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Origin of scale-free intermittency in structural first-order phase transitions
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A salient feature of cyclically driven first-order phase transformations in crystals is their scale-free avalanche
dynamics. This behavior has been linked to the presence of a classical critical point but the mechanism leading
to criticality without extrinsic tuning remains unexplained. Here we show that the source of scaling in such
systems is an annealed disorder associated with transformation-induced slip which coevolves with the phase
transformation, thus ensuring the crossing of a critical manifold. Our conclusions are based on a model where
annealed disorder emerges in the form of a random field induced by the phase transition. Such a disorder
exhibits supertransient chaotic behavior under thermal loading, obeys a heavy-tailed distribution, and exhibits
long-range spatial correlations. We show that the universality class is affected by the long-range character of elastic
interactions. In contrast, it is not influenced by the heavy-tailed distribution and spatial correlations of disorder.
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I. INTRODUCTION

The ubiquitous presence of scale-free avalanche behavior
during structural transformations in crystals [1-4] is in an ap-
parent contradiction with the first-order nature of the underly-
ing phase transitions. This question has attracted considerable
attention [5-13] not only due to its theoretical interest but
also because of the widespread use of transforming materials,
e.g., shape memory alloys, in applications [14,15]. The study
of intermittency in such systems is important because the
rearrangements of microstructural morphologies associated
with avalanches [16] can perilously interfere with material and
structural response at the submicron scale preventing reliable
control of the pseudoplastic deformation [17-19].

Avalanche dynamics with power-law statistics [20,21] is
an inherent feature of a broad variety of natural systems
from neural networks [22] and animal herds [23] to tectonic
faults [24] and stellar flares [25]. To explain the mechanism
responsible for scale-free regimes in such systems, a number
of general paradigms have been proposed, including implicit
external tuning [26,27], the involvement of nonlocal restoring
fields [28,29], the inherent complexity of the quenched
energy landscapes [30], and the multiplicative structure of the
endogenous noise [31].

Controversy surrounds, in particular, the scale-free in-
termittent response of solid materials undergoing first-order
phase transitions. Various proposed mechanisms of scaling
in such systems which do not require external tuning to a
critical point range from depinning, as in the case of disordered
ferromagnets [29], to inertia-induced nucleation [7] reminis-
cent of turbulence. A radically different perspective would be
that a classical critical point [32] is involved, however, this
scenario in athermal systems requires a particular degree of
quenched disorder [33-36]. The ubiquity of scaling would
then mean that either the critical region is sufficiently wide to
be routinely crossed in the course of periodic driving [26,37] or
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that there exists a feedback mechanism fine-tuning the system
to a critical point. The critical point scenario appears to be
backed by experimental data [9] showing that at least in some
types of crystals the power-law avalanching during thermal
driving takes place at a particular value of the driving parameter
without any a priori tuning of disorder.

An important feature of criticality in structural transfor-
mations is that scaling behavior does not emerge until the
system is cyclically driven through the phase transition several
times, i.e., until it is trained [38,39]. This is an indication that
power-law behavior in such systems may be an outcome of the
development, parallel to the transformation, of a sizable self-
induced disorder associated, for instance, with dislocational
activity [8,10,39]. Indeed, limited plasticity is known to
accompany at least some martensitic phase changes [40—42].

In this paper, we reinforce the critical point perspective on
the avalanche behavior during structural phase transitions and,
at the same time, show that it is compatible with the idea of self-
organization to criticality through cycling. Our conclusions are
based on a simple model which reconciles the singular nature
of a critical point with the occurrence of scaling which does
not require extrinsic tuning. We reduce a classical continuum
description of crystal deformation to a (pseudo-)spin model
of the random field type with athermal dynamics [8,10] and
study the behavior of transformation-induced dislocations
as they coevolve with the phase transition. We link the
scale-free response with the crossing of a critical manifold
in the temperature-disorder parameter space. We show that for
thermally driven materials such “encounters” with criticality
are robust under cyclic loading due to the feedback between the
primary order parameter (describing the phase transformation)
and a secondary order parameter (describing plasticity).

Our results offer a novel perspective on the link between
disorder and scale-free avalanching, suggesting that the pres-
ence of a coevolving field is a fundamental mechanism of
robust scaling, in the line of Ref. [43]. A similar mechanism
is expected to be operative in other systems with local
multistability and evolving (annealed) disorder, for instance,
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during quasiplastic response of granular media and amorphous
solids [44,45].

The paper is organized as follows. The model is introduced
in Sec. II and is used in Sec. III to study intermittent
fluctuations of mechanical quantities during thermal cycling.
The critical behavior of avalanches is analyzed in Sec. IV. In
Sec. V we address the problem of marginal stability in the
critical regime. Our conclusions are summarized in Sec. V1.

II. THE MODEL

We study a first-order structural phase transition in a two-
dimensional (2D) crystalline solid from a high-temperature
square phase (austenite) to a low-temperature oblique phase
(martensite). The deformation is described in terms of a set of
L x L kinematically compatible multistable discrete elements,
see Refs. [8,10]. Each element models a homogeneous
deformation at a mesoscopic scale [46] while their ensemble
describes heterogeneous deformations at the macroscopic
scale (see Fig. 1).

A. Kinematics

We take the square lattice in the austenite phase as the
reference configuration; the linear size of the mesoscopic
elements in this configuration will be used as the unit of
length [Fig. 1(a)]. The deformation of the crystal is given
by the displacements of the vertices of the mesoscopic
elements, ii; ; = (uﬁj,uij), wherei,j = 1,2, ...,L. The field
u;; can be expected to be highly inhomogeneous in the
low-temperature phase exhibiting a mesoscale mixture of the
square phase coexisting with different variants of the oblique
phase [Fig. 1(b)].

To keep the model minimal, we assume that the crystal is
highly anisotropic and the displacement field is scalar. This
is a common assumption used in the studies of depinning
transitions [48] and dislocation dynamics [49-52]. More
precisely, we will only allow displacements in the horizontal
direction by setting u; ; = 0, see Fig. 2(a). Such a kinematic
constraint reduces the four variants of oblique martensite in
unconstrained conditions to two. It also allows the strain tensor
to be reduced to two fields [53]: A horizontal strain,

N N . .
O j = Uiyy ;= Ui s i=1,....L—-1, j=1,...,L,

(a) Reference - Square (b) Deformed — Square/Oblique

FIG. 1. Description of a 2D crystalline solid using kinematically
compatible elements. Each element represents a region at a meso-
scopic scale where the deformation of the lattice is homogeneous, as
shown by the insets. When an element is sheared to configurations
such as S&* in Fig. 3, dislocations are created in the square
lattice [8,10,47].
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FIG. 2. Panel (a) indicates the displacement fields uy j,u'i‘ Y and

uj i defining the strain variables «; ; and B; ; shown in (b).

which is a nonorder parameter variable, and a shear strain,

_ x P -
,Bi,j—ui’jﬂ—ui‘j, i=1,...,.L, j=1,...,L—1,

which is the order parameter for the square-oblique transfor-
mation [see Fig. 2(b)]. They are not independent due to the
constraint of geometric compatibility [46,54,55]. In our model
compatibility reduces to the following relations:

Bij — Bitj=0oij—aijy1, Lj=1,....L—1, (1)

which can be understood graphically from Fig. 2(b).

