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Abstract

The nontrivial behavior of an elastic chain with identical bi-stable elements may be considered
prototypical for a large number of nonlinear processes in solids ranging from phase transitions to
fracture. The energy landscape of such a chain is extremely wiggly which gives rise to multiple
equilibrium configurations and results in a hysteretic evolution and a possibility of trapping. In
the present paper, which extends our previous study of the static equilibria in this system (Puglisi
and Truskinovsky, J. Mech. Phys. Solids (2000) 1), we analyze the behavior of a bi-stable chain
in a soft device under quasi-static loading. We assume that the system is over-damped and
explore the variety of available nonequilibrium transformation paths. In particular, we show that
the “minimal barrier” strategy leads to the localization of the transformation in a single spring.
Loaded periodically, our bi-stable chain exhibits finite hysteresis which depends on the height
of the admissible barrier; the cold work/heat ratio in this model is a fixed constant, proportional
to the Maxwell stress. Comparison of the computed inner and outer hysteresis loops with recent
experiments on shape memory wires demonstrates good qualitative agreement. Finally we discuss
a relation between the present model and the Preisach model which is a formal interpolation
scheme for hysteresis, also founded on the idea of bi-stability. © 2002 Elsevier Science Ltd.
All rights reserved.

Keywords.: A. Phase transformation; Hysteresis; B. Elastic—plastic material; Lattice model; C. Energy
methods; Cold work

1. Introduction

In today’s micro and nano-scale technologies the required complexity of the mechan-
ical behavior can only be achieved if a “mechanism” is integrated into the material at
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the molecular level. “Active” or “intelligent” materials, exhibiting the desirable func-
tions of sensing, actuation, damping, and feedback cannot be described by classical
methods because of the genuinely nonlinear properties such as phase transformations,
reversible pseudo-plasticity, and hysteresis. Another factor, which cannot be ignored
at these extremely small sizes, is the presence of internal length scales, in particular,
material discreteness. An interesting problem then is to start with a discrete model
accounting for the nontrivial behavior of an active material at the micro-scale and de-
velop comprehensive size-dependent quasi-continuum theory capable of describing its
behavior at the technologically relevant meso-scales.

Martensitic phase transformations play a fundamental role in the behavior of a large
class of active materials which include shape-memory, ferroelastic, and some magne-
tostrictive alloys (James and Hane, 2000; James and Wuttig, 1998). At the micro level,
these materials can be viewed as complex assemblages of molecular size multi-stable
devices; large deformations are then due to the switching between different locally
stable configurations. Macroscopically the switching phenomena manifest themselves
through the complicated evolution of the domain microstructures; the associated en-
ergy landscapes are usually extremely wiggly (Abeyaratne et al., 1996; Truskinovsky
and Zanzotto, 1996; James, 1996; Ren and Truskinovsky, 2000).

The present paper is aimed at the analysis of rate independent hysteresis in shape
memory alloys and other active materials through the study of the simplest repre-
sentative discrete system with bi-stable elements. The discreteness of the system can
be viewed as taking place at the level of the atomic lattice (crystal structure) or at
some meso-scopic level, where it can be associated with the presence of defects, dis-
locations, polycrystalline grains, etc. The discrete approach to active materials can be
traced back to the pioneering work of Miiller and Villaggio (1977), who in the con-
text of metal plasticity discretized a continuum model with nonconvex energy (Erick-
sen, 1975) and demonstrated numerically the existence of a multiplicity of additional,
discretization-related equilibrium configurations. Since the model of Miiller and Villag-
gio was motivated by an idea of actual mechanical snap-springs connected in series, the
energy of an individual bi-stable element was chosen to be a rather complex trigono-
metric function. Subsequently Fedelich and Zanzotto (1992) by adopting a bi-parabolic
approximation for the energy, were able to study the equilibrium configurations of the
discrete system analytically and in more detail. More recently Puglisi and Truskinovsky
(2000) clarified the issues of equilibrium and stability for the case of a general two
well energy, particularly emphasizing the important role of the spinodal region. In the
framework of the simplest bi-parabolic approximation, Rogers and Truskinovsky (1997)
studied the role of an additional interaction ranging beyond the nearest-neighbors and
provided a comparison of a non-local discrete model with the corresponding continuum
model (see also Pagano and Paroni, 2000). The appearance of the artificial minima in
the discretized versions of the non-convex variational problems in more than one di-
mension was discussed by Collins and Luskin (1994) and Kinderlehrer and Ma (1994).
In the context of fracture mechanics, a discrete chain with non-convex springs of the
Lennard—Jones type was considered in Truskinovsky (1996), Braides et al. (1999) and
Del Piero and Truskinovsky (2000); a related model in biomechanics was investigated
by Allinger et al. (1996).
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An important open question, which lies outside the scope of these purely static anal-
yses, concerns the actual strategies for the switching among the local minima inside
the wiggly energy landscape. The most obvious strategy of following the global mini-
mum (Maxwell path) was rejected early on because it is associated with the crossing
of large barriers and does not lead to hysteresis (e.g. Miiller and Villaggio, 1977).
Another plausible strategy, based on the idea of thermal fluctuations and nonzero tran-
sition rates between the local minima, was suggested by Miiller (1979) and studied
in more detail in Miiller and Wilmansky (1981), Achenbach and Miiller (1985), Huo
and Miiller (1993), and Miiller and Seelecke (1996). The model, which was shown to
be in good agreement with some of the observations, predicts finite hysteresis whose
width decreases with temperature. The main problem associated with this approach is
the strict requirement it imposes on the value of the temperature, which cannot be too
small. We also remark that this class of models excludes rate independent hysteresis
in a quasi-static setting, which is the main subject of the present paper.

