's
experiment. Moreover, the ensuing dynamics is described adequately by the stable motile branch predicted by our theory
formerly Fig. 19(b).

In another experiment by Yam et al. (2007), which we interpret here only qualitatively because of the absence of a
natural 1D representation, motility was induced by injection of calyculin A, known to be a factor increasing the activity of
myosin motors. The conventional interpretation of this experiment refers to the local variation of contractility which dis-
rupts the actin flow and affects the cascade of polymerization and depolymerization (Paluch et al., 2006). Instead, from the
perspective of our model it is natural to conjecture that the injection calyculin A affects the value of parameter 7 pushing it

Fig. 20. Distribution of myosin (red) and actin (blue) in the static (left) and motile (right) regimes. Insets show the experimental distributions of actin
(cyan) and myosin (red) from Verkhovsky et al. (1999). Picture is taken from http://lcb.epfl.ch/cms/lang/en/pid/71379, courtesy A. Verkhovsky. Parameter
values: A 0.0125= , 7 0.1= , 2 20= and 0.018τ = . (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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beyond the threshold where the static symmetric configuration is stable and initiating in this way the polarization in-
stability which in turn leads to motility.

Notice that in both experiments by Verkhovsky et al. (1999) and by Yam et al. (2007), a fraction of keratocyte cells did not
move at all after being exposed to the same mechanical or chemical perturbation as the cells that did become motile. This
can be explained by the fact that the realistic values for 7 and 2 lay rather close to the boundary separating static and
motile regimes, see Fig. 19(b). It is then feasible that some cells remain in the symmetric (static) regime despite the
perturbation.

It is also feasible that the realistic dependence of active stress on myosin concentration saturates above a certain
threshold which, as we have seen, can change the nature of the motility initiation bifurcation (D1 branch) into a subcritical
pitchfork, see discussion in Section 5. This opens a finite range of metastability where both the homogeneous static state
and the inhomogeneous motile state are locally stable. The implied non-uniqueness may be an alternative explanation of
the simultaneous presence of motile and non-motile cells despite apparently equal levels of contractility.

To exemplify this last claim, we show in Fig. 21 the effect of switching to threshold type dependence of contractile stress
on the concentration of motors, see (40). Notice that we have dropped in Fig. 21 the assumption that the length of the
moving segment is fixed. A comparison of Fig. 21 with Fig. 11(b) shows that the saturation of contractile stress introduces a
finite zone of metastability between static and motile configurations: in this zone finite perturbations are required to switch
from static to a motile regime. This prediction was very recently confirmed in vivo by Barnhart et al. (2015) and the me-
tastability domain as in Fig. 21 was mapped experimentally. We also observe that for sufficiently large values of the active
stress saturation threshold r, our model associates metastability with both, motility initiation and motility arrest. On the
arrest side (Lancaster and Baum, 2014), this prediction can be linked to the metastability of cell division (Turlier et al., 2014)
which to our knowledge has not been yet experimentally documented.

9. Conclusions

We studied a prototypical model of a crawling segment of an active gel showing the possibility of spontaneous polar-
ization and steady self-propulsion in the conditions when contraction is the only active process. Our model, which focuses
entirely on ‘pullers’, complements the existing theories of polarization and motility that place the main emphasis on
‘pushers’ and link motility initiation with active treadmilling and protrusion. Mathematically, the proposed model reduces
to a dynamical system of Keller–Segel type, however, in contrast to its chemotaxic analog, the nonlocality in this model is
due to mechanical rather than chemical feedback. If compared with previous studies of Keller–Segel type problems, our
setting is complicated by the presence of free boundaries equipped with Stefan type boundary conditions.

