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Peristalsis by pulses of activity
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Peristalsis by actively generated waves of muscle contraction is one of the most fundamental ways of
producing motion in living systems. We show that peristalsis can be modeled by a train of rectangular-shaped
solitary waves of localized activity propagating through otherwise passive matter. Our analysis is based on the
Fermi-Pasta-Ulam (FPU) type discrete model accounting for active stresses and we reveal the existence in this
problem of a critical regime which we argue to be physiologically advantageous.
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I. INTRODUCTION

Peristalsis is a series of actively generated wavelike muscle
contractions and relaxations which propagate along the body
of an organism. Smooth muscle tissues develop such con-
tractions to produce a peristaltic wave in the digestive tract
[1,2]. Crawling by peristalsis enables organisms like snails,
earthworms, slugs, and terrestrial planarians to advance in
narrow spaces [3–8]; based on geometrical symmetries only,
peristaltic waves were shown to be an optimal motility strat-
egy in such systems [9].

In this paper we develop a prototypical model of a peri-
stalsis in a segmented limbless organism. We assume that it
crawls along a flat surface by extending its forward end and
then bringing up its rear end. To achieve this goal the organism
generates a solitary wave which travels from the front to the
rear. The space-time distribution of activity during peristalsis
is known to be highly adaptive [10] and the mechanism of this
adaptability is a subject of great interest in robotics [11,12].

Peristaltic waves are also of general interest as elemen-
tary nonlinear excitations of active matter. Propagating active
pulses reminiscent of peristaltic waves are ubiquitous in na-
ture, from shimmering in honeybees [13] to spectator waves
in stadiums [14]. Comparable phenomena in the form of prop-
agating activity bands are also observed in flocking colonies
of swarming robots and other similar systems [15,16].

Some of these behaviors can be quantified using models
of excitable media [17] or models involving globally syn-
chronized actuation [18]. However, such models have been
questioned in cases clearly dominated by mechanical sensory
feedback and neuromechanical proprioception [19]. In view
of distinctly mechanical nature of peristalsis, we forgo the
reaction-diffusion framework [20] and disregard the possi-
bility of centralized control [21]. Instead, we assume that
physical forces not only drive the associated localized waves
of activity but also secure the signaling pathways regulating
the crucial internal delays.

As a minimal model, capturing only the main effect, we
consider a mass-spring chain capable of generating active
stresses. Behind such activity is an intricate endogenous ma-
chinery of the type involved in muscle tetanization. However,

following the approach of active gel theory [22], we leave it
outside our model and assume that the associated energy flow
through the system can be represented by a nonconstitutive
component of stress. We show that the ensuing, apparently
purely mechanical, model can generate directional peristaltic
locomotion without relying on externally coordinated actu-
ators or digital controllers. Our intentionally minimalistic
approach emulates (and can be extended towards) more
comprehensive continuum theories of activity in both fluids
[22,23] and solids [24–27]. While more comprehensive mod-
els of active media directly account for energy inflow and the
compensating dissipation, in our simplified model we assume
that both flows match and therefore can be neglected.

Passive solitary waves have been long employed in
actuator-driven soft robotics imitating peristalsis [28–30]. In-
stead, here we rely on self-driven active solitary waves and
show that peristalsis can be modeled by a train of such waves
propagating through otherwise passive matter. Rather remark-
ably, our analysis reveals the existence of a critical motility
regime around which the active pulses assume realistic rect-
angular shape whose width can vary broadly. This ensures
a wide-ranging repertoire of macroscopic responses and we
argue that the so-interpreted criticality may be a characteristic
feature of the physiological peristalsis.

The paper is organized as follows. In Sec. II we introduce
our main modeling assumptions. A quasicontinuum approx-
imation of the original discrete model is studied in Sec. III.
The obtained results are used in Sec. IV to construct a model
of peristaltic motion. We return to the discrete model in Sec. V
and show that in this case the problem can be also solved
explicitly. Our conclusions are summarized in Sec. VI.

