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Abstract

We show that continuum models for ideal plasticity can be obtained as a rigorous
mathematical limit starting from a discrete microscopic model describing a visco-
elastic crystal lattice with quenched disorder. The constitutive structure changes as
a result of two concurrent limiting procedures: the vanishing-viscosity limit and the
discrete-to-continuum limit. In the course of these limits a non-convex elastic prob-
lem transforms into a convex elastic problem while the quadratic rate-dependent
dissipation of visco-elastic lattice transforms into a singular rate-independent dis-
sipation of an ideally plastic solid. In order to emphasize our ideas we employ
in our proofs the simplest prototypical system mimicking the phenomenology of
transformational plasticity in shape-memory alloys. The approach, however, is suf-
ficiently general that it can be used for similar reductions in the cases of more
general plasticity and damage models.

1. Introduction

Continuum models involving rate-independent hysteresis appear in various
solid mechanics problems ranging from friction and earthquakes to plasticity and
damage. Typically, the associated systems of phenomenological equations contain
empirical functions characterizing failure thresholds and the hardening rates. In
sharp contrast to elastic moduli, these characteristics of out-of-equilibrium behav-
ior can rarely be rigorously linked to the structure of the underlining small-scale
system. The main difficulty originates from the fact that at finite temperature the
mesoscopic dissipation is necessarily rate dependent (see for example [44]) while
the observed macroscopic dissipation may be rate independent. This means that the
correct coarse graining, implying an averaging of the mesoscopic time and space
scales, must necessarily involve the basic change of the model structure. We use the
notion “mesoscopic” here to indicate that we are interested in inherently discrete
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phenomena at a scale that is larger than the microscopic level (atomistic length
scale) but still smaller that the macroscopic level of a sample.

To be more precise, we need to understand the limiting transition from models
with quadratic dissipative potentials of the Onsager type (employed in modeling
kinetics of lattice defects) to models with singular dissipative potentials used in
the description of rate-independent dissipative processes (continuum plasticity).
The main physical ingredients of such a limit were identified in [53], and here we
present the first mathematical limit analysis of the corresponding discrete system
leading to a system of partial differential equations in space and time.

The foundations of the general phenomenological theory of rate-independent
systems have been set in [23,36] (see also [14,18,21,43,45,47]). For our models
we need to consider the nonconvex version of the theory which can be treated in
the framework of the general concept of energetic rate-independent systems (ERIS)
introduced in [35,38]. This approach has been already used in the description of
fracture [11,12], plasticity [8,9,29], delamination [25,55], damage [4,17,19] and
phase transformations [24,38,54,62].

The microscopic models in all these areas rely on the existence of characteristic
defects carrying inelastic deformation (for example dislocations, phase boundaries,
fracture fronts, etc.) The microscopic dynamics of the individual defects is under-
stood only in simplified settings and their interaction is so complex that a detailed
bridge in the sense of rigorous coarse graining of quantum mechanical or atomistic
models does not seem feasible. In this situation turning to simple prototypical mes-
oscopic models, like the extremely schematic one discussed in this paper, still offers
mathematical and physical insight. The fundamental value lies in the identification
of spatial and temporal scales whose averaging ensures the transition between the
two different dissipative mechanisms.

In the framework of plasticity, the microscopic origin of rate-independent dis-
sipation was first studied by using models describing a single particle on a periodic
landscape (for example [10,48]). Later, such models were applied to a wide range of
rate-independent dissipative phenomena from charge density waves and friction to
phase transitions [7,16,20,22,46,58]. The study of discrete chain of particles cou-
pled through bi-stable springs (sometimes also called soft spins) represents the next
level of schematization allowing one to model realistic hysteretic behavior without
explicitly introducing a periodic landscape [15,39,51,53,63]. Higher-dimensional
models with bi-stable or multi-stable springs allow one to go much further and study
pinning–depinning transitions, criticality and power-law structure of fluctuations,
for example [49,56].

Despite the considerable literature on the subject, only few attempts have been
made for bridging the gap between viscous and rate-independent systems by rigor-
ous mathematical analysis. In the simplest zero-dimensional case (a single “mass
point” in a multi-dimensional configurational space) hysteretic models have been
derived in [1,30,57,59] starting from macroscopic potentials with superimposed
microscopic periodic perturbations. In the present paper we establish exact conver-
gence results for the simplest one-dimensional system (a chain of “mass points”
having both configurational and spatial dimensions). Already, here we are con-
fronted with several major mathematical difficulties associated with coarse graining
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in both space and time, and we expect that some of our techniques are also useful
for more general systems. In this relation we mention that somewhat related models
for crack propagation, which also rely on the passage from a viscous system to a
rate-independent one, have been recently considered in [26,28,40].

In mechanical terms our meso-scale model can be viewed as a quasi-statically
driven discrete chain of bi-stable, visco-elastic springs and our goal is to obtain,
in the slow-loading limit, a coarse-grained model that is equivalent to continuum
rate-independent plasticity. The main ingredient of the discrete model making this
reduction possible is the rugged energy landscape incorporating some quenched
irregularity. Due to quasistatic external driving, our system remains in a local equi-
librium (metastable state) until it is forced to undergo a fast transition from an
unstable state to a new metastable state. An important conclusion of our work is
that the energy dissipated by viscosity during such fast transitions can be described
in the continuum limit by a dissipation potential that is a homogeneous function
of degree one. Some formal computations justifying this limit have been presented
in [53]. In particular, it was realized that the transition from a viscous to a plastic
model must involve simultaneous averaging over the fast relaxational time scale
and homogenization over spatial discreteness. In this paper we provide a first rig-
orous analysis of the discrete dynamical system and show that in order to obtain
in the limit a spatially nontrivial rate-independent plasticity it is necessary to intro-
duce disorder. Previously, disorder has been used to obtain hardening and generate
realistic inner hysteresis loops for a bi-stable chain viewed as a mass-point system
in the high dimensional phase space, see [52].

In mathematical terms, our starting point is a constrained gradient system sys-
tem of N ordinary differential equations, where the constraint makes the system
non-autonomous through time-dependent applied displacement on the boundary
(that is, a hard loading device). We first identify two main small parameters which
control the dynamics. The parameter δ is the rate of viscous relaxation on the time
scale of the loading. This parameter goes to 0 either when driving is quasi-static
or when the internal relaxation is fast. The second small parameter ε = 1/N is the
normalized reference length of the bi-stable springs, which prescribes the scale of
the inhomogeneity.

By performing a series of numerical experiments (see Section 2.2) we motivate
the need of a third parameter that breaks the permutational symmetry arising from
the original spatial homogeneity. Indeed, given that the coupling between differ-
ent elastic units is only through a mean-field, the system with identical springs
is highly degenerate and is predisposed to the Neı̆shtadt type phenomena [42] of
delayed bifurcation. Hence, we introduce random inhomogeneity characterized
by its variance r . We fix a finite value r > 0 and focus on the double limit:
first δ → 0, then ε → 0. Our main result is that in this limit the original finite
dimensional visco-elastic system converges in some well defined sense to an infi-
nite-dimensional continuum model describing elastoplasticity and exhibiting rate-
independent hysteretic behavior.

The constitutive structure changes as a result of two concurrent limiting pro-
cedures: the vanishing-viscosity limit and the discrete-to-continuum limit. In the
course of these limits a non-convex elastic energy functional, formulated in terms
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of mesoscopic strains, transforms into a convex elastic energy in terms of two mac-
roscopic variables, namely the macroscopic elastic strain and the averaged phase
indicators, which we interpret as plastic strain. Simultaneously, the quadratic rate-
dependent dissipation of the visco-elastic lattice, which is given in terms of the rate
of mesoscopic strains, transforms into a singular rate-independent dissipation of an
ideally plastic solid (given in terms of the rate of the plastic strain). As intermediate
constructions we encounter jump discontinuities in time and parametric measure-
valued solutions in space. The proof of convergence involves three main steps. The
first step is the reduction of a finite-dimensional ODE gradient system to a discrete
automaton, which prescribes a truly quasi-static evolution on the time-dependent
set of local energy minima. In the second step this automaton is reformulated as an
ERIS characterized by an energy functional and a dissipation distance. The third
step is the discrete-to-continuum passage in the spirit of �-convergence for ERIS,
see [37]. Here we exploit the Young measures generated through the disorder and
thus are able to pass to the limit in both the energy functional and the dissipation
potential.

The paper is organized as follows. In Sections 2 and 3 we set the general dynamic
problem for the overdamped ODE system and present the results of direct numeri-
cal simulations justifying the subsequent regularization through quenched disorder.
We then define the macroscopic variables by embedding the discrete system into
L2(�) where � = ]0, 1[ is the reference configuration of a continuum bar. Most
of the rigorous analysis is done under the assumption that the spring potential �
is bi-quadratic, that the total length � of the chain (Dirichlet loading) is piecewise
monotone with |�̇(t)| � λ > 0 almost everywhere, and that the body forces gext
are time independent, see (3.7). These assumptions are not essential and are used
only to make calculations simpler and the proofs more transparent.

In Section 4 we deal with the vanishing-viscosity limit δ → 0 for fixed ε.
We present careful estimates comparing the viscous solutions to the limiting dis-
crete automaton, which is rate independent. The control of the phase state in the
individual springs is possible because both the quenched (that is independent of
time) disorder and the dynamics are consistent with a suitable ordering property,
see (4.2); this property is analogous to the no-passing property in the depinning
dynamics, see [31]. We show that the evolution of ordered states splits into periods
of slow conservative evolution along a branch of the family of equilibria and rapid
dissipative transitions between different branches. In the zero viscosity limit the
dissipative stages can be replaced by jump discontinuities in isolated moments of
time. We show that the limiting system can be reformulated as ERIS, and we can
take advantage of the fact that the energetic solutions (see Definition (4.3)) are
controlled only by the energy functional and the dissipation potential, rather than
by their derivatives.

In Section 5 the limit ε = 1/N → 0 is obtained through embedding the system
into Q = L2(�)2 and controlling the joint Young measures for elastic and plastic
strains. The convergence to the limiting plasticity model is interpreted in terms of
�-convergence of energetic rate-independent systems by using the methods devel-
oped in [37]. In Section 5.3 we show that in the case of a bi-quadratic potential a
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more general double limit (ε, δ) → (0, 0)with δ � κ+ε for some κ∗ > 0 produces
the same plasticity model and we do not expect the restriction δ � κ+ε to be sharp.

In Section 6 we return to the case of general (not necessarily bi-quadratic) poten-
tials � and general time-dependent body forces. We first study the ordered double
limit “limε→0 limδ→0” and present a formal calculation showing how the effective
dissipation potential and the effective stored-energy density can be obtained from
the microscopic elastic potential and the probability distribution of the quenched
disorder. We then sketch the proof of the convergence, heavily relying on the cor-
responding proofs in the case of bi-quadratic potential. Finally, in Section 6.5 we
briefly discuss convergence along more general sequences in the (ε, δ) plane.

2. Setup and Modeling

2.1. Description of the Discrete Mesoscopic Model

Consider a macroscopic interval [0, 1] containing N−1 massless particles at
the reference positions x N

j = j/N , j = 1, . . . , N−1. The boundary points j = 0
and j = N are assumed to be controlled and undergoing prescribed displacements.
The remaining points are linked in series by N identical bi-stable springs, which
we call simply snap-springs from now on. The chain is springs is depicted in Fig. 1.

The most important ingredient of the model is the bi-stability of the individual
elastic springs. To be more precise we write the normalized elastic energy of the
chain in the form

˜E (e) = 1

N

N
∑

j=1

�(e j ) with e = (e1, . . . , eN ) ∈ R
N ,

where e j is the strain in the j th snap-spring. We assume that the elastic energy of
a snap-spring � : R → R is a non-convex two-well potential. This means that
the function φ = �′ is decreasing on the interval

]

e−, e+
[

, which is called spin-
odal region. Moreover, we assume that φ is strictly increasing on the two intervals
]−∞, e−

[

and
]

e+,∞
[

, representing phase “+” and phase “−”, respectively (see
Fig. 2). We can formally define the corresponding energy wells by setting

σ+ := φ(e−) > σ− := φ(e+).

For future convenience we denote by ψ+1 : [

σ−,∞
[ → [

e+,∞
[

and ψ−1 :
]−∞, σ+

] → ]−∞, e−
]

the inverse functions of φ : [

e+,∞
[ → [

σ−,∞
[

and

e j 1 e je j 1

Fig. 1. Viscoelastic chain with “massless points” (black), bi-stable springs, and viscous
dashpots
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Fig. 2. Left non-monotone stress–strain relation σ = φ(e). Right two branches ψ+1 and
ψ−1 of the inverse strain–stress relation

φ : ]−∞, e−
] → ]−∞, σ+

]

, respectively. We also define e∗+ = ψ+1(σ+) > e+
and e∗− = ψ−1(σ−) < e− (see Fig. 2).

In what follows a prominent role will be played by a particular bi-quadratic
potential

�biq(e) := k

2
min{(e+a)2, (e−a)2}, (2.1)

giving

φbiq(e) =
{

k(e+a) for e < 0,
k(e−a) for e > 0.

Note that in this case φ is not continuous at e = 0, where φ can take the value either
ka or −ka. For the bi-quadratic energy �biq we find

e± = 0, e∗± = ±2a, σ± = ±ka, ψ±1(σ ) = 1

k
σ ± a.

