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We propose a spin model with quenched disorder which exhibits in slow driving two drastically

different types of critical nonequilibrium steady states. One of them corresponds to classical criticality

requiring fine-tuning of the disorder. The other is a self-organized criticality which is insensitive to

disorder. The crossover between the two types of criticality is determined by the mode of driving. As one

moves from ‘‘soft’’ to ‘‘hard’’ driving the universality class of the critical point changes from a classical

order-disorder to a quenched Edwards-Wilkinson universality class. The model is viewed as prototypical

for a broad class of physical phenomena ranging from magnetism to earthquakes.
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The study of criticality in externally driven inhomoge-
neous systems has attracted much attention in the last two
decades [1]. Such systems exhibit rate independent dissi-
pation and are widely used to model hysteretic phenomena
and intermittency associated with magnetism, supercon-
ductivity, porous flow, fracture, friction, plasticity, and
martensitic phase transitions [2]. It has been realized that
in most cases scaling emerges as an interplay between
quenched disorder, extremal dynamics, and quasistatic
driving [3]. Within this general framework the theoretical
work has been mostly focused on two types of models. In
models of the random field Ising (RFIM) type, the critical
behavior requires fine-tuning of the amount of disorder r,
and the intermittent events (avalanches) are scale-free only
at a certain r ¼ r0 [1]. An alternative approach links
criticality to a pinning-depinning (PD) transition where
the disorder r is an irrelevant parameter [5]. It has been
established that criticality in the first class of models is
classical, as in second order phase transitions [1], while in
the second class it is self-tuning in the sense that infinitely
slow driving brings the system automatically on a critical
manifold [6–8].

The two approaches are fundamentally different. The
first model describes regimes with dominating nucleation,
while the second one deals exclusively with propagation. It
is then not surprising that the resulting criticality is differ-
ent. In the RFIM the emerging scaling has been explained
by the existence of a classical critical point of the order-
disorder (OD) type. On the contrary, in PD theory one
encounters a range of universality classes none of which
can be formally reduced to OD. A relation between the two
types of critical phenomena has been, however, antici-
pated. Previous work has shown that the presence of a
nonlocal demagnetizing field of antiferromagnetic nature
(as in soft magnets) can self-tune the RFIM to display
front-propagation critical exponents [9,10]. In the PD
framework similar ‘‘self-tuning,’’ often interpreted as

self-organized criticality (SOC), is obtained if the system
is driven through a ‘‘weak spring’’ which provides an
explicit feedback mechanism [11–13]. In this Letter we
use these insights to develop the first unifying model which
displays a crossover between the OD and quenched
Edwards-Wilkinson (QEW) universality classes. We
show that such crossover can be achieved experimentally
by modifying the properties of the external driving. Since
the QEW model is equivalent to the Oslo rice pile model
[14] and is therefore paradigmatic for SOC, we are essen-
tially dealing here with a fundamental relation between OD
and SOC.
We base our model on the observation that solids can be

deformed either by applying a force (soft device), or by
controlling surface displacements (hard device) [15,16].
Both driving mechanisms, soft and hard, can be handled
simultaneously if the system has a finite ‘‘elasticity.’’ To
introduce this effect in a spin setting, consider a prototyp-
ical model which we call RSSM (random soft-spin [17] or
snap-spring [18,19] model). The main difference between
the RSSM and its predecessor RFIM is the finite curvature
of the energy wells and the presence of elastic barriers.
While the role of the softness of the spins is known to be
secondary in equilibrium and in the case of soft driving,
where it can be accounted for through an appropriate
‘‘dressing’’ of the underlying hard-spin model [17], the
curvature of the wells becomes crucial in the case with hard
driving where it plays the role of a regularization of the
otherwise degenerate problem [16].
Consider a set of N bistable units located on the nodes

i ¼ 1; 2; . . . ; N of a cubic lattice with linear size L ¼ N1=3.
The state of each snap-spring is characterized by a con-
tinuous scalar order parameter ei measuring the local
‘‘strain.’’ The energy of the system is

� ¼ 1

N

XN

i¼1

fiðeiÞ þ 1

2N

XN

i;j¼1

Kijeiej; (1)
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where fiðeiÞ is a double-well potential andK ¼ fKijg is the
interaction kernel with sufficient rate of decay to ensure
convergence in the thermodynamic limit. In each well (one
defined for ei < 0 and the other for ei > 0) we use the
approximation fiðeiÞ ¼ 1