II. THE MODEL

Bodies of annelid animals are usually divided into a series
of metameres, the segments that are fundamentally similar in
muscular structure and functionality [7,31]. To model such
organisms we first neglect friction [32–34], and represent
them schematically as a chain of springs connected in series.
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FIG. 1. (a) Stress-strain relation with passive (blue) and active (red) branches. The kink, connecting ε̃± at the critical value of velocity
V = V∗ when S2 = S1, is dissipation free. (b) Phase portrait of the continuum system (3) at 1 < V < V∗. The extension pulse corresponds to
the homoclinic trajectory starting and ending at ε̃+; contraction pulse, which exists at V∗ < V < V∗∗, is a homoclinic trajectory starting and
ending at ε̃− (not shown).

The dynamics of such system is described by the Fermi-Pasta-
Ulam (FPU) equations [33]

ρa2 ∂2εn

∂t2
= σ (εn+1) + σ (εn−1) − 2σ (εn), (1)

where εn(t ) = (un+1(t ) − un(t ))/a are the strains in the
springs, un(t ) are the displacements of the nodes, and a is
the equilibrium length. The inertial term, allowing the system
to overcome the discreteness-induced trapping, proved to be
important in ultrasoft robotics [30,31,35,36]. In physiological
setting the apparent mass density ρ can be viewed as a param-
eter introducing the activity-related time delay in the response
of stretch receptors [37,38].

We assume that the constitutive relation for the stress σ has
two branches: passive and active; see Fig. 1(a). For simplicity,
the soft elastic response along the passive branch is considered
linear σ = Eε, with elastic modulus E . To describe the active
branch (analog of muscle tetanus), we write σ = σa + Eε,

where σa > 0 is a constant active stress; in more detailed
models it can be a variable with sigmoidal response taking
a value zero in the passive phase [19]. We further assume
that switching from passive to active response takes place
when the “unjamming” threshold strain εc is reached [38]. We
neglect the possibility of hysteresis and assume that unloading
below the threshold εc brings the system back into the passive
state; see Fig. 1(a). To nondimensionalize the system (1) we
normalize length by the system size L, time by L/c, where
c = √

E/ρ, and stress by E .

III. QUASICONTINUUM APPROXIMATION

It will be convenient to first deal with a quasicontinuum ap-
proximation of the discrete problem. To this end we introduce
the continuous strain field ε(x, t ), where ε(nh, t ) = εn(t ), and
assume that h = a/L � 1; we will also use the convenient
rescaling ũ = u/εc, ε̃ = ε/εc, and σ̃ = σ/εc. If we now Padé
approximate the nonlocal operator in the right-hand side of (1)
and leave only the lowest order terms, we obtain [39–41](

1 − h2

12

∂2

∂x2

)
∂2ε̃

∂t2
= ∂2σ̃

∂x2
. (2)

To generate a solitary wave solution of (2) we impose a trav-
eling wave ansatz ε(x, t ) = ε(η), where η = (x − V t )/h and
V is the dimensionless velocity of the pulse.

If we center the active pulse performing local exten-
sion at η = 0 and denote its width by 2d we can write
the associated stress distribution in the form σ̃ (η) = ε̃(η) +
σ̃arect(η/(2d )), where rect(x) = H (x + 1/2) − H (x − 1/2)
and H (x) is the Heaviside function. We require that ε̃(η) → 0
as η → ±∞ and impose at η = ±d the matching conditions
�ε̃� = �d ε̃/dη� = 0 and set ε̃(±d ) = 1. Then, integrating (2)
twice and applying the boundary and matching conditions, we
obtain the equation(

V 2 − 1 − V 2

12

d2

dη2

)
ε̃ = σ̃arect

( η

2d

)
, (3)

where the right-hand side implicitly depends on ε̃. A similar
solitary wave solution, describing local contraction, can be
obtained if we set σ̃ (η) = ε̃(η) + σ̃a[1 − rect(η/(2d ))] and
require that ε̃ → λ when η → ±∞, where

λ = σ̃a/(V 2 − 1).