As we argue, the motor proteins with sufficient contractility induce internal stress which can overcome the hydro-
dynamic resistance and induce flow. The flow produces a drift of motors in the direction of the regions where they

Fig. 21. Left: Phase diagram in the parameter plane 7 2, 1/( ) for the system (40) (with no length constraint). The parameter A 2/ 6 10 3≈ × − is fixed at its
experimental value. The solid (red) line indicates the motile bifurcation threshold for the branch D1

+ (similar to Fig. 11(b)), while the dashed line bounding
the metastability domain indicates the location of the turning points on the motile branch in the appropriate analog of Fig. 12(b). The dashed line
separating static and collapsed configurations indicates the location of the turning point α in Fig. 7. Right: effects of a high (top) and low (bottom)
concentration saturation thresholds. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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concentrate and such autocatalytic amplification is the mechanism of the positive feedback in our model. The ensuing
runaway is countered by diffusion of motors which penalizes creation of concentration gradients and thus plays the role of a
negative feedback. When a critical contractility of motors is reached, the homogeneous distribution of motors becomes
unstable. The contraction asymmetry then induces a flow of actin filaments towards the trailing edge thus producing
frictional forces which propel the cell forward. The rebuilding of the balance between drift and diffusion leads to the
formation of a pattern. Among various admissible patterns, whose number increases with contractility, the stable ones
localize motors at the trailing edge as observed in experiments.

The proposed model provides an alternative qualitative explanation of the experiments of Verkhovsky et al. (1999) and
Yam et al. (2007) that have been previously interpreted in terms of active polymerization inducing the growth of actin
network (Blanch-Mercader and Casademunt, 2013). Most strikingly, the predictions of our model are also in quantitative
agreement with experimental data, which is rather remarkable in view of a schematic nature of the model and the absence
of fitting parameters.

In addition, the model captures a durotactic effect since the directional motion cannot be initiated if friction with the
substrate is larger than a threshold value. We show that below this threshold, motile regimes exist in a finite range of
contractility. This means that if the cell is already in motion, it can recover the symmetric (static) configuration either by
lowering or by increasing the amount of operating motors. The predicted possibility of cell arrest under the increased
contractility should be investigated in focused experiments.

We have also shown that when the contractility depends on the motor concentration nonlinearly, one can have a me-
tastability range where both static and motile regimes are stable and can coexist. In this range of parameters a mechanical
perturbation may be used to switch back and forth between static and dynamic regimes and reproducing such behavior
in vivo presents an interesting challenge. This prediction of the model is particularly important in the context of collective
cell motility (in tissues) where contact interactions are able to either initiate or terminate the motion (Abercrombie, 1967;
Heckman, 2009; Trepat et al., 2009; Vedula et al., 2012).

Despite the overall success of the proposed model, it leaves several important questions unanswered. Thus, our focus on
a one dimensional representation (projection) of the motility process obscured the detailed description of the reverse flow
of actin monomers which we have replaced with an opaque jump process. Similarly, our desire to maximally limit the
number of allowed activity mechanisms, forced us to assume that polymerization of actin monomers and their transport are
equilibrium processes. The assumption of infinite compressibility of the cytoskeleton, which is behind the decoupling of the
mass transport from the momentum balance, also remains highly questionable in the light of recent advances in the un-
derstanding of cytoskeletal constitutive response (Broedersz and MacKintosh, 2014; Pritchard et al., 2014). Finally, our
schematic depiction of focal adhesions as passive frictional pads needs to be corrected by the account of the ATP driven
integrin activity and the mechanical feedback from the binders to the cytoskeleton (Schwarz and Safran, 2013). These and
other simplifying assumptions would have to be reconsidered in a richer setting with realistic flow geometry which will also
open a way towards more adequate description of membrane (cortex) elasticity and will allow one to account for the polar
nature of the gel (Marchetti et al., 2013).

Ultimately, the answer to the question whether the proposed simplified mechanism provides the fundamental ex-
planation of motility initiation in keratocytes will depend on the extent to which the inclusion of all other related factors
affects the main conclusions of the paper. A more thorough analysis will also open the way towards deeper understanding of
the remarkable efficiency of the proposed mechanism of self-propulsion delivering almost optimal performance at a
minimal metabolic cost (Recho et al., 2014).
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Appendix A. Analysis of nontrivial static solutions

Solutions of boundary value problem (29) correspond to closed trajectories on the phase plane s s,( ′) passing through the
origin (s s0, 0= ′ = ) and different types of such trajectories are illustrated in Fig. 22.

Depending on the position of a point in the parametric plane A B, , one can identify five different types of behavior:
1. If A B 0+ = , then equation W r 0( ) = has one double root at r¼0 and one single root (negative or positive) at r s= − (Case

3 in Fig. 22). The only solution is then the trivial one s u 0( ) = and L L= ^
±.

