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Cohesion-decohesion asymmetry in geckos
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Lizards and insects can strongly attach to walls and then detach applying negligible additional forces. We
propose a simple mechanical model of this phenomenon which implies active muscle control. We show that the
detachment force may depend not only on the properties of the adhesive units, but also on the elastic interaction
among these units. By regulating the scale of such cooperative interaction, the organism can actively switch
between two modes of adhesion: delocalized (pull off) and localized (peeling).
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I. INTRODUCTION

Active mechanisms involved in biological adhesion in
living systems are of broad theoretical interest in view of
potential applications in bioinspired adhesion devices. One
of the most challenging issues concerns the reconciliation of
strong adhesion [1] with easy detachment [2,3].

Experimental studies reveal that biological adhesion at the
organismic level is typically mediated by fibrillar microstruc-
tures which ensure a molecular level contact in the presence
of surface roughness. The necessity of avoiding clustering
entails a hierarchy of adhesion devices spanning a wide range
of scales [4,5]. In the case of geckos the macroscopic adhesion
force at the level of a foot results from smaller forces at the
scale of individual pads, each composed of tens of lamellae
which in turn incorporate hundreds of thousands of setae. Each
seta is split into hundreds of spatula shafts ending with spatula
pads at the submicrometer scale where the adhesive force is
ultimately generated by van der Waals forces [3].

Important insights into the functioning of microfibrillar
adhesive devices in geckos were obtained from Atomic Force
Microscopy experiments at the scale of spatulas [6] and setae
[7,8] and from attempts to artificially microfabricate fibrillar
microstructures [9]. In particular, these studies revealed a
strong dependence of the adhesive forces on the angle formed
by the setal shafts with the adhesion surface, which suggests
that easy detachment may be achieved by active reorientation
of the single microscopic fibers. Theoretical understanding
of the angle dependence of adhesion at the level of a single
spatula is mostly based on the study of Kendall’s model
[2] which has been recently generalized to account for the
asymmetric attachment-detachment behavior of a single seta
[10] and for fiber tilting [11]. The main idea is that decohesion
can be described as peeling, which implies that a Griffith’s
fracture takes place in an infinitely localized tip of a steadily
propagating crack. An alternative model suggested in [7,8]
links the cohesion-decohesion asymmetry with a dependence
of the cohesive strength on the tangential component of the
force. An interesting attempt to reconcile such friction-based
approach with Kendall’s fracture model was proposed in [12]
where a finite prestretch in the adhering layer was used to
control the critical angle of adhesion.

While fiber reorientation is clearly important for gecko
adhesion, we propose in this paper a complementary mech-
anism that can be broadly characterized as the possibility of

active switching between localized (peeling) and delocalized
(pulling off) fracture. We argue that the organism can control
the modality of detachment by changing the level of coupling
among individual fibrillar agents [13]. In contrast to Kendall’s
model, based on the assumption that the adhering layer can
support only in-plane forces, we assume that this layer can
have a shear stiffness which mimics bending resistance and
is responsible for the cooperative effects. We also assume
that the organism can actively switch between the regimes
of high and low stiffness depending on the force that has to
be exerted. We discuss potential mechanisms of how such
control at different scales of the fibrillar microstructure can
be achieved and propose a strategy of gecko advance. Based
on the experimental scaling relations, we conjecture that the
same adhesion mechanism is operative at every scale of the
hierarchy and propose a simple model justifying the observed
power law force-length relations.