The extension pulses exist in the range 1 < V < V∗ where
V∗ ≡ √

σ̃a/2 + 1, so they are supersonic, which does not mean
that they are fast given that the underlying elastic medium
is almost an acoustic vacuum [42]. The phase portrait of
the system (3) at 1 < V < V∗ is shown in Fig. 1(b). Two
nondegenerate saddle points at ε̃± lie on the same Rayleigh
line V 2 = [σ̃ (ε̃) − σ̃ (ε̃+)]/(ε̃ − ε̃+); see Fig. 1(a). Solitary
waves describing the extension pulses correspond to homo-
clinic trajectories starting and ending at ε̃+. Periodic trains of
such pulses correspond to closed trajectories encircling the de-
generate center at ε̃ = 1. As V → V∗ homoclinic trajectories
become heteroclinic and the solitary waves turn into kinks;
at V = V∗ we have S1 = S2 in Fig. 1(a) and therefore the
associated macroscopic discontinuity is dissipation free [43].
The structure of these solutions is similar to the one in flocking
models [15,44] modulo the fact that here we omit the explicit
description of inflow and outflow of energy.

The contraction pulses, exist in the complimentary range of
parameters V∗ < V < V∗∗, where V∗∗ ≡ √

σ̃a + 1 > V∗. They
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correspond to homoclinic trajectories starting and ending at
ε̃−.

It is natural to start the analysis with kinks that are
characterized by a single transition event at η = 0. The cor-
responding equation reads(

V 2 − V 2

12

d2

dη2

)
ε̃(η) = σ̃ (η) + ε̃+, (4)

where σ̃ (η) = ε̃(η) + σ̃aH (−η). The integration of this equa-
tion gives

ε̃k (η) =
⎧⎨
⎩

ε̃+ + λ
2 e−η/z, η > 0,

ε̃− − λ
2 eη/z, η < 0,

(5)

where

z = V/
√

12(V 2 − 1)

and ε̃− = ε̃+ + λ. Imposing the matching condition ε̃(0) = 1
we obtain the closure relation ε̃± = 1 ∓ λ/2, which is equiv-
alent to the requirement that V = V∗ and that the two areas in
Fig. 1 are equal: S1 = S2. Integration of the equation ε̃k (η) =
dũk (η)/dη allows one to reconstruct the displacement field

ũk (η) =
{

ε̃+η − λz
2 e−η/z, η > 0,

ε̃−η + λz
2 eη/z, η < 0.

(6)

Extension solitary wave solutions must satisfy(
V 2 − V 2

12

d2

dη2

)
ε̃(η) = σ̃ (η), (7)

where σ̃ (η) = ε̃(η) + σ̃arect( η

2d ). Equation (7) should be sup-
plemented by the condition ε̃± = 0. The active stress σ̃a is
now applied on the finite interval 2d and we should integrate
the above equation under the assumption that ε̃(±d ) = 1. As
we have already mentioned, solution of this problem exists in
the interval 1 < V � V∗. The strain can be written explicitly:

ε̃(η) =

⎧⎪⎪⎨
⎪⎪⎩

e−(η−d )/z, η > d,

λ + (1 − λ) cosh(η/z)
cosh(d/z) , −d < η < d,

e(η+d )/z, η < −d.

(8)

To obtain the displacement field ũ(η) we again set the trivial
integration constant to 0 by assuming that ũ(η) → 0 when
η → ∞ and we get

ũ(η) =

⎧⎪⎪⎨
⎪⎪⎩

−ze−(η−d )/z, η > d,

λ(η − d ) + z(1 − λ) sinh(η/z)
cosh(d/z) , −d < η < d,

−�ũ + ze(η+d )/z, η < −d.

(9)

To close the system we must impose the continuity of the
derivative d ε̃/dη at η = ±d . We can then compute the re-
maining constants

d = −z tanh−1

(
1

1 − λ

)
(10)

and �ũ = 2dλ. Defining the amplitude of the pulse as A =
max ε̃(η) − min ε̃(η), we find for extension pulses that

A = λ + (1 − λ)/ cosh(d/z) (11)

To obtain contraction pulses we need to solve the equation(
V 2 − V 2

12

d2

dη2

)
ε̃(η) = σ̃ (η), (12)

where σ̃ (η) = ε̃(η) + σ̃a[1 − rect( η

2d )]. The boundary condi-
tions must be now chosen in the form ε̃ → λ when η → ±∞.