An alternative approach, which has also been explored, consists in modeling dynam-
ics directly. The difficulty here is that even without external fluctuations, the full-scale
inertial dynamics of the bi-stable chain is extremely complex. Thus, under a quasi-static
loading the motion cannot be confined at long waves and intensive tunneling to short
waves and high frequencies is taking place as the bi-stable units start to flip over
from one configuration to another. The first dynamic solutions illustrating these phe-
nomena for the simplest bi-linear chain were obtained by Slepyan and Troiankina
(1984), who explicitly computed the kinetic relation for an isolated “switching” wave
and gave a detailed description of the energy exchange between the macroscopic and
the microscopic motions (see also Slepyan, 2000, 2001). More recently Balk et al.
(2001a, 2001b), studied numerically the dynamical behavior of a finite bi-linear chain
under cyclic loading, also emphasizing the importance of high frequency radiation and
developing some thermodynamical interpretations. The relation between these purely
mechanical approaches and the statistical approach of Miiller and coauthors has yet to
be established.

In the present paper in order to avoid a detailed description of the flip-over dynamics
and the associated high frequency radiation, we assume that the system is overdamped,
inferring that when an individual spring changes phase the excess energy completely
dissipates into heat. We also assume that the presence of fluctuations allows the system
to overcome energy barriers of a certain given size (see similar hypothesis in Fedelich
and Zanzotto, 1992). With these two assumptions the evolutionary model is defined
and we can characterize the non-equilibrium paths available to the system, in particular,
the paths associated with crossing of the minimal energy barriers. As we show, this
“minimal barrier” strategy leads to the localization of the transformation in a single
spring, which may be a reason why the transformation often advances through the
propagation of phase boundaries.

When loaded periodically, the bi-stable chain exhibits hysteresis whose width is
inversely proportional to the square root of the size of the minimal barrier. In the case
of low fluctuation activity, the system follows closely the maximum delay strategy and
behaves very much like a conventional plastic system (modulo eventual saturation). In
this limit one can develop a consistent thermodynamical theory and explicitly compute
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the fraction of the work of the loading device dissipated into heat and the fraction
stored in the chain in the form of a so-called “cold work”. Usually in thermo-plasticity
the magnitude of the heat/cold work ratio is assumed to be constant (e.g. Rosakis
et al., 2000). For our over-damped bi-stable chain with identical springs this ratio can
be computed in closed form and can be shown to be in fact equal to a constant which
depends on the Maxwell stress and the energy of the fluctuations.

The comparison of the fine structure of the predicted stress-strain relations with
experiments shows that the model satisfactory reproduces qualitative features of the
hysteresis phenomena in shape memory wires and yields useful phenomenological de-
scription of the situations of interest to applications. In this respect the bi-stable chain
can be compared to the Preisach model which is a standard mathematical tool for
the phenomenological modeling of the rate independent hysteresis (e.g. Mayergoyz,
1991; Bertotti, 1999; Macki et al., 1993). As we argue, the two models are compati-
ble; in particular our model reproduces important paradigms of the phenomenological
Preisach model such as “return point memory” and “congruency”. The advantages of
the bi-stable chain model are in the account of elasticity of the elements and in the
ability of the system to choose between different metastable configurations.

The paper is organized as follows. In Section 2 we formulate the model and review
some results concerning its equilibrium and stability. To illustrate the complexity of
the energy landscape in Section 3 we consider in full detail an elementary example of
a chain with two springs only. The general case is discussed in Section 4 where we
show that the “minimal barrier” strategy leads to the localization of the transformation
in one spring. In Section 5 we introduce some important thermodynamical concepts
related to the hysteresis and compute the heat/cold work ratio. In Section 6 we discuss
the mechanism of the transformation and study the inner structure of the hysteresis
loops. Comparison with the phenomenological Preisach model is given in Section 6.1.
The final section contains our main conclusions.

2. The model

In this section we introduce the model of bi-stable chain (Miiller and Villaggio, 1977)
and summarize its equilibrium and stability properties. For a more detailed analysis of
these issues we refer the reader to Puglisi and Truskinovsky (2000).

Consider a one-dimensional lattice with N identical bi-stable elastic springs con-
nected in series. Denote by u; the displacements of the nodes and introduce the

associated strains
Ui — Uj—1
gG=—, (1.1)
a

where « is the reference length. If a@(e;) is the elastic energy of an individual spring,
the free energy of the chain, normalized by its reference length, equals

1 N
¢=N;<p(si>. (1.2)
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We study the case when the springs are bi-stable, meaning that the elastic en-
ergy ¢(e¢) is convex on two disjoint intervals (wells) separated by a region where
it is concave (spinodal region); the corresponding stress—strain relation o= ¢’(¢) is
non-monotone. To simplify the analysis, we consider a special “tri-parabolic”
energy

%(8—}- 1? +oye, &< —1
p(e)=14 $(&® +n) +oye, —1<e<t, (1.3)
%(s — 1)2 + oye, t<e,
which corresponds to a “tri-linear” stress—strain relation
oy +e+1l, e<—t,
a(e)= < oy + e, —t<e<t, (1.4)
oy +e—1, t—e.

