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� Introduction

A set of fundamental yet ill�understood phenomena in �uid dynamics involves changes in the
topology of interfaces between partially miscible or nominally �immiscible� �uids� Such changes
occur� for example� when continuous jets pinch o� into droplets� when sheared interfaces atomize�
and when droplets of one �uid reconnect with one another� These topological transitions occur in
many practical applications involving transport� mixing� and separation of petroleum� chemical�
and food products as well as contaminated waste streams�

The dynamics of topological transitions are di�cult to understand and model for several
reasons� For one� the �uids in which these transitions occur are complex� A second problem
associated with topological transitions is caused by the short time scales over which they occur�
In practical �ows� the transition time scales are much shorter than the local �ow time scales
making the transitions di�cult to characterize experimentally or compute numerically� A third
problem associated with transitions is purely numerical	 how does one handle the change in
interface topology in a physically justi
ed way� In this paper� we will address the last problem
in the context of incompressible �uid �ows�

Many researchers �see 
��� ��� for example� have tried using ad hoc methods to change
the topology of interfaces� While this approach� often referred to as �contour surgery�� allows
topological transitions to be overcome� it is di�cult to justify the reconnection conditions based
on physical principles� In a few special cases� involving �uid�gas interfaces� it is possible to develop
physically�based reconnection conditions by using special similarity solutions of the Navier�Stokes
equations �see 
��� �� ���� For �ows involving liquid�liquid interfaces� however� the dynamics are
more complicated and no such similarity solutions have been constructed�
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In an attempt to derive a physically�based theory of sharp liquid�liquid interfaces near topo�
logical transitions� several researchers �see 
�� �� ��� for example� have proposed representing the
interface as the level set of a higher�order function� Thus di�erent level sets �or 
xed values
of the function� could exhibit di�erent topologies� In this approach� the interface is e�ectively
given a 
nite thickness by smoothing the �ow discontinuities �density� viscosity� over a narrow
region� Although this procedure generally yields a smooth evolution through topological changes�
one can demonstrate that the results can depend essentially on the type of smoothing chosen

���� Within the context of this �level set� method� it is not clear which types of smoothing are
physically justi
ed�

Three of the authors �JG� JL� and MS� have proposed an alternative� introduce an explicit
order parameter �e�g� concentration� and allow limited mixing across the interfacial zone� In
this approach� the sharp interface is replaced by a smooth� narrow transition layer �in the order
parameter� and the resulting system consists of the Navier�Stokes �NS� equations coupled to
either a Ginzburg�Landau �nonconserved� GL� or Cahn�Hilliard �conserved� CH� equation for
the order parameter� Gradients in the parameter produce reactive stresses in the �uid which
mimic surface tension� The above authors gave a physical derivation of the equations in a special
case �models of type E and H in the nomenclature of Hohenberg � Halperin 
���� Subsequently�
Lowengrub � Truskinovsky in 
��� gave a more general and systematic derivation of the equations�
with the conserved mass concentration as the order parameter� and gave an analysis of the
equations in some special cases including a simple model of a topology transition�

Here� the mass concentration is the physically relevant order parameter and the limited mixing
is due to chemical di�usion between the di�erent �uids� In physical chemistry� it is well known
that limited molecular mixing occurs between macroscopically �immiscible� �uids� This limited
mixing provides a physical mechanism to smooth the �ow discontinuities and to yield smooth
evolutions through topological changes� Thus� the NS�CH system can be viewed as a partial
miscibility regularization �PMR� of the sharp interface model�

In this paper� we present preliminary numerical results using the PMRmodel in two interfacial
�ow regimes	 ���� viscously dominated �ows in Hele�Shaw cells �unstably strati
ed �uid layers��
and ���� ��d inertially dominated �ows �liquid�liquid jets�� In both cases� topological transitions
are smoothly captured by the PMR model� Vorticity is produced at the pincho� point and the
interfaces �snap� back after the transition� In the Hele�Shaw case� the vorticity remains bound
to the interface through the transition� This suggests that it may be possible to use the PMR
to formulate �topological jump conditions� to reconnect sharp interfaces within the context of a
boundary integral simulation� for example� This is currently under investigation� In the inertially
dominated case� simulations of inviscid liquid�liquid jets show that some vorticity separates from
the interface after pincho� and there is a nontrivial �ow inside the newly created drops� In both
cases before pincho�� the results show good agreement with boundary integral simulations�

� Equations of Motion

We begin our presentation of the PMR equations by 
rst reviewing the classical theory of surface
tension� Let two immiscible� incompressible �uids be separated by a sharp interface � and let
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� � fxj��x� t� �  g where � �  denotes the region with �uid � and � �  denotes the region
with �uid �� Then� one can introduce the characteristic function � of the �uid � region by

���� � H��� �
�
� if � �  �
 otherwise

���

where H is the Heaviside function� One can then de
ne the �uid quantities in terms of �� For
example� let the density � � ������ ! ���� � ����� where �� and �� are the constant densities
of �uids � and � respectively� The other material parameters are de
ned analogously� The mass
and momentum balance equations are given by

r � u �  and "� �  � ���

� "u � r �P� and P � �pI� � �n� n� I� 	� ! �
D ���

where "� �t ! u � r is the advective time derivative� p is the pressure� � is the surface tension�
n � r��jr�j is the normal vector to �� 	� is the surface delta function� 
 � 
��� is the viscosity
and D � �ru ! ruT ��� is rate of strain tensor� As is well known� the surface delta function
can be related to the ��d delta function 	 by 	� � 	���jr�j� This formulation ������� guarantees
that the classical boundary conditions


u � n��
�
� u � nj� � u � nj� �  � V � u � nj� ���


P � n��
�

� ��
 ���

hold across �� In the above� V is the normal velocity of � and 
 is its mean curvature�
The solutions to Eqs� ������� generically develop singularities in both � and � dimensions�

These singularities typically develop due to topological changes in the �ow such as the collision
of material interfaces �� When material surfaces collide� or self�intersect� velocity gradients
necessarily diverge 
� � and the curvature tends to blow�up as well� For ��d� see 
�� � �� In ��d�
it is the classical Rayleigh instability that drives the singularity formation�

To bridge the transition and continue the �ow beyond the singularity� one has several choices�
One can deal directly with the equations ���� ��� and try to obtain and match similarity solutions
as was done in 
�� for liquid�gas interfaces or one can regularize the equations� Here� we follow
the latter approach�

The simplest regularization of the sharp interface Eqs� ������� is to smooth � � �� and
	� � 	��� For example� one can set

	�� � �jr�j ���
�
�
�

with � � lim
���

Z ��

��

� 
��
�
����

�
d�� ���

Then� one can repose Eq� ��� using the smoothed stress tensor P�� This method is basically the
level set method described in 
�� �� ��� �#�� While this method yields smooth evolutions through
topology changes� in our view� there are several potential drawbacks� First� it is the numerical
di�usion� which is �uid�independent� that actually controls the reconnection process and yields
the smooth evolution through the topology change� Second� the solutions can depend essentially
on the type of smoothing �see 
��� for an explicit example for spherical drops�� Thus� while we
can imagine �� as an arti
cial concentration 
eld� there is no physical chemistry in this model�
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��� Navier�Stokes�Cahn�Hilliard Equations

One can try to account for the physical chemistry by introducing a mass concentration 
eld
c � M��M which is conserved� consistently coupled to the �uid equations and evolves according
to a di�usion equation� this is the PMR� A derivation of the equations is given in 
��� and we
only present the nondimensional result here	

�� "c �
�

Pe
$�� r � u �

�

Pe
$� �#�

���

�� "u � �
�

M

rp!Cr � ���rc�rc�� !

�

Re
r � 
���c�D� !

�

Fr
��g ���

where �� � ���c� is the simple mixture density 
��� de
ned by �����c� � c��� ! ��� c����� � is
the chemical potential

� �
df�
dc

�c��
���
���
p�

C

��
r � ���rc� �� �

and C is the Cahn number which is a measure of the interface thickness and f��c� is a non�convex�
non�negative function� Pe is the di�usional Peclet number� � � ���� � ���� is a constant� M
is a generalized Mach number� Re is a Reynolds number� Fr is a Froude number and g is unit
vector pointing in the direction of the gravitational 
eld� We refer the reader to 
��� for explicit
de
nitions of these nondimensional quantities�

We remark in the density�matched case �� � ��� Eqs� �#�� �� � reduce to Model H given
in 
��� The equation for c is a �th order di�usion equation of Cahn�Hilliard type� Eq� ��� is a
generalization of the Navier�Stokes equation in which gradients in c produce reactive stresses in
the �uid which mimic surface tension� We refer to this as the NSCH system� It is interesting to
note that if �� �� ��� then di�usion creates density variation so that r � u ��  which introduces
compressibility e�ects even when the original �uids are incompressible� We refer to this case
as quasi�incompressible� The pressure also explicitly appears in the chemical potential� Some
consequences of this are discussed in 
���� Finally� Eqs� �#���� � have an associated non�increasing
energy functional which is the sum of the kinetic� potential and chemical energies�

