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We study a particular mechanism of cell motility allowing a precise formulation of the condition of
optimal trade-off between performance and metabolic cost. In the model, a steadily crawling fragment is
represented by a layer of active gel placed on a frictional surface and driven by contraction only. We find
analytically the distribution of contractile elements (pullers) ensuring that the efficiency of self-propulsion
is maximal. We then show that natural assumptions about advection and diffusion of pullers produce a
distribution that is remarkably close to the optimal one and is qualitatively similar to the one observed in
experiments on fish keratocytes.
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Although the idea of optimal trade-offs in biology is
rather natural, the examples supporting optimality at the
quantitative level are few. A prominent case is the dem-
onstration that the structure of transport networks mini-
mizes energy consumption at a fixed material cost [1]. Each
validation of this type is of considerable interest as a step
towards the general understanding of homeostasis [2–4]. In
this Letter, we present a new example of cost-performance
trade-off associated with contraction-driven cell motility.
We observe that the distribution of molecular motors in
crawling fish keratocytes [5] is similar to the optimal one
and explain the physical mechanism leading to optimality.
The efficiency of self-propulsion in viscous environ-

ments has been a subject of intense studies since the
pioneering work of Taylor [6]. Optimal strategies for
various Stokes swimmers were identified under a tacit
assumption that the organism is able to perform the desired
shape changes [7,8]. Similar reasoning has been applied to
crawling on frictional surfaces where the optimal propul-
sion can be induced by actuators prescribing spatially and
temporarily correlated compression and stretch [9]. Such an
approach, however, does not reveal the physical mecha-
nisms ensuring optimal actuation, and it remains unclear
whether actual cells can follow the optimal strategy.
To address these questions, we choose the simplest case

of keratocytes whose motility initiation is largely contrac-
tion driven. Experiments show that contractile elements
(“pullers”) are narrowly localized at the trailing edge
[5,10,11], and our goal will be to check whether such a
configuration is optimal in terms of the trade-off between
the Stokes performance and the energetic cost of active
force generation and whether it is compatible with a
minimal physical model. In our analysis, we neglect the
presence of “pushers” because active treadmilling does not
play an important role at the stage of motility initiation
[12,13]. Several comprehensive computational studies

of crawling taking treadmilling into account but not
addressing the question of optimality are available in the
literature [14].
We model a steadily crawling cell fragment using a one-

dimensional version of the active gel theory [10,15–17].
The cytoskeleton is interpreted as an infinitely compress-
ible viscous fluid, adhesion is represented by a frictional
interaction with a rigid substrate, and the cortex is assumed
to impose a fixed size on the moving cell. Using these
simplifying assumptions and choosing parameters in the
biological range, we show that the stationary distribution of
motors is close to the optimal one.
Consider a one-dimensional layer of active gel placed on

a frictional rigid background [15,16]. The balance of forces
takes the form

∂xσ ¼ ξv;

where σðx; tÞ is the stress, vðx; tÞ is the velocity, and ξ is the
friction coefficient. We model the gel as a viscous fluid
subjected to active contractile stresses τðx; tÞ ≥ 0. We can
then write

σ ¼ η∂xvþ τ;

where η denotes the viscosity.
The regime of interest is when the cell moves with a

constant velocity V while maintaining a length L fixed
by the cortex. We, therefore, look for the configuration
σðyÞ and vðyÞ depending on the moving coordinate
y ¼ ðx − VtÞ=L and satisfying the boundary conditions
vð�1=2Þ ¼ V and σð�1=2Þ ¼ σ0, where σ0 is the reaction
stress due to the length constraint. Without loss of general-
ity, we assume V ≥ 0.
The task is to find the distribution of active stresses τðyÞ

ensuring optimal efficiency

Λ ¼ P=H;
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where P is the functional power, and H is the metabolic
cost per unit time. In the absence of an explicit cargo, we
assume that the useful work is the translocation of the cell
as a whole against frictional resistance. Therefore, we write