Here we assume that the equilibrium strains at ¢ = g, (Maxwell stress) are normalized
to be £1. To guarantee that the function ¢ is smooth we choose

y=1-1"", n=1-14 (1.5)

where ¢ is assumed to be in (0,1). One can show that this special choice of the
energy function preserves all the qualitative features of the general bi-stable models
(see Puglisi and Truskinovsky, 2000 for comparison).

Consider a chain with the energy (1.3) under the action of a prescribed stress &.
To find equilibrium configurations of the individual springs we need to search for the
minima of the total (potential) energy

1 N
G:N;(p(si)—&s,». (1.6)

The equilibrium equations take the form
¢'(e)=a, i=1,...,N. (1.7)

For a given stress ¢, Eq. (1.7) may have up to three solutions corresponding to the
three branches of the nonmonotone stress—strain relation. In what follows we distinguish
these solutions by indexes I, II and III (see Fig. 1). More specifically, we obtain

81:6'71, SHZE, 8111:6~+1, (18)
b

where
G:=6— oy. (1.9)

Due to the uniformity of the spring stiffnesses and to the absence of long range inter-
actions, the total energy G(éy,...,&ey) is invariant under the permutations of its argu-
ments. As a consequence the equilibrium solutions (1.8) at fixed ¢ may be grouped
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(a) (b)

Fig. 1. Elastic energy (a) and stress—strain relation (b) for the “tri-linear” model. Here # =0.5 and o) =0.2.

into iso-energetic equivalence classes. Each class can be identified by the phase frac-
tions (k,/,m) indicating the number of springs in phases I, II, and III, respectively;
obviously k + I +m=N. For given phase fractions the overall strain

1 N
S:N2¥i (1.10)

can be computed explicitly as a function of the applied stress. The resulting stress—strain
relation is linear.

aa:%+% (1.11)
with
gV (1.12)
Nn—1
representing the effective elastic modulus and
m—k
0= (1.13)

representing the “eigenstrain” at ¢ = ag);. The multivalued stress—strain relation (1.11)
is illustrated in Fig. 2(a).
According to Egs. (1.6) and (1.8) the total energy of equilibrium solutions can be
written in the form
)
¢ 11/
)= — — — 6& + ——1. 1.14
G@) == 5= = Goo + 501 (1.14)
This expression is illustrated in Fig. 2(b), where we see the characteristic cusps asso-
ciated with the nonsingle-valuedness of the Legendre transform in Eq. (1.6). The total
elastic energy of the chain (1.2) can be written as

~2
_ G 11/ -
¢(a)—ﬁ+iﬁn+aMs(a). (1.15)
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Fig. 2. Overall stress—strain relation: (a) potential energy, (b) and elastic energy, (c) for a chain with four
springs, N =4. The branches are distinguished by the corresponding phase fractions (&, /,m). Local minima
are represented by solid lines, unstable equilibrium configurations by dashed lines, and global minima by
bold lines. Here 1 = 0.6, o)y =0.2.

The stress dependence of the elastic energy (1.15) is illustrated in Fig. 2(c). One can
show that the branches corresponding to the same number / of springs in the spinodal
region collapse to a single parabola in the limit g3, =0.

The trajectories corresponding to the global minimum of the potential energy are
indicated in Fig. 2 by the bold lines. We remark that along the global minimum path
all snap-springs change phase at the Maxwell stress: the system then overcomes a set
of barriers jumping into new equilibrium configurations with the same total, but higher
elastic energies. Notice that during these transitions the chain stores all the work done
by the loading device.

Local stability of the above equilibrium solutions was analyzed in Puglisi and Truski-
novsky (2000). In particular, it was found that an equilibrium configuration is metastable
(is a local minimum of the potential energy) if and only if none of the strains takes
values inside the spinodal region. This means that in metastable configurations neces-
sarily /=0 and that the only observable branches of equilibria are the ones with phase
fractions (k,0,N — k). The stability of different branches is illustrated in Fig. 2 where
stable solutions are indicated by bold lines, metastable by solid lines, and unstable by
dashed lines.

Analysis of Fig. 2 suggests that several metastable configurations may correspond to
a given value of the loading parameter. As a result, different scenaria of quasi-static
evolution are possible depending on the system ability to overcome energy barriers.
To make this point more clear, in the next section we discuss a simple example illus-
trating the complexity of the full energy landscape and the multiplicity of the possible
evolution strategies.

3. Elementary example

For the purpose of making our general considerations in the subsequent sections more
transparent, we begin with a study of a chain with two springs only, N =2. Also, to
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make figures less cluttered we assume in this section that g); =0 which amounts to
removing a linear term from the energy and does not effect the main conclusions.
Maxwell stress will be restored in Section 5.

Instead of dealing with the individual strains ¢; and &, it is convenient to introduce
order parameters & and ¢ according to

e =&—¢ g=¢t+¢ (2.1)

Here the first order parameter £ is the overall strain; the second order parameter &
measures the deviation from the symmetric state ¢ =&, & =¢. In terms of the order
parameters the total energy can now be written as

G=Yo@E+ &)+ o - &) -Gt (2.2)

The fact that configurational space is two dimensional makes it possible to study
in detail the energy landscape for different values of the external load &. With our
tri-parabolic expression for the energy ¢ it is straightforward to compute G(g,¢&); our
results are summarized in Fig. 3.

We observe that if G € (1—1,1—1¢) energy (2.2) exhibits three different local minima
my,my, m3 corresponding to the metastable branches (2,0,0), (1,0,1), and (0,0,2),
respectively. The global minimum of the energy is at (2,0,0) for 6 <0 and at (0,0,2)
for ¢>0.