We impose a time-dependent Dirichlet boundary condition (hard device) rep-
resenting external control of the total average strain ˜�, namely

Cε(e) := 1

N

N
∑

j=1

e j (τ ) = ˜�(τ) with ε = 1/N and e = (e1, . . . , eN ) ∈ R
N .

(2.2)

In addition, the chain is loaded by a time-dependent macroscopic body force with
potential

˜G(τ, j/N ) =
∫ j/N

0
g̃ext(τ, y)dy, (2.3)

and the total energy of the chain can be written as

˜E (τ, e) = 1

N

N
∑

j=1

(

�(e j )+ ˜G(τ, j/N )̃e j

)

. (2.4)
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The normalization is such that in the continuum limit (see below) this expression
converges to

∫ 1

0
�(ux (x))+ ˜G(τ, x)ux (x)dx =

∫ 1

0
�(ux (x))− g̃ext(τ, x)u(x)dx,

if u(1) = 0. Note that our Dirichlet conditions impose only u(τ, 1)−u(τ, 0) = ˜�(τ)

such that translation invariance allows us to fix any one of the ends.
In the framework of quasi-static elasticity the mechanical problem for the driven

chain reduces to the minimization of the energy ˜E (τ, e) for each τ . Due to bi-
stability of the individual springs the number of critical points is exponentially
large with respect to N , which shows that ˜E (τ, ·) has a wiggly energy landscape.
One can also expect that the corresponding metastable (local minimum) branches
e(τ ) are not continuous with respect to the parameter τ . In this situation, knowledge
of the dynamics is necessary to uniquely define the evolution of the system.

In the overdamped, viscous case (see [13] for the inertial limit) the dissipative
forces are obtained as the differential of a dissipation potential R(ė). Taking into
account the constraint Cε(e) = ˜�(τ), see (2.2), we find the following abstract force
balance:

0 = DėR(ė)+ De ˜E (τ, e)− σ̃ (t)DCε(e), Cε(e) = ˜�(τ). (2.5)

Here σ̃ acts as a Lagrange multiplier that determines the strength of the constraint.
Note that (2.5) has the form of a constraint gradient flow. From now on, we will
restrict our attention to the standard viscosity model with the dissipation potential

R(ė) = ν

2N

N
∑

j=1

ė2
j ,

where ν is the viscosity parameter. In this case, the Lagrange parameter σ̃ can be
calculated explicitly, viz. We have

σ̃ (t) = 1

N

N
∑

j=1

(

φ
(

e j (t)
) + ˜G(τ, j/N )

)

+ ν ˙̃�(τ). (2.6)

We further assume that the loading rate is small, that is,

˜�(τ) = �(˜δτ),

where �(·) is a given smooth function and ˜δ is a measure of the loading rate. By
introducing the slow time t = ˜δτ and defining G(t, j/N ) = ˜G(t/˜δ, j/N ) and
E (t, e) = ˜E (t/˜δ, e), system (2.5) yields our final ODE system, namely

δė j = −φ(e j )+ μN
j − G(t, j/N )+ σ(t) for j = 1, . . . , N ,

Cε(e) = 1
N

N
∑

j=1
e j (t) = �(t).

⎫

⎪

⎬

⎪

⎭

(2.7)
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The new non-dimensional parameter δ = ˜δν is the ratio of the rate of loading and
the rate of viscous relaxation (see also [53]).

In (2.7) we already introduced the components of the external point force vec-
tor (μN

j ) j=1,...,N , which will be chosen randomly to destroy the permutational
symmetry of the system for the case G ≡ 0, see below. Thus, the component
μN

j represents the stress bias of the j th spring, as now the springs are no longer
identical.

2.2. Numerical Experiments

To gain some insight into the behavior of system (2.7) when subjected to quasi-
static loading, we perform several numerical experiments. In all these experiments
we set G ≡ 0 and assume φ(e) = e3 − e. We also assume that viscosity is small
and fix it to δ = 0.015. The initial data are chosen to be randomly distributed
around the value e j (0) ≈ −1.3, which is well in phase “−”. For the loading we
choose the simple function �(t) = min{α+βt, γ−βt} and study the behavior of

the average stress σ̂ = 1
N

N
∑

1
φ(ε j ) = σ(t)− δ�̇(t) as well as the individual strains

e j as functions of � and of t , respectively.
The first experiment is conducted with a homogeneous chain where all snap-

springs are identical, that is μN
j ≡ 0. The resulting stress–strain diagram (̂σ versus

�) and the strains e j inside individual snap-springs are shown in Fig. 3. Instead of
plasticity-like hysteretic behavior we observe a “snap phenomenon”, where a large
number of springs transform simultaneously from phase −1 to +1 while the rest
of the springs relaxes within the phase −1. To understand the unusual stress–strain
diagram on the left plot of Fig. 3, one must recall that for this model the spinodal
region is between −1/

√
3 ≈ −0.57 and 1/

√
3 ≈ 0.58. Looking at the right plot of

Fig. 3, we start at t = 0 with e j (0) ≈ −1.3. For t < 57 all strains remain approx-
imately identical, even though they have reached the spinodal domain at t ≈ 35.
Only at time t ≈ 57 is the instability of the homogeneous state realized, when five
springs jump to phase +1 while the other four relax back. At time t ≈ 80 the four
formerly relaxed springs reach the spinodal region again and then jump to phase
+1 and join the others. Again the springs synchronize quickly and upon unloading

Fig. 3. Simulation of system (2.7) for N = 9. Left σ̂ = 1
N

N
∑

1
φ(e j ) versus �. Right

e1, . . . , e9 versus t
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they jointly move into the spinodal region at t ≈ 177 but remain on the unstable
branch until t ≈ 213.

We interpret the “snap behavior” as synchronization, which leads to a delayed
bifurcation, known as the Neı̆shtadt phenomenon [41,42]. Recall that in order to
leave the state of unstable equilibrium the system must be perturbed. In the stable
regime �(t) < e− the strains eN

j (t) are always close to the quasistatic equilibrium
value �(t) and the deviations from the homogeneous state decay exponentially.
More precisely, the decay rate is −λmin/δ, where λmin > 0 is the smallest eigen-
value of the Hessian of the energy at e = (�, . . . , �). Hence, if a solution starts in
the stable regime at t = t0 with perturbations of order 1 and reaches the spinodal
region at t = t1, the deviations will be of order e−λmin(t1−t0)/δ . Now, the instability
of the steady state e(t) = (�(t), . . . , �(t)) in the spinodal region needs some time to
establish itself; the unstable eigenvalue will be of the form̂λ/δ, and to obtain per-
turbations of order 1 we need to wait until t2 satisfieŝλ(t2−t1)/δ = λmin(t1−t0)/δ.
The point is that (t2−t1)/(t1−t0) = λmin/̂λ is independent of δ. Recalling e± =
±1/

√
3 ≈ ±0.58, Fig. 3 shows that the triple (t0, t1, t2) is given approximately by

(0, 30, 50) for the loading phase and by (100, 170, 210) in the unloading phase.
Hence, in both cases we have (t2−t1)/(t1−t0) ≈ 0.67.

To obtain more realistic hysteresis loops, one has to allow for a better sep-
aration of the trajectories. One possibility is to replace our visco-elasticity by
an environmental viscosity represented by a dashpot connection of each “mass-
less point” to a rigid foundation. Another possibility, which we pursue here, is
to break the permutational symmetry of the problem. To this end, in our sec-
ond numerical experiment we choose nontrivial biases μN

j = 0.05( j−5) in (2.7)
while keeping N = 9. Such inhomogeneity allows us to generate an unsyn-
chronized response, where each spring transforms at its own critical stress start-
ing from the weakest one, see also [52]. The results are shown in Fig. 4. Now,
instead of one big “snap”, we observe a series of small “popping events” so
that the inhomogeneous system produces realistic plasticity-type behavior (with
hardening).

However the plastic deformation in this model (phase transition in our case)
propagates through the system in the form of a single front. This is not realistic
because we know that (outside very special “easy glide” regimes) plasticity usually
develops simultaneously all over the sample. To achieve the stochastic separation
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Fig. 4. Stresses and strains for a model with N = 9 and linear bias μN
j = 0.05( j−5). Left

σ̂ versus �. Right e1, . . . , e9 versus t
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Fig. 5. Simulation of ODE with N = 15 and random bias. Left σ̂ versus �. Right e j versus t

of the trajectories we need to assume that parameters μ j are stochastically inde-
pendent.

The results of a numerical loading-unloading test for the case when μ j are
equi-distributed in the segment [−0.1, 0.1] is presented in Fig. 5. We see that the
overall behavior of the system is basically the same as in the previous case modulo
the dispersion of the “popping events”. The important difference, however, is that
now the strain distribution inside the sample is no longer monotone and instead
becomes strongly oscillatory, making the system macroscopically homogeneous.
The ensuing homogeneity at the coarse-grained scale is exactly the property which
is necessary to obtain a nontrivial continuum limit.

3. General Description of the Main Results

To formulate the main results we first specify the random nature of the biasesμN
j

representing quenched disorder. We assume that all μN
j are random variables that

are identically and independently distributed according to the probability density
f ∈ L1(R), which satisfies the following natural constraints

f � 0,
∫

R

f (μ)dμ = 1,
∫

R

μ f (μ)dμ = 0, and r2 =
∫

R

μ2 f (μ)dμ > 0.

(3.1)

Thus, our dynamical system (2.7) now depends on the three non-dimensional
parameters

ε = 1/N > 0, δ > 0, and r > 0,

where ε is the discreteness level, δ > 0 is the normalized viscosity, and r > 0
measures the strength of the quenched disorder. As our numerical experiments
suggest, one can expect to obtain a macroscopic continuum rate-independent plas-
ticity model only in a certain triple limit of the form (ε, δ, r) → (0, 0, 0).

We have seen that the limit r → 0 at fixed ε, δ may lead to “snap behavior”,
and the subsequent driving ε and δ to 0 does not save the situation. To obtain “pop
behavior” we need first to assume that r > 0 and consider the limit (ε, δ) → (0, 0),
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Fig. 6. Schematic phase diagram in the space of small parameters indicating location of the
‘popping’ domain which we associate with rate-independent plasticity response. The ‘pop’
domain is separated from the ‘snap’ domain by a crossover line

see Fig. 6. We can then continue along the parametric path r → 0 leading to ideal
plasticity limit.

At fixed r > 0, as is assumed for all our rigorous results, one can find for each
ε and δ a set of solutions of the microscopic problem eε,δ : [0, T ] → R

N , where
eε,δ(t) = (eε,δj (t)) j=1,...,N . In the vanishing viscosity limit δ → 0 the solutions

eε,δ(t) can be expected to stay close to elastic equilibrium most of the time. The
corresponding elastic problem reduces to solving the equations

0 = −φ(e j )+ μN
j − G(t, j/N )+ σ N (t) for j = 1, . . . , N , Cε(e) = �(t).

(3.2)

Since � has a double-well structure, that is φ = �′ is non-monotone, there may
be many equilibria. In fact, for �(t) ∈ ]

e−, e+
[

the number of equilibria is of the
order 2N , giving rise to a complex energy landscape.

The challenge now is to determine the limiting trajectory eε,0 : [0, T ] → R
n

through the set of all local minima (metastable equilibria). To facilitate the book-
keeping we introduce the phase indicators

z j = sign(e j ) ∈ {−1, 0, 1},
specifying three individual sheets of the inverse function ψz j (·) (two stable phases
and the spinodal region, see Fig. 2). In terms of these new spin-type variables we
can rewrite (3.2) explicitly as

e j = ψz j

(

σ N (t)+μN
j −G(t, j/N )

)

. (3.3)

The phase indicators identify individual branches of the equilibrium stress–
strain relation and, if the solution remains close to a particular branch, the phase
indicators remain unchanged. The spin variables z j are the discrete precursors of
continuum plastic strain variables, which we introduce in the next section. One can
see that if the phase configuration (z j ) j=1,...,N is given, the elastic strains e j can
be easily recovered from the solution of the monotone system (3.3).

In Section 4 we first establish the convergence eε,δ(t) → eε,0(t) for δ → 0
and characterize the path eε,0 : [0, T ] → R

N as the solutions of an integer valued
discrete automaton (see also [49,50,56]). Here we use the crucial observation that
all the relevant equilibria are given by special phase indicators in {−1, 1}N , see the
“ordered states” discussed in Section 4.1.
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To obtain the limit ε = 1/N → 0 (see Section 5) we use the fact that due to the
quenched disorder the phase indicators zε,δ(t) ∈ {−1, 0, 1}N and, consequently,
the strains eε,δ(t) ∈ R

N fluctuate spatially in a random fashion. The independence
of the random choices at different spatial points leads (due to central limit theorem)
to controllable properties of the mean values and thus allows one to construct a
coarse-grained theory and explicate the macroscopic properties.

More precisely, we assume that the quantities varying at the scale ε are meso-
scopic, while those varying at the scale 1 are macroscopic. To define the macro-
scopic averages we first need to introduce a spatial averaging operator. We begin
by embedding the solutions e ∈ R

N into L2(�) via the characteristic functions

χN
j : � → R; x 
→

{

1 for x ∈ ]( j−1)/N , j/N [ ,
0 otherwise.