In this kinematic description, the stress-free, undeformed
austenite square configuration, S, correspondstoo; j = f; j =
0; the transformation strains describing the two stress-free
variants of oblique martensite, O and O,, are «; ; = 0 and
Bi,j = =€, where 0 < € < 1/2 is the transformation strain.
Depending on the value of €, it has been common to distinguish
weak, almost reversible phase transformations (¢ ~ 0) from
reconstructive transformations (¢ ~ 1/2)[56]. In Sec. III C we
propose a more precise classification of materials depending
on the value of €.

Note that, despite the simplifications introduced by the
kinematic constraint, our model respects the multivariant
character of the low-symmetry phase and includes the crucial
effects of nonlocality (induced by elastic compatibility) that
separate diffusionless structural transformations from other
first-order phase transitions.

B. Elastic energy

We write the dimensionless energy of the system in the
form

D =) (@B, )
iJj

where
$(o,B) = gaz + f(B.T) 3)

is the energy of an element. It will be clear later that the
parameter ¢ describes the coupling between lattice cells
(mesoscopic elements) with different values of . Within
our 2D setting ¢ mimics the ratios of elastic constants
(C11 — C12)/(4Cy44) or C11/Ces [57,58].

We account for the lattice periodicity through the condition

fB.T)= f(B+4d.T),
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FIG. 3. Piecewise parabolic function f(8,T) giving the periodic
energy of a mesoscopic element. The insets on top show in red (gray)
the shape of the elements sitting in the bottoms of the wells; the
dashed lines indicate the associated lattice structure. The elementary
shapes in the domain with d = 0 correspond to elements in square
austenite, S, and two variants of oblique martensite, O, and O,. The
rest of shapes correspond to slipped lattices that are identical to those
of the basic shapes (compare the dashed lines).

where d € Z is
slip [47,56,59,60].

For analytical transparency we proceed as in Refs. [8,10],
assuming that at a given temperature 7 the function f(8,T) is
piecewise parabolic, with minima placed at 8 = (es + d), see
Fig. 3. The potential within each well is given by

FBiiT) =3By — (esij +di )P + €T(D)st;, ()

an integer-valued variable describing

where the function 7(7T') represents the thermal driving. The
choice of the relevant period of f(8,7T) of an element i, j is
specified by the integer-valued variable d; ;. Similarly, the spin
variable s; ; selects, for a given d; ;, between the austenite
(s;,; =0) and two variants of martensite (s; ; = =£1). The
bottoms of the wells are located at g; ; = d; ; + €s; j, while
the limits of stability of individual energy wells correspond
to intersections of adjacent parabolas. The stability conditions
for a given well are conveniently expressed in terms of the
relative elastic strain,

y =€ '[B—(es + ), S

which measures (in units of ¢€) the distance from bottom of the
corresponding energy well. Thus, an element in the austenite
phase (s = 0) is stable if yam(t) — || > 0 and an element in
martensite phase (s = %1) is stable if |y| — yma(r) > 0 and
ys(e) — |y | > 0. Here

yam(t) =7 + 3, (6)
malt) =1 — 1, (7)
ys(e) = 5 — 1, ®)
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are the stability limits for austenite-martensite (AM),
martensite-austenite (MA), and slip (S) changes, respectively.
Note that the dependence on 7 is fully accounted for by
the limits for phase transitions, yam(7) and pma(7); the
dependence on € is carried by the limit ys(€) for slip changes.

C. Thermal driving

As in typical experiments [1-4,9], we assume that 7(7")
varies periodically. Thermal fluctuations are assumed to be
negligible at the time scale of the driving which implies,
in particular, that a configuration can become unstable only
as a result of the variation of 7(7). This is a reasonable
approximation for a wide range of athermal structural trans-
formations [61]. Under quasistatic driving [62], the strain
variablesa = {o; ;} and B = {f; ;} of an athermal overdamped
system vary smoothly while the configuration fields s = {s; ;}
and d = {d; ;} remain fixed. At the point where the stability
condition is violated by at least one of the mesoscopic
elements, an avalanche occurs which typically includes several
updates of the configuration fields until the system stabilizes in
anew state (s,d). We use synchronous dynamics for the updates
of s and d during the propagation of the avalanche [63,64];
quasistatic driving is implemented by keeping t(7") constant
during the avalanche. Once the avalanche finishes, the variation
of 7(T) resumes and the system evolves elastically along
the new equilibrium state until another avalanche begins.
The size of an avalanche is defined as the number of
transformation events during the avalanche. This includes both
phase transition (changing s) and slip (changing d). We have
checked that defining the avalanche size only as the number of
phase transition events does not change our conclusions.

We note that, in the regime of quasistatic driving and ather-
mal dynamics, the transformation strain € and the coupling
strength ¢ are the only parameters of the model.

D. Elastic interactions and slip disorder

During the quiescent periods with fixed s and d, the system
is in equilibrium with respect to & and B. The equilibria corre-
spond to the stationary points of the energy ® [Eq. (2)] subject
to the compatibility conditions [Eq. (1)]. In Appendix we show
that the relative elastic strain in such equilibrium states is

y=J-s+h, 9)

where h = J - d/e. The kernel J = {J; j 1/} characterizes the
system response (strain redistribution) induced by a shear event
in a single element [65,66]. In particular, the strain increment in
an element (k,/) induced by the phase transition of an element
(i,7) 18 8k = Ji1,i,j0si, j, where 8s; ; = %1 is the increment
of the phase variable s; ;. Similarly, the formation of a dislo-
cation dipole (plastic slip event) [10,51,52] at (i, j) induces a
strain change 8y ; = Ji i j(8si; + e’léd,-.j), where 8d; ; =
+1and 8s; j = —28d; ;, giving Syx; = (e — 2) i1 -

As shown in Appendix, J in our problem can be calculated
explicitly in real space, which contrasts with many other
studies where only the Fourier image of an elastic propagator
is known [46,54,55,58,65,67]). Thus, Fig. 4(a) illustrates the
elastic interaction of the central element with the surrounding
elements. It has a dipolar structure and involves both ferro- and
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FIG. 4. (a) Interaction J of an element at the center of a system of
size L = 51 with the rest of elements in the system (¢ = 0.2). Red,
white, and blue colors indicate positive, zero, and negative values of
J, respectively. (b) Decay of the absolute value of J with distance,
r, from the element at the center of the system along the horizontal
and vertical directions shown with dotted lines in (a). The dashed line
indicates the r~2 decay.

antiferromagnetic contributions as in, e.g., Refs. [51,52]. The
absence of a traditional quadrupolar structure is a consequence
of the extreme anisotropy of our model [46,54,55,58,65,67].
The assumed anisotropy, however, does not affect the r—>
decay of J with distance which is typical for 2D elastic
solids [46,54,55,58,65,67], see Fig. 4(a).

The auxiliary field h introduced in Eq. (9) allows us to
establish a formal link between this model and the more
conventional random field models (RFMs) with quenched
disorder [5,33,34]. Indeed, its effect on the phase transition
(variables s) is analogous to that of random fields in RFMs.
In this analogy, the mesoscopic elements are identified with
the spins in RFMs while the relative elastic strain, y, stands
for the effective local field. Even though the field h, which we
formally call “slip disorder,” is deterministic, it can be highly
heterogeneous in materials with high € [see Fig. 5(a)]. What
makes our model differ, however, is the annealed character of
such a disorder: The field h is caused by the slip d which is
dynamically induced by the phase transition. The fact that our
thermal driving cannot induce slip directly is a characteristic
feature of the model.

