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To show that steadily propagating nonlinear waves in
active matter can be driven internally, we develop a
prototypical model of a topological kink moving with
a constant supersonic speed. We use a model of a bi-
stable mass-spring (Fermi–Pasta–Ulam) chain capable
of generating active stress. In contrast to subsonic
kinks in passive bi-stable chains that are necessarily
dissipative, the obtained supersonic solutions are
purely anti-dissipative. Our numerical experiments
point towards the stability of the obtained kink-type
solutions and the possibility of propagating kink-anti-
kink bundles reminiscent of solitons. We show that
even the simplest quasi-continuum approximation
of the discrete model captures the most important
features of the predicted active phenomena.

This article is part of the theme issue ‘Modelling
of dynamic phenomena and localization in structured
media (part 2)’.

1. Introduction
Recently, considerable efforts have been focused on the
modelling of active matter. We use this general term to
describe a collection of interacting active agents, each one
driven by its own internally fuelled mechanism [1–4]. An
important question concerns nucleation and propagation
of transition fronts in such systems, which can be
modelled as kinks separating passive and active phases.

It was found that in various systems of self-propelled
active objects, ranging from microorganisms to swarming
robots, the transition from random to coherent motion
is indeed accompanied by the formation of sharp
transition zones. They were observed to be moving
with particular velocities whose selection principle still
remains an open problem [5,6]. Most of the related
theoretical work was done using various coarse-grained
versions of the discrete Vicsek model where active
agents are postulated to move with particular speeds.
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Figure 1. Constitutive behaviour of a continuum elementwhich can undergo a transition from the passiveε < εc to the active
ε > εc regime: (a) stress–strain relationσ = σ (ε), (b) free energyφ = φ(ε).

In this paper, we study kink-type solutions, imitating transition fronts, in a different model
of active matter which, instead of supporting active velocities, is able to generate locally active
stresses. The known continuum models of active media with internally generated active stresses
range from fluids [7,8] to solids [9–12]. Behind these models is the idea of chemo-mechanical
coupling [13] with active stress emerging constitutively from the cross term linking a scalar
chemical reaction with a tensorial mechanical action. For instance, in active gel theory, the
coupling is accomplished through an additional liquid–crystal-type vector field describing local
polarization.

To achieve analytical transparency, we neglect the chemical fuelling side of the problem and
disregard polarization, assuming that the prescribed active stress is hydrostatic. If we limit our
description to 1D but, in view of the anomalous softness of the associated phases, keep the inertial
terms, we can write the ensuing continuum problem for the displacement field u(x, t) in the form:

ρ

(
∂2u
∂t2

)
= ∂σ

∂x
, (1.1)

where we denoted by ρ the constant reference mass density. The activity is hidden in the
constitutive relation for the stress σ which we assume to be elastic and represented by two
branches: passive,

σ = Eε,

where ε(x, t) = ∂u(x, t)/∂x is the strain and E is the elastic modulus and active,

σ = Eε + σ0,

where σ0 > 0 is the active stress which is fixed. The corresponding branches of the energy density
are φ = (E/2)ε2 (passive) and φ(ε) = (E/2)ε2 + σ0(ε − εc) + �(active). Here, we introduced the
critical strain εc where the transition from the passive to the active branch takes place; such
transition requires energy expenditure (figure 1)

� = σ0εc + σ 2
0

2E
,

which is assumed to be supplied actively at the microscopic level.
To show that the resulting material model is microscopically meaningful, consider a

mechanical structure proposed in [14] as an application of the Braess paradox from the game
theory [15]. The system includes two elastic springs with elasticity k and initial length a, two
supporting inextensible elements with the length s, a linking inextensible element with the
length s0 and a mass m (figure 2). When the string s0 is cut, the mass is lifted by the amount
s0 − s + a + 3mg/(2k), where g is the acceleration of gravity (the spring connection transforms
from series to parallel). The model depicted in figure 1 can be viewed as a stylized version of this
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Figure 2. The mechanical model illustrating the Braess paradox [14]. When the link s0 is cut, the structure transform series to
parallel arrangement of springs and the mass is lifted.

mechanical system with the series arrangement describing the passive branch of the constitutive
relation while the parallel arrangement corresponds to the active branch. The latter ‘generates’
extra stress, which ultimately lifts the load.

Note that the transition to the active branch requires energy expenditure because the implied
cutting ultimately involves bond breaking. The corresponding energy ‘cost’ is characterized in
our model by the parameter � and the required work can be viewed as produced by active
forces implicitly present in the system. We note that the idea of [14] was recently used in [16]
to build a passive metamaterial with negative compressibility. The interpretation of such material
as active implies the presence of an active agent inserting the energy into the system each time the
passive element reaches the critical strain and extracting it when the active material transforms
back into its passive state; for a passive model where microscopically stored energy is used to
push a propagating front, see [17].