(3.4a)

This allows us to define the elastic strain field eε,δ ∈ L2(�) as follows

eε,δ(t, x) =
N

∑

j=1

eε,δj (t)χ
N
j (x). (3.4b)

Similarly, we introduce a continuum phase indicator (plastic strain) zε,δ ∈ L2(�)

via

zε,δ(t, x) =
N

∑

j=1

ŝ(eε,δj (t))χ
N
j (x), where ŝ(e) =

⎧

⎨

⎩

−1 for e � e−,
0 for e− < e < e+,

+1 for e � e+.
(3.4c)

In the discrete-to-continuum limit ε = 1/N → 0 the strong limits of the
pairs (eε,0(t), zε,0(t)) ∈ L2(�)2 do not exist due to the fluctuations induced by
the quenched disorder. Using explicit error bounds established in Theorem 4.5 we
obtain ‖eε,δ(t)−eε,0(t)‖L2 + ‖zε,δ(t)−zε,0(t)‖L2 → 0, and the remaining task is
to characterize the weak limits

(eε,0(t, ·), zε,0(t, ·)) ⇀ (e(t, ·), z(t, ·)) in Q = L2(�)2,

that is
∫

�
eε,0(t, x)v1(x)+zε,0(t, x)v2(x) dx → ∫

�
e(t, x)v1(x)+z(t, x)v2(x) dx

for ε → 0 for all test functions v1, v2 ∈ L2(�).
Quite expectedly, the limiting mixtures of phases cannot be fully characterized

by the value of the average elastic strain e. The missing information, allowing one
to close the coarse-grained description at the macro-scale, is exactly the limit of the
indicator function z. To control the nonlinear terms we use the Young measure of
the pair (eε,0(t), zε,0(t)), which can be characterized using the ordering property
and the strong law of large numbers associated to the quenched disorder.

The final result states that there exists κ∗ > 0 such that in the limit (ε, δ) →
(0, 0) under the constraint δ � κ∗ε, the functions (eε,δ(t), zε,δ(t)) converge to the
unique solution (e, z) of a one-dimensional elasto-plasticity problem in the form

0 = DeE (t, e, z(t))+ σ(t) for x ∈ �,
∫

�

e(t, x)dx = �(t); (3.5a)

0 ∈ ∂R(ż(t))+ DzE (e(t), z(t)). (3.5b)
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Here the macroscopic elastic energy E is given by

E (t, e, z) =
∫

�

�(e(x), z(x))+ G(t, x)e(x)dx,

where G is defined in (2.3) and the macroscopic energy density � depends on �
and the probability density f from (3.1). In the bi-quadratic case � = �biq (see
(2.1)) we obtain the explicit formula

�(e, z) = k

2

(

e − a z
)2 + H(z), (3.6)

where the kinematic hardening potential H is determined by f , see (5.2). In the
general case � is given in (6.5), and the macroscopic rate-independent dissipation
potential R takes the form

R(ż) =
∫

�

R(ż(x))dx with R(v) =
{

ρ+v for v � 0,
ρ−|v| for v � 0,

where ρ+ and ρ− can be expressed in terms of�, see (6.7). In the bi-quadratic case
� = �biq we obtain ρ± = 2ka2.

While we described above convergence result for general double-well poten-
tials � and general loadings G and �, we will give the detailed proofs only under
more restrictive conditions. Our main assumptions are the following:

all μN
j are identically independently distributed with law f ; (3.7a)

� = �biq (cf. (2.1)); (3.7b)

G(t, x) = G(x) with G ∈ H1(�); (3.7c)

� : [0, T ] → R is piecewise C1 with |�(t)| � λ0 > 0 a.e. on [0, T ]. (3.7d)

Despite those simplifying assumptions, we believe that our methods can be extended
to handle the more general situation as well.

The most unexpected feature of our result is the fundamental change in the
nature of the dynamical system in the limit. Indeed, while (2.7) is an N -dimensional
ODE derived from the constraint gradient flow (2.5) with quadratic dissipation
potential Rε,δ , the limit is a rate-independent system, where the dissipation-related
forces ∂R(ż) are homogeneous of degree 0 in ż (as the dissipation potential R(·) is
homogeneous function of degree 1). The origin of the change in the structure of the
dissipation is the “constructive interference” of micro-elasticity and micro-viscos-
ity in the continuum limit (see also [1]). Notice also that the memory of the specific
nature of the microscopic dissipation has been lost in the macroscopic double limit,
suggesting that linear viscosity is not the only microscopic dissipative mechanism
leading to our rate-independent macro-model.

If introduction of quenched disorder is perceived as an auxiliary technical step,
it may be of interest to perform yet another limit r → 0 by following a well-
established path known in classical elasto-plasticity, see for example [5]. From the
definition (5.2) of the hardening potential H f in (3.6), it follows that it depends
on f in such a way that r2 = ∫

R
μ2 f (μ) dμ → 0 implies H f (z) → 0 for all
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z ∈ ]−1, 1[ (while H f (z) = ∞ if |z| > 1), see for example (5.3). Therefore
the limiting model, given again by (3.5) with � from (3.6), has the property that
H(z) = 0 for |z| � 1. One can see that the resulting�, and hence E , are degenerate
(while convex), which means that the model is not well-posed. Indeed, as is well
known in ideal plasticity, several solutions may exist for given initial data.

4. The Vanishing-Viscosity Limit

In this section we fix ε = 1/N > 0 and r > 0 and consider the limit δ → 0. In
fact, the assumption r > 0 is not crucial in this section; the only required property
of the parameters μN

1 , . . . , μ
N
N is that the effective biases h j = μN

j − G(t, j/N )
are pairwise different.

4.1. Energy Landscape and Ordered States

We begin by reviewing the structure of the elastic energy landscape at the given
loads (see [51]). Here the elastic potential � is a general double-well potential as
specified in Section 2.1.

Let us fix the time t = t0 and consider the problem of minimizing the energy

Eε(t0, e) = 1

N

N
∑

1

(

φ(e j )− h j e j
)

subject to Eε(e) = 1
N

N
∑

1
e j = � = �(t0).

The critical points of (2.7) can be obtained as solutions of the algebraic equations

0 = −φ(e j )+ h j + σ for j = 1, . . . , N , Eε(e) = 1
N

N
∑

1
e j = �. (4.1)

Metastable equilibria (local minima of the energy) are selected by the condition
of the positive definiteness of the Hessian matrix D2Eε(t0, e) − σD2Cε(e) =
D2Eε(t0, e). For sufficiently large N none of the metastable strains e j can lie in the
spinodal region

]

e−, e+
[

, see [51]. To identify the remaining two phases, −1 and
+1, we define the phase indicator z = (z j ) j ∈ {−1,+1}N , such that (3.3) holds.
Hence, a metastable equilibrium exists when the equations

1

N

N
∑

j=1

ψz j (h j+σ) = � and

{

h j+σ � σ− if z j = 1,
h j+σ � σ+ if z j = −1

can be satisfied simultaneously. For each metastable branch parameterized by z we
can define the equilibrium response functions σ = σ̂ (�, z).

A crucial observation allowing us to advance is that, due to imposed inhomo-
geneity, not all metastable equilibria are accessible by our dynamics. Indeed, we
work under the assumption that the bias coefficients h j are pairwise different, which
allows us to define the subclass of ordered states via the following condition:

ordering condition: ∀ j, k ∈ {1, . . . , N } : h j < hk ⇒ e j < ek . (4.2)
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It will turn out that the knowledge of the set of ordered states is sufficient for
the study of the limiting macroscopic problem because the set of ordered states
is invariant under the evolution for both the viscous and for the limiting inviscid
systems (see (4.8) and (DA1)–(DA3) in Definition (4.2)). Moreover, one can see
that a system that starts non-ordered will have the tendency to return to an ordered
state. For instance, the chain will acquire ordering if it is ever stretched beyond the
transformation thresholds and will then maintain its ordering at all future times.
Nevertheless, the system may have an initial nontrivial virgin curve involving some
non-ordered states, which our limiting theory would not capture.

Remark 4.1. The disorder entering through the random microscopic body forces
is special in the sense that it leads to a particular simple structure of the inner hys-
teresis loops. A different way of bringing disorder into the model would be through
a randomization of the thresholds σ− and σ+ as in [52]. Such choice, however,
brings additional technical complications, which we would like to avoid here.

In this section it will be convenient to simplify the ordering condition by using
the permutational symmetry of the system. Indeed, without loss of generality we
can assume that the biases h j are ordered as h1 < h2 < · · · < hN , such that (4.2)
reduces to the condition

e1 < e2 < · · · < eN . (4.3)

In Section 5, however, we would need to return to the original ordering condi-
tion (4.2) because the strains (e j ) j=1,...,N of the springs in a one-dimensional bar
� = ]0, 1[ are naturally ordered according to the material points x j = j/N , see
(3.4).

The class of ordered equilibria in the sense of (4.3) has a simple characteriza-
tion: for each ordered equilibrium state there exists a threshold ̂h such that all j
with h j � ̂h are in phase z j = +1 while those with h j <̂h are in phase z j = −1.
We can then associate with each threshold a particular distribution of snap-springs
between the two energy wells

z j = sign(h j−̂h), (4.4)

where sign(h j−̂h) = 1 for h j � ̂h and sign(h j−̂h) = −1 for h j < ̂h. It will also
be convenient to introduce the following two functions

h+(̂h) = min{ h j | h j � ̂h }, h−(̂h) = max{ h j | h j <̂h }. (4.5)

Notice that h± : R → R are nondecreasing piecewise constant functions such
that h−(̂h) < ̂h � h+(̂h). We shall also define h+(̂h) = ∞ if all h j < ̂h and
h−(̂h) = −∞ if all h j � ̂h.

The main advantage of the restriction to ordered states is that there are only
N + 1 different branches of equilibria, which are parametrized by the number
m ∈ {0, . . . , N } of phase indicators with z j = 1. Our analysis below will show that
the dynamics of the ODE (2.7) is such that none of the other possible 2N equilibria
is relevant.
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σ

Fig. 7. Eight monotone stress–strain equilibrium branches � = M(̂h, σ ) representing
ordered choices of the phases

For a given threshold ̂h ∈ R the average strain � = 1
N

∑

j
e j of an ordered

equilibrium e depends only on the stress σ . It is given by the function M(̂h, ·) :
[σ−−h+(̂h), σ+−h−(̂h)] → R such that

M(̂h, σ ) = 1

N

N
∑

j=1

ψsign(h j −̂h)(h j+σ).

Of course, there are only N+1 different functions M(̂h, ·). Each of these functions
is strictly increasing, which means that the equation M(̂h, σ ) = � has at most one
solution (see Fig. 7), giving rise to the stress–strain relation

σ = σ̃ (�, ξ), where ξ = m/N ∈ [0, 1]. (4.6)

Hence, for ordered states the metastable branch is defined by the single parameter
ξ ∈ [0, 1], which characterizes the fraction of transformed springs and serves as a
precursor of the plastic strain appearing later in the limiting continuum problem.

For the case of a bi-quadratic potential�biq in (2.1) the functions M(̂h, ·) take
the form

M(̂h, σ ) = 1

k
σ + 1

k N

N
∑

j=1

h j + a

N

N
∑

j=1

sign(h j−̂h).

These are N+1 parallel lines shifted by the same constant 2a/N . Under the sim-

plifying assumption that
N
∑

1
h j = 0, we can then find the explicit representation of

the equilibrium branches

e j = �+ a sign(e j )+ h j/k + a(1−2ξ). (4.7)
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4.2. Jump Discontinuities

This subsection motivates formal quasistatic dynamics e0 : [0, T ] → R
N on

the set of equilibria, denoted by eε,0 in Section 3. Here we dropped the superscript
ε = 1/N , as N is fixed throughout Section 4. The reduced dynamics via motion
along equilibrium branches is discussed in the following two subsections, while its
status as a true limit for δ → 0 will be established in Section 4.5.

Suppose again that (h j ) j is strictly ordered and time-independent, while
� ∈ CLip([0, T ]) is a function of time through �(t). The main system of ODEs
can be written in the form

δė j = −φ(e j )+ h j + σ(t), Cε(e) = 1
N

N
∑

j=1
e j (t) = �(t), (4.8)

and we restrict our attention to the evolution of ordered configurations.
Moreover, for simplicity of describing the limiting system, we restrict ourselves

to the easily computable case of the bi-quadratic potential� = �biq. However, the
mapping φ = �′

biq : e 
→ k(e−a sign e) is not continuous and therefore, even for
the viscous problem with δ > 0, we may not have unique solutions. The existence
of solutions is easily obtained by using set-valued analysis for ODEs (see [2]) and
setting φ(0) = [−ka, ka]. This leads to a set-valued inclusion with compact and
convex right-hand side, which is upper semicontinuous.

The encountered non-uniqueness is not a major problem, as in the limit δ = 0
uniqueness is lost anyway. Nevertheless, for fixed δ > 0 we select for each ordered
initial state a unique solution as follows. Observe that if all the e j (t) are ordered and
are different from 0, then the solution of the ODE (4.8) can be extended uniquely
as a differentiable function. Such a differentiable extension will work up to the
time t∗ when e j∗(t

−∗ ) = 0 for some j∗ (here e j (s−) = limt↗s e j (t) means the
limit from the left), and until that time the solution is unique. If the solution is
smoothly extendable, then we choose this as the unique extension, that is, e j∗ does
not change sign at t∗ (and we ignore the other solution where e j∗ would change
sign and ė has a jump at t∗). If there is no extension where ė is continuous, we
can construct a unique differentiable solution on [t∗, t∗+τ ] with initial condition
e(t∗), which is uniquely determined by choosing e j∗(·) such that its signs differ for
t < t∗ and t > t∗. Concatenating this to the solution on [0, t∗] defines the unique
global solution, which is still Lipschitz continuous in time. Observe that the system
always remains in the set of ordered states.

