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Abstract We present a new procedure for the systematic reduction of a continuum theory of martensitic
transformations to a spin system whose dynamics can be described by an automaton. Our prototypical model
reproduces most of the experimental observations in martensites associated with criticality and power-law
acoustic emission. In particular, it explains in a natural way why cyclic training is necessary to reach scale-free
behavior.
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1 Introduction

Both acoustic and calorimetric by signals which are routinely detected in shape-memory alloys submitted
to quasi-static loading have a marked by intermittent character [1–4]. Such behavior indicates that the finite
strain effect associated with the martensitic transformation in a steadily driven system splits into a set of strain
avalanches of different sizes which reflect transitions between neighboring metastable states [1–5]. A statisti-
cal analysis shows that after multiple thermal cycling through the transition the amplitudes of the avalanches
evolve towards a power-law distribution [2,3]. This means that during such a loading and reloading process
(training), shape-memory alloys self organize towards criticality. In this sense martensites1 are essentially
different from many other apparently similar systems, say driven ferromagnets displaying Barkhausen noise,
because in those systems training is not required to reach a scale-free behavior.

Criticality has attracted a great deal of interest over the last decades due to its ubiquity in nature, as
power-law distributions have been reported in a wide variety of complex systems [7,8]. At criticality there
are no characteristic length scales and microscopic details do not play a crucial role. This generates classes of

1 Except those with very small spontaneous strain [6].
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universal behavior which can be studied by means of relatively simple, prototypical models. Thus, sandpile
automata, showing self-organized criticality (SOC) [9], and driven models of the Ising type with quenched
disorder, showing classical criticality [10], are known to give different prototypes, which are expected to rep-
resent broad classes of avalanche-mediated behaviors observed in physical systems as diverse as magnetics
and earthquakes.

Within the context of martensites, considerable recent effort has also been devoted to understanding the
mechanisms leading to criticality. A qualitative link to SOC has been established early on in [1,11]. Quanti-
tative models implying the existence of continuous disorder-induced phase transitions as in spin systems with
quenched disorder have been studied by many groups (see for instance [12]). Large scale numerical simulations
of cyclically loaded martensites within the framework of classical elasticity have been performed in [13,14].
Finally, there has been a recent attempt to link martensites to spin glasses [15]. While a scale-free behavior is
predicted by some of the above approaches, none of these can in principle explain why criticality in martensites
requires cycling and why the power-law acoustic emission is observed only after a plasticity-like shakedown.

In a recent paper [16] we proposed an explanation for the emergence of criticality in martensites based
on the experimental evidence of considerable dislocational activity in cyclically-driven shape-memory alloys
[17–21]. In this paper we conjecture that the disorder needed for criticality in martensites is not quenched but is
acquired by the system in the process of training. Here we provide additional details on the methods leading to
this conclusion, which are based on the reduction of a continuum elasticity theory first to a discrete spin model
and then to an automaton of a sand-pile type. The resulting prototypical system preserves all the essential
features of the original continuum model, and it captures all the three major phenomena: phase transformation,
twinning, and plasticity. Most importantly, the model accounts for training-induced criticality in martensites,
including the prediction of such fine features of the scale-free nonequilibrium steady state as the shape of
avalanches and the complex nature of the emerging spatial disorder.

2 Model

2.1 Tensorial formulation

We start with a classical continuum theory of martensites which is based on the assumption that the elastic
energy density is a nonconvex function of the deformation gradient, e.g. [22,23]. The general structure of this
function in 2D has been characterized in [24,25].

