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Abstract 

We present a new methodology for the systematic reduc­
tion of a continuum theory of martensitic transformations 
to a spin system whose dynamics can be described by an 
automaton. Our prototypical model reproduces most of 
the experimental observations in martensites associated 
with criticality and power law acoustic emission. In par­
ticular, it explains in a natural way why cyclic training is 
necessary to reach scale-free behavior. 

Introduction 

Both acoustic and calorimetric signals which are routinely 
detected in shape-memory alloys submitted to quasi-
static loading have a marked intermittent character [1-4]. 
Such behavior indicates that the finite strain effect as­
sociated with the martensitic transformation splits in a 
steadily driven system into a set of strain avalanches of 
different sizes which reflect transitions between neighbor­
ing metastable states [1-5]. A statistical analysis shows 
that after multiple thermal cycling through the transition 
the amplitudes of the avalanches evolve towards a power-
law distribution [2,3]. This means that during such load­
ing and reloading process (training), shape-memory alloys 
self-organize towards criticality. In this sense marten­
sites1 are essentially different from many other appar­
ently similar systems, say driven ferromagnets displaying 
Barkhausen noise, because in those systems training is 
not required to reach a scale-free behavior. 

Criticality has attracted a great deal of interest over 
the last decades due to its ubiquity in nature, as power-
law distributions have been reported in a wide variety of 
complex systems [6,7]. At criticality there are no charac­
teristic length scales and microscopic details do not play 
a crucial role. This generates classes of universal behav­
ior which can be studied by means of relatively simple, 

'Except those with very small spontaneous strain. 

prototypical models. Thus, sandpile automata, showing 
self-organized criticality (SOC) [8], and driven models of 
the Ising type with quenched disorder, showing classical 
criticality [9], are known to give different prototypes ex­
pected to represent a broad class of avalanche-mediated 
behaviors observed in physical systems as diverse as mag­
netics and earthquakes. 

Within the context of martensites, considerable recent 
effort has also been devoted to understanding of the mech­
anisms leading to criticality. A qualitative link to SOC 
has been established early on in [1,10]. Quantitative mod­
els implying the existence of continuous disorder-induced 
phase transitions as in spin systems with quenched disor­
der have been studied by many groups (see, for instance, 
the most recent paper [11]). Large scale numerical simu­
lations of cyclically loaded martensites within the frame­
work of classical elasticity have been initiated in [12,13]. 
Finally, there was a recent attempt to link martensites 
to spin glasses [14]. While a scale-free behavior is pre­
dicted by some of the above approaches, none of these 
can in principle explain why criticality in martensites re­
quires cycling and why the power-law acoustic emission 
is observed only after a plasticity-like shakedown. 

In a recent paper [15] we proposed an explanation for 
the peculiar emergence of criticality in martensites based 
on the experimental evidence of considerable dislocational 
activity in cyclically driven shape memory alloys [16-20]. 
In this paper we conjectured that the disorder needed for 
criticality in martensites is not quenched but is acquired 
by the system in the process of training. Here we pro­
vide additional details on a method leading to this con­
clusion which is based on the reduction of a continuum 
elasticity theory first to a discrete spin model and then 
to an automaton of a sand pile type. The resulting pro­
totypical system preserves all the essential features of the 
original continuum model, in particular it captures all the 
three major phenomena: phase transformation, twinning, 
and plasticity. Most importantly, the model accounts for 
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training-induced criticality in martensites including the 
prediction of such fine features of the scale free nonequi-
librium steady state as the shape of avalanches and the 
fractal nature of the emerging spatial complexity. 

Model 

We start with a classical continuum theory of martensites 
which is based on the assumption that the elastic energy 
density is a nonconvex function of the deformation gra­
dient, e.g. [21,22]. The general structure of this function 
in 2D has been characterized in [23,24]. The classical 
description of martensitic transformations based on the 
Landau theory may be viewed as particular cases of the 
general framework described in [23, 24]. The main ad­
vantage of considering the general theory is that it takes 
into account large distortions which are responsible for 
the formation of dislocations. Therefore the interplay 
between the phase transformation and the evolution of 
such defects can be studied in a natural way within this 
framework. We mention that a version of the Landau 
theory with discontinuous displacements which assumes 
conventional description of dislocations has been recently 
proposed in [25]. 