We shall now describe the limit solution e0(t) for eδ(t) while referring to Sec-
tion 4.5 for the proof. The limiting trajectory stays in the time-dependent family of
ordered equilibria (described in the previous subsection), which consists of finitely
many separated branches. As we show later the solution corresponding to e0(t)
stays on such a branch as long as it remains metastable. If e0(t) reaches the end of
a branch, it jumps to the neighboring branch, meaning that only one of the springs
changes phase. Of course, the jump is such that it dissipates energy, which is the
only memory of the viscous dissipative mechanism (see also [53]).
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The parameter defining plastic dissipation in the coarse-grained model is the
release of energy in a jump of a single spring. The energy is defined as follows

E(t, e) =
⎧

⎨

⎩

1
N

N
∑

j=1

(

�biq(e j )− h j e j
)

if 1
N

N
∑

j=1
e j = �(t),

∞ else.
(4.9)

Using the form �biq the energy release can be calculated explicitly

E(t∗, e(t−∗ ))− E(t∗, e(t+∗ )) = ρN/N > 0 where ρN = 2ka2 − 2ka2/N .

(4.10)

Here the first term in ρN corresponds to the integral
∫ e∗+

e− σ+−φ(e)de, see Lemma

6.2. The second term is due to the relaxation of the stress from σ(t−∗ ) = σ± to
σ(t+∗ ) = σ± ∓ 2ak/N . Because of our special choice of the type of disorder the
critical values e− and e+ are not affected by the disorder. For�biq both thresholds
are equal to 0 and the strains satisfy the following explicit jump relations

e j (t
+∗ ) = e j (t

−∗ )− a�̂/N for j �= j∗, e j∗(t
−∗ ) = 0, e j∗(t

+∗ ) = a(1−1/N )�̂,

(4.11)

where �̂ = z(t+∗ )− z(t−∗ ) ∈ {−2, 2}.

4.3. The Discrete Automaton

The resulting dynamics consists of two different regimes, namely (i) when the
system remains on one of the metastable branches with parameter ξ fixed and (ii)
the jumps, when ξ changes and the system switches to another metastable branch.
The limiting dynamical system then takes the form of a discrete threshold-type
automaton, see [49,50,56]).

Definition 4.2. Assume that � = �biq, (h j ) j is a strictly ordered bias vector, and
that � ∈ CLip([0, T ]). Then, a function e : [0, T ] → R

N is called a solution of the
discrete automaton if the following conditions hold:

(DA1) For all t ∈ [0, T ] the state e(t) is an ordered equilibrium (that is (4.1) and
(4.2) hold) with Cε(e(t)) = �(t).

(DA2) There are at most finitely many times 0 = t0 < t1 < t2 < · · · tL = T such
that for l = 1, . . . , L the function e|]tl−1,tl[ has a C1 extension to [tl−1, tl ].

(DA3) At each jump time tl , l = 1, . . . , L−1 the following holds:
(i) one of strains is critical, that is, there ∃ j∗ : e j∗(t

−
l ) = 0,

(ii) the jump conditions (4.11) hold for t∗ = tl , and
(iii) the energy release E(tl , e(t−l ))− E(tl , e(t+l )) is exactly ρN/N .

Recall that all ordered equilibria are locally stable, which is crucial for the
subsequent convergence analysis. Moreover, we will show in the next subsection
that solutions of the discrete automaton are globally stable in the sense of rate-
independent systems, see (S) in (4.12). The jump conditions in (DA3) are redundant
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and it would be sufficient to state only (iii), since the special form of φ = �′
biq

implies that (i) and (ii) must hold. This will be implicitly shown in the proof of
Proposition 4.4. We stated the redundant conditions here to highlight all the special
features of the jumps.

Another technical issue is that, as in the case of the viscous ODE system (4.8),
the solution of the discrete automaton is not unique. A non-uniqueness can occur if
a steady state reaches e j∗(t∗) = 0 exactly at a moment when � has a local extremum.
Then, the phase jump may occur or may not occur. We define a unique extension by
asking the solution to stay continuous as long as possible, that is, we assume that
jumps occur only if they are necessary. This additional “rule” for the bi-quadratic
problem can be obtained rigorously if one considers an additional limit when a
finite spinodal region is asymptotically shrinking to 0.

4.4. An Energetic Rate-Independent System

Before giving the convergence proof for δ → 0, we show that the automaton
(DA1)–(DA3) can be reformulated in terms of an energetic rate-independent sys-
tem (ERIS) in the sense of [33]. This reformulation will serve as a basis of the
subsequent continualization of our discrete dynamical system in Section 5.

A general ERIS is given in terms of the state space Q, time-dependent energy
functional E : [0, T ] × Q → R ∪ {∞}, and a dissipation distance D : Q × Q →
[0,∞]. Our state space is Q = R

N and the energy functional E is defined in (4.9).
The new quantity is the dissipation distance D, which measures the energy that is
dissipated due to fast viscous motion. If the strains vary quasistatically in one of
the two wells, there will be no dissipative contribution in the inviscid limit δ → 0.
However, if a strain jumps into the other well (that is by changing sign), then the

viscous motion is fast, namely of order 1/δ, and the energy
∫ t2(δ)

t1(δ)
1
N

N
∑

j=1
δė2

j (t) dt

has a finite limit (see also [53]).
We define the dissipation distance by counting the number of phase jumps:

D(e0, e1)= 1

N

N
∑

j=1

DN (e
0
j , e1

j ) with DN (̃e, ê)=
{

ρN if ẽ ê<0 (phase jump),
0 if ẽ ê�0 (no phase jump),

where ρN is defined in (4.10). Using the triple (Q, E, D)we can further define the
notion of energetic solutions as follows (for example [33,34]).

Definition 4.3. Assume that � = �biq, (h j ) j is a strictly ordered bias vector, and
that � ∈ CLip([0, T ]). Then, a function e : [0, T ] → Q is called an energetic
solution of the ERIS (Q, E, D), if for all t ∈ [0, T ] we have the stability (S) and
the energy balance (E):

(S) ∞ > E(t, e(t)) � E(t, ẽ)+ D(e(t), ẽ) for all ẽ ∈ Q,

(E) E(t, e(t))+ DissD(e, [0, t]) = E(0, e(0))−
∫ t

0
�(e(s))�̇(s)ds,

(4.12)
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where DissD(e, [0, t]) is the supremum of
M
∑

k=1
D(e(τk−1), e(τk)) over all M ∈ N

and all partitions 0 � τ0 < τ1 < · · · < τM � t of [0, t] and �(e) =
1
N

N
∑

j=1

(

φ(e j )−h j
)

.

Note that the dissipation functional DissD(e, [r, t]) gives a counting measure, since
it is equal to ρN/N times the number of all the phase jumps of e in the time interval
[r, t].

The global stability condition (S) immediately implies a local stability condi-
tion, namely with respect to variations ẽ that have the same phase vector z as e(t),
which implies D(e(t), ẽ) = 0. In general, for ERIS with nonconvex energies the
global stability condition is much stronger than local stability. In the present case,
the strength of D is tuned via DN or ρN in such a way that energetic solutions can-
not jump too early; the energy balance (E) enforces that every jump is accompanied
by an energy release compensating for the dissipation.

The following result states that the evolution given in terms of the discrete
automaton is exactly the same as the energetic solution of (Q, E, D). To obtain this
result the ordering property of the solutions is, in fact, not necessary and the propo-
sition below also applies to non-ordered solutions. The subsequent assumption that
(h j ) j is fixed, means that the external loading through G is time-independent, see
(3.7c).

Proposition 4.4. Assume that� = �biq, (h j ) j is a strictly ordered bias vector, and
that � ∈ CLip([0, T ]). Then, an ordered function e : [0, T ] → Q = R

N is an ener-
getic solution of (Q, E, D) given via (4.12) if and only if it satisfies (DA1)–(DA3)
in Definition 4.2.

Proof. (S)&(E) ⇒ (DA1)–(DA3). From (S) we conclude that for each t ∈ [0, T ]
the solution satisfies the length constraint and is in equilibrium. For the latter, sim-
ply consider variations ẽ such that D(e(t), ẽ) = 0, that is, with no additional phase
jumps. Then, e(t) is a local minimizer of E(t, ·) and thus a stable equilibrium.
Thus, (DA1) is established. In particular, we know that e(t) lies in the finite set of
stable equilibria. Along these branches the dependence of e(t) on �(t) is smooth,
see (4.7).

From (E) we conclude that DissD(e, [0, T ]) is finite. Since D takes only the
discrete values { kρN/N | k = 0, 1, . . . , N }, we conclude that the monotone func-
tion δ̂ : [0, T ] → [0,∞[ ; t 
→ DissD(e, [0, t]) is piecewise constant with finitely
many jump points t1 < · · · < tL−1, where each jump is an integer multiple of
ρN/N . Since jumping between the solution branches generates a jump in δ̂, we
conclude that on the intervals

]

tl−1, tl
[

the solution remains on one branch and
hence can be extended smoothly to [tl−1, tl ]. Hence (DA2) is established.

Using (E) we obtain energy balance on all subintervals [r, t], namely
E(t, e(t)) + DissD(e, [r, t]) = E(r, e(r)) − ∫ t

r �(e(s))�̇(s) ds. Taking the lim-
its t → t+l and r → t−L we find the jump relation

E(tl , e(t+l ))+ D(e(t−l ), e(t+l )) = E(tl , e(t−l )). (4.13)
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However, the choice of ρN was exactly such that it corresponds to the energy loss
for a jump arising from critical strains e j∗(t

−
l ) ∈ {e−, e+}, which establishes (i).

Properties (ii) and (iii) follow from the assumption that all h j are pairwise disjoint.
Then, at most one e j can have a phase jump.

(DA1)–(DA3) ⇒ (S)&(E). From (DA1) we easily obtain (S): Every stable
equilibrium is globally stable in the sense of (S), since stability with respect to ẽ
satisfying D(e(t), ẽ) = 0 follows from the equilibrium conditions and convex-
ity of � in the two wells. Moreover, ρN was chosen as the maximal energy loss
when jumping from one branch to a neighboring one. Thus, the energy release
E(t, e(t))− E(t, ẽ) will be always less than D(e(t), ẽ).

Using (DA2) and (DA3), the energy balance (E) is obtained by joining the
smooth parts in

]

tl−1,min{t, tl}
[

and the jumps. In the first case set t∗ = min{t, tl};
the smoothness gives E(t∗, e(t−∗ )) = E(tl−1, e(t+l−1)) − ∫ t∗

tl−1
�(e(s))�̇(s) ds. At

the jumps we have (4.13) and (E) follows by addition. ��

4.5. Convergence Proof for δ → 0

We finally prove the convergence for δ → 0 of the viscous ODE system (4.8)
to the automaton (DA1)–(DA3), and consequently to the ERIS system (Q, E, D).
The proof is constructive and provides explicit error estimates in terms of the small
parameters δ and ε = 1/N .

Notice that different sources of error would need to be estimated in different
norms. During the equilibrium phase, when the system slides close to a particular
metastable equilibrium branch, the non-zero viscosity prevents the solution from
relaxing to the exact equilibrium state, and this gives rise to an error (i) of order δ in
all of the components. Two other errors occur during jumps: (ii) one of the strains,
namely e j∗ , is far away from a stable steady state, while (iii) all the other strains
have an error of order ε. The first and the third types of error are most efficiently
measured in the maximum norm |R|∞ = max{ |R j | | j = 1, . . . , N } whereas the

second type of error is better evaluated in the 1-norm |R|1 =
N
∑

1
|R j |.

For the following result, which is the first of the two main steps in the theory,
we have to strengthen our assumptions a little bit further by assuming that the time-
derivative �̇ is bounded away from 0. This assumption is very helpful (but probably
not essential) in controlling the jumps in the limit δ → 0. We would simply like to
avoid the technicalities in the situation that � has a local extremum at t = t∗ with
�̇(t∗) and �̈(t∗) �= 0. In such a case it would be delicate to control the number of
springs with a phase jump in the case of ε = 1/N → 0. Since this limit is our main
goal, we decided to incorporate assumption (3.7d), which allows us to decompose
the time interval in finitely many pieces where � is smooth and �̇ is bounded away
from 0.

Note also that the assumption of time-independence of (h j ) j (see (3.7c)) is
essential to guarantee that the ordering property (4.2) is independent of time. Drop-
ping this assumption would destroy the strict validity of the ordering property;
however, it would still be true in large regions as the stability requirement would
pull the system always back into ordered states.
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Theorem 4.5. Assume that � = �biq, (h j ) j is a strictly ordered bias vector, and
that � satisfies (3.7d). Take any ordered steady state e0 ∈ R

N associated with
� = �(0). Then, the solution eδ ∈ CLip([0, T ]; R

N ) of (4.8) with eδ(0) = e0 con-
structed above converges to the unique solution e0 : [0, T ] → R

N with e0(0) = e0

of the discrete automaton (DA1)–(DA3) constructed above, that is, for almost every
t ∈ [0, T ] we have eδ(t) → e0(t) as δ → 0.

Moreover, there are positive constants C and κ∗ such that for all δ ∈ ]0, 1] and
N ∈ N with δN � κ∗, we have eδ(t) = e0(t)+ R1(t)+ R2(t) with

|R1(t)|∞ � C(δ+1/N ) and |R2(t)|1 � C. (4.14)

Proof. To simplify the notations we drop the superscript δ for the viscous solutions
but keep the superscript 0 for the limit. Throughout the proof the constant C may
vary, but it is always independent of δ, N and the given solutions. We sometimes
use constants C1,C2, . . . to indicate how certain estimates follow from others.