The knowledge of the energy landscape allows one to study the nonequilibrium paths
connecting local and global minima. Suppose for determinacy that 6 =43 € (0,1 — ¢)
as represented in Fig. 3(e) and consider the metastable configuration m; (2,0,0). One
can see that the path from this local minimum, characterized by the minimal energy
barrier, goes through the saddle configuration s; (1,1,0) with one spring stable and
another one in the spinodal region. In the configurational space the local minimum
my (2,0,0) is connected to the two symmetric saddles s; (1,1,0) and further to the
symmetric inhomogeneous local minima m; (1,0,1) by the straight lines

E=ti+(1-d) (2.3)

To illustrate the physical meaning of trajectories (2.3), consider first one of the paths:
= —¢— (1 — ). Along this path &, =6 — 1 which means ¢’(s;) =6 so that the
spring i =2 is in equilibrium. The other spring i =1 is not equilibrated (¢'(&;)# &)
and instead changes phase. Analogously, along the path {=&+ 1 — & we observe
that ¢'(¢1)=¢ and ¢'(&)# G so that now the spring i =2 changes phase. Once the
system reaches the saddles s, the trajectories (2.3) are the paths of steepest descent
to the minima m, (paths of maximum rate of dissipation). Notice also that from the
critical state s; both minima m, of (1,0, 1) and ms of (0,0,2) may be reached without
overcoming other energy barriers; however out of the two, only the minimum m; can
be reached by the path of steepest descent.

Similar analysis can be done for the “minimal barrier” trajectories leading away from
the metastable states m,. The corresponding saddles (s;) and the minimum (m3) are
connected in the configurational space by the straight lines

E=FEeF(1+0), 24)



G. Puglisi, L. Truskinovsky | J. Mech. Phys. Solids 50 (2002) 165-187 173

(b)

@

g

@© \ ®

Fig. 3. Energy landscape for the chain with N =2 shown at different values of 6. In (c), (d), (e), and (f)
the energy levels are represented by solid lines; dashed lines correspond to “minimal barrier” paths. The
barriers are also illustrated in Fig. 4. Here t=0.8 and o), =0.
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Fig. 4. Free energy along the “minimal barrier” paths (2.3) and (2.4) (bold lines) and along the
“Cauchy—Born” path ¢ =0 (solid line). The stress values are chosen in accordance with Fig. 3.

describing again the paths with one spring in equilibrium and another one changing
phase.

By considering the two transitions m; — s; — my and m; — s, — mj3 together we
can make the important observation that along the “minimum barrier” paths the phase
transition proceeds as a sequence of events with one spring changing phase at a time
and the other spring fixed. In the next section we show that this behavior is generic
at any N.

Further insights are provided by Fig. 4 where we illustrate the energy variation
along our “minimal barrier” paths (2.3), (2.4) which we compare with the homoge-
neous “Cauchy—Born” path £ =0. One can see that a sequential change of phase by the
individual springs is preferred over simultaneous transition of the whole chain. Notice
that in this figure only the essential part of the energy landscape is shown with all irrel-
evant degrees of freedom minimized out. In the next sections we shall be using similar
synthetic representation of the energy landscape adjusted to the case of a general N.

4. General case

The analysis of the special case in Section 3 suggests the conjecture that the “minimal
barrier” path can always be represented as a combination of the successive switching
events inside the individual springs with all other springs equilibrated. In this section
we prove this conjecture; to make the analysis more transparent we shall keep the
assumption g, =0.

First, we recall that at a given N the global minimum of the energy is located at the
trivial branches of equilibria: (N,0,0) if 6 <0, (0,0,N) if ¢>0; the only metastable
configurations are the two-phase states (k,0,N — k). We assume that 6 >0 and choose
a particular metastable configuration

G—1, i=1,...k,
&= o (3.3)
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To prove the conjecture we need to show that the “minimal barrier” path leading
away from this metastable state goes necessarily through the saddle' configuration
(l€ - 1,ILN — 12) with one of the & springs in the spinodal state ¢ = ¢gj.

We begin with the construction in the space of strains {¢;} of a cube € with center
in our metastable configuration (3.5): |¢; — &;| < r. The side of the cube r=¢y — g is
chosen in such a way that the saddle S(/€ —1,1,N— IQ) belongs to the boundary of the
cube 0%. Since for ¢ >0

ler — em| > |en — em| > &1 — eu| =7, (3.6)

the only critical point in the interior of the cube ¥ is given by Eq. (3.5). Therefore,
we need to show that the minimum energy on 0% is given by the saddle S.

Consider one of the planes belonging to 0%, say ¢; =e; with e; = §;£r. Minimization
of the energy function G(ey,...,ey) = va:l ¢@(&;)—ae; on this plane gives the following
necessary conditions:

@ (e)=6, i=1,....j—1,j+1,...,N (3.7)

Let us denote with {£;};—;,_» the generic solution of Eq. (3.7) with &; = e;; this solution
belongs to 0%, if

giE{SI,SH}, Z'E{l,...,/é}, l.#j,

G=em, ic{k+1,...,N}, i#j. (3.8)

Introduce the Gibbs free energy of the single spring g(e) = ¢(¢) — de. Since
(6 +1—1)?
h=g(ey) —g(e))=———— =0 .
g(en) — g(er) 20 =1) (3.9)
and
N
Ge)=> g(&) (3.10)

i=1
the critical point (3.8) with the minimal energy necessarily satisfies
§=¢&, Ii#]J. (3.11)

Now, we need to minimize the energy of the critical points among the different planes
g;=e;. If je{l,...,k} and e; = + r, which corresponds to the saddle S(k —1,1,n1),
we obtain