Energy 

The first step of our reduction procedure is a spatial dis­
cretization of the continuum model allowing one to rep­
resent a 2D Bravais lattice as a collection of TV kinemati-
cally compatible units. Each unit has a multi-well energy 
ф{9) which depends on the temperature 9 of the solid. 
To be specific, we consider a particular case in which the 
solid undergoes a transformation from square austenite 
to oblique martensite when lowering 9. The energy of the 
system along this transformation path can be expressed in 
terms of a single scalar order parameter variable e as [15] 

~ N N 

Ф(е;в) = £ / ( « * ; 0) + - £ Kijeieh (1) 
i = l «,j = l 

where K = {Kij} is the kernel describing elastic interac­
tions between different units and incorporating the nonlo­
cal interactions due to the compatibility constraints [26]. 
The renormalized energy of an elastic unit / (e ; 9) inherits 
the multi-well character of the original energy ф. We ap­
proximate / by a periodic function with three-parabolic 
form in each period, where each of the three parabolas is 
given by the same expression / (e ; 9) = ^(e — w)2 + g(9)s2 

with different parameters w and s [see Fig. 1]. The pa­
rameter w = d + ës defines the location of the bottoms 

Figure 1: Representation of the on-site periodic potential 
f(e;9). The magnitudes s, d, д(в), and ë characterizing 
f(e;9) are explicitly indicated. The shaded box high­
lights the first domain of periodicity. Insets on top show 
the lattice structures corresponding to the bottoms of the 
potential wells, with lattice cells marked for the austen­
ite A and for the two variants of martensite M± in the 
first period. Austenites A± are the first two replicas of A 
outside the first period. 

of the energy wells in terms of the two discrete variables: 
s = 0, ±1 and d £ Z; ë is the transformation strain. The 
parameter s accounts for the phase transition: s = 0 in 
austenite and s — ±1 in the two variants of martensite. 
The value of d specifies the period of / . Finally, the 
function g{9) measures the difference in energy between 
austenite and martensite. We implement thermal driving 
by changing periodically the preference between austenite 
and martensite through cycling g{9) at constant rate. 

Continuous dynamics 

The martensitic transformation has a markedly athermal 
character at least for the shape-memory alloys we are in­
terested in [28], and we can consider a purely mechanical 
setting. We assume that our continuous dynamics is over-
damped and write the dimensionless evolution equation 
for the field e = {ej} in the form 

de .d$(e;0) 
m = ~7^e—' (2) 

where 7 is the ratio of the rate of relaxation to the rate 
of driving. In the quasi-static limit (i.e., 7 —» 00), the 
dynamics projects on the local minima of Ф which form a 
discrete set of branches. The system remains on a partic­
ular equilibrium branch until it becomes unstable due to 
the driving. For smooth energies Ф, the marginally stable 
configurations correspond to points where the Hessian of 
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Ф becomes degenerate, det | |д2Ф/де2 | | = 0, which is in 
general a global condition [5,29]. 

In the case of the piece-wise quadratic energy / (e ; в), 
the equilibrium equations дФ/де = 0 give 

e(s,d) = (I + K ) - 1 ( d + ës), (3) 

where I is the identity matrix, s = {st}, and d = {di}. 
This allows us to adiabatically eliminate the remaining 
continuous degrees of freedom which are in this case har­
monic. The stability conditions become local and can be 
explicitly written as e~(si,di\g) < e* < e+(si,di;g) for 
every unit i, where 

e±{si,di;g) = < 
Wi±(e/2 + g/e), Si=Q 
Wi±(ë/2~g/ë), Si = q=l 

^ ± (1 - 2e)/2, S i = ± l . 
(4) 

The first two cases correspond to the direct and to the re­
verse martensitic transformation, respectively. The third 
limit corresponds to the creation of a slip. When the 
stability condition is violated by at least one unit, the 
resulting instability resolves through an avalanche which 
brings the system to another equilibrium branch charac­
terized by different values of s and d. Since these variables 
are discrete, the continuous dynamics (2) gives rise to a 
series of jumps [5]. 

Spin model 

By eliminating the continuous variables from Eq. (1), we 
can rewrite the relaxed energy in terms of the variables s 
and d. The resulting Hamiltonian is of Potts type: 

Ф: 
Ге2 

(Jij 
2Ая 
ë2 ij )SiSj ~r r.JijUji@'j ' čJijSi&j 

(5) 
where J = (I + K) г — I is the matrix of effective inter­
action. Here the spin variable s, describing the marten­
sitic phase transition and twinning, is analogous to similar 
variables in the conventional spin models of martensitic 
phase transitions [11,14]. The new integer-valued vari­
able d describes the slip. It has the same meaning as 
the lattice incompatibility measures introduced in classi­
cal models of plasticity employing discontinuous displace­
ments (e.g. [25]). Because d follows a threshold dynamics, 
this variable can not be adiabatically eliminated and the 
resulting problem can not be easily formulated in terms 
of s only. 