The focus of this paper is on velocity selection for the switching waves transforming the passive
(analogue of Vicsek’s disordered) state into the active (analogue of Vicsek’s ordered) state. Such
waves are similar to the topological kinks in passive bi-stable materials except that they are
not driven externally, by the applied stress biasing the double well potential, but internally,
using the energy which derives from the macroscopically invisible out-of-equilibrium chemical
reservoir.

We first use the classical continuum theory to show that such kinks are necessarily supersonic
and that their velocity remains undefined unless the microscopic problem is solved first. We
then solve analytically the corresponding discrete problem for a bi-stable Fermi–Pasta–Ulam
(FPU) chain [18] and obtain the required kinetic relation explicitly. It turns out to be universal
but trivial.

More precisely, in contrast to subsonic kinks in a passive bi-stable FPU system that are
necessarily dissipative, the obtained supersonic kinks are dissipation free. Our numerical
experiments point towards stability of such waves. We also show the possibility of propagating
kink-anti-kink bundles reminiscent of solitons and show that such active solitary waves indeed
collide almost elastically. We also check that the simplest quasi-continuum approximation of the
discrete model captures the most important features of the active kink propagation phenomenon
both qualitatively and quantitatively.

Our main technical tool is the Fourier transform which can be used in this nonlinear problem
due to the piecewise linear, equal moduli approximation of the bi-stable constitutive relation.
The similar approach has been previously used for the description of the transition waves in
passive FPU-type systems [19–21]. To treat the case of different moduli, we could have used the
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Wiener–Hopf method [22,23]; however, we have checked that such augmentation of the model
does not change any of our main results.

The paper is organized as follows. In §2, we introduce the continuum model and show that it
produces non-unique solutions and does not select a particular kink velocity. In §3, we develop
the discrete model and solve it explicitly. We then show numerically the stability of the obtained
solutions. The simplest quasi-continuum approximation of the discrete model is developed in §4.
Finally, in §5, we present numerical evidence that kinks and anti-kinks can bundle together to
form soliton-like localized solutions. We present our conclusions in §6. The solutions describing
analytically tractable kinks in the linear discrete problem are presented in appendix A.

2. Continuummodel
Staying within the continuum setting, we can rewrite our second-order dynamic equation (1.1) as
the first-order system

∂ε

∂t
= ∂v

∂x
and ρ

∂v

∂t
= ∂σ (ε)

∂x
, (2.1)

where v(x, t) = ∂u(x, t)/∂t is the velocity field and

σ (ε) =
{

Eε, ε < εc,

Eε + σ0, ε > εc
(2.2)

is the stress–strain relation. We are interested in the behaviour of sharp discontinuities mimicking
(diffuse) transition fronts. On the corresponding fronts the equations of elastodynamics (2.1) have
to be supplemented by the Rankine–Hugoniot jump conditions

[[v]] + V[[ε]] = 0 and ρV[[v]] + [[σ (ε)]] = 0, (2.3)

where [[f ]] ≡ f+ − f− is the difference between the limiting values f+ and f− of a function f (x) from
the right and left of the discontinuity.

While the phenomena in the bulk described by the system (2.1) are necessarily non-dissipative,
discontinuities may serve as potential sources of dissipation with classical shock waves as the
well-known examples. To address this issue, we need to write the integral energy balance
equation

σv|+∞
−∞ + V� − d

dt

∫∞

−∞

[
v2

2
+ φ(ε)

]
= GV, (2.4)

where G(V) = [[φ(ε)]] − {σ (ε)}[[ε]] is the driving/configurational force acting on the discontinuity,
{f } = (f+ + f−)/2, and we assumed for determinacy that the body is infinite [24]. Note the unusual
term V�, which stands for the work performed by the active agency in transforming the system
from the passive to the active state. Since our model is purely mechanical, the analogue of the
second law of thermodynamics, implying that the energy flux from macro-scale to micro-scale is
irreversible, amounts to the requirement that

GV ≥ 0, (2.5)

which can serve as an additional (entropic) jump condition.
To check whether the obtained set of jump conditions (2.3), (2.5) is sufficient, we need to

specify the type of the discontinuity (figure 3a). Consider the transition from a generic passive
state A, with ε = ε+, to the active state B, with ε = ε−; the corresponding transformation front
(strain discontinuity) travelling at a constant speed V > 0 transforms the state with the constant
velocity v = v+ to the state with the constant velocity v = v−.