The competing positive and negative contributions to J lead
to frustration revealed through the formation of heterogeneous
phase microstructures at low temperatures [see Fig. 5(b)]

(b) Field s

q 1
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akin to the ones that are typically observed in martensites
[8,10,13-16,46,68] and ferroelastics [12,69]. Microstructures
of this type are also typical for other systems with competing
interactions [70].

In systems with large-enough €, phase heterogeneity will
necessarily lead to the similar heterogeneity of the field of
plastic slip d [Fig. 5(c)]. The heterogeneity of d, amplified by
the complexity of the elastic interaction kernel J, generates
the slip disorder h which, in turn, will contribute to the hetero-
geneity of the transformation. The study of the outcome of the
implied feedback constitutes the main subject of this paper.

III. EFFECTS OF THERMAL CYCLING

With elastic fields adiabatically eliminated (see Appendix),
our dynamical system becomes an integer-valued automaton
in terms of the fields (s,d), which is easy to simulate. We begin
thermal loading from an equilibrium state with T > 1/2 where
all elements are in the austenite phase (s = 0). A minimal
initial slip disorder is introduced by setting d =1 in the
element (i,j) = (L/2,L/2), and d = 0 everywhere else. We
then change the temperature t periodically for different fixed
values of €.

In all numerical experiments we set ¢ = 0.2 which is
a representative value for shape-memory alloys for which
both ratios (Cy; — C12)/(4C44) and Cy1/Ces are typically
between 0.1 and 2, see Refs. [57,58]. The dependence of
the transformation scenario on ¢ is interesting and will be
discussed elsewhere.

A. Hysteresis loops

The behavior of the system depends crucially on the choice
of the transformation strain €, as we illustrate in Fig. 6. We
follow the evolution of the transformed fraction to martensite,

q()=L"7) s, (10)
i,Jj

and the coevolution of the slip disorder h, which is traced

through the standard deviation,

1/2
2y |, (n
ij

where we have used the fact that the mean value of h is zero.

A(T) =

) Field d

FIG. 5. Spatial configuration of (a) the slip disorder, h, (b) the field of phases, s, and (c) the slip field, d, in the low-temperature phase after
10* cycles (blue and red correspond to negative and positive values) of a system with L = 51 undergoing a close-to-reconstructive transition

with € = 0.48.
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FIG. 6. Fraction of elements transformed to martensite, g(7), and
standard deviation of the slip disorder, A(t), for [(a) and (c)] € = 0.37
and [(b) and (d)] € = 0.48 in a series of 20 cycles. Different colors
correspond to different cycles, as indicated by the colorbox in (c).
Simulations correspond to systems of size L = 51. The initial slip
disorder is Ag(€) = (€ L)' 3=,/ J2; 10 1p = T:6x107 /€.

We show two sets of data for weak transformations with
€ < 1/3 and for close-to-reconstructive transformations with
€ ~ 1/2. For weak transformations, the function g(t) de-
scribes asymmetric cycles with an embedded infinite avalanche
(“snap”) during cooling runs and small avalanches (“pop”)
during heating runs [see Fig. 6(a)]. This is the usual asymmetry
of the transformed fraction in transitions to multivariant
phases [5,11]. Instead, for close-to-reconstructive transforma-
tions the cycles are more symmetric, rounded and reproducible
already after few cycles [see Fig. 8(b)], in contrast to what is
known for models with quenched disorder [5,11].

The disorder A(t) coevolves with the phase transition,
increasing when cooling and decreasing when heating. The
presence of slip is much more pronounced close to € = 1/2
when the stability limit ys(e) is low and dislocations form
easily [47,56,71]. Instead, for € < 1/3 the dislocation activity
is negligible because of the large barriers associated with these
regimes [10].

For systems with small transformation strain, the function
A(7) exhibits a very short transient with nonperiodic dynamics
followed by a sudden collapse to a periodic regime with a small
hysteresis for A(t) [see Fig. 6(c)]. The slip disorder is small
and is practically quenched.

In the regime with large € ~ 1/2, where the slip disorder is
annealed, we observe a lack of reproducibility of the disorder
fluctuations from cycle to cycle and a considerably larger
hysteresis for A(r). We now show that systems with large
€ eventually settle on a periodic regime. The transition to such
regime, however, occurs after a significantly larger number of
cycles than in the case of weak transformations.

B. Long chaotic transients

To understand the delayed synchronization of slip disorder
with thermal cycling in the case of close-to-reconstructive
transformations, we studied the behavior of the extremal values
of A corresponding to the austenite and martensite phases, Aa
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FIG. 7. Long chaotic transient followed by an abrupt transition
to a periodic regime in the case of close-to-reconstructive transfor-
mation. The extreme values Ay and Ay in each cycle are presented.
Data correspond to a system of size L = 51 and € = 0.431.

and Ay, respectively. In Fig. 7 we see that the behavior of these
two quantities is irregular for a large number of cycles before
it abruptly becomes periodic. This is observed in the regimes
where disorder is annealed (for € 2 0.3) and the duration
of stochastic transients, ng, increases exponentially with the
system size and €, see Fig. 8(a). We also observe a sensitive
dependence of ng on the initial conditions (e.g., on the location
of the initial slip).

The indicated features of the dynamics are typical for
supertransient chaotic phenomena [72,73] and have been also
observed in cyclically driven amorphous solids [74,75]. In
view of these analogies, we can argue that the basin of
attraction of the synchronized behavior in our model is narrow
and finding this attractor becomes increasingly difficult as
the system gains access to a larger configurations space by
generating slip. In the thermodynamic limit, the synchronized
behavior in such systems is usually unreachable and therefore
supertransients become a central object of interest (as in the
case of turbulence in pipe flows [76]).

N
T
~
[S)
~—

S
AR

T
T

FIG. 8. (a) Log-normal plot of the length n, of (super)transients
vs. € for systems of three different sizes marked by the legend. (b)
Mean amplitude Ay — A, of the slip disorder vs. e for the same
system sizes as in (a).
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To study the statistics of the annealed slip disorder h during
supertransients, we can exploit the statistical stationarity of
the signal by pooling over long series of cycles (at least
Neye ~ 10%). For a given quantity a [e.g., A(7)] taking values
{a,} in a series of Ny thermal cycles, we consider averages
over cycles, a = Nc‘yi >, ay. Figure 8(b) shows the mean
amplitude of the slip disorder fluctuations averaged over
thermal cycles, Ayy — A . We see once again that, despite the
fact that transformation-induced slip takes place for € = 0.3,
its hysteretic response [shown in Fig. 6(d)] only unlocks for
€ 2 0.35 when ‘Am — A, starts to deviate from zero. Note
that Ay; — A, exhibits a more irregular dependence on € for
smaller system sizes while the overall behavior is only weakly
dependent on the system size.