2 ðei � siÞ2 � h0iei, where si ¼ �1

is a spin variable and fh0ig are random numbers representing
quenched disorder. The system is loaded through an ‘‘elas-
tic’’ device with the energy �d ¼ c

2 ðe� �eÞ2, where �e ¼
ð1=NÞPiei is the average strain of the system of snap-
springs, c is the stiffness of the loading device, and e is
the control parameter (global ‘‘strain’’). One obtains a hard
device in the limit c ! 1, and a soft device in the limit
c ! 0, e ! 1 with the stress � ¼ ce fixed; the system
will be driven quasistatically by changing the control
parameter e, if c is finite, and �, if c ¼ 0. We neglect
thermal fluctuations (T ¼ 0) and assume that the harmonic
variables ei relax ‘‘instantaneously’’ and can be adiabati-
cally eliminated. By minimizing the total energy �þ�d

with respect to ei we obtain ei ¼ ~eþP
N
j¼1ðJij � k

NÞsj þ
hi, where J ¼ ð1þKÞ�1 is the effective interaction be-
tween the spin variables si. We impose periodic boundary
conditions, meaning that k1 ¼ P

jJij does not depend on i,

and use the notations ~e ¼ e½ck1ðck1 þ 1Þ�1�, k ¼
k1½ck1ð1þ ck1Þ�1�, and hi ¼

P
jJijh

0
j.

Because of the absence of thermal fluctuations and to the
separation of time scales between overdamped relaxation
and driving, the system remains on a metastable branch
feiðfskg; eÞg corresponding to a particular local minimum of
the total energy until the latter ceases to be stable [19].
When the instability condition siei < 0 is reached for some
i the system jumps (through an avalanche) to another
locally stable branch characterized by a different spin
configuration fs0ig. We increase e by driving the system
from an initial stable configuration with fsi ¼ �1g and
assume that avalanches propagate (at constant e) with
synchronous dynamics. For simplicity, we consider only
nearest-neighbor interactions with Jii ¼ J0, Jij ¼ J1, and

we set J0 ¼ J1 ¼ 1 so that k1 ¼ 7. The renormalized
disorder variables fhig are drawn from a Gaussian distri-
bution with zero mean and standard deviation r. Under
these assumptions, the RSSM becomes formally equivalent
to a nonlocal augmentation of the classical RFIM with
demagnetizing factor k [1,8–10,20].

At k ¼ 0we expectedly observe an OD transition at r0 ’
2:2 which separates a ‘‘popping’’ (POP) regime (r > r0)
where all the avalanches are small from a ‘‘snapping’’
(SNAP) regime (r < r0) where an infinite avalanche
sweeps most of the system [1,21]. The stress-strain curve
�ðeÞ ¼ k�11 ð~e� kN�1

P
isiÞ is continuous in the POP re-

gime and displays a macroscopic discontinuity of the strain
in the SNAP regime [see Fig. 1]. The strain discontinuity
associated with the nucleation of the infinite avalanche
occurs at a ‘‘nucleation’’ stress �n which decreases with
r as indicated in Fig. 2.

For nonzero k, the POP regime remains essentially un-
altered. In contrast, stiffness has a nontrivial effect over the

SNAP regime observed at low disorders. In this case, a
compact domain reminiscent of the infinite avalanche (as
in the k ¼ 0 case) nucleates at the stress �n. The stress
relaxes during the avalanche growth to satisfy the global
driving constraint. When k is below a certain threshold
kpðrÞ, the SNAP behavior remains qualitatively as in the

k ¼ 0 case because the nonlocal constraint is still soft. In
contrast, when k > kpðrÞ, the first stress drop prevents the

spanning avalanche from growing [Fig. 1]. The transfor-
mation induced by the subsequent increase of e proceeds
through the intermittent growth of the previously nucleated
domain with untransformed system acting as a disordered
background. The propagation is accompanied by stress
oscillations around the propagation threshold �p which

remains stable during the whole yielding process. The
average of �p over disorder coincides with the depinning

stress �pd for a flat [100] interface artificially introduced

and driven as in Refs. [22,23]. This is clear evidence that
systems with k > kpðrÞ reach a front-propagation regime