G(&)=G(&)+ h. (3.12)
If instead e; = ¢ — r, then
. . He+1t—1) .
G(E)=G(E) +h+ T = G(&) + h. (3.13)

! According to the “mountain pass theorem” (e.g. Struwe, 1990) the minimum barrier out of the basin
necessarily corresponds to a saddle point.
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If on the other hand j >k and e;=¢m + 7, then
WG+t —1)

G(E)=G(E) + h+ e

> G(&)+h. (3.14)
Finally, if j>/€ and e; = ¢y — ¥ we have two possibilities. For &gy — 7>+, e; is in the
second well and the energy is again given by Eq. (3.14). If, on the contrary, the jth
spring is in the spinodal region, i.e. & — » <t which according to Eq. (1.8) means

_ t(l—1)

F< 2 (3.15)
we obtain

G =Gy +h+ 2= o Gy 4n (3.16)

«(1—1)

By comparing the energies of these critical points we conclude that the ones with the
lowest energy are the saddles S(/€ —1,1,m).

Similar analysis can be made for the (N — /) dimensional planes belonging to 0%
with / constrained springs; one can again show that the critical points with lowest
energy are the ones with all the non constrained strains taking values & =§;. Indeed,
when all the / constrained strains take the values g; we obtain

G(&)=G(&) + 1h>G(&) + h. (3.17)

One can check that even bigger energies are obtained in the other relevant cases which
completes the proof of our conjecture.

Once the system possesses sufficient activation energy to exit the basin of the
metastable configuration (3.5), it can reach any of the k local minima with & — 1
springs in the first well. By using the invariance properties of the energy one can
always assume that it is the kth spring which changes phase. As in the case N =2,
we can consider a trajectory which passes through one of the above saddles with one
spring changing phase and all the other springs staying in equilibrium with the load.
This corresponds to the minimization of the energy with respect to all g with i 7é1€.
We can again choose the total strain ¢ as the order parameter and write

G—1, i=1,....k—1,
a@)=1 e@), i=k, (3.18)
G6+1, i=k+1,...,N,
where
ep(B)=NE—(k —1)(G — 1) —m(G+ 1). (3.19)

The trajectory (3.18) describes the transition (12, 0,m) — (lg— 1,1,m) — (lg— 1,0,m+1)
and presents an exact generalization of the paths (2.3) and (2.4). It is not hard to show
that this path corresponds to the steepest descent (and maximum rate of dissipation)
from the saddle point (13 —1,1,m) to the minimum (13 —1,0,m+ 1). Indeed, along the
trajectory (3.18) for i;é/é we have deg;(2)/deé=0 and dG/de; = ¢’ (&(2)) — 6 =0, which
means that the two vectors are parallel.
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Fig. 5. Non-equilibrium total and elastic energies along three successive minimum barrier paths (3.18).
Capital letters indicate metastable states, lowercase letters are saddle points. The paths are represented
in the stress—strain space (a), and in the {&¢}; space (b). In (b)—(d) the paths (3.18) are compared
with a partial “Cauchy-Born” path (three springs changing phase simultaneously, dashed line). Here
oy =0, t=0.5, o0 =0.3.

A complete transition between the branches (V,0,0) and (0,0,N) can now be ob-
tained as a combination of N different paths of the type (3.18). The composition of
three successive steps in the space {¢;} is illustrated in Fig. 5 where the “minimal
barrier” path (ABCD) is compared with the path describing all three springs changing
phase simultaneously (AD); one can see that along the direct path AD the system
encounters a much higher barrier.

Notice that along the minimal barrier path each individual jump delivers a strain
increment

[£]=+ (3.20)

which is independent of the phase fractions (of lé) The variation of the total energy
of the chain along this path can be computed directly from

G(E)= %((13 — (G — 1)+ (N — k)p(6 + 1) + o(e(3))) — G2 (3.21)
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In particular, one can verify that deA(é)/dé = ¢'(eg(€)) — >0 as we ascend from the
local minimum (lé, O,Nflé) to the saddle (léf 1, l,Nflé) and that dGAlg(a')/d5<0 as we
descend from the saddle to another local minimum (13 ~1,O,N—k+ 1). The associated
energy barrier is equal to

o 1(@G+t—1)

h(G)ZEW- (3.22)
One can see that the height of the barrier (3.22) is a decreasing function of 7. At the
Maxwell stress we get the maximum barrier
11—1¢
2 N
while at the spinodal stress we obtain #=0. If the system possesses an activation
energy h, <hn, then the transition stress may be obtained by the inversion of Eq.
(3.22)

0w =(1—1) — \/2Nhy(1 — 1). (3.24)

To proceed with our analysis we need to make an important assumption that when the
load reaches the value oy, and one spring changes phase the released energy completely
dissipates into heat. The magnitude of the dissipated energy is equal to

Fin = (3.23)

ZO'tr

0=- 3" (3.25)

Since at o), =0 the elastic energy increment associated with this discontinuous tran-
sition is equal to zero, the dissipated energy exactly matches the work of the loading
device; this conclusion will be modified in the next section where we consider the
case oy #0. After a full hysteresis cycle of loading and unloading the elastic energy
remains unchanged while the total dissipation is finite and equals to

Qcycle =2NQ = — 404. (3.26)

The largest dissipation corresponds to the maximum delay convention with 4, =0. Then
or=1—1t and Qcyele = — 4(1 — 1).