In 
���� the sharp interface limit of �#���� � was discussed using matched asymptotic ex�
pansions� We present the result here� Let � be a small parameter that measures the thick�
ness of the interface and let C � ��� M � � and Pe � ���� Then� if the mean curvature

 �� ���� the system �#���� � converges to the sharp interface system ������� with � replaced
by c� � � fxj c�x� t� � ���g and the surface tension given by

� �
Z �

�

���c�
q
�f��c�dc ����

In this paper� we always use f��c� � Ac����c���� and use A to match the sharp interface surface
tension�
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��� Hele�Shaw�Cahn�Hilliard Equations

We next present the PMR model appropriate for quasi�incompressible binary �uids in a Hele�
Shaw cell� A Hele�Shaw cell consists of two parallel plates separated by a narrow gap� The
�ow takes place in the gap and it is assumed that the �uids are highly viscous so that inertial
e�ects are negligible� In addition� because the gap between the plates is narrow� the �ow is only
weakly three�dimensional� Our primary motivation for discussing and eventually studying this
�ow is that it is much simpler mathematically and physically than the general NSCH system
and therefore provides an excellent case for testing the e�ects of parametric variations�

The sharp interface formulation is as follows� In each �uid domain� the velocity is given by
Darcy�s law	

ui � �
�

���i

rp� �ig� � in %i ����

and the �uids are incompressible r � ui �  for i � �� �� The boundary conditions across the
interface � � �%� � �%� are exactly as in ��� and ����

In recent work� Lee � Lowengrub 
��� derived the PMR appropriate for �ow in a Hele�Shaw
cell� In this case� the equations are referred to as the Hele�Shaw�Cahn�Hilliard �HSCH� system
and are given by

�� "c � �$�� r � u � ��$� ����

u � �
�

��
�c�

rp! �r � ���rc�rc�� ��g� ����

� �
df�
dc

�c� ! ��p�
�

��
r �

�
����rc

�
����

where u and c are the gap�averaged velocity and concentration 
elds respectively �� dimensional��
r is the two dimensional gradient and g is gravity� Note that the gap width has been scaled out
of the formulation and that we have explicitly used the sharp interface scaling as described in
the previous section�

There are three important parameters in the HSCH model� There is the Bond number
B � g��� � ������ the Atwood number for viscosity A� � �
� � 
����
� ! 
�� and the interface
thickness ��

This system is much simpler than the NSCH equations� There is no dynamical equation
for the velocity u� the velocity is determined through a generalized Darcy�s law ����� Once c
is determined� then u is found by solving Eqs� ����b and ����� Nevertheless� there are still
many common features with the NSCH model� In particular� the compressibility e�ects due to
chemical di�usion are still present� As in the NSCH case� it can be shown 
��� that as � �  �
the system ��������� converges to the sharp interface equations with surface tension � given by
Eq� �����
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� Results

In this section� we present preliminary numerical results for the HSCH and NSCH models� We
begin by considering thin� unstably strati
ed layers in a Hele�Shaw cell�

��� HSCH Simulations

Let us suppose that �� � �� �� � but g��� � ��� � O���� Then� we can assume �� is constant
in the equations everywhere except in the gravitational term where we take �� to be a linear
function of c� This is a Boussinesq approximation and there are no compressibility e�ects in
this limiting case� In the simulations we present here� we use this approximation of the HSCH
equations and we further set A� �  so that the �uids are viscosity matched� More complicated
scenarios are discussed in 
���� By considering this case 
rst� we can isolate the e�ects of di�usion
from those of compressibility�

For our numerical methods� we use periodic boundary conditions and pseudo�spectral spatial
discretizations of Eqs� ���������� We use a non�sti� time time stepping algorithm to solve the
concentration equation in Fourier space� In this approach� the equation is reformulated by using
an integrating factor associated with the �th order term in Fourier space� The reformulated
equations are discretized using a �rd order Adams�Bashforth method� See 
����

Now� consider an unstably strati
ed layer which consists of layer of light �uid surrounded by
a heavy �uid� There are two interfaces� the upper interface is unstable while the lower interface
is stable� We take B � �� for the upper interface and B � ��� for the lower� A boundary
integral simulation of the evolution is given in 
gure �� Periodic boundary conditions are used
and only � periodic box is shown� The simulation suggests that at a time slightly beyond t � #�#�
the layer pinches o� at two points leaving the �ow consisting of two large bubbles with a single
narrow bubble in between� Flows of this type have been studied extensively both theoretically
and numerically in 
#� �� and we refer the reader there for additional background�

We now repeat the �ow using the HSCH model with �� � � �  ��c� In addition� we use
the reference frame of the sharp interface model� That is� a constant adverse pressure gradient
�to the gravitational 
eld� is introduced whose strength is equal to the mean density �in a
single periodic box�� With this pressure gradient� �at interfaces are motionless� The resulting
simulation is shown in 
gure �� Three x�periods are plotted� In the upper graphs� concentration
is plotted and in the lower graphs� the vorticity is plotted� In this simulation� we have used
� �  � �� N � ��� and $t � � ��� There are approximately � computational points across the
interface� The evolution smoothly passes through the topological change and the layer breaks
up into droplets� Interestingly� there is a secondary break�up as the �at droplet splits into three
small �round� drops� Oppositely�signed vorticity is produced at the pinching point and acts to
�snap� back the drop tips�

That vorticity is produced by the transition can be seen by considering the maximum vorticity
as a function of time� This is shown in 
gure �� The four graphs correspond to the four interface
thicknesses � �  � �� � �  � �� � �  � � and � �  �� � The second peak in the � �  � � curve
is due to the secondary pincho�� The computations with larger � do not exhibit this secondary
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pincho� and so only one peak is observed� In those computations� the di�usion smears those
details enough so that only a single bubble is observed 
���� Note that the primary pinch�o� time
is a stable function of ��

Finally� in 
gure �� results from the sharp and HSCH models are compared� Good agreement
is observed between the sharp interface �solid line� and the c � ��� contour line �dashed line�
although the layer in the HSCH model pinches o� slightly earlier�

��� NSCH Simulations

In this section� we present a single simulation of the break�up of a ��d density�matched� inviscid
jet using the NSCH model� We also compare the result to a sharp interface simulation�

As in the Hele�Shaw case� we use periodic boundary conditions and pseudo�spectral spatial
discretization� The time�stepping for the both concentration and velocity equation uses �nd
order Adams�Bashforth� In the concentration equation� the integrating factor in Fourier space
is used� In the velocity equation� high�order Fourier 
ltering is used to maintain stability 
����

We begin by comparing the results from a sharp interface simulation with those from the
NSCH model� The surface tension � � ��� and the jump in tangential velocity equals � across
the upper interface and �� across the lower interface� Thus� the �ow inside the jet is from left
to right� A time sequence of a single periodic box is shown in 
gure �� Again� the solid curve is
the sharp interface and the dashed curve is the c � ��� contour line for the NSCH simulation�
The NSCH simulation uses �� � �� � �  � �� N � ���� there are approximately �� points across
the interfacial zone�

Good agreement is seen between the two simulations although the NSCH jet pinches at a
slightly later time than the sharp interface jet� In the picture on the lower right� a close�up of
the pinching region is shown and an additional NSCH simulation using � �  � � is included
�dot�dashed curve� which suggests convergence to the sharp interface result�

The NSCH simulations continue smoothly through the pinching and the long�time evolution
of this NSCH jet is shown in 
gure �� Again� three x�periods are shown� the upper graphs
are concentration and the lower graphs are vorticity� As in the Hele�Shaw case� oppositely�
signed vorticity is produced at the pinching point� but now some vorticity separates from the
concentration interface creating a complicated �ow�
eld both inside and outside the newly created
drops which oscillate in time as they travel from left to right through the �ow�

� Conclusions and Future Work

In this paper� we have presented two new systems of equations to describe the motion of binary
�uids in ��d inertially dominated �ows and viscously dominated �ows in a Hele�Shaw cell� We
have solved these equations numerically and demonstrated that topology transitions are smoothly
captured� Before pincho�� there is good agreement with sharp interface models�

In the future� we will consider axisymmetric and ��d �ows� incorporate local grid re
nement
and adaptivity� consider compressibility e�ects� We will compare our results to those obtained
using other models� such as the level set method� and to those from actual experiments of
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liquid�liquid jets performed in E� Longmire�s laboratory where quanti
ed measurements will
be made of velocity� vorticity and concentration� Preliminary experiments have already been
performed and the results are encouraging 
���
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Figure �	 HSCH simulation with B � 	��� �� � � �  ��c� N � ��� and $t � � ��� Three
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Figure �	 Long�time simulation of the NSCH jet� Three x�periods are shown�
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