C. Dynamical regimes: Material types

Our numerical experiments allow us to identify four
distinct types of materials, depending on the value of the
transformation strain €. They are associated with qualitatively
different dynamic responses to the periodic driving. Regime
I corresponds to systems with € < 0.3 when the phase
transition is weak in the sense that it does not induce slip
deformation. Regime I' corresponds to systems with 0.3 <
€ < 0.35, which can generate some slip disorder during the
first transformation cycle but it remains quenched afterwards.
Regime II corresponds to values of the transformation strain
in the interval 0.35 < e < 0.45. In this regime, slip disorder
coevolves with the phase transition indefinitely, describing
hysteresis loops in which disorder increases significantly
during cooling runs and decreases equally significantly during
heating runs. The fluctuations of disorder between cycles in
this regime are first chaotic; however, the system eventually
synchronizes with the driving. The synchronization takes place
after a number of cooling-heating cycles, which increases
exponentially with increasing € and the system size. Regime
I' corresponds to systems with € > 0.45 which, as shown
below, exhibit scale-free avalanche dynamics. In this regime,
the chaotic supertransients for slip disorder are extremely long
(ns > 10°) and we were not able to reach synchronization in
our experiments.

Using the language of materials science, we can say that
solids operating in Regimes I and I are not trainable. Training
observed in many martensites can be effective in regimes II
and II' and the rest of the paper will be devoted to a more
detailed study of the corresponding properties.

IV. STATISTICS DURING SUPERTRANSIENTS
IN REGIMES II AND IT'

To study statistics of the “unlocked” disorder h in Regimes
Il and IT', we focus on supertransients and use sufficiently long
series of cycles to perform averaging (at least 10%). Given the
relative symmetry of cooling and heating in these regimes [see
Fig. 6(a)], we mostly report results for cooling runs. Some
results on heating runs are also presented to confirm their
statistical similarity with those occurring during cooling runs.

We first show that for materials with € 2 0.35 which are in
regimes IT and IT', the standard deviation averaged over cycles,
A®D), smoothly increases with decreasing t (see Fig. 9). The
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Y3 04 03

FIG. 9. Temperature dependence of the mean standard deviation
of the slip disorder, A(t), during cooling runs (cycles 400-10*) for
L = 51 and several values of €, as marked by the legend.

buildup of disorder, however, accelerates considerably around
7. =~ —0.385, where most of the phase transition from the
austenite to martensite phase takes place. The precise value
7. >~ —0.385 is estimated in Sec. IV B.

A. Correlated non-Gaussian disorder

The probability distribution of slip disorder D(k|t) in these
regimes is a heavy-tailed distribution for all t with relatively
narrower peak and wider tails than a Gaussian distribution with
the same mean and standard deviation, see Fig. 10. The non-
Gaussian character of D(h|t) can be systematically studied as
a function of 7 in terms of the excess kurtosis [77] averaged
over cycles:

v(t)

KS(T) = A4('L')

12)

Here vy(r) =L72), hﬁj is the 4™ central moment of
the slip disorder field. Figure 11 shows that K. exhibits a
peak corresponding to a maximal deviation from a Gaussian
distribution during the phase transition around 7, where the

slip activity is maximal.

[
=)
T T

Ll

il

FIG. 10. Log-normal plot of the distribution D(4|7) for evolving
disorder at three values of t (marked by dot-dashed vertical lines in
Fig. 9). Data correspond to cooling runs (cycles 400-10*) in a system
with L = 51 and € = 0.48.
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FIG. 11. Temperature dependence of the excess kurtosis, K.,
corresponding to slip disorder during cycles 400-10* in a system
of size L = 51 and several values of €.

The non-Gaussian nature of the slip disorder reveals itself
through the emergence of large correlated domains, see
Fig. 5(a). Similar spatial correlations have been reported for
dislocation patterns in martensites [78] and plastic activity in
amorphous materials [66,79].

For a given value of 7, we define the spatial correlations of
h averaged over cycles as follows:

1
C =|— hi ihy o). 13
h(r) card(P,); R (13)

Note that we take here the absolute value of correlations,
denoted by | - |. We denote by P, the set of pairs of elements at
(i,j) and (i’, j’) that are a distance r from each other; card(P,)
is the number of such pairs. Figure 12 shows that Cy,(r) decays
as r~2 in the whole range of loading. Such correlations, which
reproduce the decay of the elastic kernel, reflect the scale
free nature of the elastic interactions (described by J) which
mediate the evolution of the field h. The influence of J on the
correlations of the slip disorder is obvious from the definition
of h =] -d/e: Since the slip field d is dominated by large

10" = - -
| cog=045
L
107 :
10—4; ]
R | -
10° 10" 10°
r

FIG. 12. Spatial correlation function of disorder, Cy(r), in sys-
tems of size L = 51 in regime II'. Cy,(r) decreases in a similar way
for all values of 7; the dashed line illustrates the r~2 decay.
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FIG. 13. Avalanche size distribution at given temperature,
D(s|t), for cooling runs in a system with € = 0.48 and L = 51. Note
that 7 decreases from left to right while A is increasing as shown
in Fig. 9.

homogeneous domains (see Fig. 5), the =2 decay in h is
predominantly associated with J.

B. Avalanches

If instead of slip disorder we now focus on the transforma-
tion itself, then we observe that for materials in regime Il (¢ >
0.45) the avalanche size distribution D(s|t) exhibits extended
power-law scaling around 7., see Fig. 13. A maximum
likelihood fit [77,80] with

D(S|t) ~ S Ke ™S

gives at this point A =0 and x ~ 1.1 (see Fig. 14). The
power-law behavior at 7, is illustrated in Fig. 15, which shows
examples of the fits to D(s|t) in regime II' for € = 0.46
and 0.48. The behavior at other values of 7 is subcritical
(“pop”) with A > 0. In contrast, for materials with € < 0.45,

-0.36

FIG. 14. Temperature dependence of (a) the power-law exponent
k and (b) the cut-off parameter X of the avalanche size distribution for
heating runs. Different symbol types correspond to different values
of €, as marked by the legend. Dashed circles show the parameters of
fits to D(S]|7) in systems with Gaussian, quenched, and uncorrelated
random variables, h. Systems of size L = 51.
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FIG. 15. Avalanche size distribution D(s|t) for three different
values of € corresponding to the value of t at which the cut-off
parameter A assumes its minimum value [see Fig. 14(b)]. The
continuous lines show the results of the maximum likelihood fit for
each distribution. The distributions for € = 0.46 and € = 0.48 have
been shifted vertically for clarity. Systems of size L = 51.

the dislocation activity is too weak to ensure “criticality” and
during each cycle the parameter A assumes negative values.

The fit to the data for € = 0.43 (regime II) in Fig. 15 shows
that A < 0 is associated with a characteristic peak in D(s|t)
at large avalanche sizes. This indicates the occurrence of snap
events analogous to an infinite avalanche in weakly disordered
RFMs [5,33,34,36].