The first step of our reduction procedure is a spatial discretization of the continuum model allowing one to
represent a 2D Bravais lattice as a collection of N kinematically compatible units. For each unit i we define
the basis vectors {ui

1, ui
2}. The energy of the whole body at temperature θ is given by

Φ = Φ1({ui
a}; θ) + Φ2({ui

a, u j
a}; θ), (1)

where Φ1 is the energy of the noninteracting elastic units and Φ2 is the interaction energy which is taken to be
quadratic. We assume that

Φ1 =
N∑

i=1

φ(ui
a; θ), (2)

where φ is the energy of a unit. From the fact that φ defines the response of a homogeneous Bravais lattice,
we deduce the following two invariance properties [22]:

(i) It must be invariant under rigid rotations Q of the lattice. As a consequence, it does not depend on individual
lattice vectors but on the lattice-metric C with elements Cab = ua · ub.

(ii) It must be invariant under the change of bases generating the same lattice. Two bases {ua} and {va} describe
the same lattice if and only if va = ∑2

b=1 mb
aub, where mb

a are the elements of matrices M in GL(2, Z).2

The function φ then satisfies φ(C; θ) = φ(Mt CM; θ).

In 2D the five possible Bravais lattices can be represented in the ‘fundamental domain’ which is located in
the lattice-metrics space (FD, Fig. 1). The austenite (high θ ) and martensite (low θ ) phases correspond to wells

2 GL(2, Z) is the group of 2 × 2 invertible matrices with integral entries.
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Fig. 1 Projection on the plane (C11, C12) of the intersection of the fundamental domain (FD) with the plane C11 + C22 = 1. The
location in FD of each of the Bravais types (o oblique, r rectangular, rh rhombic, s square, h hexagonal) is schematically shown

Fig. 2 Section on the plane C11 + C22 = 1 of the space of 2D lattice metrics. The infinitely many GL(2, Z)-related replicas
of the fundamental domain shown in Fig. 1 fill the whole space of metrics. The shaded area is the maximal EPN for the square
structure CA. Empty and hatched circles indicate austenite Mt CAM and martensite Mt CM M energy wells, respectively. The
arrows show the particular transformation path considered in the text (Color figure online)

of φ(C; θ) in FD at CA and CM , respectively. Owing to the GL(2, Z)-invariance, the energy φ(C; θ) has infi-
nitely many symmetry-related copies of such wells located at Mt CAM and Mt CM M, where M ∈ GL(2, Z).
Figure 2 shows some of the GL(2, Z)-related replicas of FD and the energy wells corresponding to a transition
from square austenite to oblique martensite (see [25] for more details).

2.2 Periodic energy landscape

We note that the classical description of martensitic transformations based solely on Landau theory may be
viewed as particular cases of the general framework described above. The Landau theory considers energy
wells only inside the Ericksen–Pitteri Neighborhood (EPN) of the austenite phase. The EPN is defined as a
subset in the space of metrics in which the global GL(2, Z)-invariance reduces to the invariance under the
austenite point group. It contains one autenite well and a finite number of martensite wells corresponding
to different martensitic variants. For instance, the EPN corresponding to the square austenite contains four
oblique variants of martensite (Fig. 2). Such a description is expected to be sufficient when the transformation
distortion is small and the energy barriers for slip are much higher than the barriers for phase transformation
and twinning.
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(a)

(b)

Fig. 3 Two representations of a 2D dislocation loop. a Continuous lattice deformation in terms of kinematically compatible units
as considered in the text. The shaded units correspond to the austenite structure A in the EPN and the replica A− outside the EPN
introducing the dislocation loop. b Classical interpretation involving discontinuous deformations with nonzero Burgers vectors
(Color figure online)

The general theory considered here takes into account large distortions outside the EPN which are respon-
sible for the formation of dislocations [24,25]. Therefore the interplay between the phase transformation and
the creation and evolution of such defects can be studied in a natural way within the present framework. We
emphasize that the continuity of displacements does not prevent dislocations from nucleating or propagating
as is exemplified in Fig. 3 where we compare the continuous representation of the displacement field assumed
in this work (see Fig. 3a) with the standard representation containing discontinuities (see Fig. 3b). The defor-
mation field in Fig. 3 corresponds to two dislocations with opposite sign forming a dislocation loop. We
mention that a version of the Landau theory with discontinuous displacements which assumes a conventional
description of dislocations as in Fig. 3b has been recently proposed in [26].