Note that the front AB is necessarily supersonic with respect to the state ahead of it, V > c+, and
is also supersonic with respect to state behind it, V > c−, where we introduced the characteristic
speeds c± =√

σ ′(ε±)/ρ. Therefore, if we consider a point (x, t) which coincides with the current
position of the front, two characteristics, moving with velocities ±c+, will be effectively coming to
the front from the side of state A (one moving left and another one moving right but slower than
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Figure 3. (a) The stress–strain relation crossed by the Rayleigh line σ − σ+ = ρV2(ε − ε+) allows one to define the
driving force as the area differenceG= S2 − S1, (b) the (x, t) diagram showing themoving front interactingwith two incoming
and two outgoing characteristics.

the front). Two other characteristics will be effectively leaving towards the side of state B (one
moving left and another one moving right but slower than the front, see figure 3b). Note also that
for the classical phase boundaries, which are subsonic with respect to the state ahead and subsonic
with respect to the state behind, there will be also two coming and two leaving characteristics,
even though one of the coming characteristics will be arriving from behind (catching up),
see [25]. In both cases, however, with two arriving characteristics, two Rankine–Hugoniot jump
conditions (2.3), and the condition (2.4) being just an inequality, we do not have enough data to
specify the five unknown parameters: states ahead and behind, (ε±, v±), plus the velocity of the
discontinuity V.

To find the missing condition, which ultimately selects the velocity of the front, we need to
solve the corresponding microscopic problem, which should allow one not only to confirm the
non-negativity of the product GV but also to specify the kinetic relation G = f (V).

3. Discrete model
Consider now the simplest mass-spring chain imitating the behaviour of the continuum system
(1.1). To this end, we need to assume that the nonlinear springs obey the force-elongation (stress–
strain) relation σ (ε) given by (2.2) (figure 1a). Suppose also that the equilibrium position of the
masses is xn = na, where a is the equilibrium spring length and n is an integer.

The dynamics of such FPU chain is governed by the following equations:

ρa
d2un(t)

dt2 = σ

(
un+1 − un

a

)
− σ

(
un − un−1

a

)
, (3.1)

where ρ is the mass density and un(t) is the displacement of the nth mass. Introducing the discrete
strain εn(t) = (un+1(t) − un(t))/a, we can rewrite this system in the following form:

ρa2 d2εn(t)
dt2 = σ (εn+1) + σ (εn−1) − 2σ (εn). (3.2)

We are interested in the travelling wave (TW) solutions of the equation (3.2). We, therefore,
assume that

εn(t) = ε(η), εn±1(t) = ε(η ± a) and η = na − Vt. (3.3)

The point η = 0 will be associated with the position of the moving front.
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If we non-dimensionalize the TW problem by introducing new variables

V̂ = V
c

, η̂ = η

a
, σ̂ = σ

E
, σ̂0 = σ0

E
and φ̂ = φ

E

and then drop the hats for simplicity, we obtain a single equation of motion in the form

V2 d2ε

dη2 = σ (η + 1) + σ (η − 1) − 2σ (η), (3.4)

where

σ (η) = ε(η) + σ0H(−η)

and H(η) is the Heaviside function. For consistency with our stress–strain relations, we need to
supplement the equation (3.4) by the switching condition

ε(0) = εc. (3.5)

The transitional wave (kink) must also satisfy the following boundary conditions:

ε(η) =
{

ε+, η → ∞,

ε−, η → −∞.
(3.6)

The conditions (3.6) should be understood in the sense of averages in view of the possibility
of the macroscopically invisible lattice wave oscillations carrying the energy away from the
discontinuity [23].

It is natural to look for the solution of the problem in the following form:

ε(η) = E(η) + ε+

and instead of E(η) it will be more convenient to consider its Fourier transform

Ě(p) =
∫∞

−∞
E(η) eipη dη.

In the Fourier space, the equation (3.4) reduces to

L(p)Ě(p) = −σ0
ω2(p)

(0 + ip)
, (3.7)

where

L(p) = ω2(p) − (pV)2 (3.8)

is the Fourier image of the linear operator describing dynamics in each of the phases and

ω2(p) = 4 sin2
(p

2

)
(3.9)

is the dispersion relation in the linearized model. The denominator (0 + ip) in (3.7) comes from
the Fourier transform of the Heaviside function and should be understood as limα→0+(α + ip). In
what follows, we write directly ip instead of 0 + ip keeping in mind that the singularity at p = 0
should be understood in the sense of the above limit.

The solution of (3.7) is straightforward and by inverting the Fourier transform, we obtain

ε(η) = ε+ − σ0

2π i

∫∞

−∞
ω2(p)
L(p)

e−ipη

p
dp. (3.10)

To evaluate the integral in (3.10), we can use the residue theorem. Due to symmetry,
purely imaginary roots of the function L(p) appear in pairs, while complex roots appear in
quadruplets [19]. Since V > 1, the curves ω(p) and Vp have no intersections except at p = 0 and
the real roots are absent (figure 4).
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Figure 5. Strain (a) and velocity (b) profiles at V = 1.5 and differentσ0. (Online version in colour.)