Using (3.7d) we decompose [0, T ] into finitely many subintervals, on each of
which � is monotone. If we allow for a suitable error for the initial condition it
is then sufficient to consider only one of these intervals. Indeed, without loss of
generality we can assume that � is monotonically increasing on [0, T ], however, to
be able to concatenate several pieces we allow for a nontrivial shift e(0)−e0(0).

From the monotonicity of � and the ordering of the solutions e we obtain jump
times 0 < t1 < · · · < tL < T . For the following it is more convenient to reor-
der these numbers and to use as the switching times parameters s j , j = 1, . . . , N
defined such that sign e j (t) = sign(t−s j ). Then, 0 � sN � sn−1 � · · · s1 � T ,
where strict inequality holds as soon as the times are different from 0 or T . With
m(t) we count the number of e j (t) and e0

j (t) bigger than 0, namely m(t) = N− j

for t ∈ ]

s j−1, s j
[

. Similarly, for the solution e0, where δ = 0, we define s0
j and

m0(t) having exactly the same properties.
For sufficiently small δ+ 1/N we conclude that m(0) = m0(0). Using m0 and

m the average stresses σ 0 and σ can be calculated as

σ(t) = 1

N

N
∑

j=1

(

φ(e j (t))+ h j + δė j (t)
) = k�(t)+ δ�̇(t)+ ak

N
(2m(t)−N ),

σ 0(t) = k�(t)+ ak

N
(2m0(t)−N ).

With these stress histories known, the strains solving (4.8) have the explicit repre-
sentation

e j (t) = e−kt/δe j (0)+
∫ t

0
e−k(t−s)/δ 1

δ

(

ak sign(s−s j )+ h j − σ(s)
)

ds, (4.15a)

e0
j (t) = a sign(t−s0

j )+ 1

k
(h j+σ 0(t)). (4.15b)
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We write the difference ρ j (t) = e j (t)− e0
j (t) in the form

ρ(t) = ρ1
j (t)+ ρ2

j (t)+ ρ3
j (t)+ ρ4

j (t) with

ρ1
j (t) = e−kt/δρ j (0), ρ2

j (t) =
∫ t

0
e−k(t−s)/δk�̇(s)ds,

ρ3
j (t) =

∫ t

0
e−k(t−s)/δ 2ak

δN

(

m0(t)− m(s)
)

ds,

ρ4
j (t) =

∫ t

0
e−k(t−s)/δ ak

δ

(

sign(t−s0
j )− sign(s−s j )

)

ds.

We immediately find |ρ1
j (t)| + |ρ2

j (t)| � C(δ+1/N ) as desired.

To estimate the other terms we have to control s j − s0
j . The nontrivial s0

j are
defined via

0 = −a + h j/k + �(s0
j )+ a(2 j−N )/N , (4.16)

which implies �(s0
j )− �(s0

j+1) = (h j+1−h j )/k + 2a/N > 2a/N . Hence, we find

|s0
j − s0

l | � | j−l|
C N

for j, l = 1, . . . , N , where C = a‖�̇‖∞/2. (4.17)

For the moment we assume a similar estimate

|s j − sl | � | j−l|
Cm N for j, l = 1, . . . , N , (4.18)

where the constant Cm is still to be determined by choosing δN � κ∗ sufficiently
small. Using this assumption we can estimate ė j (s

−
j ) (limit from the left) via the

explicit form of e j in (4.15a). Note that σ is piecewise smooth with jumps of size
O(1/N ) at each sl . The contributions of the initial condition and the smooth parts
are bounded by a constant C1 independently of δ, N and Cm . Including the terms
from the jumps gives the estimate

|ė j (s
−
j )| �C1 + CCmγ

(

1/(CmδN )
)

, where γ (r) =
N
∑

l= j+1
re−(l− j)r �1 + r.

As the nontrivial s j satisfy

0 = e j (s j ) = −ah j/k + �(s j )+ a(2 j−N )/N + δ
(

�̇(s j )−ė j (s
−
j )

)

,

we can compare with (4.16). Using λ � |�̇(t)| � C and |ė j (s
−
j )| � C(1+Cm) we

find a constant C such that

|s j − s0
j | � δ

λ

(

C(1+Cm)+ ‖�̇‖∞
) =: δC2(1+Cm). (4.19)

From this we derive (4.18) as follows. For nontrivial j and l with j �= l we have

|s j−sl | � |s0
j −s0

l | − |s0
j −s j | − |s0

l −sl | � | j−l|
C N

− 2δC2(1+Cm)

� | j−l|
C N

(

1 − 2δNCC2(1+Cm)
)

�(∗)
| j−l|
Cm N

.
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To justify “�(∗)” we use δN � κ∗ with κ∗ := 1/(4C2 max{C, 2C2}) and set
Cm = (2κ∗C2)

−1/2. Thus, (4.18) is finally established.
Using the above estimates between the jump times s j and s0

l we are able to con-
trol the difference between m0(t) and m(s). First assume m(t) = N− j � m0(t) =
N−l, then by the definition of m and m0 we have s j � s0

l−1. Thus, we find

s0
j + δC � s j � s0

l−1 � s0
j + l−1− j

C N
,

which yields l− j � 1+δNC2. Hence, l− j � N∗ := �1+κ∗C2� ∈ N. With a
similar argument for m(t) = N− j � m0(t) = N−l and using (4.17) we obtain

|m(s)− m0(t)| � N∗ + C N (t−s) for 0 � s � t � T .

Hence, ρ3
j can be estimated via |ρ3

j (t)| � C(δ + 1/N ) for j = 1, . . . , N and

t ∈ [0, T ]. Let smin
j and smax

j be the minimum and maximum of {s j , s0
j }. Using

(4.19) yields

|ρ4
j (t)| �

⎧

⎪

⎨

⎪

⎩

0 for s � smin
j ,

2 for smin
j < s � smax

j ,

2e−k(t−smax
j )/δ for s � smax

j .

To conclude the theorem we define R1 via R1
j (t) = ρ1

j (t)+ ρ2
j (t)+ ρ3

j (t) and

obtain immediately |R1(t)|∞ � C(δ + 1/N ). For R2
j (t) = ρ4(t) we use the fact

that, in a given time t , only for a few js has there been a recent jump, namely

|ρ4(t)|1 =
N
∑

j=1
|ρ4

j (t)| � 2
(

N∗ +
N
∑

1
e−k/(Cδ)

)

� C4.

Thus, estimate (4.14) is established.
We still have to show the convergence Rδ,1(t) + Rδ,2(t) → 0 for δ → 0

but N fixed. We now display the dependence on δ again by adding the super-
script δ where convenient. We show that this convergence holds for all t in T :=
[0, T ] \ {s0

1 , . . . , s0
N }, which is a set of full measure.

It is now easy to see that ρδ,1j (t) + ρ
δ,2
j (t) → 0 for all t . To estimate ρδ,3j

and ρδ,4j we fix t ∈ T and let τ = 1
2 dist(t, {s0

1 , . . . , s0
N }). Then, for all suffi-

ciently small δ the interval ]t−τ, t[ does not contain any s0
l or sδl . Whence m0(t) =

mδ(s) and sign(t−s0
j ) = sign(s−sδj ) for s ∈ [t−τ, t], because sδl → s0

l , and

ρ
δ,3
j (t)+ ρ

δ,4
j (t) → 0 follows easily.

Thus, the proof of Theorem 4.5 is complete. ��

5. The Continuum Limit

We now focus on the limit ε → 0, by assuming that the number N of springs
goes to infinity. This means that we apply the second limiting procedure to the dis-
crete automaton, or equivalently to the energetic rate-independent system (ERIS)
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(QN , EN , DN ), representing the primary inviscid limit of the original ODE sys-
tem. The main challenge is to replace the automaton-type evolution of the plastic
variable formulated in terms of discrete space and discrete time by a dynamical
system employing a continuous time variable t and continuous space variable x .
This is feasible because in the limit ε → 0 the elastic stages become progressively
shorter while the plastic jumps becomes weaker and more frequent (see also [53]).
As a result, the limiting evolution involves simultaneous elastic and plastic stages
and the corresponding continuum variables change all the time.

To justify this picture it will be convenient to use the formulation based on the
energetic system (QN , EN , DN ). The strategy is to embed our system into a system
defined on Q = L2(�)× L2(�), which contains the strains and a plastic variable.
For the embedded ERIS (Q,EN ,DN ) the limit passage ε → 0 can be performed
in the pure rate-independent setting, following the philosophy developed in [37].

Recall that now we are treating a sequence of problems with N as a parameter.
Hence, for each N there is a bias vector with components hN

j = μN
j − G( j/N ),

j = 1, . . . , N . All considered solutions e(t) ∈ R
N satisfy the original ordering

condition (4.2), which is independent of t by the assumed time-independence of
G, see (3.7c).

The embedding in L2(�)× L2(�) is done as explained in (3.4), but now with
e− = e+ = 0, the piecewise constant interpolants eN and pN = azN for the elastic
and plastic strains are given by

PN : R
N → Q := L2(�)× L2(�), PN (e) := (eN , zN ) with

eN (t, x) =
N

∑

j=1

e j (t)χ
N
j (x) and pN (t, x) = a

N
∑

j=1

sign(e j (t))χ
N
j (x).

(5.1)

For notational convenience and implying similarity with classical notations in elas-
toplasticity, we denote the plastic strain by p = az ∈ [−a, a], where z ∈ [−1, 1]
is our phase indicator function introduced earlier.

5.1. Macroscopic System

To specify the structure of the limiting energy, which incorporates kinematic
hardening, we associate with each probability density function f satisfying (3.1)
an auxiliary function F ∗. We first define

F : μ 
→
∫ μ

−∞
f (y)dy and F : μ 
→

∫ μ

−∞
F(y)dy,

which gives F ′′(μ) = f (μ) � 0. Now, F ∗ : R → R ∪ {∞} is the Legendre
transform F ∗(η) := sup{μη − F (μ) | μ ∈ R }. Thus, F ∗ is convex and with
F ∗(η) = ∞ forμ �∈ [0, 1]. The (kinematic) hardening potential H : R → R∪{∞}
associated with f is defined as

H(p) = 2aF ∗((a−p)/(2a)
)

, (5.2)
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which is convex and satisfies H(p) = ∞ for |p| > a, by definition. In the special
case when f (μ) = 1

2μ∗χ[−μ∗,μ∗] we obtain H(p) = μ∗(p2−a2)/(2a).

Consider now a family of densities fr satisfying fr (μ) = 1
r f1(

μ
r ). Then, we

obtain Fr (μ) = F1(μ/r) and Fr (μ) = rF1(μ/r). For the Legendre transform
this leads to F ∗

r (η) = rF1(η). Thus, we obtain that

Hr (p) = r H1(p) → 0 for r → 0 and |p| < a fixed. (5.3)

By using the definitions above we can now describe the limiting continuum
problem. We define an effective macroscopic energy functional E : [0, T ] × Q →
R ∪ {∞} and the macroscopic dissipation functional D as follows:

E (t, e, p) =
{

E0(e, p) for
∫

�
e(x)dx = �(t),

∞ otherwise,
and (5.4a)

D(p0, p1) =
∫

�

2ka|p1(x)−p0(x)|dx, (5.4b)

where E0(e, p) =
∫

�

�(e(x), p(x))+G(x)e(x)dx − �f (5.4c)

with �(e, p) = k

2
(e−p)2 + H(p) and �f = 1

2k

∫

R

μ2 f (μ)dμ. (5.4d)

Here� is the continuum energy density depending on the macroscopic elastic and
the plastic strain variables.

Using the uniform convexity of H one can show that the macroscopic ERIS
(Q,E ,D) has a unique energetic solution for each stable initial condition (e0, p0).
This solution (e, p) is Lipschitz continuous in time and satisfies the following plas-
ticity problem (see [6,27,33,64]):

k
(

e(t, x)−p(t, x)
) + G(x) = σ(t),

∫

�

e(t, y)dy = �(t), (5.5a)

0 ∈ ka Sign
(

ṗ(t, x)
) + k

(

p(t, x)−e(t, x)
) + ∂H(p(t, x)), (5.5b)

where “Sign” denotes the set-valued function with Sign(0) = [−1, 1] and
Sign(v) = {sign(v)} for v �= 0. Introducing the displacement u(t, x) =
∫ x

0 e(t, y)dy we can rewrite the system in the more classical form

−∂x

(

k
(

∂x u(t, x)−p(t, x)
)

)

= gext(x), u(t, 0) = 0, u(t, 1) = �(t),

0 ∈ ka Sign
(

ṗ(t, x)
) + k

(

p(t, x)−∂x u(t, x)
) + ∂H(p(t, x)).

Note that Hr and� fr are the only terms in E and D depending on the probability
distribution density fr . Obviously, � fr is irrelevant for the elasto-plastic evolution,
whereas the hardening potential Hr is essential. When r → 0 one can show that
Fr (μ) → max{0, μ} and Hr (p) → H0(p) = 0 for |p| < a, see (5.3) for a special
case. As we have already mentioned, there is no hardening in the case H = H0,
therefore existence of solutions can still be established but uniqueness fails.
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5.2. Convergence Proof for ε = 1/N → 0

In this subsection we prove our second main theorem, which justifies the
discrete-to-continuum limit ε = 1/N → 0 from the discrete automaton (DA1)–
(DA3)) to the elastoplastic system (5.5). More precisely we consider the sequence of
discrete ERIS (RN , EN , DN )described in Section 4.4 with solutions eN : [0, T ] →
R

N and show that the embedded functions (eN , pN ) = PN (eN ) : [0, T ] → Q
weakly converge to the unique solution of the macroscopic ERIS (Q,E ,D), where
PN is defined in (5.1). We show that the associated energy and dissipation con-
verge and ensure that the limit is an energetic solution for (Q,E ,D). While we use
the methods from the general �-convergence theory for ERIS developed in [37],
the limit passage relies on the law of large numbers applied to the quenched disor-
der, which allows us to control the full Young measure of the weakly convergent
sequences PN (eN (t)) (see Step 3 in the proof).