P ¼ ξV2L;

as in the theory of Stokes swimmers [18]. The rate
of free energy consumption can be written as a sum
H ¼ H� þH�� where

H� ¼ −
Z

1=2

−1=2
τ∂yvdy

is the power exerted by the active stress τðyÞ on the
environment, and H�� is the cost of the maintenance of
the force generating machinery [19].
First, we suppose that the physical mechanism of force

generation is unknown and pose the problem of finding the
function τðyÞ ≥ 0 maximizing Λ at a given value of H��.
We also prescribe the average value of the contractile stress

τ̄ ¼
Z

1=2

−1=2
τðyÞdy; ð1Þ

which is equivalent to fixing the total number of motors
given the constant cell length. It will be convenient to use
nondimensional variables σ=τ̄, x=

ffiffiffiffiffiffiffi
η=ξ

p
, and t=ðη=τ̄Þ with-

out changing the notations. In dimensionless variables, the
stress distribution can be written as

σðyÞ ¼ σ0
cosh ðLyÞ
coshðL=2Þ þ L

Z
1=2

−1=2
Ψðz; yÞτðzÞdz; ð2Þ

where

Ψ ¼ sinh½Lð1
2
− yÞ� sinh½Lð1

2
þ zÞ�

sinhðLÞ
− θðz − yÞ sinh½Lðz − yÞ�;

θ is the Heaviside function, and L ¼ L
ffiffiffiffiffiffiffi
ξ=η

p
is a param-

eter. The constants V and σ0 can be found explicitly
(cf. Ref. [12])

V ¼ −
L
2

Z 1
2

−1
2

sinhðLyÞ
sinhðL

2
Þ Δτdy;

σ0 − σ̄0 ¼
L
2

Z 1
2

−1
2

coshðLyÞ
sinhðL

2
Þ Δτdy; ð3Þ

where Δτ ¼ τðyÞ − 1 is the spatially inhomogeneous com-
ponent of the distribution of active dipoles, and σ̄0 ¼ 1 is
the prestress induced by its homogeneous component. The
first of these formulas states that contraction-induced
crawling is due entirely to spatial asymmetry: this is an
analog of the famous scallop theorem [20]. Since the total

force dipole produced by the system is L
R 1=2
−1=2 yvðyÞdy ¼

σ0 − σ̄0, the second formula in Eq. (3) states that the
inhomogeneity of motor distribution is also at the origin
of a force dipole applied by the cell to the background
[21]. Using Refs. [5,15,16,22], we obtain τ̄ ∼ 103 Pa,
ξ∼2×1016 Pam−2 s, η ∼ 105 Pa s, and L ∼ 20 × 10−6 m,
which gives L ∼ 10.
The optimal distribution τðyÞ depends on the parameter

H�� ¼ H�� ffiffiffiffiffi
ηξ

p
=τ̄2, which contains condensed information

about the mechanism of active force generation. Optimality
here implies a trade-off between maximization of velocity
V and minimization of the power of active stressesH�. It is
easy to show from Eq. (3) that the maximum velocity is
V∞ ¼ L=2 and that it corresponds to full localization of
motors at the trailing edge. Similarly, one can reach the
lower bound of the cost H� ¼ 0 by taking τ ¼ 1; however,
in this case, V ¼ 0. The optimal trade-off depends on the
value of H��, and it is clear that optimally distributed
motors localize at H�� → ∞ and spread at H�� ¼ 0.
Mathematically, we have to solve an “obstacle” problem