To specify the function ε(η), we need to introduce the following sets

Z± = {
p : L(p) = 0, ±Im p > 0

}
. (3.11)

We can then write the explicit solution of the problem in the following form:

ε(η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε+ +
∑

pj∈Z−

σ0ω
2(pj)

pjL′(pj)
e−ipjη, η > 0,

ε+ + σ0

V2 − 1
−
∑

pj∈Z+

σ0ω
2(pj)

pjL′(pj)
e−ipjη, η < 0,

(3.12)

where we used the fact that the point p = 0 should be passed by the integration contour from
below, see [19] for more details.

The typical strain profiles are shown in figure 5a; these solutions are admissible in the sense
that the critical strain is passed only once. To find the velocity distribution v(η), we need to solve
the equation v(η) = −V du(η)/dη, which in the Fourier space reads

V̌(p) = −V eip/2 p/2
sin (p/2)

[2πε+δ(p) + Ě(p)]. (3.13)
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In the real space, we obtain (figure 5b)

v(η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Vε+ − V
2

∑
pj∈Z−

σ0ω
2(pj)

sin (pj/2)L′(pj)
e−ipj(η−1/2), η >

1
2

,

−Vε− + V
2

∑
pj∈Z+

σ0ω
2(pj)

sin (pj/2)L′(pj)
e−ipj(η−1/2), η <

1
2

.
(3.14)

The typical velocity profiles are shown in figure 5b. Finally, to obtain the displacement field u(η)
we need to solve the equation ε(η) = u(η + 1) − u(η). We can again use the Fourier transform to
rewrite this equation in the form:

Ǔ(p) = i/2
sin (p/2)

(2πε+δ(p) + Ě(p)). (3.15)

By inverting the Fourier transform, we obtain

u(η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε+η + i
2

∑
pj∈Z−

σ0ω
2(pj)

pj sin (pj/2)L′(pj)
e−ipj(η−1/2), η >

1
2

,

ε−η − σ0

2(V2 − 1)
− i

2

∑
pj∈Z+

σ0ω
2(pj)

pj sin (pj/2)L′(pj)
e−ipj(η−1/2), η <

1
2

,
(3.16)

where the linear term is due to a double pole at p = 0; an additive constant here is set to 0. The
resulting particle trajectories are illustrated in figure 6 for the case when ε+ = 0 and v+ = 0.

To compare the discrete solution (3.12, 3.14, 3.16) with its piecewise constant continuum
counterpart, we first note that by considering the limit η → ±∞ in (3.14) we obtain v± = −Vε±,
which can be rewritten as the first Rankine–Hugoniot condition (2.3): [[v]] = −V[[ε]]. Note also that
the conditions (3.6) are fulfilled if

ε− = ε+ + σ0

V2 − 1
(3.17)

which can be rewritten as the second Rankine–Hugoniot condition: V2[[ε]] − [[σ (ε)]] = 0.
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Finally, we can use (3.5) to obtain the selection condition for the discontinuity velocity V
(kinetic relation). If we integrate ω2(p)/(pL(p)) over the circle with the radius expanding to infinity
and apply the residue theorem, we obtain

∑
pj∈Z

ω2(pj)

pjL′(pj)
= 1

V2 − 1
, (3.18)

where the sum is taken over all zeros of L(p). Hence, the continuity of ε(η) at the point η = 0 holds
and the value ε(0) = εc can be obtained by considering, for instance, the limit η → +0 in (3.12).
Moreover, due to the symmetry of the roots, we obtain

∑
pj∈Z+

ω2(pj)

pjL′(pj)
=
∑

pj∈Z−

ω2(pj)

pjL′(pj)
(3.19)

which allows us to rewrite the condition (3.5) in the form

ε+ = εc − 1
2

σ0

V2 − 1
. (3.20)

Equation (3.20) is the desired kinetic relation. It is easy to check that it is equivalent to the trivial
condition

G(V) = 0. (3.21)

In other words, the magnitude of the driving force always takes the lowest possible value (equal
to zero) and as a result the constructed solutions are dissipation free. Therefore, all the energy
provided by the active agency (which can be also interpreted as anti-dissipation) is consumed by
the transformation itself. The absence of the radiative damping in the form of emitted lattice-scale
waves is the consequence of the supersonic nature of the transition, which effectively overtakes any
emitted acoustic wave.