Figure 16 illustrates the fitting of a function D(S|t) ~
S~¥e™S to the avalanche size distribution for heating runs.
The parameter A approaches the zero value corresponding to
a power-law distribution at T! ~ —0.4. The value of « at T is
compatible with the value k = 1.1 obtained for cooling runs,
suggesting that the system belongs to the same universality
class for cooling and heating runs. Note that A does not
get so close to zero during heating runs as for cooling runs

1.5
v Ir

0.5F
— o
> 20
<0

27038 039 0.4T 0.41 042 043

FIG. 16. Temperature dependence of (a) the power-law exponent,
k., and (b) the cutoff, A, of the avalanche size distribution for heating
runs. Different symbol types correspond to different values of e, as
marked by the legend. The vertical dashed line indicates our estimate
for the critical driving parameter for heating runs.
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(cf. Fig. 14). This suggests a slight asymmetry between cooling
and heating runs with the behavior being closer to critical
during cooling runs. Besides that, the value of t where A is
closer to zero shows a stronger dependence on € for heating
runs than for cooling runs.

The observed scaling behavior for systems in regime
II' at 7. >~ —0.385 is an indication of the closeness to a
critical manifold in the space spanned by structural parameters
(transformation strain), driving parameters (temperature in our
case), and annealed disorder (variance of slip). We conjecture
that for structural transformations in the regime II' which
generate enough slip, the periodically driven system ratchets in
the space of parameters until it eventually approaches or even
crosses such manifold. The fact that the ensuing scaling does
not require extrinsic tuning of disorder and that criticality only
occurs at a critical value of the driving parameter explain the
experiments presented in Ref. [9]. Also note that the scale-free
behavior is robust with respect to € provided € is large enough
for the system to be in regime IT (i.e., for the system to generate
enough disorder). Each encounter with the critical manifold,
implied by this scenario, would mean that the system passes
close to the classical critical manifold in the corresponding
system with quenched disorder [5,33,34,36]. In the language
of dynamical systems, the observed scaling may also mean
that around 7. the extremely long chaotic transients pass in the
vicinity of a chaotic saddle [72].

C. Universality

We now investigate the effect of correlated non-Gaussian
disorder, h, and long-range interaction, J, on the universality
class of the observed criticality. First, we analyze the effect
of disorder by simplifying the model assuming that the
disorder is quenched; to prevent the development of additional
disorder we set ys(€) = oo, which makes the parameter €
irrelevant. Assuming that h is a Gaussian quenched uncor-
related disorder with zero mean and standard deviation AS,
we recover a long-range version of an athermal random field
Blume-Emery-Griffiths model (RFBEG) [5] with interactions
given by the kernel J and a parametric dependence on 7.
Numerical simulations of this model driven through t reveal a
critical point at AS = 0.05 and 7€ = —0.37 (for the cooling
paths). Within numerical errors, the value of the exponent «x ¢
evaluated at rCG coincides with the value of « at 7. (see the red
circles in Fig. 14). Instead, the maximum likelihood fits to the
integrated avalanche size distribution in our model with long-
range interaction, D(S) = ffooo D(S|t)dt, give an exponent
k' = 1.67 which differs from the analogous value ¥’ = 1.3
obtained in a RFBEG with short-range interactions [5]. The
latter value «’ = 1.3 is in fact compatible with the exponent
for the integrated avalanche size distribution produced by
the model in Ref. [8] where the kernel was assumed to be
anisotropic but short ranged.

From the comparison with the quenched-disorder version
of our model and models with short-range interactions, we
conclude that the universality class of our system is controlled
by long-range interactions but it is largely insensitive to
the correlations in disorder. This is in qualitative agreement
with predictions of the equilibrium random-field Ising model
with interactions J(r) ~ r~“*? and disorder correlations
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Ch(r) ~ r~@=9 which exhibits mean-field behavior for
dimensionality d > d, = min(6,3b) + max(0,a) [81]. Our
model with a =b =0 and d =2 > d, = 0 shows similar
insensitivity to the correlations of disorder. The universality
class, however, is not the same since the value k = 1.1 for
our model significantly deviates from the value k¥ = 3/2in
mean-field theories [37,82]. The difference may be associated
with the topology of interactions: Mean-field models imply
a treelike topology [36,83—85] while our model and other
models predicting similar values for x [86—88] preserve crucial
short interaction loops (while remaining long-range).

Our results correspond to a 2D system but, based on
the above considerations, we can expect that the model
can capture the universality class of at least some realistic
martensites with d =3 > d, = 0. In order to compare our
results with experimental data, we assume that the size of
avalanches is proportional to their energy. Experimental results
on the energy distribution of avalanches are available for the
integrated distribution in the whole range of loading [89]. In
particular, the exponent ” = 1.67 for the integrated avalanche
size distribution predicted by our model is close to the value
Keyp = 1.6 (denoted as € in Refs. [89,90]) for the avalanche
energy distribution in materials undergoing a thermally driven
transformation from face-centered-cubic (fcc) austenite to
face-centered-tetragonal (fct) martensite [89,90]. Experiments
suggest that the value of the exponent depends on the
number of martensite variants. It is encouraging that the
exponent predicted by our model with two variants is close
to the exponent for an fcc-fct transition with three variants
of martensite. It is also interesting that the experimentally
obtained exponent for single-crystal materials is the same
for cooling and heating runs [90], in agreement with our
predictions for systems in regime IT'. Extending our theoretical
framework to phase transitions with more variants could
provide a link between the number of variants of martensite
and the universality class.

V. MARGINAL STABILITY

To understand the robustness of the critical behavior in our
model, we now focus on the reproductive number R, defined
as the mean number of elements becoming unstable after the
transformation of every element during avalanches [85,86].
Marginal stability corresponds to R = 1 when, on average,
each transforming element triggers a transformation in exactly
one element. This regime separates unstable (R > 1) and
stable states (R < 1) in the configuration space. Marginal sta-
bility appears to be a generic signature of criticality [30]. The
question is whether the observed scaling in the neighborhood
of 7. is linked to the fact that the system reaches the state of
marginal stability in the sense that it approaches the threshold
R=1.

An analytical study of the dependence of R on 7 is
a challenging task because it requires discriminating the
numbers of elements becoming unstable at different stages of
an avalanche. Therefore, we first study the number RV (r|T)
of elements becoming unstable after an element triggers an
avalanche atr = (k,/) which is more amenable to analysis. The
reproductive number changes during avalanches, being larger
at the beginning of avalanches than at the end when activity

PHYSICAL REVIEW B 94, 144102 (2016)

fades out [36]. Accordingly, the knowledge of R (r|t) should
give an upper bound to the mean reproductive number in
complete avalanches, R(t). At the end of this section we
compare the semianalytical estimates for R(V(r|t) with the
actual function R(t) computed numerically.

A. Instability mechanisms

In our model, an instability takes place when the local strain
reaches one of the three thresholds, yam(t), yma(t), and ys(€)
given in Egs. (6)—(8).

The conditions for instabilities can be described in terms
of the “stability” fields (analogous to those defined in
Refs. [30,86]):

mam = yYam(t) — |71, (14)
uma = 17| — yma(), (15)
us = ys(€) — |yl (16)

which quantify the distance to the stability limits {y;;t =
AM, MA, S}. Unstable elements with respect to a transition
of type t have wu, < 0. While there are several types of
instabilities in our system, we argue below that the dominating
contribution to the reproductive number is associated with the
phase transition events.