As we know, solution of this problem exists in the interval
V∗ < V � V∗∗. It can be again written explicitly for the strain
field

ε̃(η) =

⎧⎪⎪⎨
⎪⎪⎩

λ + (1 − λ)e−(η−d )/z, η > d,

cosh(η/z)
cosh(d/z) , −d < η < d,

λ + (1 − λ)e(η+d )/z, η < −d,

(13)

and for the displacement field

ũ(η) =
⎧⎨
⎩
λ(η − d ) − z(1 − λ)e−(η−d )/z, η > d,

z sinh(η/z)
cosh(d/z) , −d < η < d,

�ũ + λ(η − d )+ (1 − λ)ze(η+d )/z, η < −d.

(14)
The remaining parameters are

d = −z tanh−1(1 − λ), A = λ − 1

cosh(d/z)
, (15)

and �ũ = 2dλ.

This solution degenerates in two limiting cases. First, at
V = 1 the integration of (7) gives ε̃(η) = 6σ̃a(d2 − η2) + 1
when −d < η < d and ε̃(η) = 1 when |η| > d . Imposing the
continuity of derivatives at η = ±d , we obtain d = 0 and
A = 0 and, therefore, ε̃(η) ≡ 1 and σ̃ (η) ≡ 1. In the other
singular limit V = V∗∗ we have λ = 1 and therefore from
(13) we find that ε̃ = 1 for |η| > d . The continuity of strain
derivatives at η = ±d again gives d = 0 and A = 0, hence
ε̃(η) ≡ 1 but now σ̃ (η) ≡ 1 + σ̃a.

The behavior functions d (V ) and A(V ) for both types of
pulses is shown in Figs. 2(a) and 2(b). The two families are
separated by the critical value of parameter V = V∗, where
the solitary waves take the form of infinitely separated kinks.
At this point the parameter d , playing the role of the cor-
relation length, diverges even though the pulse amplitude
remains finite (taking the value A = 2). In the limits V → 1
and V → V∗∗ we obtain sonic waves in passive and active
states, respectively; note that the passive limit is singular. The
typical functions ε̃(η) for different values of V are shown in
the insets in Fig. 2. We emphasize that only the near-critical
pulses have a physiologically realistic rectangular form.

Next, recall that, in the case of a extension pulse, the ampli-
tude of the displacement increment, culminating the passing
of a pulse, is �ũ = 2dλ. As a rough description of a peristaltic
wave train, represented by a succession of N such pulses,
we can write �ũ = 2dNλ. To obtain the actual solutions
describing the trains of extension pulses we need to solve the
equation (

V 2 − V 2

12

d2

dη2

)
ε̃(η) = σ̃ (η), (16)

where σ̃ (η) = ε̃(η) + σ̃a
∑

j rect( η j

2dp
) and η j = η − 2 jD.

Here it was assumed that each pulse has a half-width dp
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FIG. 2. Parametric dependence of the structure of active pulses at σ̃a = 100: (a) the half-width d = d (V ); (b) the amplitude A = A(V );
insets show the strain profiles at V = 5 (point P), V = V∗ ± δ, where δ = 10−7 (points Q and R), and V = 8 (point S). Vertical asymptotes
mark the location of the critical point V = V∗.

and the whole active lattice has the period 2D. The matching
conditions are now �ε̃� = �d ε̃/dη� = 0 and ˜̃ε( jD ± dp) = 1.

Integration of (16) together with the matching conditions
gives

ε̃(η) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

edp/z

1+e2(dp−D)/z (e(η j−2D)/z + e−η j/z ), dp < η j � D,

λ + (1 − λ) cosh(η j/z)
cosh(dp/z) , −dp < η j < dp,

edp/z

1 + e2(dp−D)/z
(eη j/z + e−(η j+2D)/z ), −D < η j < −dp.

(17)

The value of the parameter dp can be found as a positive real root of the transcendental equation

(1 − λ) tanh(dp/z) = tanh[(dp − D)/z], (18)

which ensures the continuity of the first derivative of strain at η j = ±dp. By integrating (17), while respecting the continuity of
displacements, we obtain

ũ(η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

j�ũ + zedp/z

1+e2(dp−D)/z (e(η j−2D)/z − e−η j/z ), dp < η � D,

j�ũ + λ(η j − dp) + z(1 − λ)
sinh(η j/z)

cosh(dp/z)
, −dp < η j < dp,

( j − 1)�ũ + zedp/z

1 + e2(dp−D)/z
(eη j/z − e−(η j+2D)/z ), −D < η j < −dp.