Theorem 5.1. Assume that (μN
j ) j , �, G and � satisfy (3.7). For N ∈ N choose

initial conditions eN
0 ∈ R

N that are ordered and satisfy

PN (eN
0 ) ⇀ (e0, p0) in Q = L2(�)× L2(�) and

EN (0, eN
0 ) → E (0, e0, p0) < ∞.

Then, with probability 1 the embeddings of the ordered solutions of eN : [0, T ] →
R

N of (RN ,EN ,DN ) with eN (0) = eN
0 constructed in Section 4.2 converge to the

unique solution (e, p) : [0, T ] → Q of (Q,E ,D) with (e(0), p(0)) = (e0, p0),
viz.

PN (eN (t)) ⇀ (e(t), p(t)) in Q for all t ∈ [0, T ].
Moreover, EN (t, eN (t)) → E (t, e(t), p(t)) and DissDN (e

N , [0, t]) → DissD (p,
[0, t]).
Proof. Since with probability 1 the biases hN

j = μN
j − G( j/N ) satisfy hN

i �= hN
j

for i �= j , the theory of Section 4 is applicable.
Step 1: For the proof we use our precise knowledge of the solutions eN . Note

that the ordered states are uniquely determined by the function m N (t) : [0, T ] →
{0, . . . , N } counting the number of j such that eN

j (t) is bigger than 0. Moreover,
we have

σ N (t) = k�(t)− ak(2m N (t)−N )/N . (5.6)

Thus, σ N (t) also allows us to recover the solution eN (t) completely as follows.
For given t we define hN+(t) > hN−(t) such that m N (t) = #{ j | h j�hN+(t) },

hN+(t) = min{ hN
j | hN

j �hN+(t) }, and hN−(t) = max{ hN
l | hN

l <hN+(t) }.
Along solutions, the values of h± are equal to those of h± (see (4.5)), but now they
depend on t ∈ [0, T ]. We have

eN
j (t) = sign(eN

j (t))a + 1
k (σ

N (t)+hN
j )

and sign(eN
j (t)) =

{

1 for hN
j � hN+(t),

−1 for hN
j � hN−(t).

(5.7)
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Step 2: We prove that convergence holds along a subsequence. However, since
the limit problem has a unique solution, we know a priori that the whole sequence
must converge. To find a convergent subsequence we consider the functions σ N .
By (3.7d) the interval [0, T ] can be decomposed into finitely many, let us say P ,
subintervals where � is monotone. However, each m N is also monotone in these
subintervals. Since the variation of m N in a monotone part is bounded by N , the
variation of each m N is at most P N . By (5.6) the variation of σ N is bounded by
k‖�̇‖L1 +2ak P , and Helly’s selection principle yields a subsequence (not relabeled)
such that σ N (t) → σ∞(t) for all t ∈ [0, T ], giving

m N (t)/N → ξ∞(t) = (

k(�(t)−a)− σ∞(t)
)

/(2ak). (5.8)

Step 3: Next we show that this convergence implies convergence of (eN , pN ) =
PN (eN ) as well as that of the energy and the dissipation. In fact, we show that for
each t ∈ [0, T ] the sequence (eN (t), pN (t))N∈N generates a well-defined Young
measure ν(t) : � → Prob(R2) (Radon measures on R with total measure 1). This
follows from the independent random choices of μN

j using the law of large num-
bers. It is here, where we exploit the disorder in an essential fashion. Because the
biasesμN

j are chosen independently and identically distributed (see (3.7a)), the law
of large numbers can be applied to any continuous function� : [0, 1] × R → R to
obtain

1

N

N
∑

j=1

�( j/N , μN
j ) →

∫

�

∫

R

�(x, μ) f (μ)dμdx . (5.9)

For a general test function � ∈ C0(�× R
2) we consider the limit of

ψN (t) := ∫

�
�(x, eN (t, x), pN (t, x))dx = 1

N

N
∑

j=1
�N

j (e
N
j (t), a sign(e j (t)))

for N → ∞. Here we used the abbreviation�N
j (e, p) := 1

N

∫ j/N
( j−1)/N �(y, e, p)dy

and the definition of (eN , pN ) = PN (eN ). Substituting eN
j (t) via (5.7) we find

ψN (t) = 1

N

∑

{ j | hN
j �hN− (t) }

�N
j

(

−a + 1

k
(σ N (t)+hN

j ),−a

)

+ 1

N

∑

{ j | hN
j �hN− (t) }

�N
j

(

a + 1

k
(σ N (t)+hN

j ), a

)

.

Recalling hN
j = μN

j −G( j/N ), where all theμN
j are independently chosen accord-

ing to the density distribution f , we can pass to the limit N → ∞. First observe
that hN±(t) converge to h∞± (t) defined by

h∞− (t) = sup{ h | FG(h) < ξ∞(t) } and h∞+ (t) = inf{ h | FG(h) > ξ∞(t) },
where FG(h) := ∫

�

∫ h
η=−∞ f (η+G(x)) dη dx ∈ [0, 1] and ξ∞ is defined in

(5.8). Note that FG is a probability distribution with compact support since f has
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compact support and G is bounded. Subsequently, it suffices to take any h∞(t) ∈
[h∞− (t), h∞+ (t)]. Using σ N → σ∞ and the law of large numbers on μN

j (see (5.9))

we find ψN (t) → ψ∞(t) with

ψ∞(t) =
∫

�

∫ h∞(t)

−∞
�(x,−a+(σ∞(t)+h)/k,−a) f (h+G(x))dh dx

+
∫

�

∫ ∞

h∞(t)
�(x, a+(σ∞(t)+h)/k, a) f (h+G(x))dh dx .

The Young measure ν is defined via
∫

�

∫

R2 �(x, e, p)ν(t, x, de, d p)
dx = ψ∞(t):

∫

R2

̂�(e, p)ν(t, x, de, d p) =
∫

R

̂�
(

a sign(μ−μ̂(t, x))+ (σ∞(t)

+μ−G(x))/k, a sign(μ−μ̂(t, x))
)

f (μ)dμ,

where μ̂(t, x) is any solution of ξ∞(t) = FG(μ−G(x)), for example

μ̂(t, x) = h∞(t)+ G(x). (5.10)

Using
∫

R
sign(μ̂−μ) f (μ)dμ = 2F(μ̂)−1 and the test functions ̂�(e, p) = e and

̂�(e, p) = p, we obtain the weak limits e(t) and p(t), respectively, via

e(t, x) =
∫

R

(

a sign(μ−μ̂(t, x))+ (σ∞(t)+μ−G(x))/k
)

f (μ)dμ

= a(2F(μ̂(t, x))−1)+ (σ∞(t)−G(x))/k, (5.11)

p(t, x) = a(2F(μ̂(t, x))−1).

Step 4: For the convergence of energy we use

EN
0 (e

N (t)) = EN
1 (e

N (t))+ EN
2 (e

N (t)), where

EN
1 (e

N ) = 1

N

N
∑

1

k

2
(eN

j −a sign(eN
j ))

2 and EN
2 (e

N ) = − 1

N

N
∑

1

hN
j eN

j .

Using the explicit form (5.7) of eN
j we obtain

EN
1 (e

N (t))= 1
N

N
∑

j=1

1
2k

(

σ N (t)−G( j/N )+μN
j

)2 →
∫

�

1
2k

(

σ∞(t)−G(x)
)2 dx + �f ,

where �f is defined in (5.4). For EN
2 we proceed as for ψN (t) and obtain

EN
2 (e

N (t))

= − 1

N

∑

hN
j �hN− (t)

hN
j

(−a + 1

k
(σ N (t)+hN

j )
) − 1

N

∑

hN
j �hN− (t)

hN
j

(

a + 1

k
(σ N (t)+hN

j )
)

→−
∫

�×R

(μ−G(x))
(

a sign(μ−μ̂(t, x))+(σ∞(t)−G(x)+μ)/k
)

f (μ)dμdx .
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Using (5.11) the limit of EN
1 can be identified as a function of (e, p), namely

EN
1 (e

N (t)) →
∫

�

k

2
(e(t, x)−p(t, x))2 dx + �f .

To identify the limit EN
2 (e

N (t))we define ˜F(μ) = 1
2

∫

R
y sign(μ−y) f (y)dy, and

denote by μ = μ̂(η) ∈ [−∞,∞] any solution of F(μ) = η ∈ [0, 1]. We claim:

(a) For η ∈ [0, 1] we have F ∗(η) = ˜F(μ̂(η)).
(b) For all μ, η ∈ R we have: μ ∈ ∂F ∗(η) ⇐⇒ η = F(μ).

Indeed, the standard Legendre–Fenchel theory gives

η = F ′(μ) = F(μ) ⇔ μ ∈ ∂F ∗(η) ⇔ μη = F (μ)+ F ∗(η).

Thus, differentiating η = F(μ̂(η)) yields 1 = f (μ̂(η))μ̂′(η). Moreover, the def-
inition of ˜F easily gives ˜F ′(μ) = μ f (μ). Thus, the function J : η 
→ ˜F(μ̂(η))
satisfies J ′(η) = μ̂(η)which leads to J ′′(η) = μ̂′(η) = 1/ f (μ̂(η)). The properties
of the Legendre transform give (F ∗)′′(η) = 1/F ′′(μ̂(η)) = 1/ f (μ̂(η)) = J ′′(η).

Finally, using ˜F(±∞) = 0 we obtain J (0) = J (1) = 0. The definition of F
gives F (μ) = max{0, μ} + m(μ) with 0 � m(μ) → 0 for |μ| → ∞, which
implies F ∗(0) = F ∗(1) = 0. Since J and F coincide at η = 0 and 1 and have
the same second derivative, they are the same on all of [0, 1]. Thus, (a) and (b) are
established.

Based on these properties of the function ˜F we can now write

EN
2 (e

N (t)) →
∫

�

2a ˜F(μ̂(t, x))+ G(x)e(t, x)dx − 2�f .

Then, by using the representation of p in (5.11), the definition of H via F ∗,
and the equivalence μ ∈ ∂H(p) ⇔ p = a(1−2F(μ)) we find H(p(t, x)) =
2a ˜F(μ̂(t, x)). The convergence EN (t, eN (t)) → E (t, e(t), p(t)) is therefore
shown.

Step 5: To show convergence of the dissipation we use the piecewise monoto-
nicity (3.7d) of �, that is, there exist times 0 = t0 < t1 < · · · < tL = t such that �
is monotone on [tl−1, tl ]. As a consequence the solutions eN and p are monotone
on these intervals. The definition of the functionals DissDN and DissD then gives

DissDN (e
N , [0, t]) =

L
∑

l=1

DN (eN (tl−1), eN (tl)),

DissD (p, [0, t]) =
L

∑

l=1

D(p(tl−1), p(tl)).

Thus, it suffices to show convergence for only these time increments. Without loss
of generality we consider the case �(tl−1) < �(tl). With ρN → ρ∞ = 2ka2 we
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have

DN (eN (tl−1), eN (tl)) = 1

N

N
∑

1

ρN
(

sign(eN
j (tl))− sign(eN

j (tl1))
)

= ρN
N (m

N (tl)−m N (tl−1)) → ρ∞(ξ∞(tl)−ξ∞(tl−1))

= ∫

�
ka(p(tl , x)−p(tl−1, x))dx = D(p(tl−1), p(tl)).

Thus, DissDN (e
N , [0, t]) → DissD (p, [0, t]) is established as well.

Step 6: It remains to show that (e, p) is the unique energetic solution for the
macroscopic ERIS (Q,E ,D). We first consider the energy balance. For all N we
have the microscopic energy balance

EN (t, eN (t))+ DissDN (e
N , [0, t]) = EN (0, eN

0 )+
∫ t

0
σ N (s)�̇(s)ds.

Since all four terms converge to the desired limits for N we immediately obtain the
energy balance (E) for the limit (e, p) with respect to the ERIS (Q,E ,D).

To establish the stability condition

E (t, e(t), p(t)) � E (t, ẽ, p̃)+ D(p(t), p̃) for all (̃e, p̃) ∈ Q,

we use the stability of eN (t) with respect to (RN , EN , DN ). We test the stability
using states ẽN defined like eN (t) but with a different function ˜G replacing G.
For arbitrary ˜G ∈ H1(�) with

∫

�
˜G(x) dx = 0 we define the new bias vector

(˜hN
j ) j ∈ R

N via

˜hN
j = μN

j − ˜G( j/N )+˜λN , where
N

∑

1

˜hN
j = 0.

It is essential here that the random biases μN
j are the same as the ones used for the

construction of eN . We define F
˜G via F

˜G(h) = ∫

�
F(h+˜G(x))dx . Then, for every

pair (˜ξ,˜h) satisfying

1−˜ξ = F
˜G(

˜h) and |̃σ+˜h| � ka, where σ̃ = k�(t)− ak(2˜ξ−1),

there exists a sequence of thresholds ˜hN such that

ẽN
j = a sign eN

j + 1

k
(̃σ N +˜hN

j ) and sign ẽN
j =

{

1 if ˜hN
j � ˜hN ,

−1 if ˜hN
j <

˜hN ,

σ̃ N → σ̃ , ˜hN → ˜h, (2m̃ N −1)/N → ˜ξ,

where m̃ N = (

N +
N
∑

1
sign ẽN

j

)

/2, σ̃ N = k�(t)− ak(2m̃ N −1)/N .