which self-tunes exactly around the PD point. The surface
morphology of the growing domain is faceted at low dis-
orders (r & 0:8 for systems with L ¼ 100) and is self-
affine at intermediate disorders. According to previous
studies [23,24], the faceted morphology is unstable giving
rise to self-affine morphology in the thermodynamic limit
for any finite r. Given the self-affine character of the
boundary of the nucleated domain in the case of intermedi-
ate disorders and the short-range character of the involved
interactions, one expects to observe critical scaling of the
QEW universality class [5].
We check the validity of this assumption by analyzing

the scaling properties of the number of spanning ava-
lanches Nsðk; r; LÞ and the distribution DðS; k; r; LÞ of
avalanche sizes S. Following the arguments given in
Ref. [21], we consider contributions to Ns of avalanches
spanning along 1 or 2 dimensions only. Table I summarizes
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FIG. 1 (color online). Stress-strain curves for k ¼ 0 (dotted
line), k ¼ 0:5 (dashed line), and k ¼ k1 (continuous line) for
r ¼ 1:5 in a system with L ¼ 64; �p and �n are propagation and

nucleation thresholds, respectively.
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the action of the renormalization group (RG) transforma-
tion on the parameters of the system and the resulting
scaling hypotheses. The scaling variables measuring the
distance to the OD critical point are u ¼ r� r0 and k. The
distance to the QEW critical manifold is w ¼ k� kpðrÞ.

Scaling collapse for Nsðk; r; LÞ close to the line kpðrÞ,
shown in Fig. 3(a), confirms the validity of our scaling
hypothesis. We have checked that QEW scaling persists
over a finite interval of disorders r < r0. QEW scaling fails
for disorders close to r0 (above r� 2 for our system sizes)
due to crossover to the OD critical regime. Figure 3(b)
displays the scaling collapse at u ¼ 0 which generates the
exponents �0 and �0 given in Table I. The value of �0
which, in contrast to �q is positive, agrees with previous

estimates for the RFIM [21]. Figure 3(c) presents the
scaling collapse of DðS; k; r; LÞ for r ¼ 1:5 corresponding
to a particular section of the function ~DðSL�dq ; wL�qÞ at
constant wL�q . The resulting exponents dq and �q listed in

Table I do not depend on the selected section and are in

agreement with previous estimates from front-propagation
models [6,9,23]. This confirms once again that the propa-
gation regime is of the QEW class; the analysis of statistics
of durations, omitted here, also supports this interpretation.
The value of dq, giving the dimension of the avalanches in

the propagation regime, is consistent with d� 1, which
confirms the self-affine morphology of the propagating
domain boundary [23]. The distributionDðS; k; r; LÞ at r ¼
r0 scales with exponents previously reported for the OD
universality class when k is very small. The exponent �0
displays a considerable crossover to QEW when the stiff-
ness becomes relatively large. For instance, Fig. 3(d) shows
that the scaling ofDðS; k; r; LÞ at kL�0 ¼ 400 is better with
exponent �q than with �0.

TABLE I. Scaling of the relevant quantities under a RG transformation with blocking parameter b and values of the associated
critical exponents [close to OD (subindex ‘‘o’’) and to QEW (subindex ‘‘q’’)].

OD QEW

RG exponents RG exponents

System size, L LðbÞ ¼ b�1L LðbÞ ¼ b�1L
Stiffness, k kðbÞ ¼ b�0k �0 ¼ 1:3� 0:3 wðbÞ ¼ b�qw �q ¼ 0:8� 0:2
Disorder, r uðbÞ ¼ b1=�0u �0 ¼ 1:2� 0:1 ([21]) Irrelevant

Size, S SðbÞ ¼ b�d0S d0 ¼ 2:78� 0:05 ([21]) SðbÞ ¼ b�dqS dq ¼ 2:0� 0:1
Nsðk; r; LÞ NsðbÞ ¼ b��0Ns �0 ¼ 0:10� 0:02 ([21]) NsðbÞ ¼ b��qNs �q ¼ �0:2� 0:06
DðS; k; r; LÞ DðbÞ ¼ b�0d0D �0 ¼ 1:6� 0:06 ([1]) DðbÞ ¼ b�qdqD �q ¼ 1:3� 0:06

Nsðk; r; LÞ L�0N̂sðkL�0 ; ku��0�0 Þ L�q ~NsðwL�q Þ
DðS; k; r; LÞ L�d0�0D̂ðSL�d0 ; kL�0 ; ku��0�0 Þ L�dq�q ~DðSL�dq ; wL�q Þ