(19)

IV. MODEL OF PERISTALTIC LOCOMOTION

The obtained family of solutions is parametrized by V
and incorporates both extension and contraction pulses. To
distinguish between the two it is convenient to redefine the
half-width as d = min (dp, D − dp) and the amplitude as A =
|ε̃(0) − ε̃(D)|. The resulting functions d (V ) and A(V ) are
shown in Fig. 3.

The wave train solutions can be used to model peristaltic
locomotion [31,45]. Suppose that the organism generates a
periodic train of extension pulses that propagate rearward with
a velocity V so that, when a pulse reaches the tail, another
one is initiated at its head with a fixed delay controlled by
the parameter D. Observations show that when such a pulse
moves towards the tail, the latter fattens and gets anchored
due to local increase of friction. With such an anchor present,
the locomotion naturally occurs into the direction opposite to

the direction of the pulse. We mimic such motility pattern in
Fig. 4 (left), where the pulse is taken from the range V < V∗.

Suppose now that the motion of the organism is of
stick-slip type with each advance corresponding to passing
of a single pulse producing the forward displacement of
the head �ũ = 2dpλ. Since the next pulse arrives after the
time 2D/V , the mean translational velocity of the system is
v = �ũV/(2D). Note that the simultaneous propagation of
multiple peristaltic pulses along the animal body is also a
possibility, which we do not consider here.

The branch of contraction pulses corresponding to V > V∗
also generates a motility pattern shown in Fig. 4 (right). In this
case the “fattening” and the resulting anchoring takes place
around the pulse. Such regimes, driven by passive pulses in
otherwise active medium, are however, not realistic due to the
necessity to maintain active state throughout the whole body
of the organism.
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FIG. 3. Trains of active pulses at σ̃a = 100: (a) half-width of a single pulse d (V ); (b) its amplitude A(V ). Vertical asymptotes correspond
to V = V∗; insets illustrate the typical profiles ε̃(η).

The behavior of the function v(V ) for both kinds of motil-
ity (V ≶ V∗) is shown in Fig. 4 (center). We emphasize that
around the critical point V = V∗ the macroscopic velocity v

behaves singularly: it varies over a broad range around a single
value of the control parameter. The corresponding individual
pulses take the form of elongated rectangles which is one of
the most characteristic features of peristaltic waves. Since the
width of these rectangular pulses, and therefore the resulting
motility velocity, can vary significantly, being positioned near
such critical point can help an organism to adapt its responses.
The implied anomalous sensitivity to controls can facilitate
optimal behavior in complex physiological conditions and
would then be highly functional.

V. SOLUTION OF THE DISCRETE MODEL

Given that the biological systems exhibiting peristalsis are
usually segmented, the question arises whether our oversim-
plified (quasi)continuum model (2) adequately represents the
dynamics of its discrete prototype (1). To answer this question
we now briefly consider the traveling wave solutions of the
original discrete system.

We maintain the same normalization and use again the
ansatz ε̃n(t ) = ε̃(η), where η = (nh − V t )/h. The discrete

strain field ε̃(η) satisfies the equation

V 2 d2ε̃

dη2
= σ̃ (η + 1) + σ̃ (η − 1) − 2σ̃ (η), (20)

with σ̃ (η) = ε̃(η) + σ̃aH (−η). In view of the partial linearity
of the problem, it will be enough to construct the kink-type
solution while individual pulses and trains of pulses can be
obtained as linear combinations of kinks with appropriately
adjusted continuity conditions. As above, the kink solution
can be obtained if we use in (20) the ansatz σ̃ (η) = ε̃(η) +
σ̃aH (−η).