2. If A B 0+ < , then equation W r 0( ) = has three roots: r¼0, r s 0= <− and r s 0= >+ . This case corresponds to static
branches labeled in Figs. 22, 7, 9(a) and (b) by numbers without a prime (Case 1 in Fig. 22). In this domain we find
nontrivial static solutions with s u s0 ≤ ( ) ≤ +. Different solutions correspond to different number (m) of sign changes for
the function s u′( ) and different values of L m W d2

s

0
1/2∫ σ σ= ( )−+ .

3. If
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A B

A B Be
A

0

1 2 1
1 A.1

A B A2 2 1 12{
+ >

− − + <
< − ( )

− − + + +

then equation W r 0( ) = has three roots: r¼0 and r s 0= <− and r s 0= <+ with, s s>+ −. This case corresponds to non-
motile branches labeled in Figs. 22, 7, 9(a) and (b) by numbers with a prime ′ (Case 2 in Fig. 22). In this domain, we find
nontrivial static solutions with s s u 0≤ ( ) ≤− . Again, different solutions correspond to different number of sign changes for
the function s u′( ) and different values of L m W d2

s

0
1/2∫ σ σ= ( )−+ .

4. If

A B

A B Be
A

0

1 2 1
1 A.2

A B A2 2 1 12{
+ >
− − + <
> − ( )

− − + + +

then equation W r 0( ) = has three roots: r¼0 and r s 0= >− and r s 0= >+ with, s s>+ − and there are no static solutions
since there are no closed paths in the phase plane passing through the point 0, 0( ).

5. If A B Be1 2 1 A B A2 2 1 12− − + > − − + + + , then equation W r 0( ) = has only one non-degenerate root at u¼0. In this case
there are no static solutions since again there are no closed paths in the phase plane.

Notice also that for the solutions described above the map between the two parameterizations (A, B) and 2 7,( ) is explicit

2

27

⎜ ⎟⎛
⎝

⎞
⎠A m W d

m A W d

2 1

2 . A.3

s

s
0

1/2

0
1/2

∫
∫

σ σ

σ σ σ

= ( ) −

= ( − ) ( ) ( )

−

−

+

+

Notice also all nontrivial static solutions bifurcate from the trivial branches in the sense that there are no detached
solutions. Indeed, if a solution were detached, it would not pass through the origin (trivial solution) in the space s s,( ′). But
that would mean it cannot satisfies boundary conditions.

Appendix B. Analysis of the characteristic equation (39)

Eq. (39) has two families of solutions depending on whether ω is real or pure imaginary. In the first case, we denote
0cω ω≡ | | ≥ whereas 0cω ω≡ − | | ≤ in the second case.

A

A

L

L

2 cosh 1 / 1 sinh 0 if 0,

2 cos 1 / 1 sin 0 if 0. B.1

c c c c c

c c c c c

2 2 2

2 2 2

ω ω ω ω ω

ω ω ω ω ω

[ ( ) − ] + ( ^ − ) ( ) = >

[ ( ) − ] + ( ^ + ) ( ) = < ( )

Fig. 22. (Color online) Phase diagram for the static solutions in the parameter space (A,B). A B 0+ = line is the trivial (homogeneous) solution. In the
bottom corner we show the blow up of the same diagram.
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Eqs. (B.1)1 and (B.1)2 need to be analyzed separately:
1. When 0c

2ω > , Eq. (B.1)1 has a unique solution only if AL / 12
2^ ≥ . It is given by the implicit formula

A

L
2 tanh

2
1 .c

c c2
2ω ω ω( ) = ( − ^ )

The unstable eigen-vector can be written as
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δ
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=

{ [( − ) ] − ( − ) ( )}
ω ω

^

( )

Since V 0δ ≠ , this bifurcation leads to a motile configuration which we denote D1. In Fig. 23 the eigen-functions associated
with the sub-branch D1

+ bifurcating from the trivial solution L̂+ are illustrated for A 0.01= . As parameter A increases the
exponential viscous boundary layers thicken. They fully disappear at A L /12

2
= ^ where the ‘hyperbolic’ eigen-vectors

become ‘trigonometric’.
2. When 0c

2ω < , Eq. (B.1)2 has two sub-families of solutions:
(a) The first family can be written explicitly: m2cω π= − with m 1≥ . The unstable eigen-vector has the form
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⎝
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[ ( ) − ]ω( ^ − )( + ^ )
^ (^ − )