Repeating the calculations in Step 3 we obtain PN (̃eN ) ⇀ (̃e, p̃) in Q, where

0 = k (̃e− p̃)+ ˜G − σ̃ and p̃(x) = a(1−2F(˜h+˜G(x)). (5.12)
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Repeating the calculations in Step 4, while carefully distinguishing between the still
relevant hN

j and the artificial˜hN
j , which differ only by ˜G( j/N )−˜λN −G( j/N )+λN ,

we find the convergence EN (t, ẽN ) → E (t, ẽ, p̃).
Moreover, we are able to calculate the limit of DN (eN (t), ẽN ) as follows (using

hN = hN±(t) and neglecting λN ,˜λN → 0):

DN (eN (t), ẽN ) = ρN

N

N
∑

j=1

| sign eN
j (t)− sign ẽN

j |

= ρN

N

(

#{ j | hN +G( j/N ) � μN
j <

˜hN +˜G( j/N ) }
+#{ j |˜hN +˜G( j/N ) � μN

j < hN +G( j/N ) }
)

→ ρ∞
∫

�

(

[

F(˜h+˜G(x))−F(h∞+G(x))
]+

+[

F(h∞+G(x))−F(˜h+˜G(x))
]+)

dx

= 2ka2
∫

�

|F(h∞+G(x))−F(˜h+˜G(x))|dx

= 2ka2
∫

�

∣

∣

∣

∣

1

2a
(a−p(t, x))− 1

2a
(a− p̃(x))

∣

∣

∣

∣

dx = ka
∫

�

∣

∣p(t, x)− p̃(x)
∣

∣dx

= D(p(t), p̃),

where [a]+ = max{0, a}. Hence, we can pass to the limit in the stability condi-
tion EN (t, eN (t)) � EN (t, ẽN ) + DN (eN (t), ẽN ) and obtain E (t, e(t), p(t)) �
E (e, p)+D(p(t), p̃), where the comparison states (̃e, p̃) are the ones constructed
in (5.12). Via the free choice of ˜G we are able to generate a dense set of p̃ in
L2(�; [−a, a]). However, the associated strains ẽ are the equilibrium strains. By
the quadratic nature of E , we easily find E (t, ê, p̃) � E (t, ẽ, p̃) for all ê ∈ L2(�).
Thus, the stability of (e(t), p(t)) is established, and (e, p) : [0, T ] → Q is shown
to be an energetic solution for (Q,E ,D). ��

Notice that the crucial assumption regarding the presence of quenched disor-
der was used in Step 3 of the above proof, see (5.9). In fact, much less than the
assumed randomness in (3.7a) (allowing for the application of the strong law of
large numbers) is sufficient to derive (5.9). We need only a type of weak ergodicity
that could, for instance, be also generated by quasiperiodic functions.

5.3. Double Asymptotics (ε, δ) → (0, 0)

Finally, we prove that in the case of bi-quadratic potential the limit does not
change if one performs the double asymptotics (ε, δ) → (0, 0) under the constraint
that δ tends to 0 faster than ε. The result is a consequence of the estimates obtained
in Theorem 4.5, which allow one to show that the L2 difference between the viscous
solutions and the discrete solutions tends to 0 with (ε, δ) → (0, 0). Since the latter
converge weakly, it follows that the former also converge weakly.
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Theorem 5.2. Assume that (3.7) is satisfied. Then, there exists a constant κ∗ such
that the following holds. Consider the solutions eδ,N : [0, T ] → R

N of the viscous
problem (4.8), where hN

j = μN
j − G( j/N ) with initial conditions eδ,N (0) that are

ordered equilibria and satisfy

PN (eδ,N (0)) ⇀ (e0, p0) in Q and EN (0, eδ,N (0)) → E (0, e0, p0)

as (ε, δ) → 0 with 0 < δ < κ∗ε. Then with probability 1 with respect to the random
biases μN

j we have

PN (e
δ,N (t)) ⇀ (e(t), p(t)) in Q for all t ∈ [0, T ] as (ε, δ) → 0 with 0 < δ < κ∗ε,

where (e, p) is the unique solution of the elastoplasticity system (5.5) with initial
data (e(0), p(0)) = (e0, p0).

Proof. The crucial observation is that the definition of the norms | · |p in R
N and

in Lp(�) together with the embedding PN lead to an additional factor 1/N 1−1/p.
For (̃e, p̃) = PN (̃eN ) and (̂e, p̂) = PN (̂eN ) we have

‖̃e − ê‖L2(�) � 1

N q
|̃eN − êN |p for p ∈ [1,∞] with q = min{1/2, 1/p},

‖ p̃ − p̂‖L2(�) = 2a√
N

(

#{ j | sign ẽN
j �= sign êN

j })1/2
.

If δ � κ∗/N = κ∗ε, where κ∗ is the same as in Theorem 4.5, estimate (4.14) (with
p = ∞ and p = 1 for R1 and R2, respectively) yields

‖eδ,N (t)− e0,N ‖L2(�) � C
(

δ + 1/N 1/2).

Moreover, the number of different signs between eδ,N (t) and e0,N (t) is bounded
by N∗ (independently of δ and N ), which leads to the estimate

‖PN (eδ,N (t))− PN (e0,N (t))‖L2(�) � C2
(

δ+1/N 1/2) � C3/N 1/2 = C3ε
1/2,

where we have used δ � κ∗/N = κ∗ε again. Combining this with the convergence
obtained in Theorem 5.1 the desired convergence result is established. ��

6. General Potentials

In the previous sections we have restricted our analysis by assuming in (3.7)
that: (a) � = �biq, (b) the loading G(x) = ∫ x

0 gext(y)dy is time independent, and
(c) � is piecewise monotone. Here we discuss the necessary changes in the results
if these assumptions are dropped. More precisely, we argue that, in the case of a
general double-well potential and rather general time-dependent body forces, the
sequence of limits, first δ → 0 and then ε = 1/N → 0, leads to basically the same
general picture modulo appropriate modification of the hardening potential and the
dissipation potential in the limiting model.
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6.1. Microscopic Model

To replace G(x) by a general time-dependent function G(t, x) we need to gen-
eralize the concept of ordered states. Indeed, since the loading may now depend on
time, a state that is ordered for t1 may no longer be ordered for t2 > t1. Therefore
we need to interpret the order condition locally in (t, x) ∈ [0, T ] × �. This is
possible, since G(t, x), �(t), and σ(t) vary only on the macroscopic scale while the
bias coefficients fluctuate on the microscopic scale and are independent of time.

Moreover, since the general double-well potential� does not allow us to define
a plastic strain p = a sign(e) as in the bi-quadratic case, we need to use the micro-
scopic phase indicator variable z j ∈ {−1, 0, 1} as in Section 2. The threshold
μ̂(t, x) is now active in a microscopically large but macroscopically small region,
which can be defined as follows | j − x N | �

√
N . For j in this domain, the condi-

tionμN
j > μ̂(t, x) then implies eN

j (t) � e+ and zN
j (t) = 1, whereasμN

j < μ̂(t, x)

implies eN
j (t) � e− and zN

j (t) = −1.
In the formal proof which follows, the important issue will be to control the

evolution of the threshold μ̂(t, x). Looking at the dynamics of the discrete autom-
aton in Definition 4.2 we see that phase changes should occur only if the strain is
critical. In terms of the macroscopic stress σ(t, x) = σ(t) − G(t, x), we need to
have σ+ = μ̂+ σ , if ˙̂μ < 0, and σ− = μ̂+ σ , if ˙̂μ > 0. Moreover, the threshold
value μ̂(t, x) must always satisfy σ + μ̂ ∈ [σ−, σ+].

6.2. Macroscopic Energy

As in the special case of bi-quadratic energy, we begin with formally computing
the limiting continuum energy and determining the hardening potential.

Notice that the relation (3.3) provides a strong correlation between e j and μ j

and thus controls the joint Young measures ν generated by (eN , zN ), which takes
the form

∫

R2

̂�(e, z)ν(t, x, de, dz)

=
∫

R

̂�
(

sign(μ−μ̂(t, x)), ψsign(μ−μ̂(t,x))(σ (t, x)+μ)) f (μ)dμ.

In particular, we can define the macroscopic constitutive relations

̂E (̃σ , μ̃)
def=

∫

R

ψsign(μ−μ̃)(̃σ+μ) f (μ)dμ, ̂Z(μ̃)
def=

∫

R

sign(μ−μ̃) f (μ)dμ,

(6.1)

such that the limits e and z satisfy

e(t, x) = ̂E(σ (t, x), μ̂(t, x)) and z(t, x) = ̂Z(μ̂(t, x)).

By σ = ̂S(e, μ) we denote the unique solution σ of e = ̂E(σ, μ). We can now
compute the effective potential as a function of e and μ̂ via

̂�(e, μ̂)=
∫

M

(

�
(

ψsign(μ−μ̂)(̂S(e, μ̂)+μ)
) − μψsign(μ−μ̂)(̂S(e, μ̂)+μ)

)

f (μ)dμ.
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The joint Young measure ν̂(e,μ̂) generated by (e j , μ j ) and associated with the
macroscopic pair (e, μ̂) has the form

∫

R2

̂�(e, μ)ν(e,μ̂)(de, dμ) =
∫

M

̂�
(

ψsign(μ−μ̂)(̂S(e, μ̂)+μ),μ
)

f (μ)dμ,

where ̂� ∈ C0(R
2) is an arbitrary test function. In particular, it can by checked that

the definitions of ̂S and ̂� are compatible in the sense that ̂S(e, μ̂) = ∂ê�(e, μ̂).
To calculate the partial derivative of ̂� with respect to μ̂ we introduce the

functions

ϕ±(σ ) = ψ±(σ )σ −�(ψ±(σ )), (6.2)

which satisfy the relations

ϕ′±(σ ) = ψ±(σ ), ϕ+(σ ) = sup
e�e+

σe −�(e), and ϕ−(σ ) = sup
e�e−

σe −�(e).

For the derivative we obtain (after some elementary calculations involving the chain
rule)

∂μ̂̂�(e, μ̂) = ∂

∂μ̂

[

∫ μ̂

−∞
(

�(ψ−1(̂S(e, μ̂)+μ))− μψ−1(̂S(e, μ̂)+μ)
)

f (μ)dμ

+
∫ ∞

μ̂

(

�(ψ1(̂S(e, μ̂)+μ))− μψ1(̂S(e, μ̂)+μ)
)

f (μ)dμ
]

= (

ϕ+(̂S(e, μ̂)+μ̂)− ϕ−(̂S(e, μ̂)+μ̂)
)

f (μ̂).

Notice that the disorder threshold μ̂ enters our formulas as a parametrization
and that the energy representation in terms of elastic and plastic variables is still
implicit. To abolish the auxiliary variable μ̂(t, x) and to replace it by the continuous
internal variable z(t, x) = ̂Z(μ̂), we assume that the latter relation is invertible.
We write μ̂ = μ̃(z) and apply the chain rule in (6.1) to obtain

μ̃′(z) = −1

2 f (μ̃(z))
< 0.

We can now define the stored energy density � and the stress S via

�(e, z) = ̂�(e, μ̃(z)) and S(e, z) = ̂S(e, μ̃(z)),

which still satisfy the relation ∂e� = S. Moreover, we find the identities

∂z�(e, z) = ∂μ̂̂�μ̃′ = ϕ−(S(e, z)+μ̃(z))− ϕ+(S(e, z)+μ̃(z)), (6.3)

∂2
z�(e, z) = (

ψ−(S(e, z)+μ̃(z))−ψ+(S(e, z)+μ̃(z)))(∂z S(e, z)+ 1
f (μ̃(z))

)

> 0.

Next we show that the function (e, z) 
→ �(e, z) is convex, which is an impor-
tant property for proving existence and uniqueness of solutions for the associated
plasticity problem. For this we introduce the auxiliary functions

˜E(σ, z, μ) = ψsign(μ−μ̃(z))(σ+μ) and E(σ, z) =
∫

R

˜E(σ, z, μ) f (μ)dμ,



612 Alexander Mielke & Lev Truskinovsky

which satisfy ∂z E(σ, z) = ψ−(σ+μ̃(z))−ψ+(σ+μ̃(z)). We then haveσ = S(e, z)
if and only if e = E(σ, z) = ̂E(σ, μ̃(z)). Moreover, we define

E(e, z, μ)
def= ˜E(S(e, z), z, μ)

and find the relations

e =
∫

R

E(e, z, μ) f (μ)dμ and φ(E(e, z, μ))−μ = S(e, z). (6.4)

Then, the stored-energy density takes the form

�(e, z) =
∫

R

(

�(E(e, z, μ))− μE(e, z, μ)
)

f (μ)dμ. (6.5)

Lemma 6.1. The derivatives of � take the following form

∂e� = S, ∂z� = ϕ+(S(e, z)+μ̃(z))− ϕ−(S(e, z)+μ̃(z)),

D2� =
(

∂e S �∂e S
�∂e S �2∂e S + �

f (μ̃(z))

)

where ∂e S = 1
∂σ E(S(e,z),z)

> 0 and� = ψ+(S(e, z)+μ̃(z))−ψ−(S(e, z)+μ̃(z)) >
0. Hence, � is uniformly convex.