II. DISCRETE MODEL

To describe an elemental fibrillar adhesion layer we use
the minimal Bishop-Peyrard (BP) model [14–16]. Consider a
chain with n + 1 particles interacting through n linear springs
and bound to a rigid substrate by breakable elastic elements
(see Fig. 1). Assume that the particles can move only in the
vertical direction and denote by ui the displacement of the
particle i. The coupling between individual adhesive devices
is controlled by the elastic energy

φG(δi) = 1
2Gδ2

i ,

where G is the (shear) stiffness, δi = (ui+1 − ui)/l is the
strain, and l is the spring length. The cohesive energy at the
microscale can be modeled by a piecewise quadratic function

φk(ui) =
{

1
2ku2

i if ui < ur

γ b if ui � ur,
(1)

where k is the extensional stiffness, γ is the adhesion energy
density, b is the out of plane spatial scale and ur = √

2γ b/k

is the limit displacement.
We assume that the organism applies to the pad a localized

loading. Denote by d the assigned displacement at the point
n = 1 and assume that all other points are unloaded. To find
the equilibrium force-displacement relation f (d) we minimize
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FIG. 1. Bishop-Peyrard model of decohesion.

the energy

� = l

(
n+1∑
i=1

φk(ui) +
n∑

i=1

φG(δi)

)
. (2)

The corresponding energy landscape is complex [16], however,
we are interested only in a set of local minimizers that can be
parametrized by the position of the decohesion front ξ ∈ [0,n],

ui =
{

d − (i − 1)l f

G
, i = 1,...,ξ

cosh[(n+3/2−i)η]l
2 sinh[(n+1−ξ )η] sinh[η/2]

f

G
, i = ξ + 1,...,n + 1.

(3)

Here the force is implicitly given by

f = 2nν2{
2ξ − 1 + coth η

2 coth[(n + 1 − ξ )η]
} d

L
k, (4)

where η is a solution of

1 + l2/(2ν2) = cosh[η]

and

ν =
√

G/k

is the internal length scale, defining the size of the cohesive
zone.

In Fig. 2 we show the metastable branches f (d; ξ )
parametrized by ξ ; each branch ends at d̄(ξ ) satisfying
uξ+1(d̄(ξ ); ξ ) = ur . If the dynamics is overdamped and the
driving d(t) is quasistatic we obtain the loading-unloading
hysteresis indicated in Fig. 2(a) by bold lines. An alternative,
hysteresis-free path of global energy minimization implied in
Kendall’s model is shown in Fig. 2(b). Observe that in both
cases the cohesion force exhibits a characteristic plateau with
which we can associate the maximal force fm. The dependence
of this threshold on the stiffness of the pad G plays the main

role in the proposed mechanism. The quasistatic assumption,
which this model shares with Kendall’s model, is supported
by experimental observations that the attachment-detachment
rates are independent of the geckos speed [17].

III. CONTINUUM LIMIT

A simple analytical expression for the function fm(G) can
be obtained in the continuum limit, which may be a poor
approximation at the scale of the whole foot (n ∼ 5), but turns
out to be fully adequate at the level of the setae (n ∼ 50). To
study this limit we fix the total length L = nl and assume that
n → ∞ and l → 0. The continuum energy takes the form

�(u) =
∫ L

0
[φk(u) + φG(u′)]dx (5)

and its minimization is straightforward [16,18]. Given the
loading u(0) = d we obtain

uζ (x) =
⎧⎨
⎩

d − x
ζL

(d − ur ) if x ∈ (0,ζL),
cosh L−x

ν

cosh L−ζL

ν

ur if x ∈ (ζL,L),
(6)

where ζ is the detached fraction of the pad which parametrizes
the relation between the boundary displacement

d = ur + ζL(f/G)

and the applied force

f =
√

2γ bG tanh[L(1 − ζ )/ν].

The maximum value of the force fm, representing the detach-
ment threshold, is attained at ζ = 1 and d = ur :

fm(G) =
√

2γ bG tanh(L
√

k/
√

G). (7)

In the limit when the external length scale is much larger than
the internal length scale (L � ν) we get the asymptotics

fm ∼
√

2γ bG.

