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We propose an explanation for the self-organization towards criticality observed in martensites during
the cyclic process known as ‘‘training.’’ The scale-free behavior originates from the interplay between the
reversible phase transformation and the concurrent activity of lattice defects. The basis of the model is a
continuous dynamical system on a rugged energy landscape, which in the quasistatic limit reduces to a
sandpile automaton. We reproduce all the principal observations in thermally driven martensites,
including power-law statistics, hysteresis shakedown, asymmetric signal shapes, and correlated disorder.
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Experiments in martensites reveal intermittent behavior
with power-law statistics [1–4], showing an intrinsic com-
plexity comparable to that of turbulence, earthquakes,
internet networks, and financial markets. Criticality is
known to be an issue of great significance in contemporary
science, giving a framework for understanding the emer-
gence of complexity in a variety of natural systems [5,6].
Within materials science, criticality has been recognized in
the last years as a key factor in crystal plasticity, brittle
fracture, and damage [7]. In the present Letter, we develop
a model explaining why similar behavior is also observed
in martensitic transformations.

Reversible martensitic transformations involve a coor-
dinated distortion of the crystal lattice and belong to the
class of ferroelastic first-order phase changes with athe-
rmal character [8,9]. In such systems the macroscopic
strain discontinuity typically splits into a set of bursts
(avalanches) corresponding to transitions between neigh-
boring metastable states. The individual avalanches can
be detected through the measurement of the intermittent
acoustic or calorimetric signals. The size distribution
observed in shape-memory alloys (Cu-Al-Ni, Cu-Zn-Al,
Cu-Al-Mn, Ni-Mn-Ga) was shown to be scale free
[1–4,9]. Despite the apparent similarity with driven ferro-
magnetic systems, where the scale-free Barkhausen
noise has been known for a long time, the experiments
on memory alloys show features not observed in magnets,
and which are instead reminiscent of plastic shakedown. In
particular, the critical character of the avalanches [2,3]
and the smoothing of the hysteresis profile [3,10]
emerge only after multiple thermal cycling through the
transition.

The mechanism leading to training-induced critical be-
havior in martensites strongly resembles the phenomenol-
ogy associated with self-organized criticality (SOC) [5].
The SOC paradigm in the form of a sandpile automaton has
been applied to martensitic transformations in [11]; which,
however, lacked a connection to the physics of martensitic
transformations. A different set of models exploited the
similarity between martensites and magnetics by interpret-

ing both in an Ising-type framework, with zero temperature
and quenched disorder [12]. In this context the power-law
over a few decades of avalanche sizes is viewed as a sign of
proximity of the system to a classical critical point.
Criticality then emerges only as a result of tuning the
disorder. Furthermore, the symmetric avalanche shapes
with scaling collapse, which are expected in these models
[12], contrast those experimentally recorded [13]. More
recent modeling has focused on the direct simulation of
martensitic transformations within the framework of elas-
ticity theory [14]. While the corresponding numerical tests
show some scaling in avalanche sizes, the system is unable
to memorize its state of disorder upon unloading, failing to
exhibit the effects of training.

A key experimental observation left aside in the preced-
ing theoretical work is the dislocational activity assisting
the development of the phase transformation in these ma-
terials [10,15–18]. It has been repeatedly observed that
dislocations are indeed introduced in shape memory alloys
during training. In particular, under periodic driving the
degree of defectiveness first increases monotonically and
then saturates [16,17]. Our model shows that this disloca-
tional activity is highly correlated and is ultimately respon-
sible for the scale-free character of the reversible behavior
of martensites. More precisely, the attainment of criticality
is due to the ability of the crystal to develop an optimal
amount of disorder.

To describe in a unified way the processes involving
both dislocations and phase boundaries, we consider a
prototypical 2D system of kinematically compatible elastic
units resulting from a suitable triangulation of a square
lattice (see an example of such procedure in [19] ). To each
unit with index i we assign a multiwell strain energy
function depending on a single scalar order parameter e
which, in turn, is a combination of the components of the
discrete strain tensor. The adiabatic elimination of the
harmonic nonorder-parameter strain variables by means
of the equilibrium equations and the kinematic compati-
bility constraints leads to a nonlocal elastic energy of the
form
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where K � fKijg is the kernel of the long-range elastic
interactions, and f is a periodic function as in Fig. 1. In
each period we use the three-parabolic approximation
f�e;T� � 1

2 �e� w�
2 � g�T�s2, where s � 0 in the high

symmetry phase (austenite) and s � �1 in the two variants
of the low symmetry phase (martensite). The parameter
w � d� �es, where �e is the transformation strain, defines
the location of the bottoms of the energy wells; the integer-
valued parameter d specifies the period of f. We emphasize
that no randomness has been assumed in the model.