5. Cold working

Consider now the case of a general N and o, #0; the main consequence of the
latter modification is that now the local minima corresponding to the same stress have
different elastic energies.

Most of the results from the previous section are still valid with a replacement of &
by 6:=6 — gy. Thus the lowest energy barrier is now

LG 4t—1)
T2 N(1-1) "’

where again the maximum value corresponds to the Maxwell stress 6 =0), and the
zero barrier to the spinodal stress ¢ =0, + 1 — ¢. For a given activation energy #,

h(&) (4.27)
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(a) (b)

Fig. 6. The dissipated energy Q and the cold work [®] in the cases N =1 (a) and (b).

we may again define the corresponding transformation stresses

of =oy £ (1 —t —\/2Nhy(1 —1)). (4.28)

The dissipated energy associated with one jump [§]=2N"" is now

+
0= (o — ou e = — 20 21)

The energy dissipated in a full cycle is then
Ocyele = — (0 — o). (4.30)

For systems with g, #0 (see the schemes of Figs. 6 and 7) the elastic energy is
not constant during the transitions inside the individual springs and instead experiences
incremental jumps equal to

(4.29)

20 M
N
Along each of the nonequilibrium paths the work W =g{[Z] of the external load can
now be decomposed into a part Q which is dissipated and a part [®@] which is elastically
stored by the system (cold work). Usually in plasticity cold work is associated with
accumulation of defects or dislocations; in our model each switching to a well with
higher energy may also be interpreted as a structural defect. One can then calculate
the fraction of the work done by the loading device which dissipates into heat over
the work stored in the system. Since W =a[¢]=20,/N, we obtain
Q _of—ou

b= W e (4.32)
As we see this ratio is constant. We recall that the assumptions concerning the con-
stancy of the heat/cold work ratio are at the core of most phenomenological formula-
tions of thermoplasticity (e.g. Rosakis et al., 2000).

Consider now the reverse path when the load ¢ is decreasing. In this case the system
changes phase at 6 =0, with [§]=—2N"! and Q= (o) — 0y )[E]=2(cx — ou)/N,
which, according to Eq. (4.28), is exactly the same value as we obtained in Eq. (4.29).
In this case [®]=oy[é]= — 20u/N which means that the cold work produced in the

[P]=oumlé]= (4.31)
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Fig. 7. Equilibrium and nonequilibrium energies in the case of nonzero Maxwell stress, gy #0, N = 10.

direct transition is completely returned in the reverse transition. The fact that the cold
work can be recovered in a cyclic process makes transformational plasticity a reversible
(albeit nonequilibrium) process.

The representative graphs for the equilibrium and nonequilibrium free and potential
energies are shown in Fig. 7.

6. Transformation mechanism and hysteresis

We begin the analysis of the transformation mechanism in the present model with
a discussion of the suitability of our “minimal barrier” strategy which we compare
with the conventional criteria based on the consideration of the driving forces. We
recall that our activation energy criterion asserts that the system continues to be in
a local minimum until the smallest energy barrier around this state reaches below a
fixed threshold. Then the system leaves its metastable configuration and jumps into
the closest local minimum which can be achieved through the steepest descent path
originating in the corresponding saddle point. This last process is considered to be
dissipative and along the way the system is treated as overdamped (gradient flow);
the activation energy is returned to the system while the rest of the released energy
dissipates into heat.
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The driving force criterion is based on the assumption that in the two well system
with fluctuations, probabilities of transitions in both directions have to be considered. As
a result, the overall transformation rate depends on the relative depth of the wells which
in our case is the dissipated energy. The driving (or configurational) force f can then
be defined as the dissipated energy normalized by the advance of the transformation.
For instance, in the case of simultaneous switch of p springs we obtain

fi=— %}é’ﬂ) — ot — oy (5.1)
Notice that f does not depend on the number p of transforming springs and, as a
result, the critical driving force criterion does not select the transition path with one
single spring changing phase at a time.

It is not hard to see, however, that the two criteria discussed above are not completely
independent. Indeed, the height of the minimal barrier /# and the driving force f are
related through

P 1)2.

2N(1 —1)
One can see that the driving force grows with stress, while the energy barrier decreases
with it; however, fixed barrier trajectories are also characterized by fixed driving force.
As a result, both criteria (critical barrier size and critical driving force) lead to the
transformation taking place at a constant stress.

The actual mechanism of the transformation can be viewed in the following form.
According to both criteria, once the transformation is activated, it propagates with
a particular speed which depends on how fast the system can actually dissipate the
released energy. In the “minimal barrier” scenario the chain absorbs the activation en-
ergy h provided from outside and releases the excess energy: the activation part of
the excess energy is returned to the system, while the driving force part is dissipated.
Since at fixed stress the energy barriers are also fixed, the activation energy, released
in crossing one barrier, can be used to excite another transition. The process can then
repeat itself resulting in a self-sustained, autocatalytic propagation of the switching
wave. We recall that the individual jumps are highly localized with only one spring
being “out of equilibrium” at a given transition. The process of phase transition can
thus be viewed as a propagation of a front rather than gradual transformation inside
an extended area. It is clear that in our simplified model the interaction between the
springs is too week to actually favor interface migration over successive formation
of new interfaces in random places; this however can be fixed if the interaction of
next to nearest neighbors is taken into consideration (e.g. Rogers and Truskinovsky,
1997). Different phenomenological models of the phase boundary migration, compat-
ible with the above scheme, have been recently reviewed in Ngan and Truskinovsky
(1999).

