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1 Solution of the optimization problem

Here we show how the in�nite dimensional optimization problem formulated
in the main text can be reduced to an algebraic minimization problem in two
dimensions.

If we substitute the function σ(y) from (2) into the dimensionless expression
of e�ciency, we obtain:

Λ =
LV 2

L
∫ 1/2

−1/2 τ(y)2dy − 2σ2
0 tanh(L2 )− L2

∫ 1/2

−1/2
∫ 1/2

−1/2 Ψ(y, v)τ(y)τ(v)dydv +H∗∗
.

(I)
The constants V and σ0 are de�ned in terms of the unknown function τ(y) in
Eq.(3) of the main text (see also Eq.(III) below). Our strategy is to �rst �x V
and σ0, optimize (I) with respect to τ(y) and then to optimize the result with
respect to V and σ0.

The �rst problem is equivalent to minimizing the denominator in (I)

min
τ

[
Q(τ) =

∫ 1/2

−1/2
τ(y)2dy − L

∫ 1/2

−1/2

∫ 1/2

−1/2
Ψ(y, v)τ(y)τ(v)dydv

]
, (II)

under the constraints
2V sinh(L2 ) = −L

∫ 1/2

−1/2 sinh(Ly)τ(y)dy

2σ0 sinh(L2 ) = L
∫ 1/2

−1/2 cosh(Ly)τ(y)dy∫ 1/2

−1/2 τ(y)dy = 1.

(III)

An additional constraint τ(y) ≥ 0 states the active forces in our system are
contractile.

In order to take the constraints into account, we introduce three scalar La-
grange multipliers (κ0, κ1, κ2) and a non negative function κ(y). Then the con-
dition that the e�ciency is maximal takes the form

(I −Q)τ(y) = Γ(y) (IV)

where

Qτ = L
∫ 1/2

−1/2
Ψ(y, v)τ(v)dv

and
Γ(y) = κ0 − κ1 sinh(Ly) + κ2 cosh(Ly) + κ(y).
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We invert the kernel of equation (IV) using an expansion in eigenfunctions [6]
to obtain

τ(y) = (I −Q)−1Γ(y) =

∫ 1/2

−1/2
φ(y, v)Γ(v)dv. (V)

Here

φ = δ(y − v) + L2

[
(
1

2
+ y)(

1

2
− v)θ(v − y) + (

1

2
+ v)(

1

2
− y)θ(y − v)

]
, (VI)

θ is the Heaviside function and δ is the Dirac distribution. Using the expression
for Γ we obtain

τ(y) = P (y) +

∫ 1/2

−1/2
φ(y, v)κ(v)dv. (VII)

The function
P (y) = κ0ψ0(y) + κ1ψ1(y) + κ2ψ2(y) (VIII)

is a parabola since

ψ0(y) = 1− L
2

2
(y +

1

2
)(y − 1

2
), ψ1(y) = −2y sinh(

L
2

) and ψ2(y) = cosh(
L
2

).

(IX)
The Lagrange multipliers can be found from Karush-Kuhn-Tucker conditions
[1]

1 = κ0A0 + κ2A2 +
∫ 1/2

−1/2 κ(y)ψ0(y)dy

2V
sinh(L

2 )

L = κ1S1 +
∫ 1/2

−1/2 κ(y)ψ1(y)dy

2σ0
sinh(L

2 )

L = κ0C0 + κ2C2 +
∫ 1/2

−1/2 κ(y)ψ2(y)dy

τ(y) ≥ 0, κ(y) ≥ 0 and κ(y)τ(y) = 0,

. (X)

where
A0 = 1 + L2

12 , A2 = cosh(L2 ),

S1 = 2(1−cosh(L))+L sinh(L)
L2 ,

C0 = cosh(L2 ) and C2 = sinh(L)
L .

If the function κ(y) is known, the Lagrange multipliers (κ0, κ1, κ2) are readily
found from the system of linear equations (X). To �nd κ(y) we �rst notice that
the function

τ(y) = P+(y), (XI)

where P+(y) = max (0, P (y)) satis�es the constraint τ(y) ≥ 0. The associated
κ(y) can be obtained by inverting (VII)

κ(y) = (I −Q)P−(y). (XII)

where P−(y) = max (0,−P (y)).
Next we show that such κ(y) satis�es the last set of conditions in (X). De�ne

the function σ−(y) = QP−(y) which solves the boundary value problem,

−L−2σ′′− + σ− = P− ≥ 0, σ−(±1/2) = 0. (XIII)

Maximum principle [4] ensures that σ−(y) ≤ P−(y) and thus κ(y) ≥ 0. We
can also see that τ(y)κ(y) = −P+(y)σ−(y) = 0, since whenever P+(y) > 0, the
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function σ− satis�es (XIII) with zero Dirichlet boundary conditions. Thus (XI)
satis�es all the required conditions.