0 50 100 150

w L
ρ

q

0

2

4

6

8

10

L
−θ

q  N
s(k

,r
,L

) L = 24
L = 32
L = 48
L = 64
L = 100

(a)

0 100 200 300

k L
ρ

o

0

0.5

1

1.5

2

2.5

3

L
−θ

o  N
s(k

,r
,L

)

(b)

10
-4

10
-3

10
-2

10
-1

10
0

S L
-d

q

10
-2

10
0

10
2

10
4

L
d qτ q  D

(S
,k

,r
,L

)

(c)

wL
ρq = 66

10
-5

10
-4

10
-3

10
-2

10
-1

S L
-d

o

10
0

10
2

10
4

10
6

10
8

L
d oτ  D

(S
,k

,r
,L

)

(d) kL
ρq = 400

τ = τ
oτ = τ

q

FIG. 3 (color online). Scaling collapse of Nsðk; r; LÞ (a,b) and
DðS; k; r; LÞ (c,d) according to the hypotheses in Table I.
Different symbols correspond to different system sizes as in-
dicated in the legend. Data in plots to the left (right) correspond
to r ¼ 1:5 (r ¼ r0). Data in (c) correspond to wL�s ¼ 66; in (d)
to kL�0 ¼ 400. The lower scaling collapse in (d) is obtained with
exponent �q while the upper one corresponds to �0; dashed lines

indicate the power laws expected in the thermodynamic limit.
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FIG. 2 (color online). Dependence on disorder of the averaged
nucleation and propagation thresholds: h�ni (squares), h�pi at
k ¼ k1 (circles), and h�pdi for an interface [100] (triangles).

Insets: cross sections of the 3D system showing typical trans-
formation domains for k ¼ k1. Darker and lighter colors indi-
cate transformed regions (s ¼ þ1) and untransformed regions
(s ¼ �1).
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In Fig. 4(a) we present the phase diagram in the (r, k)
plane showing stable SNAP and POP regimes separated by
the QEW line w ¼ 0. This line describes QEW behavior
and it ends in a point corresponding to the OD regime. The
variety of observed nonequilibrium steady states can be
explained if one assumes the existence of four fixed points
for the RG flow, schematically depicted in Fig. 4(b). The
OD regime is associated with a fully repulsive critical point
which can be reached only by tuning all four parameters:
� ¼ �c, r ¼ r0, k ¼ 0, and L�1 ¼ 0. In contrast, QEW is
a saddle point with a stable manifold which governs the
large scale behavior of the systems with r < r0, � ¼
�pdðrÞ, k ¼ kpðrÞ, and L�1 ¼ 0. As we have seen the

condition � ¼ �pdðrÞ is reached automatically during the

self-organized propagation regime with k � kpðrÞ; the cor-
responding systems lay on the critical manifold connecting
OD and QEW points. The large scale behavior for systems
located away from the critical manifold is governed either
by SNAP (arrow 2) or by POP (arrow 3) fixed points which
are trivial attractors in the RG sense. While the self-
organized propagation regime is strictly critical only for
k ¼ kpðrÞ, our numerical simulations show that the system

exhibits truncated power law scaling with QEWexponents
in a broad range of parameters around the line kpðrÞ
[arrows 4 and 40 in Fig. 4(b)]. This observation suggests
that SOC can be viewed as an intermediate asymptotics. In
general, since in real systems stiffness is finite and disorder
is generic, we anticipate the power law structure of critical
fluctuations to be in most cases of the PD rather than of the
OD type.
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FIG. 4 (color online). (a) Schematic phase diagram for the
RSSM (thermodynamic limit). Criticality of the OD type is
associated with the point r ¼ r0, k ¼ 0. Criticality of the
QEW type is expected on the line kpðrÞ separating SNAP and

POP regimes; symbols display estimations of kpðrÞ from scaling

collapses. (b) Schematic RG flow for the RSSM model.
Separatrix 1 going from the neighborhood of the OD fixed point
towards the QEW fixed point indicates the QEW critical mani-
fold. The RG flow towards SNAP and POP regimes is indicated
by arrows 2 and 3, respectively. Lines 4 and 40 correspond to
systems which display SOC as an intermediate asymptotics
[QEW exponents with supercritical or subcritical cutoffs for k <

kpðrÞ and k > kpðrÞ, respectively].
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