The global periodicity of the energy takes large shearing
distortions into account [20], so that both the phase change
and dislocation formation can be handled simultaneously.
When the transformation strain is small and the energy
barriers for slip are much higher than the barriers for the
phase transition and twinning (‘‘weak transitions’’, as with
the rhombohedral R phase of NiTi [10] , or the premarten-
sitic transformation in Ni-Mn-Ga [4] ), no lattice-invariant
shears occur and modeling can proceed according to the
Landau theory. Such phase changes do not generate sig-
nificant dislocational activity and are largely reversible, as
is assumed, for instance, in [14,21]. On the contrary, in
‘‘reconstructive transformations’’ the transformation strain
is large, as it lays at the boundary of the periodicity domain
(e.g., the ideal Bain transformation from bcc to fcc). In
those cases the energy barriers to slip are only as high as
the transformation barriers, and the phase change advances
‘‘halfway’’ towards the formation of dislocations [19]. As a
result, defects proliferate making the transition irreversible
[22]. In between these two extremes, a range of possibil-
ities exists, where defect formation plays an increasing role
as the transformation strain gets closer to the boundary of
the maximal periodicity domain. In particular, all the mar-
tensitic transformations considered in the experiments that
we are concerned with [1–4,9] involve a transformation

strain �e which is very close to the ideal Bain strain [23].
When slowly driven, these systems are expected to exhibit
cell deformations not confined to one periodicity domain,
but rather extending to an unbounded portion of the peri-
odic energy landscape. This involves formation of disloca-
tions, which our kinematic compatibility assumption does
not exclude, as is exemplified in Fig. 2, where we compare
the standard representation of a dislocation [Fig. 2(b)] with
the one adopted in this Letter [Fig. 2(a)].

We drive the system quasistatically through the function
g�T�, by changing the temperature T. Since the transfor-
mations are typically athermal [9], we consider a purely
mechanical setting with overdamped dynamics. By making
this assumption we treat the acoustic emission as a part of
dissipation. In the limit of infinitely slow driving, the
dynamics projects on the local minima of the total energy
~�, which form a discrete set of branches e � e�g�, with
e� < e< e�, where the extremes e� correspond to mar-
ginally stable configurations [24]. For piecewise parabolic
f as in Fig. 1, the limits e� of each branch can be explicitly
written as a function of g and �e. When such limits are
reached, the instability resolves through a fast event (ava-
lanche) which brings the system to another equilibrium
branch. In this way the dynamics becomes piecewise con-
tinuous (see [25] for a study of the 1D case).

We proceed by eliminating through minimization the
linear elastic strain e at given d and s obtaining e � �1�
K��1w. The relaxed energy is of the Ising type
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where the two discrete spin variables describe the phase
transformation (s) and the plastic slip (d), and J � �1�
K��1 � 1. Since the energy (2) is supposed to penalize the
inhomogeneity of the field wi induced by either phase
boundaries or dislocations, we assume that the correspond-
ing term has the particular form 1

4

P
Jij�wi � wj�

2 so that
Jii � �

P
j�iJij. We furthermore assume the kernel J to be

of the ANNNI type, to account for the competing inter-
actions driving both the coarsening and the refinement of
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FIG. 1 (color online). Schematic representation of the periodic
potential f�e;T� with the shaded box highlighting a single
domain of periodicity. Insets on top show the lattice structures
corresponding to the bottoms of the potential wells, with lattice
cells marked for the austenite A and for the martensite variants
M�. The austenite A0 corresponds to a different period of the
potential.

(a)

A A

(b)

A A

FIG. 2 (color online). Two representations of a dislocation.
(a) Continuous lattice deformation involving partial slip, as is
interpreted in the text. (b) The same atomic configuration viewed
within the classical interpretation involving a discontinuous
deformation and a nonzero Burgers vector. The shaded units
refer to austenite in the wells A and A0 in Fig. 1.
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the microstructure [21,26]. Specifically, we consider Jij �
J1 > 0 for nearest neighbors, and Jij � �J2 < 0 for next-
to-nearest neighbors; the ensuing diagonal-dominated
structure of the matrix J does not prevent the original
matrix K in (1) from being dense. Suitable inequalities
ensure the metastability of the individual equilibrium
branches [25]; in particular, the condition J1 � 2J2 is
sufficient for our automaton to reach a steady state (we
use J1 � 0:062, J2 � 0:03 in the simulations presented
below).

Under the above hypotheses, the piecewise continuous
dynamics becomes a sandpile automaton, whose main
variable is the elastic strain �i � ei � wi representing the
‘‘local height.’’ Once a cell becomes unstable (the condi-
tion e� < ei < e� is violated), �i is updated as
 

�i ! �i � 4�J1 � J2�r;

�j ! �j � J1r; j nearest neighbors of i;

�k ! �k � J2r; k next-to-nearest neighbors of i;

(3)

where r � � �e for phase transitions, and r � ��1� 2 �e�
for slips. Since each update may make new sites unstable,
the updates continue at constant g until the system is fully
equilibrated. For J2 � 0, �e � 1

3 , and g � 0 the automaton
(3) reduces to the standard Bak-Tang-Wiesenfeld sandpile
[5].