To check the stability of the obtained solutions, we performed numerical integration of the
initial value problem for the system (3.2) with N = 2000 springs, εc = 1 and σ0 = 2. In the first type
of tests, we considered the Riemann problem with initial conditions

(
εn(0),

dεn

dt
(0)
)

=

⎧⎪⎪⎨
⎪⎪⎩

(εl, 0), n < 1000,

(εc, 0), n = 1000,

(εr, 0), n > 1000,

(3.22)

where εl and εr are constants, while keeping both ends of the chain free. The results of a typical
simulation of this type are illustrated in figure 7 where we show the time section t = 600 when all
the fronts have sufficiently stabilized. We observe the emergence of a steadily moving transition
front AB whose internal structure is in excellent agreement with the analytical solution (3.14), see
the right inset in figure 7. The steady-state TW propagates with the velocity V = 1.42 which is
independent of the initial value εl once we fixed εr = 0.

Note the presence of two spreading sonic waves (BC and DC) which move in the opposite
directions with the same speed V = 1. Their internal structure is reconstructed analytically in
appendix A and our two other insets show an excellent agreement between the theory and the
numerical experiment.

To interpret the global structure of the solution of this Riemann problem, we show in figure 8a
the spatial configuration of the all three propagating fronts. The nonlinear transition AB and the
linear transitions BC and CD are also illustrated on the stress–strain curve in figure 8b where the
average strains in the points A and B are ε+ and ε−, respectively; within the active phase, we
observe two strain plateaus at εC and εD = εl.
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Figure 7. Results of numerical simulations with the Riemann initial conditions (εl , εr)= (8, 0) at t = 600. The steady-state
solutions in the right zoomed area are compared with the analytical solution (3.12) (solid red line). The remaining inserts show
expanding sonic waves matched with the theoretical solution (A 2) (solid magenta lines). Different states A, B, C and D are
indicated in the insets. (Online version in colour.)
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Figure 8. Breakdown of unstable piecewise constant initial state (Riemann problem): (a) propagating supersonic front of
nonlinear (passive-active) transformation and two ‘supporting’ the sonic waves, (b) global structure of the solution of the
Riemann problem. The analytical solutions (3.12) (solid red line) and (A 2) (solid magenta line) are shown in the insets for
comparison.

We also performed another type of numerical experiment where we solved equations (3.1)
with homogeneous initial conditions un(0), dun(0)/dt = 0 for any n, while keeping the right end
of the chain free and applying a constant force F at its left end(

un(0),
dun

dt
(0)
)

= (0, 0) and
d2u1

dt2 = σ (ε1) − F. (3.23)

The results of these simulations with F = 5 and the other parameters as in the first set of tests are
summarized in figure 9. We again observe the formation of the transformation front AB moving
with velocity V = 1.42 and we have checked that this value does not depend on the magnitude
of the applied force. The inset on the right in figure 9 shows an excellent agreement between
numerical and analytical results. As in our other tests, the formation of this nonlinear front is
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Figure 9. Snapshot of the numerical solution of the initial value problem with externally applied force F = 5. Here, t = 634
when the first 900 switching transitions occurred. The analytical solutions (3.12) (solid red line) and (A 2) (solid magenta line)
are shown in the insets for comparison. (Online version in colour.)

‘compensated’ by the formation of a linear wave which propagates with V = 1 and εC = F − σ0
and whose structure is analytically characterized in appendix A.

4. Quasi-continuummodel
It is of interest to check to what extent the simplest mesoscopic quasi-continuum model, providing
only a long wavelength approximation of the microscopic discrete solution, and capturing only
some of its dispersive properties, is compatible with the obtained lattice-scale solution.

If we use the first nontrivial term in the Fourier space polynomial expansion of the linear
operator involved in the formulation of the discrete theory [21,23], we obtain a continuum model
with the elastic energy ‘corrected’ by the strain gradient term. The kinetic energy remains the
same as in the conventional continuum theory and the total energy can be written in the form:

U =
∫∞

−∞

[
ρv2

2
+ φ(ε) − Ea2

12

(
∂ε

∂x

)2
]

dx, (4.1)

where the factor a2/12 reflects the fact that the discrete model contained nearest neighbour
interactions only [26]. Note that the strain gradient term appears with the negative sign, which
makes the model (4.1) unstable with respect to perturbations with sufficiently small wave lengths.
However, such unstable wave lengths will be absent in the solutions obtained below which
suggest that the predictions of this model can be still trusted.

The quasi-continuum analogue of the equation (1.1) takes the following form:

ρ
∂2u(x, t)

∂t2 = ∂σ (ε)
∂x

+ Ea2

12
∂4u(x, t)

∂x4 , (4.2)

where the dependence σ = σ (ε) is given by (2.2). If we non-dimensionalize (4.2) and limit our
attention to TWs, we obtain

V2 d2ε(η)
dη2 = d2σ (η)

dη2 + 1
12

d4ε(η)
dη4 . (4.3)
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The solution of this equation can be again obtained using the Fourier transform

ε(η) = ε+ + σ0

2π i

∫∞

−∞
12

(p + iz)(p − iz)
e−ipη

p
dp, (4.4)

where z =
√

12(V2 − 1). To compute the integral in (4.4), we can again apply the residue theorem
remembering that the point p = 0 should be passed from below. In this case, we have to deal with
much simpler dispersion relation

ω2(p) = p2 − p4

12
. (4.5)

As a result, the only three singularities of the denominator in (4.4) are at p = 0 and p = ±iz
(figure 4). The solution can be then written explicitly

ε(η) =

⎧⎪⎨
⎪⎩

ε+ + σ0

2
1

V2 − 1
e−zη, η > 0,

ε+ + σ0

V2 − 1
− σ0

2
1

V2 − 1
ezη, η < 0.