To analyze the main consequences of the global periodicity of the energy density, we introduce a specific
transformation path from square to oblique as indicated by the arrows in Fig. 2. In spite of its simplicity, this
path captures the main ingredients of the energy landscape, namely, the multi-variant nature of the martensitic
phase (which generates twinning) and the presence of infinitely many copies of the EPN (allowing for slip). In
2D the deformation along the transformation path C(t) can be written in terms of three scalar order parameters
e(C(t)), e′(C(t)), and e′′(C(t)). The non-convexity of φ associated with the phase transformation, twinning
and slip will be fully carried by its nonconvex dependence on the primary order parameter e(C); in contrast,
we assume that φ is a convex (quadratic) function of the non-order parameters e′(C) and e′′(C).

2.3 Scalar formulation

The relaxation of the harmonic variables e′(C) and e′′(C) can be assumed as instantaneous (in the time scales
of both driving and relaxation of the primary order parameter), so they can be adiabatically eliminated. By
using the corresponding linear equilibrium equations together with the kinematic compatibility constraints we
can rewrite the elastic energy Eq. (1) in terms of the scalar variables ei only

Φ̃(e; θ) =
N∑

i=1

f (ei ; θ) + 1

2

N∑

i, j=1

Ki j ei e j , (3)

where K = {Ki j } is the kernel describing the elastic interactions between different units and incorporating
both the original interaction energy Φ2 and the additional nonlocal interactions due to the compatibility con-
straints [27]. The renormalized energy of an elastic unit, f (e; θ), inherits the properties of φ(C; θ) including
the GL(2, Z)-invariance. We approximate f by a periodic function with three-parabolic form in each period,
where each of the three parabolas is given by the same expression, f (e; θ) = 1

2 (e − w)2 + g(θ)s2, with
different parameters w and s (see Fig. 4). The parameter w = d + ēs defines the location of the bottoms of
the energy wells in terms of the two discrete variables: s = 0,±1 and d ∈ Z; ē is the transformation strain.
The parameter s accounts for the phase transition: s = 0 in the austenite, and s = ±1 in the two variants
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Fig. 4 Representation of the on-site periodic potential f (e; θ). The quantities s, d , g(θ), and ē characterizing f (e; θ) are explicitly
indicated. The shaded box highlights the EPN. Configurations show the lattice structures corresponding to the bottoms of the
potential wells, with lattice cells marked for the austenite A and for the two variants of martensite M± in the EPN. Configurations
A± are the first two replicas of A outside the EPN (Color figure online)

Fig. 5 Phase diagram for a homogeneous system in the space (ē, g). The inset indicates the energy barriers h1, h2, h3 used to
define three characteristic zones in the domain of phase coexistence SOT, as explained in the text (Color figure online)

of martensite. The value of d specifies the period of f . Finally, the function g(θ) measures the difference
in energy between austenite the and martensite. We implement thermal driving by changing periodically the
preference between austenite and martensite through cycling g(θ) at constant rate.

To understand the role of the parameters g and ē in the model, it is instructive to consider the (ē, g) phase
diagram for a homogeneous system (i.e., with K = 0) shown in Fig. 5. The stability boundaries for the mar-
tensite and the austenite phases are indicated by the lines OS and OT, respectively. The limit ē → 0 gives a
fully reversible transformation, while ē = 1/2 corresponds to a reconstructive transformation. The possible
behaviors for intermediate ē can be heuristically classified into three classes corresponding to the three zones
indicated in Fig. 5. In zone 1 the activation energy necessary to escape from the austenite well, h1, is smaller
than the barrier between the martensite well and the next EPN, h3. Slip may then be typically excluded. In
contrast, the martensitic transformation may naturally lead to slip in zones 2 and 3 where h3 is smaller than h1.
This will surely be the case for systems in zone 3 where the barrier for the reverse martensitic transformation,
h2, is smaller than h3. Shape-memory alloys exhibiting a pronounced shakedown behavior such as CuZnAl
and NiTi have an almost reconstructive transformation strain [28], and can be confidently placed in zone 3.
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2.4 Continuous dynamics