Proof. The formula for ∂e� follows by differentiation under the integral and using
(6.4). The formula for ∂z� follows by using μ̃′(z) = 1/ f (μ̃(z)) and E(e, z, μ) =
ψ±(S(e, z))+μ for μ > μ̃(z) and μ < μ̃(z), respectively.

Differentiating e = E(S(e, z), z) with respect to e and using the definition of
E we obtain the formula for ∂e S = ∂2

e�. For the mixed derivative we can use
ϕ′±(σ ) = ψ±(σ ) to find ∂e

(

∂z�
)

. For ∂2
z� we differentiate e = E(S(e, z), z) with

respect to z and find ∂z S(e, z) = −∂z E
∂σ E = �∂e S. Together this gives

∂2
z� = (ϕ′+−ϕ′−)

(

�∂e S+μ̃(z)) = �
(

�∂e S+1/ f (μ̃(z))
)

,

which is the desired result. ��
The above calculations can be done explicity for the bi-quadratic potential�biq,

see (2.1). We have ψ±(σ ) = σ/k ± a and find

E(σ, z) =
∫

R

(

σ/k + a sign(μ−μ̃(z))) f (μ)dμ = σ

k
+ az.

Hence, S(e, z) = k(e−az), which results in

E(e, z, μ) = e − az + μ

k
+ a sign(μ−μ̃(z)).

Inserting this into the definition (6.5) of� (with� = �biq) we can use the crucial
identity �biq(E(e, z, μ)) = k

2 (e−az+μ
k )

2. This follows from the stress relation
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Fig. 8. Evolution of the play operator generated by (6.6)

S(e, z) + μ̃(z) ∈ [σ−, σ+] = [−ka, ka], which implies sign(μ−μ̃(z)) = sign E .
Hence, on the one hand we have

∫

R
�biq(E(e, z, μ)) f (μ)dμ = k

2 (e−az)2 + 2�f ,
while on the other hand we have

∫

R

(−μ)E(e, z, μ) f (μ)dμ = −�f + a ˜F(μ̃(z)) = −�f + H(z/a).

This gives the desired formula in (5.4).

6.3. Macroscopic Dissipation Potential

We now turn to the analysis of the dynamics of z, which is strongly linked to
that of μ̂ via z = ̂Z(μ̂). From the above we know that σ + μ̂ ∈ [σ−, σ+] and that
σ+ = μ̂ + σ , if ˙̂μ < 0, and σ− = μ̂ + σ , if ˙̂μ > 0. These conditions can be
formulated as a play operator in the form

0 ∈ ∂̂R( ˙̂μ(t, x))+ μ̂(t, x)+ σ(t, x), (6.6)

where the 1-homogeneous friction potential ̂R : R → R is given via

̂R(μ̇) = −σ− sign(μ̇)μ̇ =
{−σ−μ̇ for μ̇ � 0,

−σ+μ̇ for μ̇ � 0.

This is a classical hysteresis operator that provides for each σ a unique solution μ̂,
see [6,27,64] and also Fig. 8. Note that μ̂+ σ always lie in the interval [σ−, σ+].
Moreover, μ̂ can change only if μ̂+ σ is either σ− or σ+.

To define the macroscopic dissipation potential we introduce the two quantities

ρ+
def=

∫ ψ+(σ+)

e−
σ+ − φ(e)de > 0 and ρ−

def=
∫ e+

ψ−(σ−)
φ(e)− σ− de > 0. (6.7)

Recalling ϕ± defined in (6.2) we have the following identities, see also Fig. 9:
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Fig. 9. The areas ρ+ and ρ− correspond to energies dissipated during jumps

Lemma 6.2. For the areas enclosed by the the graph of φ and the hysteresis loop
we have

ρ+ = ϕ+(σ+)− ϕ−(σ+) > 0 and ρ− = ϕ−(σ−)− ϕ+(σ−) > 0,

Moreover, we have the force relation S(e, z)+ μ̃(z) = σ± ⇒ ∂z�(e, z) = ∓ρ±.

Proof. The integral formulae follow easily using e∓ = E±(σ±) and the definition
of ϕ± in (6.2). The second statement follows directly from (6.3). ��

The above computations show that the critical thresholds −σ± for σ+μ̂ are
reached if and only if ∂z�(e, z) reaches the critical values ρ±. Hence, the play
operator in (6.6) is equivalent to

0 ∈ ∂R(ż)+ ∂z�(e, z) with R(v)
def= ρsign(v)|v|. (6.8)

6.4. General Elasto-Plastic System

We can now formulate the general macroscopic equations in terms of the vari-
ables e and z. Consider the solutions eN ,δ : [0, T ] → R

N of (2.7). Under the
above hypotheses we expect that the embedding (eN ,δ, zN ,δ) : [0, T ] → L2(�)2

converge in the limit “limN→∞ limδ→0” (weakly in L2(�)2) to the solutions (e, z)
of the macroscopic elastoplasticity system:

0 = ∂e�(e(t, x), z(t, x))− G(t, x)+ σ(t) for x ∈ �,
∫

�

e(t, x)dx = �(t);
(6.9a)

0 ∈ ∂R(ż(t, x))+ ∂z�(e(t, x), z(t, x)). (6.9b)

The convergence proof must follow the proof of Theorem 4.5 for the limit
δ → 0 and the proof of Theorem 5.1 for N → ∞. While the former convergence
is tedious and lengthy it does not need any substantial new ideas. For the second
limit we easily see that by construction and the definition σ(t, x) = σ(t)− G(t, x)
the macroscopic equilibrium equation (6.9a) is a direct consequence of (4.1).

For the flow rule (6.9b) one can start from (6.6), which is stated in terms of
μ̂. Since μ̂ = μ̃(z), we have the identity ˙̂μ = μ̃′(z)ż. Since μ̃′ is assumed to be
strictly negative and the limit problem is rate independent, we can replace ˙̂μ by
−ż in any 0-homogeneous subdifferential. At first sight, ̂R and R are not directly
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related. However, since we are dealing with a simple play operator, we only have
to match the thresholds. While (6.6) corresponds to the bounds σ− � μ̂+σ � σ+,
the flow rule (6.9b) corresponds to −ρ− � −∂z� � ρ+. Now we can apply the
relations derived in Lemma 6.2 to obtain system (6.9).

6.5. Other Scalings

In this subsection we briefly discuss how one can study the case when the order
of the limits is reversed and we first perform a limit ε → 0, and then the limit
δ → 0 (see also [53]).

Choose a finite δ > 0. In the case μ j = 0 for all j (that is r = 0) the formal
pointwise limit N → ∞ leads to the following continuous system

δė(t, x) = −φ(e(t, x))−
∫ x

0
gext(t, y)dy + σ(t),

∫ 1

0
e(t, x)dx = �(t).

Introducing the displacement u(t, x) = ∫ x
0 e(t, ξ) dξ and taking the derivative

with respect to x we obtain the classical quasistatic visco-elastic problem in space
dimension 1:

0=(

�′(ux )+δu̇x
)

x +gext(t, x), u(t, x)=0, and u(t, 1)=�(t). (6.10)

In general we cannot expect the convergence of solutions of (2.7) to solutions of
(6.10), because of the nonconvexity of �.

The limiting behavior may be analyzed by introducing distribution functions
F(t, x, ·) ∈ L1(R × R) that account for the fluctuations of the strains eN

j and the

biases μN
j via

∫

R×R

F(t, x, μ, E)ψ(μ, E)d(μ, E) = lim
N→∞

1

#J (x, N )

∑

j∈J (x,N )

ψ(μN
j , eN

j (t)),

where J (x, N ) = { j ∈ {1, . . . , N } | | j−N x | < N 1/2 }. The fluctuations of the
initial strain (eN

j (0)) j may be chosen independently of the bias (μN
j ) and they do

not disappear in finite time because of the viscosity δ > 0. Assuming that the above
limits exist, we obtain the following transport equation:

δ∂t F(t, x, μ, e)+ ( − φ(e)+ μ− G(t, x)+ σ(t)
)

∂e F(t, x, μ, e) = 0, (6.11a)
∫

�

∫

R

∫

R

e F(t, x, μ, e)d(x, μ, e) = �(t),
∫

R×R

F(t, x, μ, e)de = f (μ).

(6.11b)

The first constraint in (6.11b) gives the total length of the deformed body, while
the second says that the quenched disorder has the bias distribution f , which is
independent of t and x . System (6.11) may also be seen as transport equation for a
Young measure νt,x ∈ Prob(R × R) and can be treated as in [3,32,60,61].

The problem can be simplified substantially if we choose initial data such that
F(0, ·) degenerates to a δ-distribution. This property is preserved by the dynamics
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and leads to solutions e = ẽ(t, x, μ) and F(t, x, μ, e) = δ̃e(t,x,μ)(e) f (μ). Then,
(6.11) reduces to a transport equation for ẽ:

δ∂t ẽ(t, x, μ) = −φ(̃e(t, x, μ))+ μ− G(t, x)+ σ(t), (6.12)
∫

�

∫

R

ẽ(t, x, μ) f (μ)dμdx = �(t). (6.13)

The convergence of the ODE-system in R
N is now trivial, as the discrete setting

can be embedded via functions that are piecewise constant in x ∈ �. Moreover,
the right-hand side is locally Lipschitz continuous on L∞(� × R), and classical
continuous dependence on the initial data yields convergence.

The limit δ → 0+ forces the solutions to stay in equilibria for all t ∈ [0, T ].
This means that for small δ the solution should satisfy 0 ≈ −φ(e(t, x, μ))+ μ−
G(t, x) + σ(t). Thus, it should be possible to establish the second convergence
for δ → 0+ and to obtain the same plasticity limit as in the case limε→0 limδ→0.
Again we face the problem that the limiting system is governed by steady states
which are non-unique because of the non-monotonicity of φ. In the ODE case we
were able to derive the corresponding jump rules by hand (see (DA3)), but in the
general case the problem remains open.
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55. Roubíček, T., Scardia, L., Zanini, C.: Quasistatic delamination problem. Contin.
Mech. Thermodyn. 21, 223–235 (2009)

56. Salman, O.U., Truskinovsky, L.: Minimal integer automaton behind crystal plasticity.
Phys. Rev. Lett. 106(17), 175503 (2011)



From Discrete Visco-Elasticity to Continuum Plasticity 619

57. Sullivan, T.J., Koslowski, M., Theil, F., Ortiz, M.: On the behaviour of dissipative
systems in contact with a heat bath: application to Andrade creep. J. Mech. Phys. Solids
57(7), 1058–1077 (2009)

58. Stratonovich, R.: Oscillator synchronization in the presence of noise. Radiotekhnika
i elektronika 3, 497 (1958). English translation in “P. I. Kuznetsov, R. L Straton-
ovich, V. I. Tikhonov (eds.) Non-Linear Transformations of Stochastic Processes.
Pergamon press, Oxford, 1965”

59. Sullivan, T.J.: Analysis of gradient descents in random energies and heat baths. PhD
thesis, Department of Mathematics, University of Warwick, 2009

60. Tartar, L.: Oscillations and asymptotic behaviour for two semilinear hyperbolic sys-
tems. In Dynamics of Infinite-Dimensional Systems (Lisbon, 1986). Springer, Berlin,
341–356, 1987

61. Theil, F.: Young-measure solutions for a viscoelastically damped wave equation with
nonmonotone stress–strain relation. Arch. Rational Mech. Anal. 144(1), 47–78 (1998)

62. Theil, F.: Relaxation of rate-independent evolution problems. Proc. Roy. Soc.
Edinburgh Sect. A 132, 463–481 (2002)

63. Truskinovsky, L., Vainchtein, A.: Kinetics of martensitic phase transitions: lattice
model. SIAM J. Math. Anal. 66(2), 533–553 (2005)

64. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin, 1994

Weierstraß-Institut für Angewandte
Analysis und Stochastik,

Mohrenstraße 39,
10117 Berlin,

Germany

and

Institut für Mathematik,
Humboldt-Universität zu Berlin,

Rudower Chaussee 25
12489 Berlin,

Germany.
e-mail: alexander.mielke@wias-berlin.de

and

Laboratoire de Mécanique des Solides,
Ecole Polytechnique,

Route de Saclay,
91128 Palaiseau,

France.
e-mail: trusk@lms.polytechnique.fr

(Received September 24, 2010 / Accepted July 25, 2011)
Published online September 16, 2011 – © Springer-Verlag (2011)


	From Discrete Visco-Elasticity to Continuum Rate-Independent Plasticity: Rigorous Results
	Abstract
	1 Introduction
	2 Setup and Modeling
	2.1 Description of the Discrete Mesoscopic Model
	2.2 Numerical Experiments

	3 General Description of the Main Results
	4 The Vanishing-Viscosity Limit
	4.1 Energy Landscape and Ordered States
	4.2 Jump Discontinuities
	4.3 The Discrete Automaton
	4.4 An Energetic Rate-Independent System
	4.5 Convergence Proof for delta to 0

	5 The Continuum Limit
	5.1 Macroscopic System
	5.2 Convergence Proof for eps = 1/N to 0  
	5.3 Double Asymptotics (eps,δ)to (0,0) 

	6 General Potentials
	6.1 Microscopic Model
	6.2 Macroscopic Energy
	6.3 Macroscopic Dissipation Potential
	6.4 General Elasto-Plastic System
	6.5 Other Scalings

	Acknowledgments.
	References