(4.6)

One can check that the average strains are related again through the RH condition: ε− = ε+ +
σ0/(V2 − 1). To find the velocity distribution, we can use the equation v(η) = −Vε(η) which gives

v(η) =

⎧⎪⎨
⎪⎩

−Vε+ − σ0

2
V

V2 − 1
e−zη, η > 0,

−Vε− + σ0

2
V

V2 − 1
ezη, η < 0.

(4.7)

The second RH condition is now satisfied automatically.
If we now require the solution (4.6) to meet the switching condition at η = 0, we obtain the

same (trivial) kinetic relation as in the discrete case, G(V) = 0. The absence of dissipation is again
due to the supersonic nature of our kinks: this leads to the absence of real roots of the quasi-
continuum characteristic relation which could describe linear waves carrying energy away from
the moving kink.

Examples of the quasi-continuum strain profiles at V = 1.5 are shown in figure 10 by solid lines.
In the same figure, we also show the associated solutions of the discrete problem (dashed lines).
The inset illustrates the mismatch which is visible only in the immediate vicinity of the origin.

We can conclude that the quasi-continuum description of the supersonic active kinks based
on (4.2) is fully adequate and is missing only the fine details of the structure of the core region
of the moving front. We recall that to capture these fine details, we needed to account for the
infinite number of the complex roots of the discrete characteristic equation. Also recall that the
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corresponding fully adequate solution was obtained in the form of infinite series. Instead, the
quasi-continuum solution, which relies only on a small number of roots, captures the main
features of the discrete model while remaining not only explicit but also extremely simple.
Similarly remarkable efficiency of the simple quasi-continuum approximations in the description
of supersonic solitons in discrete chains was shown in [27].

5. Active solitary waves
To further illustrate the discrete model, we now construct analytically approximate solitary wave
solutions describing autonomously propagating activity bands. We then demonstrate numerically
that such solutions exhibit some of the collision features characteristic of actual solitons.

Observe that in view of its non-dissipative nature, the frontal kink, transforming a passive
state into an active state and sustained by an internal source with intensity � > 0, can be, in
principle, followed by a symmetry-related, equally non-dissipative rear anti-kink which requires
for its propagation the energy removal performed by an internal sink with intensity −� < 0. We
assume that such sources and sinks are present: the discussion of their micro-realization goes
beyond the scope in this paper.

More specifically, in §3, we obtained a TW solution describing the transition from the state A
to the state B which advances at velocity V. We can now construct a TW solution describing
transition from B to A which moves with the same velocity. The constants in the boundary
conditions (3.6) should be simply swapped and we obtain the following relations for the strain
field

ε(η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε− −
∑

pj∈Z−

σ0ω
2(pj)

pjL′(pj)
e−ipjη, η > 0,

ε+ +
∑

pj∈Z+

σ0ω
2(pj)

pjL′(pj)
e−ipjη, η < 0,

(5.1)

the velocity field

v(η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−Vε− + V
2

∑
pj∈Z−

σ0ω
2(pj)

sin (pj/2)L′(pj)
e−ipj(η−1/2), η >

1
2

,

−Vε+ − V
2

∑
pj∈Z+

σ0ω
2(pj)

sin (pj/2)L′(pj)
e−ipj(η−1/2), η <

1
2

(5.2)

and the displacement field

u(η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε−η + σ0

2(V2 − 1)
− i

2

∑
pj∈Z−

σ0ω
2(pj)

pj sin (pj/2)L′(pj)
e−ipj(η−1/2), η >

1
2

,

ε+η + i
2

∑
pj∈Z+

σ0ω
2(pj)

pj sin (pj/2)L′(pj)
e−ipj(η−1/2), η <

1
2

.

(5.3)

The equation of the energy balance (2.4) takes the following form:

σv|+∞
−∞ − V� − d

dt

∫∞

−∞

[
v2

2
+ φ(ε)

]
= GV. (5.4)

Note that the active energy source transformed here into the energy sink; the kinetic equation
here is again G(V) = 0.



14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190115

................................................................