The martensitic transformation has a markedly athermal character [29] at least for the shape-memory alloys we
are interested in, and we can consider a purely mechanical setting. We assume that the continuous dynamics
is overdamped and write the dimensionless evolution equation for the field e = {ei } in the form

∂e
∂t

= −γ
∂Φ̃(e; θ)

∂e
, (4)

where γ is the ratio of the rate of relaxation to the rate of driving. In the quasi-static limit (i.e., γ → ∞), the
dynamics projects on the local minima of Φ̃ which form a discrete set of branches. The system remains on a par-
ticular equilibrium branch until it becomes unstable due to the driving. For smooth energies Φ̃, the marginally
stable configurations correspond to points where the Hessian of Φ̃ becomes degenerate (i.e., det ‖∂2Φ̃/∂e2‖ =
0), which is in general a global condition [5,30].

In the case of the piece-wise quadratic energy f (e; θ), the equilibrium equations ∂Φ̃/∂e = 0 give

e(s, d) = (I + K)−1(d + ēs), (5)

where I is the identity matrix, s = {si }, and d = {di }. This allows us to adiabatically eliminate the remaining
continuous degrees of freedom which are in this case harmonic. The stability conditions become local and can
be explicitly written as e−(si , di ; g) < ei < e+(si , di ; g) for every unit i , where

e±(si , di ; g) =

⎧
⎪⎨

⎪⎩

wi ± (ē/2 + g/ē), si = 0,

wi ± (ē/2 − g/ē), si = ∓1,

wi ± (1 − 2ē)/2, si = ±1.

(6)

The first two cases correspond to the direct and to the reverse martensitic transformation, respectively. The
third limit corresponds to the creation of a slip. When the stability condition is violated by at least one unit,
the resulting instability resolves through an avalanche which brings the system to another equilibrium branch
characterized by different values of s and d. Since these variables are discrete, the continuous dynamics (4)
gives rise to a series of jumps [5].

2.5 Spin model

By eliminating the continuous variables from Eq. (3), we can rewrite the relaxed energy in terms of the variables
s and d. The resulting Hamiltonian is of the Potts type:

Φ̂ = −
∑

i, j

[
ē2

2

(
Ji j − 2g

ē2 δi j

)
si s j + 1

2
Ji j di d j + ē Ji j si d j

]
, (7)

where J = (I + K)−1 − I is the matrix of effective interaction. Here the spin variable s, describing the mar-
tensitic phase transition and twinning, is analogous to similar variables in the conventional spin models of
martensitic phase transitions [12,15]. The new integer-valued variable d describes the slip. It has the same
meaning as the lattice incompatibility measures introduced in classical models of plasticity employing discon-
tinuous displacements (e.g. [26]). Because d follows a threshold dynamics, this variable cannot be adiabatically
eliminated and the resulting problem cannot be easily formulated in terms of s only.

Instead of deriving the expression for J from its explicit representation above through K, we follow the
approach of [16] and postulate directly the structure of the kernel capturing the main expected features: anisot-
ropy and sign indefiniteness [31]. More specifically, we assume J to be of the ANNNI type:

Ji j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J0, i = j,
J1 > 0, i n.n. j,
−J2 < 0, i n.n.n. j,
0, otherwise,

(8)
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where ‘n.n.’ and ‘n.n.n.’ indicate nearest and next-to-nearest neighbors, respectively. This simple hypothe-
sis accounts for the competing interactions driving the coarsening and the refinement of the microstructure
[32,33]. In order to penalize the inhomogeneity of the field w the self-interaction term is chosen to satisfy
J0 = Jii = −∑

i �= j Ji j . Our unpublished work shows that these assumptions on J reflect rather faithfully the
structure of the matrix obtained from a lattice model with an interaction K derived from kinematic compatibility.
For instance, despite the short-range structure of the renormalized J, the background kernel K = (I+J)−1 − I
describing elastic interactions in our prototypical lattice has a long-range character.