In the opposite case we obtain

fm ∼
√

2γ bkL.
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FIG. 2. Equilibrium force-displacement curves for a BP system with n = 10 breakable links, L = 3, ur = 1, k = 1, and G = 1. Solid lines
indicate metastable branches. Bold lines indicate force-displacement paths associated with the overdamped limit (a) and with global energy
minimization (b).
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FIG. 3. Stiffness dependence of the adhesion threshold fm(G)
for a system with ur = 1 mm, k = 1 MPa, and L = 10 mm. Insets:
crack configurations illustrating localized (L/ν = 100) and diffuse
(L/ν = 1) cohesive zones.

The value of the critical force and the structure of the associated
cohesive layers is shown in Fig. 3. Notice that for L � ν

the crack has a narrow tip and this regime can be associated
with the peeling mode of fracture. Instead for L 	 ν the
cohesive zone spreads along the whole pad and this regime can
be associated with a pull off mode. Interestingly, for L � ν

the area under the hysteresis loop

Q = 2γ bL

representing the detachment energy is exactly twice as big as
in the case when L 	 ν; high dissipation at small force is due
to much larger displacement. In this sense transition from pull
off to peeling is similar to the transition from brittle to ductile
fracture.

Our main assumption in what follows is that the stiffness
of the linear springs, mimicking the stiffness of the gecko’s
pad, can be actively varied by the organism. The feasibility of
such control is clear from the fact that the gecko rolls in for
attachment (active shortening and thickening of the digits) and
rolls out for detachment (active lengthening and thinning of the
digits). It is also known that digital hyperextension anticipates
each attaching and detaching event and that the musculo-
tendinous system may influence single lamellae in the process
of controlled rolling [13,17]. Experiments with geckos [13],
frogs [19], and ants [20] also show that at the macroscale
the easy release is achieved through the localization of the
cohesive region. Yet another argument in support of the active
muscular control comes from the observation [21] that to
simplify horizontal walking geckos keep the hyperextended
state and start activating the attachment mechanism only at
sufficiently high slope requiring stronger adhesion.

To get a rough estimate of the required stiffness variation
we observe that the adhesion force in geckos is about one
order of magnitude less than the detachment threshold [22].
According to (7) this corresponds to two orders of magnitude
in stiffness variation, which is compatible with the data on
geckos forced to detach [23]. Different physical mechanisms
may be employed to regulate the coupling among adhesive
fibrils at different structural levels. Thus, at the cellular level
the dynamic filamentous actin network is known to be very
soft at low stress, but can stiffen up to three orders of

magnitude in response to stresses [24–26]. Such stresses can
be generated internally through molecular motors; moreover,
constant remodeling allows the cytoskeleton to remain in a
marginally stable state and easily switch between softening
and stiffening [27,28]. At elevated stresses a quick transition
to softening may also be related to the unfolding of the
cross-linkers such as filamin [29]. Within muscle sarcomeres
the effective stiffness can vary with the number of myosins
attached to actin fibers and will also be affected by the
unfolding-refolding transition in titin [30]. Notice also that
parameter ν controlling the mode of detachment can vary not
only because of the stiffness G but also because of the stiffness
k. The latter depends on the aspect ratio of the adhesive
elements and may be controlled by the organism through
capillarity induced self-assembly, modulated by secretion or
evaporation of liquids responsible for the interaction between
the fibrils [31,32].

At the macroscale, the variability of shear modulus may
be associated with the reversible development of microdefects
inside the tissue architecture with subsequent internal healing
of this damage through remodeling. Following a classical
approach in damage mechanics [33,34], we can introduce an
internal variable α, with α = 0 representing the undamaged
state (stiffest configuration) and α = 1 the damage-saturated
state (most compliant configuration). Then G = Ĝ(α) with
Ĝ′(α) < 0. Since the detachment force depends on the level
of damage

f̂m(α) = fm(Ĝ(α)),

while the critical displacement does not (dm = ur ), we can
write the effective elastic stiffness for the attached state in the
form

Ê(α) =
√

kĜ(α) tanh[L
√

k/Ĝ(α)].

Observe that Ê′(α) < 0.