Since V 0δ = , the bifurcated branch describes the nontrivial static solutions Sm studied in Section 4. In Fig. 23 the eigen-
functions associated with the sub-branch Sm

+ originating at the trivial solution L̂+ are illustrated for A 0.15= .
(b) The second family consists of a countable set of negative roots of Eq. (B.1)2 given implicitly by

A

L
2 tan

2
1

B.2
c

c c2
2ω ω ω( ) = ( ^ + )

( )

The unstable eigen-vector is

Fig. 23. Solution branches of the characteristic equation (B.1) as functions of A for the trivial static solution L̂+ 7 0.01( = ). From (36), the locus of the
bifurcation points are recovered and shown in Fig. 8. We refer to Fig. 9(a) for the label of bifurcation points. We represent in inserts the eigenfunctions sδ
related to D S D S D S, , , , ,1 1 2 2 3 3

+ + + + + + for A 0.15= and the eigenfunction sδ related to D1
+ for A 0.01= . The eigenfunctions are normalized to 1; solid and dashed

lines correspond to the two possible directions of the pitchfork bifurcation.
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L
V

s u u u

0
1

sin 1/2 2 1/2 sin /2L
c c

cos / 2c c

2

3

δ
δ

δ ω ω( )
=

{ [( − ) ] − ( − ) ( )}
ω ω

−^

( )

It corresponds to motile branches because V 0δ ≠ . We denote this family by Dm. In Fig. 23 the eigen-functions associated
with a subbranch Dm

+ originating at trivial solutions L̂+ are illustrated for A 0.01= .

Appendix C. Normal forms

Normal form in 2 : In terms of the normalized stress variable r¼s/L the original nonlinear problem can be written as

A 27r u L r u e

e du
r r r r Vwith 0 1 0, 0 1 .

C.1

L r u Vu

L r u Vu

2

0

1∫
− ″( ) + ( ) = ( ) = ( ) = ′( ) = ′( ) =

( )

( ( )− )

( ( )− )

Assume that ϵ is a small parameter and expand the solution of (C.1) around a bifurcation point up to third order

r r r r o V V V V o L L L L L o0 /2 /6 , 0 /2 /6 , /2 /6 .
1

2
2

3
3

3
1

2
2

3
3

3
1

2
2

3
3

3= + ϵ + ϵ + ϵ + (ϵ ) = + ϵ + ϵ + ϵ + (ϵ ) = ^ + ϵ + ϵ + ϵ + (ϵ )

Assume that the bifurcation parameter 2 and therefore

2 2 2 2 2 o/2 /6 ,
0 1

2
2

3
3

3= + ϵ + ϵ + ϵ + (ϵ )

where 2
0

is the bifurcation point. These expressions are then inserted into Eq. (C.1). Separating different orders of ϵ we
obtain three differential equations

/O r L V1 , , , 0, C.2
1 1 1

( ) ( ) = ( )

/ 3 32 2O r L V r L V r L V2 , , , , , , , , C.3
2 2 2 0

0
1 1 1 1

1
1 1 1

( ) ( ) = ( ) + ( ) ( )

/ 4 4 42 2 2O r L V s L V r L V r L V r L V r L V r L V3 , , , , , , , , , , , , , , , , , , , C.4
3 3 3 0

0
1 1 1 2 2 2 1

1
1 1 1 2 2 2 2

2
1 1 1 2 2 2

( ) ( ) = ( ) + ( ) + ( ) ( )

where / is the linear operator already introduced in the stability analysis, see (34):

/

⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

r L V r u r u
u Z L

Z
V

L Z L

L L
L, ,

2 1

1
2

1
2

2
2

2 2
2

4ω
ω ω ω

( )≔ ″( ) − ( ) +
− − ^

+
( ^ − ) − ^

(^ − )^

and 30, 31, 40, 41 and 42 are known non-linear operators. The boundary conditions remain the same at all orders i:

r r r r V0 1 0, 0 1
i i i i i
( ) = ( ) = ′( ) = ′( ) =

In the leading order, we obtain the results already reported in Section 5 including the eigenvalue 2
0

and the eigen-
function r u L V, ,

1 1 1
( ) . To have a nontrivial solution in the next order, the right-hand side of Eq. (C.3) must be orthogonal to the

kernel of the dual of / (for the L2 scalar product). In the C C L V, , ,1 2 δ δ( ) space, see Section 5, this means orthogonality to the
kernel of the transpose of matrix (38). The resulting linear scalar equation determines the value of 2