2.6 Automaton

The jump process described above can be conveniently represented as a sandpile automaton. To this end we
assume that the elastic strain δi = ei − wi represents the ‘local height’ of the sand-pile. From Eq. (6) and the
definition of J, we obtain that δi = ∑

j Ji j (s j + ēd j ). The dependence on temperature is fully contained in
the variables δ±(si ; g(θ)) = e±(si , di ; g)−wi which enter the stability condition δ−(si , g) < δi < δ+(si , g).
In contrast to e± (Eq. 6), the limits of stability δ± do not depend on d (i.e., they are independent of the EPN).

Once a cell i becomes unstable (i.e., the condition δ− < δi < δ+ is violated), the strain variable passes
to a neighboring energy well. As a consequence, the location of the bottom of the well wi updates to wi + r ,
where r = ±ē for phase transitions (si = 0 ↔ si = ±1) and r = ±(1 − 2ē) for slips (si = ±1 → si = ∓1,
di → di ± 1). Such rearrangement produces an update in δ,

δ j → δ j + Ji j r, (9)

which, given our assumptions concerning (8), can be rewritten in the form

δi → δi − 4(J1 − J2)r

δ j → δ j + J1r, j nearest neighbors of i, (10)

δk → δk − J2r, k next-to-nearest neighbors of i .

Notice that each update may make new sites unstable, and therefore the updates must continue at constant g
until the system is fully equilibrated. The total number of updates before stabilization defines the size A of
an avalanche. We assume open boundary conditions so that the update of the total elastic strain ∆ = ∑

j δ j
(when the cell i becomes unstable) is

∆ → ∆ −

⎧
⎪⎨

⎪⎩

0, i ∈ bulk,

(J1 − 2J2)r, i ∈ edge,
(2J1 − 3J2)r, i ∈ corner.

(11)

The automaton variable is then conserved for all the updates except those originated at the boundaries of the
system. The inequality3 J1 > 2J2 guarantees that during the avalanches the stress is released (at a rate which
decreases with N as N−1/3 ). This ‘dissipation’ mechanism together with the quasi-static driving provide the
necessary conditions for the system to reach a self-organized stationary state [34].

3 Numerical results

The automaton introduced in the previous section can be easily implemented numerically. Here we present
the numerical results corresponding to an almost reconstructive transformation with ē = 0.47 inside zone 3 in
Fig. 5. We work on a square grid with 501×501 units and assume that J1 = 0.062 and J2 = 0.03 which ensure
that the dissipation inequality is satisfied. We impose a synchronous dynamics such that all the unstable cells
are updated simultaneously as the discrete time increases by one unit. The number of simultaneous updates in
an avalanche defines its duration T . The initially homogeneous austenite is arbitrarily chosen to contain four
dislocation loops (see one of them in Fig. 3) placed at randomly chosen locations; assuming only one initial
loop gives similar results [16].

3 In the language of sandpile automata, the condition J1 > 2J2 ensures that grains of sand are lost at the boundaries of the
system.
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Fig. 6 Evolution of the phase and defect microstructures in the lattice during thermal cycling. Four dislocation loops are initially
placed in random locations. a Configuration of the martensitic phase domains, represented by the field si , after cycle 1 and cycle
1000 (light and dark indicate s = 1 and s = −1, respectively). b The corresponding configurations of the slip variable d . White
and dark colors indicate d = 0 and d �= 0 (mostly |d| = 1), respectively (Color figure online)
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Fig. 7 Evolution towards a critical steady state. a Dislocation density ρ during the first 1,000 cycles. b Distribution of the ava-
lanche sizes after cycle 1 (triangles) and in the stationary-state after 1,000 cycles (squares). The distribution for the first cycle
(displaced vertically for clarity) has been obtained by averaging over 800 realizations of the system with different location of the
initial dislocations. The distribution in the stationary state has been obtained by averaging over the last 800 cycles in the series
with 1,000 transformations (Color figure online)