IV. ATTACHMENT DETACHMENT CYCLE

We can now propose a mechanical strategy of geckos
advance. Assume that only one scale of the fibrillar mi-
crostructure is involved, that the response is quasistatic and
overdamped, and that the continuum limit is valid. To fix
ideas, consider ceiling walking and suppose that the cycle
of attachment-detachment starts at an attached state A (see
inset in Fig. 4) where the pad is in the stiff configuration
Ĝ(0) associated with the high threshold f̂m(0). To attain the
detachment below this threshold, gecko can induce a reversible
“damage process” described by a force-displacement relation
f = f̄ (d) where d = d̂(α) and Ê(α) = f̄ (d̂(α))/d̂(α). In the
process of stiffness variation the external work

W =
∫ d̂(α)

P/Ê(0)
f̄ (d̃)dd̃ > 0

(done by gravity) is partially stored as elastic energy

[|�|] = P 2/[2Ê(0)] − Ê2(α)d̂(α)/2

and the rest is dissipated into heat

Q = −
∫ α

0

1

2
Ê′(α̃)d̂ 2(α̃)dα̃.
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FIG. 4. Schematic representation of the proposed attachment-
detachment strategy (see text). The inset shows a generic force-
displacement path associated with stiffness variation AB and the
decomposition of the corresponding external work W into the elastic
energy � and the dissipated energy Q.

To minimize dissipation while maintaining a stable mechanical
response with f̄ ′(d) � 0, the animal must ensure that damage
advances at constant force f̄ (d) = P (AB in Fig. 4). In this
case exactly half of the work is dissipated and we can write

[|�|] = Q = (P/2)[ur − P/Ê(0)] > 0.

Damage at constant stress has been observed in many rub-
berlike materials and linked to inherent energy nonconvexity
[35]; reversible structural changes at constant stress are also
characteristic for muscle tetanus [36].

After the critical force is decreased, the pad can be pulled
away by peeling (path BC in Fig. 4). The detachment ends with
an abrupt decohesion at point C in Fig. 4. In order to reattach,
the gecko can follow a reverse path EF. As the foot is placed on
the surface, the displacement d is gradually decreased and the
attachment takes place at the point F through “inverse peeling”
at d = ur . An instantaneous force jump brings the system to
the point G and allows the animal to place some weight on the
foot. To secure a robust attachment, the gecko must reverse the
damage and induce active stiffening (trajectory GH).

The system heals the damage by remodeling the damaged
configuration with α = 1 back into the virgin configuration
with α = 0 while increasing stiffness and decreasing displace-
ment. This requires work which is now done by the gecko. The
energy comes from metabolic sources M < 0 and is released
due to elastic unloading

[|�|] = [f̂m(1)/2][f̂m(1)/Ê(0)] − ur < 0.

If we again assume that healing (remodeling) takes place at
constant stress (minimum metabolic energy path), we obtain
[|�|] = M . Experiments show that geckos in the compliant
state have a very low detaching threshold f̂m(1) [37], which
means that the metabolic energy required for such stiffness
increase is also low.

After the state of high stiffness is reached (point H in Fig. 4)
the peeling mode is deactivated because the force required for
detachment f̂m(0) is now large. Therefore more weight can
be shifted to this foot (path HI) and another foot can undergo
the detaching-attaching cycle. Overall, the detachment process
BCD with decreasing force on the two detaching feet must

take place simultaneously with the attachment process FGHA
involving the other two reattaching feet [17].

V. HIERARCHICAL ARCHITECTURE

To understand the role played by the hierarchical microfib-
rillar architecture of the adhering pad [10,38] we compare
adhesion forces at different spatial scales (see Fig. 5). Using
the experimental data [1,3,6–8,10,23,37,39] we may deduce a
scaling relation

fm ∼ lβ,

with exponent β = 2 ± 0.5. In Fig. 5 we show the power law
together with the scaling of friction forces reported in [37];
our results are consistent with the observation that the friction
force is usually five times higher than the adhesion force [23].