1
. When this value

vanishes, higher orders must be considered in a similar way. We summarize below the main results obtained by im-
plementing this procedure.
1. Static branches result from transcritical bifurcations. For the mth branch we have

2 AL m L L4 / 1
1 2

2 2
3

π= (^ − ) [^ (^ − )]

2. Motile branches all correspond to pitchfork bifurcations with 2 0
1

= . They can be either subcritical or supercritical de-
pending on the sign of
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In Fig. 24(b) we illustrate the function 2 7
2

( ) for the first motile branches D1
− and D1

+. As 2 0
2

≥ for all values of the activity
parameter 7 , the motile branch D1

+ always bifurcates from the static branch in a supercritical (pitchfork) manner. In contrast,
the motile branch D1

− can bifurcate either supercritically or a subcritically depending on the value of 7 . When 7 is larger
than a threshold value 7s, the coefficient 2

2
changes sign and becomes negative indicating a subcritical character of the

bifurcation on the L̂− static branch.
Normal form in 7: We now consider 7 as the bifurcational parameter. The derivation of the normal form in this case is

more complex because the homogeneous static solution 7L̂ ( ) is a multivalued function of 7 (see Fig. 6). One can circumvent
the difficulty by introducing a new variable

7J L L 1 . C.6= ( − ) + ( )

Then the boundary value problem (C.1) takes the form

A 2r u L r u J L L e

e du
r r r r V1 with 0 1 0, 0 1 .

L r u Vu

L r u Vu

2

0

1∫
− ″( ) + ( ) = [ − ( − )] ( ) = ( ) = ′( ) = ′( ) =

( ( )− )

( ( )− )

whose trivial solution is J V r, , 0, 0, 0( ) = ( ). In this formulation J, V and r(u) are unknowns while the length L is the bi-
furcation parameter. The regular expansions near the homogeneous state give

r r r r o V V V V o J J J J o/2 /6 , /2 /6 , /2 /6 ,
1

2
2

3
3

3
1

2
2

3
3

3
1

2
2

3
3

3= ϵ + ϵ + ϵ + (ϵ ) = ϵ + ϵ + ϵ + (ϵ ) = ϵ + ϵ + ϵ + (ϵ )

L L L L L o/2 /6 .
0 1

2
2

3
3

3= + ϵ + ϵ + ϵ + (ϵ )

Distinguishing the static and motile branches as before, we obtain the following results:
1. Static branches are all found to be transcritical bifurcation. For the mth branch, we have 7 7 7 o

0 1
= + ϵ + (ϵ) where

7 7L L L L1 , 1 2 1 .
0 0 0 1 0 1

= − ( − ) = − ( − )

and L
0
is a solution of the cubic equation

Fig. 24. (a) Values of 2
1

for the S1
+ and S1

− branches as functions of parameter 7 for A 0.001= . (b) Values of 2
2

for the D1
+ and D1

− branches as functions of
parameter 7 for A 0.001= . The point where 2 0

2
= along the L̂− static branch indicates a nature change of the motile pitchfork bifurcation from super-

critical to subcritical pitchfork. The parameter dependence of such a point is represented as a function of 7 7 As= ( ) in the inset.
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2 2
0

2π− ( ) ( − ) = + ( )

In this equation only two roots corresponding to Sm
⁎ (the smaller) and to Sm

⁎⁎ (the larger) are in the range 0, 1[ ]. In Fig. 25
(a), we illustrate the behavior of the function 7 2

1
( ) for the branches S1

⁎ and S1
⁎⁎.

2. Motile branches result from pitchfork bifurcations that can be either supercritical or subcritical with

7 7 7 o/2 .
0

2
2

2= + ϵ + (ϵ )

The coefficients in this expansion can be written in the form

7 7L L J L L1 and 2 1 ,
0 0 0 2 2 0 2

= − ( − ) = − ( − )

where

A 2 2

2 2
J L L L L

L

60 1 1 4

24 1 1
.