Figure 6a shows the spatial distribution of s in the martensitic phase after cycle 1 and after cycle 1000. The
complexity of the phase microstructure clearly increases during the training period. The system develops a
certain amount of plastic deformation (d �= 0) induced by the phase transition as shown in Fig. 6b. We monitor
the level of plastic deformation through the density ρ of nearest neighbors with differing values of di (our
measure of dislocation density). As shown in Fig. 7a, the evolution of ρ is marked by a steep initial increase
(training period) which after approximately 150 cycles leads to a steady regime (shakedown).

To compare our model with experiments where the acoustic emission during the transformation was
detected, we link the size of the avalanches in the model with the acoustic bursts in experiments. As shown in
Fig. 7b, the distribution of avalanche sizes p(A) evolves from a supercritical behavior (peak at large values of A)
during the first cycles towards a power law in the steady-state regime.

We observe that in the present framework, the scale-free size distribution does not necessarily imply scale-
free distribution of durations, p(T ), as shown in Fig. 8a. This is a consequence of our simplifying assumptions;
the model starts to generate a power-law structure of durations as soon as a small amount of quenched disorder
is introduced (in the form of a Gaussian distribution of the initial δi with zero mean and standard deviation r ).
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Fig. 8 Distributions of avalanche a durations and b sizes in the steady state attained after 1,000 cycles with initial quenched
disorder (r = 0.01) and without (r = 0)

When the initial disorder is small such modification does not influence significantly the power-law charac-
ter of p(A) (Fig. 8b); big amounts of disorder prevent large avalanches from occurring and the probability
distributions develops a subcritical cut-off [10].

Besides the power-law statistics and the microstructure complexity, the proposed model accounts for other
experimental observations in martensites such as hysteresis shakedown and asymmetric signal shapes (see [16]
for more detail).

4 Conclusions

Our main conclusion is that SOC originates in martensites from the interplay between the reversible phase
change and the irreversible development of an optimal amount of plastic deformation. We emphasize that the
disorder responsible for criticality is not imposed through initial inhomogeneity but is created by the system
itself. This suggests that the emergence of scale-free behavior in the proposed model is an example of a
jamming transition.

The phase transition in our picture occurs through intermittent dynamics with large fluctuations which
lead to permanent changes in the system. Most of these changes take place during the training period. This
period is finite because the dislocational activity eventually saturates: despite periodicity of the ‘homogeneous’
energy landscape the convex interaction term in the energy makes successive slips progressively more and
more expensive.

One of the most unexpected outcomes of the model is that the whole wealth of phenomena accompanying
self-organization to criticality in martensites can be captured, at least qualitatively, in a relatively simple 2D
spin model with a standard threshold dynamics. The main advantage of this minimal model comparing to its
more detailed analogs, say [13,14,26], is its full mathematical transparency allowing one to pursue the origin
of scale-free behavior analytically. It comes at a cost because due to the schematic treatment of the long-range
interactions, of the inertial dynamics, and of the relative energetic cost of twin and phase interfaces, the model
does not capture the process of self-organization in full quantitative detail. Among the omitted effects we
particularly mention the elastic incompatibility of the energy wells which is known to be important for the
level of reversibility achieved by a martensitic transformation [35]. In order to ensure an engineering level of
agreement of the theory with experiments, more realistic models of the computational nature must be pursued
in parallel to the prototypical treatment presented here.

We mention that while we have limited ourselves in this paper to temperature-driven martensitic transforma-
tions, our theoretical framework offers a tool for studying self-organization in systems subjected to mechanical
driving as well. An example of such a study, exploring the effect of the stiffness of the loading device on the
critical exponents, and investigating the possibility of driving-induced crossover between different universality
classes, can be found in [36].
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