The resulting optimal distribution of active stresses is

τ(y) = (Ay2 +By + C)θ(Ay2 +By + C). (XIV)

Notice that this function has a singularity at a point where Ay2 +By +C = 0.
Instead of expressing the constants A,B,C in terms of V and σ0 and then
optimizing the e�ciency with respect to these two variables, in our numerical
code we directly minimize e�ciency with respect to A,B. The third constant

C is determined by the constraint
∫ 1/2

−1/2 τ(y)dy = 1.

As an example, consider the limiting problem with H∗∗ = 0. Suppose �rst
that there is no sign constraint on τ(y) and denote the corresponding optimal
distribution τ̃(y). Then κ ≡ 0 and the system (X) is linear which allows one to
�nd (κ0, κ1, κ2) explicitly as functions of σ0 and V . We obtain

Λ̃(V, σ0) =
V 2

V 2

µ(L) + (1−σ0)2

L2

12 +1−L
2 tanh(L

2 )

. (XV)

As all terms in (XV) are positive it is clear that,

Λ̃(V, σ0) ≤ µ(L) =
L
2

coth(
L
2

)− 1.

We now get back to the initial problem with the sign constraint. Since by de�ni-
tion Λ ≤ Λ̃, we can write Λ ≤ µ(L). It is easy to �nd a non negative function τ
from the family (XIV) which saturates the bound. A simple substitution shows
that for τ(y) = 1 + αy with α ∈ [−2, 2] one obtains Λ = µ(L). This means
that the whole one parametric family is optimal. Negative (positive) values of
α correspond to positive (negative) velocities. Therefore, the optimal velocities
range is between ±2µ(L)/L. From this set only con�gurations with α = ±2 can
be recovered in the limit H∗∗ → 0 from the sequence of optimal con�gurations
with H∗∗ > 0.

2 Energetic cost of maintaining a steady state

We �rst specialize some standard relations of continuum thermodynamics of
nonequilibrium process for our problem [2, 5]. Then we introduce the crucial
de�nition for the 'rate of free energy consumption' and compute its value for
our traveling wave solution.

Our �nite 1D layer of reacting viscous �uid is exposed to: (i) distributed
(bulk) forces −ξv due to friction and (ii) surface tractions σ0 on the boundaries
x = −L/2, L/2 due to the cortex. The power of these external forces can be
written as

W = −
∫ L/2

−L/2
ξv2dx+ σ0(v(L/2)− v(−L/2))

=

∫ L/2

−L/2
(−ξv2 + ∂x(σv))dx =

∫ L/2

−L/2
(−ξv2 + v∂xσ + σ∂xv)dx.
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By taking into account the force balance

∂xσ = ξv,

we can further rewrite W as the power of the internal forces

W =

∫ L/2

−L/2
σ∂xvdx.

The next step is to compute the rate of change of the free energy

F =

∫ L/2

−L/2
ρ̂fdx,

where ρ̂ is the total density of the mixture which is a conserved quantity

∂tρ̂+ ∂x(ρ̂v) = 0.

In addition to temperature, the free energy density may depend on ρ̂, on
the mass fraction of the motor component of the mixture φ = ρ/ρ̂ and on
the advancement of the hydrolysis reaction per unit of mass ζ. Due to the
assumption of in�nite compressibility and the presence of a thermostat, we are
left with only two essential variables, so

f = f(φ, ζ).

To compute the time derivative of F we use standard manipulations. First
we write,

Ḟ =

∫ L/2

−L/2
∂t(ρ̂f)dx =

∫ L/2

−L/2
(∂tρ̂f + ρ̂∂tf)dx.

We then use the mass balance for ρ̂ to obtain∫ L/2

−L/2
∂tρ̂f = −

∫ L/2

−L/2
∂x(ρ̂v)fdx = −[ρ̂vf ]

L/2
−L/2 +

∫ L/2

−L/2
ρ̂v∂xfdx,

where the expression in brackets vanishes because there is no external mass �ux.
As a result, we have

Ḟ =

∫ L/2

−L/2
ρ̂(∂tf + v∂xf)dx =

∫ L/2

−L/2
ρ̂ḟdx =

∫ L/2

−L/2
ρ̂(−Aζ̇ + µφ̇)dx,

where
A(φ, ζ) = −∂ξf

is the a�nity of the reaction and

µ(φ, ζ) = ∂φf

is the chemical potential of the motors.
Finally, we make an assumption that motors are not created in the bulk by

writing
ρ̂φ̇ = ∂xJ, (XVI)
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where J is the �ux of motors.
For our isothermal system the rate of irreversible entropy production can be

written as
R = T Ṡi = W − Ḟ ≥ 0.