for a quadratic functional. Its solution has the form
τðyÞ ¼ fðyÞθðfðyÞÞ, where fðyÞ ¼ Ay2 þ Byþ C, and
the constants A;B;C can be found from a simple algebraic
minimization problem [23]. In the limit H�� → 0, we
obtain Λ → ðL=2Þ cothðL=2Þ − 1 and τðyÞ → 1 − 2y. In
the opposite limitH�� → ∞, the efficiency tends to zero as
Λ ∼ LðV∞Þ2=H�� and τðyÞ → δðyþ 1=2Þ, where δ is the
Dirac distribution. In Fig. 1, we show the optimal efficiency
Λop and some optimal profiles τopðyÞ for intermediate
values ofH��. The regimes representing physical “designs”
must be inside the admissible region bounded by the
optimal curve ΛopðH��Þ. Observe that under an alternative
assumption τðyÞ ≤ 0, we would have obtained exactly
the same localization of pushers near the front end of
the moving cell.
Suppose now that the active stress is generated by motors

with mass density ρðx; tÞ and that τ ¼ χρ, where χ is a
positive constant. Following Refs. [10,24], we assume that

FIG. 1 (color online). Optimal efficiency as a function of the
nonmechanical cost H��. The lighter colored zone represents the
admissible region and inserts show optimal configurations.
Parameter L ¼ 10.
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the transport of motors is governed by the standard
advection-diffusion equation, which in dimensional varia-
bles takes the form

∂tρþ ∂xðρvÞ −D∂xxρ ¼ 0; ð4Þ

where D is the diffusion coefficient. After making the
traveling wave ansatz, assuming no flux boundary con-
ditions, and changing to dimensionless variables, we can
integrate Eq. (4) to obtain [10]

ρðyÞ ¼ eλðσðyÞ−VLyÞR 1=2
−1=2 e

λðσðyÞ−VLyÞdy
: ð5Þ

Here, the density is normalized by ρ̄ ¼ τ̄=χ, and
λ ¼ χρ̄=ðξDÞ is a new parameter.
At small values of λ, the system of two equations (5), (2)

has only a trivial solution σðyÞ ¼ σ0 ¼ 1 and V ¼ 0. This
solution becomes unstable at λc ¼ 1 − ω2=L2, where ω is
the smallest root of the algebraic equation 2 tanhðω=2Þ ¼
λcω. Through the pitchfork bifurcation shown in Fig. 2, the
cell becomes polarized and starts to move [10]. As λ
increases, the motors progressively concentrate at the
trailing edge. For keratocytes, we use Refs. [22,25] to find
thatD ∼ 10−13 m2 s−1 which gives λe ∼ 0.5. We then obtain
an estimate Ve ¼ 0.08 μms−1, which is very close to the
value measured in Ref. [5]. Interestingly, for L ∼ 10, we get
λc ∼ 0.23, which implies that keratocytes operate rather
close to the bifurcation point. The proximity to criticality
may carry considerable biological advantages; in particular,
a cell can easily switch from static to motile state or change
the direction of the already initiated motion.
The next step is to find the link between the value of

the nondimensional parameter λ fully characterizing the
transport problem and the cost parameter H�� from the
optimization problem. For simplicity, we assume that
the system is in contact with a thermal reservoir imposing
a constant temperature T. To introduce the thermodynamic

model (see Ref. [23] for more detail), we temporarily bring
back the dimensional variables.
Following the general theory of active gels [15], we

describe the actomyosin network as a two-phase mixture
with the total mass density ρ̂ðx; tÞ. It is transported as a
passive scalar and satisfies the conservation equation

∂tρ̂þ ∂xðρ̂vÞ ¼ 0;

which decouples from the force balance problem due to
the assumption of infinite compressibility: if the velocity
field vðyÞ is known, ρ̂ðyÞ can be reconstructed by standard
methods [10,13]. A comparison of the computed and the
experimentally observed profiles for both ρðyÞ and ρ̂ðyÞ,
see Ref. [5], show striking resemblance [23].
The total free energy of the crawling fragment can be

written as

F ¼
Z

L=2

−L=2
ρ̂fdx;

where fðϕ; ζÞ is the energy density, which depends on the
mass fraction (concentration) of motors in the mixture
ϕðx; tÞ ¼ ρ=ρ̂ and on a variable ζðx; tÞ characterizing the
progress of a nonequilibrium chemical reaction supplying
energy to the motors. We can then write