Suppose again that a switching point where ε̃(0) = 1 is
placed at η = 0. We can then apply the Fourier transform

ε̂k (k) =
∫ ∞

−∞
ε̃k (η)eikη dk

and rewrite the problem as an algebraic one:

L(k)ε̂k (k) = −σ̃a
ω2(k)

0 + ik
, (21)

where the kernel is L(k) = ω2(k) − (kV )2, and

ω2(k) = 4 sin2(k/2),

FIG. 4. Schematic presentation of peristalsis by trains of active pulses at σa = 100 and D = 3. Motility by extension pulses is shown on
the left, and that by contraction pulses is shown on the right. The central plot shows dependence of the average velocity v on V ; the vertical
asymptote corresponds to the critical point at V = V∗.
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is the dispersion relation; the notation (0 + ik)−1 =
limα→0+(α + ik)−1 stands for the Fourier transform of
the Heaviside function.

The solution of the original problem can be presented in
the form of the inverse Fourier transform

ε̃k (η) = ε̃+ − σ̃a

2π

∫ ∞

−∞

ω2(k)

(0 + ik)L(k)
e−ikη dk, (22)

where ε̃+ = ε̃(∞). The contour integral in (22) can be com-
puted by the residue method. The kernel function L(k) has
a double zero at k = 0. The rest of the roots are simple and
complex, located in both half-planes. They can be organized in
the sets Z± = {k : L(k) = 0, ±Im k > 0}. Then the explicit
series solution of the discrete problem can be written in the
form of infinite series:

ε̃k (η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̃+ + σ̃a
∑

k∈Z−

ω2(k)

kL′(k)
e−ikη, η > 0,

ε̃− − σ̃a
∑

k∈Z+

ω2(k)

kL′(k)
e−ikη, η > 0.

(23)

Here ε̃+ is a homogeneous solution of the problem with the
boundary conditions ε̃(η) → ε̃± at η → ±∞ and where ε̃− =
ε̃+ + λ.

This solution exists only for the critical value of velocity
V = V∗. In other words, admissible kinks in this model must
necessarily satisfy the dynamic Maxwell condition.

To apply the matching condition at η = 0 we need to
consider an infinitely large circle in the complex plane. The
contour integration in this case gives the relation

λ + σ̃a

∑
k∈Z−

ω2(k)

kL′(k)
+ σ̃a

∑
k∈Z+

ω2(k)

kL′(k)
= 0. (24)

If we also recall that L(−k) = L(k) and L(k) = L(k) we
obtain

∑
k∈Z− ω2(k)/[kL′(k)] = ∑

k∈Z+ ω2(k)/[kL′(k)] and,
hence, ε̃(0) = ε̃+ − λ/2 = ε̃− + λ/2. By applying the match-
ing condition ε̃± = 1 ∓ λ we recover again the equal area
(Maxwell) condition S1 = S2, saying that the entropy produc-
tion on the corresponding jump discontinuity in the coarse
grained continuum problem is equal to zero.

We can also reconstruct the discrete displacement field by
inverting the relation (e−ik − 1)ûk (k) = ε̂k (k). Following the
same scheme as above we get

ũk (η) =
⎧⎨
⎩

ε̃+(η − 1/2) + σ̃a
∑

k∈Z−
iω2(k)

k sin(k/2)L′(k) e
−ik(η−1/2), η > 1/2,

ε̃−(η − 1/2) − σ̃a
∑

k∈Z+
iω2(k)

k sin(k/2)L′(k) e
−ik(η−1/2), η < 1/2.

(25)

Using (23) and (25) we can also obtain the solution de-
scribing extension pulses. In this case we must solve (20)
with the stress ansatz σ̃ (η) = ε̃(η) + σ̃arect(η/(2d )) and use
the same matching condition ε̃(±d ) = 1. The linearity of
the system at fixed d suggests again that the solitary wave
solution can be obtained as a linear combination of two kinks
ε̃(η) = ε̃k (η − d ) − ε̃k (η + d ), where the nonlinear relation

d = d (V ) is to be found from the relation ε̃k (0) − ε̃k (2d ) =
1. The corresponding solution for the discrete strain field
is ũ(η) = ũk (η − d ) − ũk (η + d ), which can be obtained by
inverting the equation (e−ik − 1)û(k) = ε̂(k) in the Fourier
space. The total displacement which is again �ũ = 2dλ.