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

d

h*

Figure 11. Solutions of the equationεs(η∗)= εc for the discrete (reddashed line) andquasi-continuum(red solid line)models
with V = √

2, εc = 1,σ0 = 2. The straight black dash-dotted line is η∗ = d. (Online version in colour.)

If we now assume that the transition AB takes place at the value of the TW coordinate η = d and
that the reverse transition BA takes place at η = −d, and that in (3.4) the right-hand side has been
changed to σ (η) = ε(η) + σ0[H(d − η) − H(d + η)], the approximate solitary wave solution can be
written as a simple superposition of the corresponding kink and anti-kink solutions

εs(η) = ε+ + ε(η − d) − ε(η + d),

vs(η) = v+ + v(η − d) − v(η + d)

us(η) = ε+η + u(η − d) − u(η + d).

⎫⎪⎪⎬
⎪⎪⎭ (5.5)

Here, the functions ε(η), v(η) and u(η) are given by (3.12), (3.14) and (3.16); the constant ε+ is given
by (3.20).

Suppose next that we fix d and solve the algebraic equation εs(η∗) = εc obtaining the relation
η∗(d). The TW (5.5) is an exact solution if there exists a value of d such that η∗(d) = d. The function
η∗ = η∗(d) computed numerically is shown in figure 11 (red dashed line) where we also present
its quasi-continuum analogue (red solid line) which is known analytically

η∗ = z−1 cosh−1

(
(εc − ε+)

[
1 − V2 − 1

σ0

]
exp (zd)

)
, (5.6)

and where z =
√

12(V2 − 1). While none of these curves crosses the straight line η = d, they become
close at large d which suggests that in this range of parameters the approximate configuration (5.5)
will evolve towards the actual solitary wave-type solution (if it exists).

To check the actual existence of such solitary waves, we resolve to numerical simulations. We
take the ansatz (5.5) as our initial data, keep the parameters σ0 = 2, εc = 1 as in our previous
numerical simulations and set V = √

2 which result in ε+ = 0.
If we choose initial perturbation with small d ∼ 1, when the approximation is expected to be

poor, the ensuing dynamics shows de-localization of the pulse with fast decay of its amplitude.
If, instead, the initial pulse is wide with d ∼ 50 its evolution is completely different (figure 12).

Our numerical simulations show a steadily propagating solitary wave with the speed anticipated
by our analytical approximation even though we also observe some noise left in the wake. We can
conjecture that even if initially localized energy eventually dissipates into small-scale oscillations,
it would take considerable time. Note that the resulting motion, see figure 13, is supported
exclusively by the internal activity which effectively translocates the particles to the left by
∼200 units.
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Figure 14. Quasi-elastic collision of two solitary waves with half-width d = 50 and speed V = √
2: (a) before the collision at

t = 0, (b) after the collision at t = 600. Arrows indicate the propagation directions.
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Finally, to show that the obtained solitary wave-type solutions have some properties of actual
solitons, we performed the collision between two such waves with half-width d = 50 moving
against each other with velocities V = ±√

2 (figure 14). We observe that despite almost elastic
interaction, a very limited amount of energy is lost because of the formation of small-scale
oscillations. In the electronic supplementary material, we included the animation showing that
during the collision, taking place between t ≈ 60 and t ≈ 150, there is a considerable increase of
strain which then subsides to the values prescribed by the initial data.

6. Conclusions
We used the simplest model of an active solid to obtain an analytical description of a propagating
front which transforms a passive phase (no active stress) into an active phase (active stress is
present). Inertial effects were taken into consideration because the targeted solids are expected to
be anomalously soft.

We assumed that the steady advancement of such fronts can be self-sustained in the sense
that it can be fuelled by an internal energy reservoir presenting itself as an effective source
of anti-dissipation. In various biological settings, the implied activity is revealed through the
work done, for instance, by the macroscopically invisible molecular motors. Our conclusion that
the transformation fronts must be necessarily supersonic is meaningful because in biologically
relevant active solids, the acoustic speeds may be arbitrarily small.

As we showed, the supersonic nature of the transformation fronts eliminates the possibility
of the radiative damping which is an important source of dissipation for classical defects
in crystalline solids. Therefore, the mechanical dissipation can be neglected in the case of
propagating active fronts. Instead, such fronts can be interpreted as anti-dissipative because of
the concomitant work done by the macroscopically invisible active device.

We presented three different descriptions of such transformation fronts: continuum, discrete
and quasi-continuum. The classical continuum model is not self-contained because the condition
of non-dissipativeness has to be added phenomenologically. Instead, both discrete and quasi-
continuum models provide this supplementary condition automatically.