While the exact origin of these empirical power law
relations is not known, we can propose the following plau-
sible explanation. Following [40,41] we suppose that the
architecture of the fibrillar adhesive system is designed to
ensure that in contact with rough surfaces the fibrils buckle
simultaneously at all scales to ensure maximum folding which
accommodates fractal roughness. If at hierarchical level i,
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FIG. 5. (Color online) Scale-free nature of the adhesion mecha-
nism. Solid line interpolates the experimental values of the adhesion
forces [1,3,6–8,10,23,37,39]; dashed line, of the friction forces [37].
Insets show nested computations based on the BP model with
adhesion links behaving as shown in the right upper corner. At the
smallest scale of the elemental fibrilla ur = 200 nm, L = 103 nm,
and k = 100 MPa. The parameters ue, ur , and k at larger scales have
been computed iteratively. Other parameters: fibrilla → seta, n = 50,
L = 100 nm, G = 0.2 mN; seta → lamella, n = 50, L = 0.5 mm,
G = 1 N; lamella → pad, n = 20, L = 3 mm, G = 300 N; pad →
foot: n = 5, L = 20 mm, G = 20 N.
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with spatial scale li , the system is marginally stable against
buckling, then fi = cEl2

i , where E is the elastic modulus and
the constant c depends on the shape of the cross section, aspect
ratio, and the boundary constraints. We assume the simplest
allometric law when both c and E are scale invariant. Now,
if the fibrils at a finer level i cover the tips of the fibrils at
the coarser level i + 1 densely, which is known as Leonardo’s
rule [42], then l2

i+1 = nil
2
i , where ni is the number of fibrils

at the level i (see the scheme at the bottom right corner of
Fig. 5). Since fi+1 = nifi , we obtain fi+1 = cEl2

i+1, which
means that the force is critical also at the i + 1 level. In
view of our neglect of collective modes of instability [43],
we can only tentatively conclude from this reasoning that the
observed scaling supports the idea that the whole structure
can be marginalized simultaneously. An important feature of
this scaling, however, is that stress is uniform, which has been
proposed previously as a criterion of optimality in several
biological and engineering systems [44].

The power law scaling is indicative of a scale-free de-
tachment mechanism. We can model it in our framework
by the appropriate renormalization of the parameters in a
scale-generic BP model shown in the upper corner of Fig. 5,
where ue is the elastic threshold and ur is the detachment
displacement. The parameters ue, ur , and k can be computed
at each scale iteratively by using a series of nested BP models,
whereas the parameter G characterizing the elastic coupling
can be chosen at each scale to match the experimentally
measured detachment threshold.

At the smallest scale of a spatula the adhesive properties
of the fibrils can be described by the energy density (1)
with parameters ur and k available from experiment [6]. The
behavior at the next scale (setae) can be obtained numerically

by simulating an overdamped gradient flow dynamics for a
quasistatically driven BP system with n = 50 spatulae; the
value of G is chosen to ensure the maximum measured
adhesion force of 40 μN [7]. The overall behavior at this
scale matches the experimental results in [7] showing an
elastoplastic range ending with an abrupt detachment. At the
level of a lamella, we consider n = 50 elastic-plastic elements
with constitutive parameters obtained from the spatulae scale
simulations. At the next level of a toe, we need to model
lamellae with n = 20 and finally at the level of a foot
n = 5 (toes) and the problem becomes strongly discrete. The
results at this last level match observations showing digitized
detachment of the toes [13].

VI. CONCLUSIONS

By studying a prototypical system, we have shown that
both the force threshold and the dissipation associated with
reversible adhesion can be modified by active control of the
coupling among individual adhering elements. The possibility
of the ensuing multi-path adhesion [45] reconciles strong
binding with easy debinding, which is at the base of the
observed agility of lizards and insects running on inclined sur-
faces. The proposed mechanism has a scale-free hierarchical
structure, which is typical for biological systems at all levels
of organization.
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