The knowledge of the energy landscape allows one to describe the whole loading
process starting from &<t — 1 when the only minimum of the energy is (N,0,0).
When ¢ — 1 <6 <0 multiple metastable configurations other than the homogeneous
state (N,0,0) are available to the system, although the corresponding driving force
is negative and the barriers are high. When the load reaches the Maxwell level the

(5.2)
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Fig. 8. Experimental behavior of a Ni-Ti shape memory wire in a soft device under cyclic loading (courtesy
of T. Shield) compared with the hysteretic behavior of a bi-stable chain.

system discovers alternative inhomogeneous configurations with the same energy as the
original homogeneous state. In this case the driving force is zero; however, the barriers
may still be high. In the interval 0 <& < 1—¢ the transformation will necessarily start at
some critical stress ¢ = g which is controlled either by the condition that the driving
force is sufficiently large or by an equivalent condition that the barriers are sufficiently
small. Then the system dynamically evolves towards configurations characterized by
lower total energy, switching along the way one spring at a time.

Now, consider the cyclic loading test which can be compared with the recent ex-
periments on Ni—Ti shape memory wires reported in Maher et al. (1999). The typical
experimental data are shown in Fig. 8. As we see, the hysteresis loops may be decom-
posed into the upper stress plateau corresponding to the transition between the cubic
(austenite) and the monoclinic (martensite) phases, the lower stress plateau correspond-
ing to the reverse transition, and the two connecting edges where the system behaves
clastically. Notice that both internal and external loops are characterized by (almost)
the same magnitude of the phase transition stresses g,. The above properties can be
reproduced by our discrete model if we assume that the activation energy is selected
in such a way that the direct transformation takes place at ¢ = oy, while the reverse
transformation occurs at ¢ =—oy,. If the load is kept fixed at +o a complete transition
takes place which corresponds to the “outer hysteresis loop” shown in Fig. 8(c). “In-
ternal loops” may be observed if the load is reverted before the transition is complete.
As in the experiment, the loops may be decomposed into the plateaux where “plastic”
deformation takes place, joined by the edges with purely “elastic” deformation. Since
the edges are located inside the hysteresis area this observation leads to the apparently
“paradoxical” conclusion that all deformations inside the hysteresis are elastic.

Finally we remark that our analysis refers to the quasistatic loading programs only,
when the (nonlinearity driven) energy transfer to high frequencies can be considered
instantaneous at the time scale of the loading. Other effects associated with a finite
speed of heat removal and supply are observed experimentally at higher rates of loading
(e.g. Leo et al., 1993; Shaw and Kiriakides, 1995; Shield et al., 1997) and require more
sophisticated modeling.
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Fig. 9. Classical Preisach element and “elastic” Preisach element describing the behavior of the tri-linear
snap-spring.

6.1. Preisach model

In this section we compare our model with the classical Preisach model which is
widely used in the description of hysteresis in both mechanical and magnetic systems
(Bertotti, 2000; Ortin, 1992).

According to the Preisach model, any hysteretic system which satisfies certain defini-
tive properties (see, for instance, Mayergoyz, 1991) can be formally represented as a
collection (or as a continuous distribution) of noninteracting bi-stable elements. Each
element can occupy two configurations which are described by an output parameter y
taking values +1. The precise value of y depends on the value of the input parameter
x through a hysteretic constitutive operator shown in Fig. 9(a); the hysteresis loop of
a sample element is characterized by two parameters o and [ whose values are dis-
tributed with a probability density p(c, ). The average output can be calculated from
the formula

5@ = poup)dudp / p(o B) dodp, (53)
Rt R~

where Z. is the region in the (o, ) plane where y =1, while Z_ is the complementary
region; by knowing the evolution of these domains one can keep track of the loading
history.

The similarity between the Preisach model and our chain with bi-stable elements
loaded in a soft device is quite obvious. First, the input parameter x of the Preisach
model is an exact analog of our applied stress; in the absence of the interaction beyond
nearest neighbors, the applied stress acts in our case as a mean field. The role of the
output parameter y is played in our model by the strain &. The stress—strain relation
for our individual bi-stable element is hysteretic: the two parameters of the Preisach
element o and f§ can be identified in the present case with the Maxwell stress g, and
the transformation stress Gy := o, — o). One can also relate the gray area in Fig. 9(a)
for the Preisach element with our cold work and the black areca on the same graph
with our dissipation (see Fig. 9(b)).
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In spite of these apparent similarities, the two models are quite different; in particular
the overall response in the mechanical model is potentially much richer than in the
Preisach model. This may not be so transparent in the present treatment because, due
to the uniformity of the bi-stable elements, the resulting Preisach distribution is trivial
(reduces to a delta function).

To highlight the differences between the models we notice that the spring lengths in
our model are not constrained to take specific values and exhibit elastic response; in
this sense a Preisach element can be viewed as a limit of our snap-spring unit with an
infinite elastic modulus. The most important difference, however, is that in our model
the nonequilibrium configurations of the individual elements are not controlled directly
by the applied stress. As a result our model generates additional possibilities for the
system of being trapped in the local minima separated by the corresponding energy
barriers which gives rise to a much broader class of evolution strategies ranging from
no hysteresis at all to the paths with a maximal delay.

The simplest way to compare the models is to look at the special case of the Preisach
model when all elements are identical. In this case the classical Preisach model predicts
that all elements transform at once which eliminates the possibility of the inner loops
observed in the experiment (see Fig. 8). On the contrary, our model with identical
elements is compatible with locking in a variety of metastable configurations.