The number of elements becoming unstable after the
phase transformation of an element at a site r = (k,/) can
be computed as a sum of three terms:

RO(r|7) = Ry (r|1) + RA(xlT) + RS (r1).  (17)

The right-hand side of this equation contains the mean number
of elements reaching each of the three stability limits, {y;;t =
AM, MA, S}. Each of these contributions can be split, in turn,
into the product of two terms:

RUy(xlt) = (1 — §(1) Uspy(rlo), (18)
RUA(|T) = G(v) Ui (xlo), (19)
R (r|7) = G(zv) U (x|7). (20)

Here, g(7) is the fraction of elements in martensite at given 7
averaged over transformation cycles, see Fig. 17. The quanti-
ties U,(l) (r|7) give the maximum number of elements becoming
unstable after an element at r undergoes a configuration change
of type t = AM, MA, S.

Now, we can write

|8yr.r"
i =3 [ D, ey
r'#r 0

fort = AM, MA, S. Here {D,;(u,|7); t = AM, MA, S} are the
probability density functions (PDFs) for the stability fields u,
at given t.

The upper limit § ;. of the integral in Eq. (21) corresponds
to the change of relative elastic strain experienced by an
element at r' = (i,j) after the configuration change of an
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FIG. 17. Mean fraction of elements in martensite for cooling runs
in systems of size L = 51. Data are obtained by averaging the value of
q at given T over 103 cycles during supertransients. Different symbols
correspond to different values of € in the regime with supertransient
behavior, as marked by the legend.

element at site r = (k,/). Based on Eq. (9), we can write:

|Jr,r’|

S| = if phase change atr,
S (Gl (VAN

if slipatr, (22)

where {J; v} = {J; jx1} is a more economical notation for the
kernel elements. Elastic strain changes associated with ele-
ments undergoing slip are smaller by a factor (¢ 7! — 2) com-
pared to those associated with phase changes. For systems with
relatively large € 2 0.35 where slip disorder is unlocked (i.e.,
for systems in regimes II and II'), the number of elements be-
coming unstable after a phase change [Eq. (21)] is then signifi-
cantly larger than after a slip event. The phase transition events
are therefore the main contributors to Ut(])(r|r) and R,(l)(r|r).

Note also that avalanches are necessarily triggered by one
or more elements changing phase; avalanches cannot start
with a slip event in our thermally driven model. Indeed, the
absence of thermally activated events implies that an avalanche
can only be induced by changing the driving parameter t,
which in turn can only induce phase transitions [recall that
in Egs. (6)—(8) only the stability limits for phase transitions
yam(7) and yya(7) depend on t]. Therefore, in what follows,
we focus exclusively on the analysis of instabilities triggered
by elements undergoing a phase change.

B. Simplified model

We start with the analysis of a simplified analytical model
to study the main factors responsible for the dependence of
R (r|7) on the driving parameter 7.

Note that the definition of stability limits implies compact,
t-dependent support for D, (1, |t). More precisely, the stability
fields can take values only in a finite interval:

e € 0.7 (D)],
where
yam(t) =T+ 3 ift = AM
ys(€) — yia(t) = 5L — 7 ifr = MA, S.
(23)

w () = {

PHYSICAL REVIEW B 94, 144102 (2016)

Now, since the interaction kernel J;, decays with distance,
r=|r—r'], as Jo/r?, we know that |8y,| ~ Jo/r? [see
Eq. (22)]. We can then approximate the cumulative probability
density function Fy(|8ye.x|17) = fo"""' D,(uu;|7)d s, by the
expression

if r > /Jou™ (1)
it r < /Jou™ (7).

Hence, the maximum number of unstable elements triggered
by a localized phase change from austenite to martensite can
be approximated by the expression

F(18yer| |7T) =

{F,(Jor-2|r> o

L
Ul ety ~ U (1) = / drr F(18yer] I7)
1

1 X
- §|:J0/L;na (1) —1

7 CON
—l—JO/ dx ’:;'T)}, (25)
0

where we assumed large system size and replaced L~! by zero
in the lower limit of the last integral. If we now, following
Refs. [30,86], assume that for relatively small © we can
approximate the distribution of “stabilities” by a power law,

Di(u|t) ~ Co(t)ps ™, (26)

we obtain an explicit approximation for the maximum number
of elements triggered by an elements undergoing a phase
transformation:

] max
5o @) — 1
JoCy(0) ifo, >0
~ 0 T X —o,(7)
0" (@) ~ oy W) ] @7
00 if o <O0.

From this expression we see that ﬁ,(l)(r) is finite if «,(7)
is positive. The condition «,(t) > 0 is typical for systems
with long-range interaction [91] and it is less restrictive than
the stability condition, ¢, (7) > 1, for models with mean-field
interaction such as the Sherrington-Kirkpatrick model [86].

This simple model illustrates the competing influences on
the reproductive number RO(r|7) of the phase fractions de-
scribed by g(7), and the distribution of “stabilities,” D,(u,|t),
through the functions ﬁ;l)(r) [see Egs. (17)—(21)]. Below we
give numerical support for the power-law approximation of the
distribution of stabilities D,(u,; T) [see Eq. (26)]. We then find
approximate analytical expressions for ﬁ,m (r) and compare
them with numerical results.

C. Distribution of stabilities

The numerically obtained stability distributions D,(u,|7)
for cooling runs (during supertransients) are illustrated in
Fig. 18 for several values of t and € = 0.48. Figure 19 shows
the distributions Danm(eam|T) and Ds(us|t) at 7. for several
values of €.
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FIG. 18. Probability density functions for the stability fields (a)
ams (b) ;tma, and (c) s in a system with L = 51 and € = 0.48.
Different symbol types correspond to different values of the driving
parameter, t, as marked by the legend.

One can see that for the values of the driving parameter
close to 7., where most of the activity occurs (see Fig. 17), the
two stability distributions for phase transitions, Dan(it|7) and
Dwma(p|t), can be approximated by a power law for sufficiently
small values of i [see Figs. 18(a), 18(b), and 19(a)]. Moreover,
Dam(eamlt) increases with pam up to the limit uif(r) =

T + 1/2, which means that a power-law dependence

aam(T)

Dam(pam|t) ~ Cam(T)anm

gives a reasonable approximation for most of the interval
[0, v (0)]. The leading term in Eq. (27) is then

Un(0) ~ (x4 1/2)7m®, (28)

This approximation predicts a strong increase of l’]\/ill\),[(t)
when decreasing 7, which is supported by exact numerical
results for Ulgll\}[(r| 7). The numbers U,(l)(r|r) can be determined
exactly from Eq. (21) using the numerical results for the PDFs
of the stability variables, D,(u,|t), and the interaction kernel
{Jr.r}. In order to compare U;ll\),[(rh) with Eq. (28), we use

the mean value of U/gll\),[(rh) obtained by averaging over all the
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FIG. 19. Probability density functions (a) Dam(ptam|t) and (b)
Ds(us|t) for stability variables at . = —0.385 during cooling runs
in systems of size L = 51. The inset shows the exponent g obtained
by fitting a power law Dg(us|t) ~ Cs(t)u‘s'sm for small values
of Ms.

elements in the system:

(U@ = L7 UGl

Figure 20(a) shows that (U}(\ll\),[)(r) indeed exhibits a strong
increase for decreasing 7, as predicted by our approximation
in Eq. (28).