Instead of deriving the expression for J from its explicit 
representation above through K, we follow the approach 
of Ref. [15] and postulate directly the structure of the 

kernel capturing the main expected features: anisotropy 
and sign indefiniteness [30]. More specifically, we assume 
J is of the ANNNI type: 

JiÀ 

(Jo, i = j 
J\ > 0, i n.n. j 
—J2 < 0, i n.n.n. j 

k 0, otherwise, 

(6) 

where 'n.n.' and 'n.n.n.' indicate nearest and next-to-
nearest neighbors, respectively. This simple hypothesis 
accounts for the competing interactions driving the coars­
ening and the refinement of the microstructure [31,32]. 
In order to penalize the inhomogeneity of the field w 
the self-interaction term is chosen to satisfy Jo = Ju = 
— ^2i^j Jij ■ Our unpublished work shows that these as­
sumptions on J reflect rather faithfully the structure of 
the matrix obtained from a lattice model with an inter­
action K derived from kinematic compatibility. For in­
stance, despite the short-range structure of the renormal-
ized J, the background kernel K = ( 1 + J ) - 1 —I describing 
elastic interactions in our prototypical lattice has a long-
range character. 

Automaton 

The jump process described above can be conveniently 
represented as a sandpile automaton. To this end we as­
sume that the elastic strain Si = e* — Wi represents the 
'local height' of the sand pile. From Eq. (4) and the def­
inition of J , we obtain that Si = ]T\- J%J(SJ + ëdj). The 
dependence on temperature is fully contained in the vari­
ables S±(si;g(6)) = e±(si,di;g) —Wi which enter the sta­
bility condition S~(si,g) < Si < S+(si,g). In contrast to 
e ± [Eq. (4)], the limits of stability đ* do not depend on 
d (i.e., they are independent of the period of the energy). 

Once a cell i becomes unstable (the condition 5~ < Si < 
5+ is violated), the strain variable passes to a neighboring 
energy well. As a consequence, the location of the bottom 
of the well Wi updates to wt + r, where r = ±e for phase 
transitions (sj = 0«-»Sj = ± l ) and r = ±(1 — 2ë) for slips 
(si = ±1 -> Sj = =fl, di —y di ± 1). Such rearrangement 
produces an update in S, 

Sj Sj + JijT (7) 

which, given our assumptions concerning (6), can be 
rewritten in the form 

Si -> Si- 4(Ji - J2)r 
Sj —» Sj + J ir , j nearest neighbors of i, 
&k —* <5fc — J2T, k next-to-nearest neighbors of i. 

(8) 
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Notice that each update may make new sites unstable, 
and therefore the updates must continue at constant g 
until the system is fully equilibrated. The total number 
of updates before stabilization defines the size A of an 
avalanche. We assume open boundary conditions so that 
the update of the total elastic strain Д = ^ • Sj (when 
the cell i becomes unstable) is 

(0, i e bulk 

(Ji - 2J2)r, i e edge (9) 
(2Ji — 3J2)T, i € corner. 

The automaton variable is then conserved for all the up­
dates except those originated at the boundaries of the 
system. The inequality2 J\ > 2 Ji guarantees that during 
the avalanches the stress is released (at a rate which de­
creases with N as TV-1/3 ). This 'dissipation' mechanism 
together with the quasi-static driving provide the neces­
sary conditions for the system to reach a self-organized 
stationary state [33]. 

Numerical results 

The automaton introduced in the previous section can be 
easily implemented numerically. Here we present the nu­
merical results corresponding to an almost reconstructive 
transformation with ë = 0.47. We work on a square grid 
with 501 x 501 units and assume that J i = 0.062 and 
Ji = 0.03 which ensure that the dissipation inequality is 
satisfied. We impose a synchronous dynamics such that 
all the unstable cells are updated simultaneously as the 
discrete time increases by one unit. The number of simul­
taneous updates in an avalanche defines its duration T. 
The initially homogeneous austenite is arbitrarily chosen 
to contain four dislocation loops placed at randomly cho­
sen locations; assuming instead only one initial loop gives 
similar results [15]. 

Fig. 2(a) shows the spatial distribution of s in the 
martensitic phase after cycle 1 and after cycle 1000. The 
complexity of the phase microstructure clearly increases 
during the training period. The system develops a cer­
tain amount of plastic deformation (d ф 0) induced by 
the phase transition as shown in Fig. 2(b). We monitor 
the level of plastic deformation through the density p of 
nearest neighbors with differing values of di (our measure 
of dislocation density). As shown in Fig. 3(a), the evo­
lution of p is marked by a steep initial increase (training 
period) which after approximately 150 cycles leads to a 
steady regime (shakedown). 