H ¼ − _F; ð6Þ

where the dot denotes the full time derivative. To compute
the right-hand side, we introduce the chemical potential of
motor molecules μ ¼ ∂ϕf and the driving force of the
reaction A ¼ −∂ζf > 0, which is assumed to be fixed by an
external “chemostat” [23]. We can then write

_F ¼
Z

L=2

−L=2
ρ̂ð−A_ζ þ μ _ϕÞdx:

To show thermodynamic consistency of Eq. (4) and to
derive an additional equation for the variable ζðx; tÞ, we
observe that the dissipation rate R can be written in the form

R ¼ W − _F;

where W ¼ R L=2
−L=2 σ∂xvdx is the external power. Assuming

that there are no sources of motors, we write

ρ̂ _ϕ ¼ ∂xJ;

where J is the diffusion flux. Hence,

R ¼
Z

L=2

−L=2
ðσ∂xvþ ρ̂ _ζ Aþ J∂xμÞdx:

We postulate linear relations between fluxes and forces:
σ ¼ l11∂xvþ l12A, ρ̂ _ζ ¼ −l12∂xvþ l22A, where we

FIG. 2 (color online). Cell velocity as a function of the
nondimensional parameter λ. Inserts show the density profiles
for motors. The symmetric motile branch associated with
negative velocities is not shown. Parameter L ¼ 10. Character-
istic scale of velocity is τ̄=

ffiffiffiffiffi
ηξ

p
∼ 0.02 μms−1
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omitted the coupling between diffusion and reaction and
between diffusion and viscosity.
Since motors are enzymes catalyzing the Adenosine

triphosphate (ATP) hydrolysis reaction, we must deviate
from the quasiequilibrium scheme and consider the coef-
ficients l12 and l22 as functions of the motor density ρ; in
view of our postulate τ ¼ l12A ¼ χρ, these functions must
be linear. Other dissipative mechanisms are assumed to be
Onsagerian, in particular, l11 ¼ η. To compute the diffusion
coefficient in Eq. (4), we notice that for dilute mixtures
∂ϕμ ¼ kBT=ϕ, where kB is Boltzmann’s constant. If we
make additional assumptions that the variation of the total
density is small ∂xρ=ρ ≫ ∂xρ̂=ρ̂ and the diffusion coef-
ficient is concentration independent, we recover Eq. (4)
with D ¼ l33kBT=ρ̄, where l33 is the mobility per unit
volume. These assumptions clearly fail near the singular-
ities of ρwhere the theory has to be appropriately modified.
An important outcome of our constitutive assumptions is

an equation governing the reaction progress

_ζ ¼ ϕ

�
bA −

χ

A
∂xv

�
; ð7Þ

where in view of the linearity assumption for l22, b ¼ l22=ρ
is a constant. Since the value of A is controlled externally,
Eq. (7) decouples from the rest of the system with ζ easily
recoverable once the fields v and ϕ are known.
We have now specified the force generation mechanism

and can use Eq. (6) to obtain an explicit expression for the
cost function H. First, using the force balance equation, we
write the mechanical cost function in the form

H� ¼
Z

L=2

−L=2
½ξv2 þ ηð∂xvÞ2�dx ≥ 0;

where the two entries characterize contributions due to
friction and viscosity. The nonmechanical cost function can
be written as

H�� ¼
Z

L=2

−L=2

�
bρA2 þDkBT

ρ̄
ð∂xρÞ2

�
dx ≥ 0:

Here, the two terms are the cost of keeping the chemical
reaction out of equilibrium and the cost of supporting
concentration gradients. In agreement with the fact that the
motion is driven exclusively by the chemostat, we obtain
for the physical solution that both H� → 0 and H�� → 0 as
A → 0 [23].
To make comparison with the optimization model, we

need to compute the dimensionless quantity

H�� ¼ MLþ E
λL

Z
1=2

−1=2
ð∂yρÞ2dy; ð8Þ

where we introduced two new parameters: M ¼
ηbA2=ðρ̄χ2Þ and E ¼ kBT=χ. If motors operate in stall

conditions and form bipolar contractile units with
size d, the produced force is p ∼ 2χ=d. For myosin II,
we have d ∼ 0.15 μm and p ∼ 1.5 pN [26], which gives
χ ∼ 1.1 × 10−19 J and using kBT ∼ 4.3 × 10−21 J, we
obtain E ∼ 0.04. Notice also that bA2 is the free energy
consumption rate per motor and, therefore, that it is equal to
kA, where k is the rate of ATP turnover per motor. Since
A ∼ 25kBT and k ∼ 25 s−1 [26], we obtain M ∼ 0.05.
We can now fix the parameters E;M and compare

physical and optimal efficiencies at different values of the
remaining parameter λ. The efficiency in the physical
model is Λphðρph;H��Þ, where ρphðy; λÞ is the solution of
Eq. (4), and H��ðλÞ is taken from Eq. (8). The ensuing
function ΛphðλÞ is to be compared with the optimal
efficiency ΛopðλÞ ¼ Λopðρop;H��Þ, where ρopðy;H��Þ is
the solution of the optimization problem, and H��ðλÞ is
the same as above.
The results of the comparison are summarized in Fig. 3.

The function ΛphðλÞ displays a single maximum at
λo ∼ 0.24. For all λ ≥ λo, the physical model remains close
to the optimal one, which is crucial, since at λ → ∞, the
rate of energy consumption diverges H� ∼ L3λ=3,
H�� ∼ EL5λ2=15. In this (high-velocity) limit, both
physical and optimization problems generate the same
profiles with motors infinitely localized at the trailing
edge of the moving cell. The robust optimality in the
range V ≥ V0ðλoÞ ∼ 1.1 is illustrated further in Fig. 4,
where we show the ratio r ¼ Λph=Λop ≤ 1 as a function of
V=V∞. The presence of a quasiplateau on this graph in the
biologically relevant range of velocities [5] and the fact that
in this range the physical and the optimal efficiencies are
close suggest that the system is tuned to optimality. In the
immediate vicinity of the motility initiation point V ¼ 0
where λ ∼ λc, the asymptotic solutions in the two models
have the same general structure ρðyÞ − 1 ∼ ðλ − λcÞκfðyÞ;
however, since κph ¼ 1=2 and κop ¼ 0, the propulsion
machinery operates suboptimally in this regime, and this

FIG. 3 (color online). Physical and optimal efficiencies as
functions of the dimensionless parameter λ. Inserts compare
optimal and physical distributions of motors. Parameters:
L ¼ 10, M ¼ 0.05, and E ¼ 0.04.
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may explain why small velocities have not been observed
in experiments.
As Fig. 4 shows, the increase of L progressively

broadens the optimality plateau; in particular, in the
inviscid limit, all dynamic regimes are exactly optimal.
On the other hand, if we use a lower value of the friction
coefficient from Ref. [22] corresponding to the smaller
value L ¼ 0.44, we obtain an efficiency-velocity relation
which is indistinguishable from the saturation limit shown
in Fig. 4 for L ¼ 1. In all these cases, the physical regime
remains close to optimality. An additional study of robust-
ness of our predictions with respect to parametersM and E
is presented in Ref. [23].
In conclusion, we have shown that in contraction-

dominated crawling, the optimal trade-off between
Stokes performance and the metabolic cost is achieved
by a rather sharp localization of contractile units at the
trailing edge of the moving cell. A simple advection-
diffusion model of motor redistribution based on the active
gel theory performs almost optimally in the range of
parameters suggested by in vivo measurements. The fact
that the near-optimal behavior is robust and extends into
the domain of parameters where suboptimality would be
particularly costly, suggests that contraction-dominated
crawling presents an example of a remarkably perfected
biological mechanism.
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Pierre-Gilles de Gennes for generous support.
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