Figures 18(c) and 19(b) also support a power-law approxi-
mation for

Ds(ps|v) ~ Cs(mus™”,

at least for small values of u and t around 7.. The exponent
as(t) decreases with increasing € [see the inset in Fig. 19(b)],
which means that the relative fraction of elements in martensite
that are close to the stability limit for slip increases with
increasing €. This is in agreement with the fact that phase
transformations in systems with larger value of € generate
more plasticity. A power-law approximation is not as accurate
for ﬁél)(r) as it is for ﬁ;‘l\),[(r) since the decay of Ds(us|t)
for large g extends over a wider interval than the decay of
Dam(am| 7). In spite of that, at low temperatures (expansion
around 7 = —1/2), the power-law approximation,

UM () ~ las(@] ™' +1/2 + 7,

gives the leading contribution. This conclusion is based on
the fact that Cs(t.) ~ 10° > 1 for every € in regime II'
[estimated from the curves in Fig. 19(b)]. The increasing trend
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FIG. 20. Mean maximum number of elements becoming unstable
with respect to the (a) AM and (b) S stability limits as a consequence
of the phase transition from austenite to martensite of any element
in the system. Note the log-normal scales in (a). The system size
is L =51.

of the approximated ﬁél)(r) for increasing t is in qualitative
agreement with the numerical results for

-2 Z ulP(r()

(Us")w) =

presented in Fig. 20(b).

For cooling runs, the number Uﬁ,}i(ﬂ 7) of elements un-
dergoing the inverse transition from martensite to austenite is
negligible since Dya(imal7) takes very small values in the
interval of integration in (21), see Fig. 18(b). From Eq. (19)
we then conclude that Rfvlﬁ\(ﬂ 7) is negligible. This means that
during cooling runs elements do not become unstable with
respect to the inverse transition from martensite to austenite.

To summarize, our approximate calculations suggest that
the behavior of the function ﬁt(l)(r) can be qualitatively cap-
tured based on the knowledge of the dependence of the limits of
stability of the energy wells on the loading parameter 7. From
Egs. (17)—(20) it is then clear that in our model the behavior of
the reproductive number is largely controlled by the interplay
between the phase fractions and the limits of stability.

D. Reproductive number

We can now describe the degree of stability of our
configurations through the reproductive number averaged over

all the elements,
-2 Z R(])(rh:)

The analysis is based on Eqs. (18)—(20), which express
(Rt(l))(r) in terms of the mean fraction of elements in the

(R(]) ('L')
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FIG. 21. Contributions to the mean reproductive number of
elements reaching the (a) AM and (b) S stability limits as a
consequence of the phase transition from austenite to martensite of
any triggering elements in a system of size L = 51.

martensitic phase, §(t), and the maximum number of triggered
elements, (U,(U(r)).

For elements undergoing an austenite-martensite phase
change, the fast growth of (U/%\),[(t)) for decreasing T competes
with the decay of 1 —g(r) [cf. Figs. 20(a) and 17]. As
a result, the reproductive number averaged over elements,
(Rgg/[)(r) =(1- ‘7(7))<U/(xll\)/1>(f)’ exhibits a peak for values
of 7 close to t. = —0.385 [see Fig. 21(a)]. This peak is an
indication that a state of marginal stability may be reached
around t.; however, no quantitative conclusion can be stated
at this point since (RXK,[)(I) overestimates the reproductive
number, R.

For elements undergoing slip, (Uél))(r) displays a weak
dependence on t in the interval with 7 < —0.3 where
G >0. The behavior of (R{’)(t) = G(z)(US")(r) is there-
fore dominated by the increase of g(r) with decreasing r,
see Fig. 21(b).

Note that both (U (1))(1) and (R( ))(7:) increase with € [see
Figs. 20(b) and 21(b)]. This agrees with the fact that the ability
of a system to generate transformation-induced slip increases
when it approaches the reconstructive limit, € = 1/2, where
the stability limit for slip vanishes [ys = 0, see Eq. (8)]. It is
interesting, however, that the specific amount of slip generated
by systems with € > 0.45 (i.e., those in regime II' which
exhibit critical behavior) does not have a significant effect
on elements undergoing phase transition. This is clear from
Figs. 20(a) and 21(a) which show a negligible dependence of
(Up ud »)(t)and (Ri\lz,[)(r) on €. Behind this is the fact that slip de-
formatlons produce very small elastic strain changes, |8yy.r|,
and, despite being potentially numerous, are unlikely to trigger
phase changes from austenite to martensite. Note that g(t) is
also largely independent of € in the regime IT, see Fig. 17.
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FIG. 22. Mean reproductive number R(tr) for individual

avalanches during cooling runs in long series of thermal cycles for
a system of size L = 51 with € = 0.48. The shaded region indicates
the standard deviation of R(7).

To check our semianalytic results numerically, we define
the mean value of R in individual avalanches (during cooling
runs) as

T7-1

_ i 1 NAM(t + 1|‘L')
RO =772 Nam(tlT)

t=1

where Nam(2|7) is the number of elements undergoing the
austenite-martensite transformation at time step ¢ during an
avalanche at driving field 7. 7 is the duration of the avalanche
which in our synchronous dynamics is given by the number
of simultaneous updates of transforming elements during an
avalanche. The results, shown in Fig. 22, confirm the existence
of a peak around 7. and the closeness of this peak to the
value R(t) = 1 implies that the stability around this point is
only marginal. Comparison of Figs. 21(b) and 22 confirms the
claim that the reproductive number at the onset of an avalanche,
(RXI\),I)(r), predicts the general trend of the mean reproductive
number in individual avalanches, R(t), while overestimating
the numerical value.

The fact that R(t) exhibits a peak and approaches marginal
stability only locally in temperature, suggests that the mech-
anism of self-organization to criticality in our model differs
from the one in systems where R = 1 over an extended range of
values of the driving parameter [30]. Such extended marginal-
ity has been reported, for instance, for the Sherrington-
Kirkpatrick model [86,92] and for models of amorphous
solids [88,91] and dislocation dynamics [50-52]. Instead of
getting locked at a critical manifold as in these systems, ours
approaches it at times just to be carried away again by the
periodic driving. The observed behavior also differs from the
critical self-organized avalanche oscillations under monotone
driving studied in Ref. [93]. The specificity of our system may
be due to the particular nature of thermal driving which is not
conjugate to the order parameter (deformation in our case). In
contrast, the driving parameter in systems exhibiting extended
marginality is conjugate to the order parameter. For instance,
the Sherrington-Kirkpatrick model is driven by a magnetic
field which is conjugate to the magnetization; the driving in
models for deformation of amorphous solids or dislocation
dynamics is the stress which is conjugate to the deformation.
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VI. CONCLUSIONS

We have presented a simple model showing that a system
with periodically driven structural phase transformations may
operate in a regime where a critical manifold is approached
robustly. The model shows that the intrinsic tuning to criticality
of the first-order phase transition can be provided by a
coevolving nonorder parameter field describing correlated
transformation-induced defects. The proposed mechanism is
in line with the abstract sweeping paradigm [43,94] which
postulates that a suitable coupling between the primary and
secondary order parameters can lead to robust scaling. Our
model specifies how such coupling can operate in solids
undergoing structural transformations. In this way, the model
explains the scale-free avalanche behavior through recurrent
encounters with a critical manifold.