The typical dependencies d (V ) and A(V ) for extension
pulses are illustrated in Fig. 5, where they are compared with

FIG. 5. Comparison of the predictions of discrete (red) and continuum (black) models at σ̃a = 100: (a) half-width, (b) amplitude. The red
markers show the discrete pulses obtained numerically by solving a one-parametric set of initial value problems; see Fig. 6. The insets compare
discrete and continuum distributions of strains (a) and displacements (b) at the near critical speed V = V∗ − 10−7.
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FIG. 6. Stable propagation of an extension pulse at V = 6 and
σ̃a = 100. The inset shows the superimposed analytical solution.

the corresponding results of the continuum theory with h = 1;
the comparison confirms the overall adequacy of the contin-
uum approximation despite the choice of a finite value for our
“small” parameter. The discrete dots in Fig. 5 also overlap
exactly with our numerical computations illustrated in Fig. 6
where we tested the stability of the obtained traveling wave
solutions by using them as initial data and solving numerically
the corresponding initial value problem.

For the contraction pulse we need to use another ansatz,
σ̃ (η) = ε̃(η) + σ̃a[1 − rect(η/(2d ))]. The discrete strain field
is then ε̃(η) = ε̃k (d + η) + ε̃k (d − η), while the displacement
field is ũ(η) = ũk (d + η) + ũk (d − η). The value of the pa-
rameter d in the corresponding interval of velocities V∗ <

V � V∗∗ can be found from the equation ε̃k (0) + ε̃k (2d ) = 1.
Using the same idea we can find solutions describing trains

of pulses. In the case of extension we need to use the ansatz
σ̃ (η) = ε̃(η) + ∑

j σ̃arect(η j/(2dp)). The strain and displace-
ment fields are now represented via infinite sums, ε̃(η) =∑

j ε̃k (η j − dp) − ε̃k (η j + dp) and ũ(η) = ∑
j ũk (η j − dp) −

ũk (η j + dp), respectively. The equation for finding dp takes

the form

∑
j

ε̃k (−2 jD) − ε̃k (2dp − 2 jD) = 1. (26)

In the discrete case we can also define the parameter d =
min (dp, D − dp), observing that dp = D/2 at V = V∗.

We tested the numerical stability of the obtained discrete
pulses by solving a range of initial value problems. The stable
propagation of a triangular discrete extension pulse is illus-
trated in Fig. 6, where we considered a discrete chain with
500 springs. A more relevant for peristalsis example of a
stable propagation of a rectangular extension pulse is shown
in Fig. 7(a) for the chain with 1000 springs. In this test we
used initial conditions ũn(0) = 0, ˙̃u1(0) = v0, and ˙̃un(0) =
0, n > 1, and assumed free ends. The time evolution of the
displacement field, shown in Fig. 7(b), illustrates the creation
of the finite displacement behind the propagating pulse.

VI. CONCLUSIONS

We developed a model of a dynamic passive-to-active
transformation taking place in the front of a steadily moving
pulse with the corresponding reverse transformation taking
place in its rear. The associated solitary wave solutions were
extended as periodic trains and used to model the peristaltic
mode of self propulsion. We found that at the critical value of
parameter the model generates singular regimes with diverg-
ing effective correlation length and argued that such criticality
may be functional. Our results can be used for biomimetic
reproduction of wormlike motion in applications ranging from
endoscopic diagnostics [46] to pipeline inspection [47]. While
in the existing robotic systems activity is imitated by glob-
ally synchronized distributed actuators [9,20,36], our focus
on local mechanical feedback in muscle-type soft materials

FIG. 7. Results of numerical experiments with discrete chain at σ̃a = 100 and v0 = 200 (see the text): (a) strains, (b) displacements. The
generated extension pulse correspond to V ≈ V∗, d ≈ 1.88, and A ≈ 1.998. Insets show the comparison of the numerical solution in the
comoving frame (markers) with the corresponding analytical solution (solid line).
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opens new avenues in the biomimetic modeling of peristalsis,
see also [21,48,49]. The proposed prototypical model can
serve only as a proof of concept and future work aimed
at quantitative predictions, should incorporate energy supply
and dissipation while also accounting for realistic three-
dimensional geometry.
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