Since our discrete model basically coincides with the well-known FPU system, we effectively
generalized the latter to the case when springs can be both passive and active, allowing for the
propagation of active phase transition fronts. Our ability to construct quasi-continuum solutions
reproducing faithfully all the properties of the discrete solution shows that the complexity
of the dispersion relations exhibited by the discrete system is not necessary for capturing
the observed behaviour which can be already reproduced using the simplest polynomial
approximation of the discrete dispersion relation. Our quasi-continuum approximation coincides
with the ‘bad Boussinesque’ model which is generically unstable but works in our case since the
obtained solution is confined to a finite ball in the Fourier space where the implied instability
is absent.

From the perspective of the theory of nonlinear waves in dispersive systems, the obtained
kink-type solutions are special in the sense that the discreteness of the structure does not
automatically lead to lattice resonances and the associated dissipation. Such non-dissipative
propagation of lattice ways is sometimes interpreted as lattice transparency. While in the subsonic
case such regimes require very particular conditions, in the supersonic case they become robust.
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Appendix A
Following [28], we consider the linear problem (no transition). We start with the solution for the
semi-infinite domain which can be obtained by solving the problem symmetric loading

d2u(x, t)
dt2 = u(x + 1, t) + u(x − 1, t) − 2u(x, t) − δ(x − 1) − δ(x), −∞ < x < ∞, (A 1)

and then taking x ≥ 1. It is implied here that the initial conditions are trivial: u(x, 0) = 0,
du(x, 0)/dt = 0. Because of the symmetry ε(1, t) = u(1, t) − u(0, t) = 0 and by inverting the discrete
Fourier transform, we obtain the desired solution

ε(x, t) = 2
π

∫π/2

0

cos p
sin p

(1 − cos (2t sin p)) sin 2px dp. (A 2)

To match the transitions BC or DC shown in figures 7 and 9, we need to multiply (A 2) by the
appropriate factor and adjust the shift, for instance, to match the transition BC in figure 7 we need
to use the multiple (εC − ε+) and the additive term ε+. After these adjustments, we obtain the
profiles shown in the insets in figures 7 and 9 (magenta lines).

To obtain analytical results, we need to study the integral in (A 2) in the limit t → ∞, see also
[28, sec. I]. We first rewrite it in the following form:

ε(x, t) = − 1
π

∫π/2

0

cos p
sin p

[sin (2(px + t sin p)) + sin (2(px − t sin p))] dp

+ 2
π

∫π/2

0

cos p
sin p

sin 2px dp. (A 3)

The time evolution is contained in the first integral where the phases px + t sin p and px − t sin p
describe waves propagating in the negative and positive x directions, respectively. The last
integral is the irrelevant time-independent term.

In the limit t → ∞, the major contribution to the integral comes from the end points of the
interval and at stationary points of the phases. However, the integrand is zero at p = π/2 due to the
presence of the term cos p. Moreover, the stationary points p1,2 are such that cos p1,2 = ±p/t. This
becomes ±π/2 in the limit t → ∞ and, hence, the contribution of these terms is minor. Therefore,
it is sufficient to account for the contribution to the integral from the points close to p = 0:

ε(x, t) ∼ − 1
π

∫ δ

0

sin (2(px + t sin p)) + sin (2(px − t sin p))
p

dp, t → ∞ (A 4)

where we introduced the small parameter δ � 1. If |x ± t| ≥ ta, a > 1/3, we can make the change
of variables y = p(x ± t). Then, in the limit t → ∞ the upper integration limit becomes infinity and
the integrals converge to π/2 sign(x ± t).

A different result is obtained when |x ± t| = O(t1/3). Making the change of variables z = pt1/3

in the integral and setting δt1/3 → ∞, we obtain

∫ δ

0

sin (2(x ± t)p ∓ p3t/3)
p

=
∫∞

0

sin (ξ±z ∓ z3/3)
z

dz and ξ± = 2
x ± t
t1/3 (A 5)

From these expressions, we see that the sonic wave propagates with velocity V = 1 and its front
spreading follows the asymptotics t1/3. More precisely, we can write

ε(x, t) ∼
∫∞

ξ−
Ai(x) dx +

∫∞

ξ+
Ai(−x) dx, t → ∞

and Ai(x) = 1
π

∫∞

0
cos

(
zx + z3

3

)
dz,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 6)
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Figure 15. Asymptotic behaviour (A 7) for the sonic wave when t → ∞.

where Ai(x) is the Airy function. Finally, by letting ξ+ → ∞, i.e. by switching to the moving frame
ξ−, we can make the second integral vanish and the asymptotic expression for strain takes a
simple form

ε(x, t) ∼
∫∞

ξ

Ai(x) dx, t → ∞ and ξ = 2
x − t
t1/3 . (A 7)

Function (A 7) is plotted in figure 15. The obtained profile is the same as the ones emerging in
our numerical simulations (figures 7 and 9). The exact matching can be achieved by shifting the
origin and adding the appropriate factor.
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