2
0 0 0

3
0

0
2

= − ( − )( ) ( ( − ) − )

( ( − ) + )

The length L
0
can be found from the system of equations

2 A

A

L L L

L

1

tanh /2 /2 1 /

0
2

0
2

0
2

2
0

2

ω

ω ω ω

− ( ) ( − ) = − + ( )

( ) = ( )( − ( ) )

Again, two roots are in the interval 0, 1[ ]: the smaller one belongs to the branch Dm
⁎ and the larger one to the branch Dm

⁎⁎.
In Fig. 25(b), we illustrate the function 7 2

2
( ) for m¼1. The bifurcation from the static homogeneous solution with longer

length is always supercritical as 7 D 0
2

1( ) >⁎ . Instead, the bifurcation from the static homogeneous solution with smaller
length can change from subcritical (7 0

2
≤ ) to supercritical (7 0

2
≥ ).

Appendix D. Normal form for the stiff limit

In the study of (41) we closely follow the procedure developed in Section 5. In essence, the results are exactly the same
for fixed L 1^ = and the product 27 replaced by λ with only one homogeneous state (s y 0( ) = , V¼0 and s r r/0 Φ= ( ) ) and
where s0δ replace Lδ . As a result, there is an infinite sequence of bifurcations branching from the now unique homogeneous
state. We shall only focus on the stable attractor of the problem, namely, the homogeneous solution before the D1 bi-
furcation and the first motile branch after.

The critical value of the bifurcation parameter λc corresponding to the case when a homogeneous static solution becomes
linearly unstable is given by the formula Ar c1 1c

2 2λ ω= ( + ) ( − − ) where ωc is a root of the equation
Atanh /2 1 /2c c c

2ω ω ω( ) = ( − ) with the smallest absolute value. We then proceed to the next order developing a regular ex-
pansions close to the bifurcation point

Fig. 25. (a) Values of 7
1
for the first static branch as a function of parameter 2 for a fixed A 1= . (b) Values of 7

2
for the first motile branch A 1( = ).
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Similar expansion for the bifurcation has the form

o/2 /6 .c
1

2
2

3
3

3λ λ λ λ λ= + ϵ + ϵ + ϵ + (ϵ )

For the first motile branch one finds that 0
1
λ = , indicating a pitchfork bifurcation.

Below we show that this bifurcation can change from supercritical to subscritical depending on the value of the di-
mensionless parameter r. Assuming without loss of generality that V V 1

1 2
= = , we obtain

A

A A A

Ar Br C1

144 2 6 1

2 2 2

8 3 4 2 2( )( )
( )λ

ω
ω ω ω

=
( − ) + +

− + +

where

A A A A A A A A A

A A A

A 30 123 6 35 164 2 1073 84 6 1440 155 8

3 1320 430 1 9240 770

12 5 10 4 8 3 6 2 4 2

2 2

ω ω ω ω ω

ω

= − + ( − ) + ( − ) + ( − + )

+ ( − + ) − +

A A A A A A A A A

A A A

B 2 21 87 4 39 173 2 707 66 3 1440 210 13

2280 1150 3 9240 770

12 5 10 4 8 3 6 2 4 2

2 2

( )
( )

ω ω ω ω ω
ω
= − ( − + ( − ) + ( − ) + − +

+ − + − + )

A A A A A A A A A A

A

C 6 21 6 28 5 2 12 79 6 85 2 3 1320 430 1

9240 770

12 5 10 4 8 3 6 2 4 2 2ω ω ω ω ω ω= − + + ( − ) + ( − ) + ( − ) + ( − + )

− +

these expressions show that there exists a critical value rc of the parameter r such that the bifurcation is supercritical (i.e.

0
2
λ ≤ ) for r rc≤ . This regime corresponds to a state where contraction is proportional to concentration of motors. For r rc≥ ,

the pitchfork bifurcation is subcritical (i.e. 0
2
λ ≥ ) and the regime is characterized by a contraction which saturates into the

plateau. We plot in Fig. 26 the value of
2
λ as a function of r for a fixed A 1= and in inset the value Arc ( ). When A 0→ , r 2c →

and when A → ∞, r 7 69 /10c → ( + ) .

Fig. 26. Parameter
2
λ characterizing the structure of the static to motile bifurcation in the case of non-linear contraction law.
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