2In the language of sandpile automata, the condition J\ > 2J2 
ensures that grains of sand are lost at the boundaries of the system. 

Figure 2: Evolution of the phase and defect microstruc-
tures in the lattice during thermal cycling. Four dislo­
cation loops were initially placed in random locations. 
(a) Configuration of the martensitic phase domains, rep­
resented by the field s», after cycle 1 and cycle 1000 
(turquoise and blue indicate s = 1 and s = — 1, respec­
tively). (b) The corresponding configurations of the slip 
variable d. White and blue colors indicate d = 0 and 
d ф 0 (mostly |d| = 1), respectively. 

To compare our model with experiments where the 
acoustic emission during the transformation was detected, 
we link the size of the avalanches in the model with the 
acoustic bursts in experiments. As shown in Fig. 3(b), 
the distribution of avalanche sizes p(A) evolves from a 
supercritical behavior (peak at large values of A) during 
the first cycles towards a power law in the steady state 
regime. 

We observe that in the present framework, the scale-
free size distribution does not necessarily imply scale-free 
distribution of durations, p(T), in Fig. 4(a). This is the 
consequence of our simplifying assumptions; the model 
starts to generate a power-law structure of durations as 
soon as a small amount of quenched disorder is introduced 
(in the form of a Gaussian distribution of the initial Si 
with zero mean and standard deviation r) . When the ini­
tial disorder is small such modification does not influence 
significantly the power-law character of p(A) [Fig. 4(b)]; 
big amounts of disorder prevent large avalanches from oc­
curring and the probability distributions develops a sub-
critical cut-off [9]. 

Besides the power-law statistics and the microstructure 
complexity, the proposed model accounts for other ex­
perimental observations in martensites such as hysteresis 
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Figure 3: Evolution towards a critical steady state, (a) 
Dislocation density p during the first 1000 cycles, (c) Dis­
tribution of the avalanche sizes after cycle 1 (triangles) 
and in the stationary state after 1000 cycles (squares). 
The distribution for the first cycle (displaced vertically 
for clarity) has been obtained by averaging over 800 real­
izations of the system with different location of the initial 
dislocations. The distribution in the stationary state has 
been obtained by averaging over the last 800 cycles in the 
series with 1000 transformations. 

shakedown and asymmetric signal shapes (see Ref. [15] 
for more detail). 

Conclusions 

Our main conclusion is that SOC originates in martensites 
from the interplay between the reversible phase change 
and the irreversible development of an optimal amount 
of plastic deformation. We emphasize that the disorder 
responsible for criticality is not imposed through initial 
inhomogeneity but is created by the system itself. This 
suggests that the emergence of scale-free behavior in the 
proposed model is an example of a jamming transition. 

The phase transition in our picture occurs through in­
termittent dynamics with large fluctuations which lead to 
permanent changes in the system. Most of these changes 
take place during the training period. This period is finite 
because the dislocational activity eventually saturates: 
despite periodicity of the 'homogeneous' energy landscape 
the convex interaction term in the energy makes succes-

A 

Figure 4: Distributions of avalanche (a) durations and (b) 
sizes in the steady state attained after 1000 cycles with 
initial quenched disorder (r = 0.01) and without (r = 0). 

sive slips progressively more and more expensive. 
One of the most unexpected outcomes of the model is 

that the whole wealth of phenomena accompanying self-
organization to criticality in martensites can be captured, 
at least qualitatively, in a relatively simple 2D spin model 
with a standard threshold dynamics. The main advan­
tage of this minimal model comparing to its more de­
tailed analogs, say [12,13,25], is its full mathematical 
transparency allowing one to pursue the origin of scale-
free behavior analytically. It comes at a cost because due 
to the schematic treatment of the long-range interactions, 
of the inertial dynamics, and of the relative energetic cost 
of twin and phase interfaces, the model does not capture 
the process of self-organization in full quantitative detail. 
Among the omitted effects we particularly mention the 
elastic incompatibility of the energy wells which is known 
to be important for the level of reversibility achieved by 
a martensitic transformation [34]. In order to ensure an 
engineering level of agreement of the theory with experi­
ments, more realistic models of the computational nature 
must be pursued in parallel to the prototypical treatment 
presented here. 

In conclusion we mention that while we have limited 
ourselves in this paper to temperature-driven martensitic 
transformations, our theoretical framework offers a tool 

103 



for studying self-organization in systems subjected to me­
chanical driving as well. An example of such a study, ex­
ploring the effect of the stiffness of the loading device on 
the critical exponents, and investigating the possibility of 
driving-induced crossover between different universality 
classes, can be found in [35]. 
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