We implement the model numerically on a 501� 501
grid for an almost reconstructive transformation with �e �
0:47 and open boundary conditions. The initially homoge-
neous austenite is chosen to contain only a minimal dis-
location loop. The crystal is then thermally cycled through
the complete transformation, g being a periodic triangular
function of computational time. The intensity of the acous-
tic bursts registered experimentally is linked to the size of
the avalanches (total number of updates before stabiliza-
tion). Figure 3(a) shows the development of the phase
microstructure during the training period. The level of
plastic deformation is monitored through the density � of
nearest neighbors with differing values of di. Figure 3(b)
shows the formation of dislocations induced by training
and marked by the steep initial increase in the variable �
[Fig. 4(a)]. The creation of correlated dislocation micro-
structure quickly saturates, in accordance with the experi-
ments [16,17]. In Fig. 4(b), we observe the smoothing
effect of the self-organized defects on the cooling curves
(and hence on the hysteresis cycle). The dislocational
activity leads to the increase of the martensite starting
temperature, similarly to what is reported experimentally
[3]. The parallel development of criticality is indicated by
the emergence of the power-law statistics for the avalanche
sizes [Fig. 4(c)]. At the beginning of the training period the
avalanche distribution is supercritical with a peak at large
sizes evident from the sharp initial cooling curves in
Fig. 4(b). The peak eventually vanishes [Fig. 4(c)], as in
the experiments [3]. Two further predictions of the model
matching experimental data [13] concern the strong asym-

metry of the avalanche shapes and the absence of their
scaling collapse [see Fig. 4(d)]. Similar effects are also
observed in Barkhausen noise, earthquakes, and dynamic
fracture (see the discussion in [27] ). Figure 4(c) shows the
distribution of avalanche durations (number of simulta-
neous updates in an avalanche) predicted by the model,
which deviates from a power law. This indicates that in the
present framework a scale-free size distribution does not
always imply scaling in time. While this prediction for an
idealized system (with neither inertia nor fixed pinning
sites) disagrees with the scaling for durations reported
experimentally [1], our model does generate an almost
power-law distribution of durations after the introduction
of a small amount of quenched disorder represented by a
Gaussian distribution of �i with zero average in the initial
configuration. Such modification, however, does not influ-
ence the power-law distribution of avalanches, nor does it
affect the pulse asymmetry.

When in the original setting with two variables s and d
the phase transformation is suppressed (no variable s); the
model describes the micromechanics of stress-driven in-
termittent plastic flow in crystals [28]. In this case the
system is defined by the single integer-valued order pa-
rameter d as in the phase-field description of plasticity
[29], to which our model offers an analytically accessible
automaton alternative [30]. What is more, the present
scheme of plasticity does not require ad hoc procedures
for the nucleation and annihilation of dislocations, as in

FIG. 3 (color online). Evolution of the phase and defect micro-
structures in the lattice during thermal cycling. A minimal
dislocation loop was placed at the middle of the system.
(a) Configuration of the martensitic phase domains, represented
by the field si, after cycle 1 and cycle 2000 (turquoise and blue
indicate s � 1 and s � �1, respectively). (b) The corresponding
configurations of the slip variable d. White and brown colors
indicate d � 0 and d � 0 (mostly jdj � 1), respectively. The
black contours separate elements with different d.
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discrete dislocation dynamics [31]. When, in contrast, the
variable d can be neglected in the original setting, as in
weak martensitic transformations (or in magnetics), the
model still generates several decades of power-law ava-
lanche distribution in accordance with the experiments in
Ni-Mn-Ga [4], but only in the presence of some quenched
disorder represented again by a Gaussian distribution of �i
in the initial configuration. In this case the emergence of
limited scaling does not involve training and can be ex-
plained by the proximity of the system to a classical critical
point [12].

In summary, the proposed self-organizing spin model
accounts for all the main observed phenomena accompa-
nying the training process in martensites leading to criti-
cality. The agreement with experiment clearly indicates
that SOC originates in these systems as a result of the
interplay between the reversible phase change and the
irreversible development of an optimal amount of plastic
deformation.

We thank J. Aizenberg, P. Collet, Ll. Mañosa, A. Planes,
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FIG. 4 (color online). Evolution to criticality and features of
the critical state. (a) The dislocation density � during the first
2000 cycles. (b) Cooling curves representing phase fraction vs
temperature in arbitrary units (cycle 1, solid line; cycle 200,
dashed line). The corresponding experimental data [3] are shown
in the inset for comparison (1st and 24th cycles). (c) Steady-state
power-law distribution of the avalanche sizes and nonpower-law
distribution of durations (displaced one decade lower for clarity).
(d) Asymmetric avalanche shapes. The inset shows the corre-
sponding experimental data [13].
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