Since there is no �uxes on the boundaries, we obtain

R =

∫ L/2

−L/2
(σ∂xv + ρ̂ζ̇A+ J∂xµ)dx ≥ 0.

The three terms in the right hand side can be interpreted as products of the ther-
modynamic �uxes σ, ρ̂ζ̇, J and the conjugate thermodynamic forces ∂xv,A, ∂xµ.
We make a simplifying assumption that �uxes and forces are related through
Onsager type relations

σ = l11∂xv + l12A+ l13∂xµ

ρ̂ζ̇ = l21∂xv + l22A+ l23∂xµ
J = l31∂xv + l32A+ l33∂xµ

(XVII)

Here the di�erent tensorial nature of the �uxes/forces is not an issue because
anisotropy is proscribed by our 1D ansatz.

Finally, we make another simplifying assumption that the di�usion �ux J
depends only on ∂xµ which implies that l31 = l32 = l13 = l23 = 0. Since time
inversion symmetry requires that l12 = −l21 we are left with four coe�cients
l11, l22, l33, l12.

We assume that two of these coe�cients describe genuinely linear dissipative
mechanisms and are therefore standard: l11 = η ≥ 0 is the viscosity and l33 ≥ 0
is a mobility per unit volume. To specify the di�usion coe�cient fully as,

ρ̂φ̇ = ρ̇− ρ

ρ̂
˙̂ρ = ∂tρ+ v∂xρ+ ρ∂xv = ∂tρ+ ∂x(ρv),

we can rewrite (XVI) in the form

∂tρ+ ∂x(ρv) = ∂x(l33∂xµ).

Assuming that the acto-myosin gel is a dilute mixture we can write

f = f0(ζ) + kBTφ log φ

where kB is the Boltzmann constant. Therefore

µ = µ0 + kBT log φ

and

∂xµ = kBT

(
∂xρ

ρ
− ∂xρ̂

ρ̂

)
.

To recover a standard di�usion equation we need to make an additional assump-
tion that the variation of the total density is small compared to the variation of
the density of motors

∂xρ

ρ
� ∂xρ̂

ρ̂
.
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Then we obtain the Einstein-Smoluchowski relation

D = νkBT,

where ν = l33/ρ is the mobility per motor. To remain in the framework of On-
sager theory we need to assume that ρ ∼ ρ̄ and l33 = l33(ρ̄); this approximation
clearly fails near the singularities of ρ where the model needs to be appropriately
modi�ed.

To �nalize the model we need to specify the two remaining coe�cients:
l12, which describes chemo-mechanical coupling [3] and does not contribute to
entropy production and l22, which describes reaction kinetics and must be non-
negative to ensure positive de�niteness of the dissipation. Notice that in this
model we deal with an enzymatic reaction. This is a nonlinear phenomenon
because the kinetics is accelerated in the presence of motors. Therefore the
straightforward linear Onsager relations do not apply and we need to replace
them with quasi-linear relations by making Onsager coe�cients dependent on
the �elds. The simplest way to take the enzymatic activity of the motors into
account is to assume that

l12 = aρ, l22 = bρ,

where a, b are now constants. One consequence of these assumptions is the
constitutive relation for stress

σ = η∂xv + aAρ,

where the �rst term describes classical viscosity while the second term represents
the active stress due to mechano-chemical coupling. We assume that a ≥ 0
which ensures that the reaction induced stresses are contractile whenever A > 0.
Another consequence of our quasi-linearity assumption is the speci�c form of
the kinetic equation for the hydrolysis reaction

∂t(ρ̂ζ) + ∂x(ρ̂ζv) = ρ(bA− a∂xv).

Observe that in this model the reaction stops completely in the absence of
motors (ρ = 0 ).

If the passive system described above is left isolated, it reaches equilibrium
(all �uxes vanish and the entropy production stops). To maintain the non-
equilibrium state, the dissipated energy must be continuously re-injected into
the system. Since the temperature reservoir is in equilibrium, the system is
not exchanging mass with the environment, and no directional forces conduct
external work, the only way to prevent the equilibration of the system, is to
keep the driving force of the reaction A away from zero.