The primary order parameter in our framework is as-
sociated with the martensitic transformation (field s) while
the secondary corresponds to the transformation-induced slip
(field d). The slip field plays the role of a non-Gaussian,
spatially correlated annealed random field, which affects the
phase transition. The degree of coupling between the phase
transformation and the slip increases with the transformation
strain €. Interpreting the slip as a disorder acting on the phase
transition variables is possible since slip is unlikely to trigger
phase changes.

We distinguish four regimes depending on the value of
€. Regime I corresponds to systems with € < 0.3 in which
the phase transition is weak in the sense that it does not
induce any plasticity. Regime I’ corresponds to systems
with 0.3 < e < 0.35 which can generate some slip at the
beginning but dislocations remain trapped afterwards. Regime
II corresponds to values of the transformation strain in
the interval 0.35 < € < 0.45 where slip disorder coevolves
with the phase transition. In this regime, the avalanche size
distribution becomes progressively closer to a power law as €
increases. However, there is still a characteristic peak at large
avalanche sizes.

In the most interesting regime II', corresponding to € >
0.45, the system generates enough disorder to approach a
critical manifold at specific values of the driving parameter
(t. and TP, for cooling and heating runs, respectively). The
intermittent closeness to the critical manifold is robust in
the sense that it is not sensitive to the specific value of e.
In this regime, the chaotic supertransients for slip disorder
are extremely long (ns > 10°) and it is of interest to study
their possible transition to a stable cycle. Another challenge
is to perform the finite-size scaling analysis sharpening our
numerical estimates for the critical exponents and specifying
the scaling functions. An important difficulty in this respect
from a computational viewpoint is to efficiently deal with
long-range interactions.

Our results suggest that many shape-memory alloys with
close-to-reconstructive transitions [71] (i.e., materials oper-
ating in regimes II or II') should not be treated as purely
elastic. Instead, they can be expected to exhibit “breathing”
microscopic disorder under cyclic thermal loading, with very
long shakedown transients and critical avalanching only at
critical values of the temperature. The proposed coupling
between phase transition and disorder therefore appear to
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be unifying conflicting interpretations of criticality in such
first-order phase transitions [8,9]. However, more detailed
experimental studies are necessary to affirm this interpretation.
In particular, it would be interesting to check if the electrical
resistivity results in Ref. [9] are corroborated by acoustic
emission or calorimetry experiments in thermally driven
martensites. Another interesting experimental challenge would
be to directly identify the slip disorder in these materials and
to study its evolution during thermal cycling.
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APPENDIX: MINIMIZATION OF THE ENERGY
AND ELASTIC KERNEL

In this Appendix, we present details about the minimization
of the energy of the ensemble of mesoscopic elements subject
to the compatibility constraints and derive the interaction
kernel J.

Our starting point is the functional:

L-1
d=0a- Z Gijlatijar — ot j — Bivrj + Bij),

ij=1

(AD)

where @ is the energy of the system given by Eq. (2) and
{¢i,j} are Lagrange multipliers to account for the compatibility
constraints given by Eq. (1).

The stationary points of (A1) are given by the following
equations:

coyj+ & (1 —=8;1)— & j1(1=8;1) =0,

i=1,....L—1, j=1,...,L (A2)

Bij —wij—¢& ;A —=8_1)+¢-1,;(1—681) =0,

i=1,...L, j=1,....L—1 (A3)
@i jr1— o ; — Biv1;+Bij =0,
ij=1,...L—1, (A4)

where w; ; = €s; ; +d; ; and §; ; is the Kronecker § which is
1if i = j and O otherwise. The set of Egs. (A2)-(A4) defines
a closed system for the strain variables: {«; j,i =1,...,L —
l,j=1,...,Lyand {8, ;,i=1,...,L, j=1,...,L —1}.

Fori < L — 1, Eq. (A3) can be solved recursively for ¢; ;
as a function of {B; ;}:

Gj= (Buj—we). ij=1..L—1. (A
k=1

For i = L, one obtains B, ; —wy ; = —{r—1,; which,
using Eq. (AS), gives

L
> (Bej —wij)=0. (A6)

k=1

PHYSICAL REVIEW B 94, 144102 (2016)

Introducing Eq. (A5) into Eq. (A2) allows «; ; to be given
interms of g; ; fori,j =1,...,L — 1 as follows:

caj ;= (1— 8]‘,1)Z(ﬂk,j71 — Wk, j—1)

k=1

—(1=8;1) ) (Bej — wi.))-

k=1

(A7)

Using Eq. (A7) to express «; j41 and «; ; as a function of
the strains {8; ;} in the compatibility condition, Eq. (A4), leads
to a set of equations for the equilibrium branches that relate
Bijtow; ;fori,j=1,...,L —1 as follows:

D@ =810 = 8;.0)(Brj — Wi ;)

k=1

- Z(l = 81,0 Brj+1 — Wi jt1)

k=1

=Y A= 8;0Brjm1 — wij1) = c(Bis1j — Bij)-

k=1
(A8)

At this stage, it is technically convenient to sort the
elements in lexicographic order in such a way that the
Cartesian coordinates (i, j) are given in terms of a single label
p =i+ (j — 1)L that takes values p = 1,2,... Lx(L — 1).
With this notation, a second-order tensor with components
{a;,;} can be represented as a vector with components
Ap—it(j—1L = a; j. Similarly, the components {a; j;} of a
fourth-order tensor are represented by a matrix with elements
Ap=i+(j—DL,g=k+(-1)L = i, jk,l-

Combining expression (A8) and the closure relation (A6)
gives a determined system of equations for the strain fields
{Bij,i=1,...,L, j=1,...,L — 1} which can be recast in
matrix form as follows:

A(B—w) =cBg. (A9)
Here, w and B are lexicographic vectors with L(L — 1)
components. Aisan [L(L — 1)]x[L(L — 1)] block tridiagonal
matrix [of (L — 1)x(L — 1) blocks],

T, -T, 0 0 0
-T, T, -T, 0 - 0
A=|l 0 -T, T, -T, 01 (A10)

0 0 0 0 -T, T,

where T and T, are L x L matrices defined as follows:

2 0 0 --- 0 O
2 2 0 --- 0 O
Ti=|: @ ¢ i oil (AID
2 2 2 2 0
1 1 1 1 1
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1 0 0 0 0
1 10 0 0

T, = Do : (A12)
111 1 0
0 0 0 0 0

The matrix B in Eq. (A9) is a block-diagonal matrix with
[L(L—1)] x [L(L —1)] elements made of (L —1) x (L —1)
blocks:

Q 0 0 --- 0
0 Q 0 --- 0

B=|. . . |- (A13)
0 0 0 Q

PHYSICAL REVIEW B 94, 144102 (2016)

where Q is an L x L matrix defined as follows:

-1 1 0 -~ 0 0
0 -1 1 -~ 0 0
Q=|: = = - (A14)
0 0 0 -~ —1 1
0 0 0 -~ 0 0

The last row of the matrices Ty, T, and Q ensures that the
closure relation (A6) is satisfied.

Finally, straightforward algebraic manipulations with
Eq. (A9), which use the relation between the elastic strain and
the relative elastic strain, y = (8 — w)e !, lead to Eq. (9) with
the kernel J = (I — cA"B)f1 — I. Here I is the unit matrix
with elements {I, ;, =6, 4; p,g=1,...L x (L — 1)}.
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