The simplest adaptation of the Preisach model to our case can be obtained if one
adds an elastic term in Eq. (5.3) and assumes that the parameters of the two models
are chosen to be compatible. Specifically, since all the elements are identical, we define

p=p(o, f)=0d(cc — 61 )0(f — (a1 — aur)), (5.4)
where ojs characterizes the elementary contribution to cold work [®]=20y, while
o, — oy gives a measure of the associated dissipation Q = — 2(a,7 — 0y7).

Due to the elasticity of the elements we have to modify the standard Preisach formula
for the average output by adding a purely elastic term. We obtain

HG(1)) =G — ow + / 500 — au (B — (o — o)) dudf
R+

= [ o s o ~ o dud. (5.5)

To illustrate this formula, consider a case when the stress is increasing beginning
from the homogeneous configuration with (64,0 — a3r) € #~. Then according to
Eq. (5.5) &6)=06 — o) — 1 and the model chooses the homogeneous branch (N, 0,0).
At 6 =0 all elements change phase. Now, (o4,0F — ay) € 2" which corresponds
to the other homogeneous branch (0,0,N) with all the elements in the second well
and &G)=6 — oy + 1. If the load continues to increase the system stays, accord-
ing to Eq. (5.5), on the same branch. If now the load is decreased, the elements
change phase again at ¢ =0, and the system evolves according to the condition that
(0ar, 04 — oy ) ER. As a result the system completes the same loop as our bi-stable
discrete system (see Fig. 8(c)), exhibiting the return point memory and congruency
properties (see Mayergoyz, 1991). Based on this analysis we can conclude that once
elasticity is introduced, the modified Preisach model shows the same outer loops as our



G. Puglisi, L. Truskinovsky | J. Mech. Phys. Solids 50 (2002) 165-187 185

discrete system. At the same time, the inner loops shown in Fig. 8, originating from
the possibility for our discrete system to be trapped in each of the metastable states,
cannot be reproduced by the modified Preisach model. We should mention, however,
that the failure of the present version of the Preisach model to generate a richer class
of internal loops should be partially attributed to the degeneracy of the special Preisach
distribution considered here; essentially in this version of the Preisach model we are
dealing with one bi-stable element.

7. Conclusions

In this paper we studied the simplest prototypical mechanical system exhibiting some
of the most important features of shape memory alloys and some other active mate-
rials: microstructure formation, propagation of phase boundaries, large reversible de-
formations, and hysteresis. The main characteristics of the model responsible for these
constitutive properties are discreteness and the nonconvexity of the elemental energy.
A careful study of the interplay between discreteness and nonconvexity is crucial for
the understanding of rate independent hysteresis and other phenomena associated with
the trapping of the material in the wiggly energy landscape.

Specifically, we considered a cyclic loading in a soft device of an overdamped
discrete chain with N bi-stable snap-springs. For simplicity of computations the energy
of an individual snap-spring was chosen to be tri-parabolic, which partially linearized
the problem. This simplification allowed us to study in detail the complicated energy
landscape of this system at arbitrary N and quantify nonequilibrium paths associated
with the minimal energy barriers. As we showed, in a complete loading—unloading cycle
our overdamped elastic chain behaves like an elastoplastic element. The cycle contains
2N quantized advances of the transformation; each of these advances is externally
activated and is accompanied with a finite dissipation. Due to the analytical simplicity
of the model we could also evaluate at each step of the loading program the fraction
of the energy irreversibly transformed into heat.

According to our model, the hysteresis loops may be decomposed into two stress
plateaux reflecting the transition processes and a multiplicity of connecting edges where
no phase transition is taking place. Characteristically, both internal and external loops
are distinguished by the same magnitude of the transition stress. Positive cold work is
produced along the direct path and negative cold work is generated along the reverse
path, which makes the cyclic transformation structurally reversible. At the same time,
the transformation remains a nonequilibrium process in the sense that during both the
direct and the reverse transitions energy is dissipated. Comparison of this behavior
with the experimental results for a cubic-monoclinic transition in Ni—Ti shape memory
wires under cyclic loading demonstrates good qualitative agreement. As we showed, it
is also instructive to view the present model as a modification of the Preisach model
with potentially richer response and with wider applications for different hysteretic
systems.

There exist several directions along which our elementary model can be augmented.
Thus one can consider an inhomogeneous chain with the elements differing in their
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stiffnesses and the size of their spinodal regions (case of varying coercivities). One
can show that such an inhomogeneous chain exhibits much more complex history de-
pendence comparing to the case of identical springs; moreover, the chain with randomly
distributed properties generates nonconstant heat/cold work ratio which is compatible
with some recent experiments on metal plasticity. The application of the inhomoge-
neous model in the case of a hard device produces a realistic saw-tooth hysteresis with
a characteristic hardening.

The extensions of the snap-spring model to the case of more than one dimension,
further than nearest neighbor interaction, and several energy wells also presents an
interesting challenge. The most nontrivial problems, however, are associated with the
construction of the adequate continuum limit. As we showed the energy along our “opti-
mal” path is a wiggly function of the total strain with the barriers inversely proportional
to N. As the number of springs increases the potential energy (weakly) converges to
the convex envelope of the corresponding function for a single spring. One can notice,
however, that the derivatives of the energy exhibit rapid oscillations of finite amplitude
which persist in the limit N — oo; as a result, the stress—strain relation for a discrete
system cannot be obtained by differentiation of the limiting energy. The presence of
a dense set of metastable configurations on the stress—strain diagram for a limiting
system makes conventional purely elastic continuum limits at least questionable.
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