More speci�cally, this means that the corresponding ratio of the concentra-
tions of ATP, ADP and P is kept at a �xed 'distance' from its equilibrium value
through incessant breaking or assembling of the associated molecular complexes.
The exact microscopic mechanism of such a continuous '�ne tuning' performed
by an external 'chemostat' is not fully clear, however, in our formalism such
assumption of perpetual disequilibrium is tantamount to the assumption that

f0(ζ) = −Aζ,

where A > 0 is a prescribed constant. This bottomless decrease of the energy
landscape mimics the continuous rebuilding of the non-equilibrium state despite
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the tendency of the system to reach equilibrium (where A = 0). The crucial
assumption that A = const allows one to decouple the reaction equation from
the system and compute the energetic cost of maintaining disequilibrium from
the knowledge of the free energy losses per unit time that must be compensated
externally.

We now make the important assumption that the cost of maintaining the
non-equilibrium steady state is equal to the rate of consumptions by the system
of its free energy 'reserves' (that are being continuously replenished)

H = H∗ +H∗∗ = −Ḟ .

Then, using the constitutive relations we can write

− Ḟ =

∫ L/2

−L/2
(ρ̂ζ̇A+ J∂xµ)dx

=

∫ L/2

−L/2
(−χρ∂xv + bA2ρ+D

kBT

ρ̄
(∂xρ)2)dx. (XVIII)

If we multiply the force balance equation by v and use the boundary conditions,
we obtain

−χ
∫ L/2

−L/2
ρ∂xvdx = ξ

∫ L/2

−L/2
v2dx+ η

∫ L/2

−L/2
(∂xv)2dx.

By substituting this relation into (XVIII) we �nally obtain

−Ḟ =

∫ L/2

−L/2
(ξv2 + η(∂xv)2 + bA2ρ+D

kBT

ρ̄
(∂xρ)2)dx ≥ 0. (XIX)

We can now identify the terms H∗ and H∗∗. The mechanical cost function

H∗ = ξ

∫ L/2

−L/2
v2dx+ η

∫ L/2

−L/2
(∂xv)2dx ≥ 0

is a sum of contributions due to frictional and viscous dissipation. The non-
mechanical part

H∗∗ = bA2

∫ L/2

−L/2
ρdx+D

kBT

ρ̄

∫ L/2

−L/2
(∂xρ)2dx.

represents the energetic cost of maintaining the �nite rate of chemical reaction
and the cost of keeping a nonzero concentration gradient.

To summarize, the steady state self-propulsion in the proposed model re-
quires: (i) work against friction which is necessary for acquiring momentum, (ii)
work against viscosity which is a mechanism of long range interactions in the
cell providing mechanical coordination at distant points, (iii) work against dif-
fusion to ensure optimal distribution of motors and �nally, (iv) work to keep the
reaction 'burning' which ensures mechano-chemical generation of active forces.
All these processes are dissipative and the consumed free energy needs to be
compensated.
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As we have seen, the steady state is maintained due to the exterior chemostat
which ensures that A 6= 0. If A = 0, the active stress is equal to zero and the
velocity vanishes so the �rst two terms in (XIX) contributing to the cost vanish
as well. The third term obviously vanishes because it is proportional to A2. In
the absence of �ow, the density of motors becomes homogeneous because the
destabilizing advection disappears. Therefore the fourth term is also equal to
zero.

Figure I: Dimensionless Stokes power P = LV 2 and metabolic costs H∗ and
H∗∗ as functions of λ. Parameters are L = 10,M = 0.053 and E = 0.05.

To illustrate this argument, we present in Fig. I di�erent terms entering the
expression for e�ciency

Λ =
P

H∗ +H∗∗

as functions of the parameter λ which can be viewed as a dimensionless version
of A. One can see that at A = 0 all three terms are equal to zero. It is also
easy to show by asymptotic expansion that right above the motility initiation
threshold A = Ac the mechanical energy rates (H∗ and P ) depend linearly on
A−Ac while the non-mechanical cost function H∗∗ ∼ A2

c , see the inset in Fig.
I.

3 Comparison of experimental and computed dis-

tributions of actin and myosin

In Fig. II, taken from the seminal paper of A. Verkhovsky and his colleagues [7],
we show the distributions of actin �laments and of myosin II motors before and
after the motility initiation in a keratocyte fragment. The goal is to compare
these distributions with the ones predicted by the model.

From Fig. II we see that before motility initiation (V = 0), both actin and
myosin concentration are almost homogeneous inside the fragment. The near
surface boundary layers present more complex behavior due to cortex-membrane
e�ects. If we neglect these boundary layers, the motile regime is characterized
by the the myosin concentration localized at the trailing edge and decaying
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sharply (linearly) to almost zero at a particular point inside the cell. Instead,
the dynamic actin concentration shows bi-modality with a tendency to localize
at the front.

Figure II: The experimental distributions of actin (cyan) and myosin (red) from
[7]. Picture is taken from http://lcb.ep�.ch/cms/lang/en/pid/71379, courtesy
A. Verkhovsky.

We interpret the function ρ(y) as the distribution of myosin (density of
motors) and the function ρ̂(y) as the distribution of actin (cytoskeletal density).
The method of computing the function ρ(y) is presented in the main part of the
paper. As we show below, the function ρ̂ can be reconstructed from the actin
mass balance equation.

It is natural to non-dimensionalize ρ̂ di�erently than ρ(y) by using the scale
M/(

√
η/ξ) where M is the total mass of actin. In dimensionless variables we

can write the equation for ρ̂ in the form

∂tρ̂+ L−1∂y(ρ̂(v − V )) = 0.

The characteristic curves, describing the trajectories of actin particles [8, 9] can
be found from

dφ

dt
= L−1(v(φ)− V ),

where φ is the spatial coordinate along the trajectory. One can see that points
where the function v(φ) − V vanishes and v′ > 0 are sources of particles while
similar points where v′ < 0 are sinks of particles. For the motile regimes, the
function v has been found in the main part of the paper and the corresponding
function v(φ) − V is shown in Fig.III. It displays a source at the leading edge
and a sink at the trailing edge. In Fig.III we introduced small zones of size ε > 0
around the source and the sink where our 1D model is no longer adequate.

Notice that in the traveling wave regime the (non-dimensional) turnover time
for the �ow from the source to the sink is

T =

∫ 1/2−ε

−1/2+ε
(V − v(y))−1dy. (XX)

We recall that the turnover of actin in our model is passive and is induced by
contraction. Since the model is one dimensional, the closure of the turnover
cycle requires that the disappearance of actin in the trailing edge (in a sink
domain) is exactly compensated by its reappearance near the front of the cell
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Figure III: Velocity pro�le of actin in the moving coordinate system with source
and sink domains shown in color. Parameters: L = 10, M = 0.053, E = 0.04
and λ = 0.5. Characteristic scale of velocity is τ̄ /

√
ηξ ∼ 0.02µm · s−1

(in a source domain). If the parameter T , characterizing the mass �ux of actin
is known, the density distribution of actin can be written as

ρ̂(y) = (T (V − v(y)))−1.

From [10], the dimensional turnover time can be estimated as T ∼ 30s. Then,
using parameters from the main part of the paper, we obtain T = χT/η ∼
0.33. Now we can obtain from (XX) that ε = 0.07. We reiterate that in the
boundary layers of this size additional physical e�ects may have to be taken into
consideration including active polymerization and de-polymerization, bundle
formation at the rear creating an obstacle for the motors and cortex activity in
the vicinity of the membrane.

Figure IV: Distribution of myosin (red) and actin (cyan) in the static (left) and
motile (right) regimes. Parameters: L = 10,M = 0.053, E = 0.04, λ = 0.5 and
T = 0.33. Density ρ is normalized by τ̄ /χ and density ρ̂ by M/(

√
η/ξ).

In the static regimes V = 0, the stress is homogeneous σ = σ0 and the �ow
of actin vanishes v = 0. In such regimes the model predicts constant densities
of actin and myosin, see Fig.IV (left). This result is fully compatible with the
experimental observations given that we disregard �uctuations and neglect near-
membrane e�ects. For the motile regimes the distributions ρ(y) and ρ̂(y) are
presented in Fig.IV (right). Outside boundary layers the qualitative agreement
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between the theory and the experiment is rather striking and it is clear that
our prototypical model captures the main e�ect: the sweeping of actin to the
de-polymerization zone at the back of the cell by the retrograde �ow and its
regeneration on the polymerization zone at the front of the cell.

4 Sensitivity to the variation of M and E
In Fig. V we show how the variation ofM and E over two orders of magnitude
a�ects the e�ciency-velocity relation presented in the main text (Fig.4). One
can see that the increase ofM shifts the optimal plateau region towards larger
velocities while decreasing its size and slightly increasing the e�ciency level.
Similar variations of E a�ect only mildly the values of e�ciency at small and
large velocities however it introduces more substantial variations in the middle
range. While the biological relevance of the parameter variations at this scale
remains an open question, it is clear that the optimality claim made in the
paper is rather robust. A quantitative study of the parameter sensitivity in the
4D space (λ,L,M, E), requiring an introduction of a speci�c measure of the
closeness to optimality, will be presented elsewhere.

Figure V: Sensitivity of the normalized e�ciency r to the variation of parameters
M and E . The parameter L = 10.
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