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Abstract Marginal stability plays an important role in nonlinear elasticity because
the associated minimally stable states usually delineate failure thresholds. In this pa-
per we study the local (material) aspect of marginal stability. The weak notion of
marginal stability at a point, associated with the loss of strong ellipticity, is classical.
States that are marginally stable in the strong sense are located at the boundary of
the quasi-convexity domain and their characterization is the main goal of this paper.
We formulate a set of bounds for such states in terms of solvability conditions for
an auxiliary nucleation problem formulated in the whole space and present nontrivial
examples where the obtained bounds are tight.

Keywords Calculus of Variations · Stability · Martensitic phase transitions · Strong
local minimum · Quasiconvexity · Nucleation
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1 Introduction

A classical problem of calculus of variation is to find global minimizers and identify
in this way the most stable configurations known in physics as ground states. A more
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complex and less studied problem concerns finding all local minima which in phys-
ical terms means characterization of the set of metastable states. The task of finding
all local minimizers is often obfuscated by the fact that local minima can be defined in
different ways depending on the choice of the topology on the set of configurations.
When such uncertainty exists, it indicates a certain degeneracy of the theory and its
resolution requires additional physical hypotheses external to the original variational
problem.

In this paper we pose a new problem of identifying all minimally stable local mini-
mizers that are usually interpreted in physical and mechanical literature as marginally
stable states. As in the case of local minima the definition of marginally stable states
depends on the choice of topology.

More specifically, we focus on the study of variational functionals typical of non-
linear elasticity

E(y) =
∫
Ω

W
(∇y(x)

)
dx, (1.1)

where the energy density W is a continuous and bounded from below function on the
space M of all m×d matrices, with d being the spatial dimension. For the variational
problem (1.1) the two basic topologies are the W 1,∞ norm topology and the W 1,∞
sequential weak-* topology; the associated local minimizers will be called weak and
strong,1 respectively. In elasticity theory the selection of topology is a physical as-
sumption and the choice between our strong and weak topologies may reflect, for
instance, the presence of spatial inhomogeneities in the physical problem. To avoid
these decisions we consider two topologies on equal grounds being aware that our
choices are by no means exhaustive; for instance, both exclude cavitation.

The knowledge of marginally stable states is important in elasticity theory because
reaching such states entails either structural or material failure (Truesdell and Noll
2004; Ciarlet 1988; Šilhavý 1997; Antman 2005). In applications it is important to
identify states with disappearing reserve of stability in order to predict large and
sometimes catastrophic changes associated with decomposition of these states.

Structural instabilities are global and are associated with such physical phenom-
ena as buckling, barreling, microstructure collapse, etc. (Hill 1957; Simpson and
Spector 1984, 2008; Le Dret 1987; Geymonat et al. 1993; Grabovsky and Truski-
novsky 2007; Berdichevsky 2009a, 2009b). In mathematical literature the notion of
weak global stability is interpreted as non-negativity of the second variation (Ball
and Marsden 1984; Simpson and Spector 1987; Giaquinta and Hildebrandt 1996).
The full understanding of this concept in the scalar case was already achieved in
the classical work of Jacobi who characterized bifurcation points of the Euler–
Lagrange equations for the second variation (Morse 1934; Gelfand and Fomin 1963;
Giaquinta and Hildebrandt 1996). In the vectorial case the situation is more compli-
cated, since the space of all solutions of the vectorial analog of the Jacobi equation is
infinite dimensional.

1Traditionally a strong local minimizer is associated with L∞ topology. Our abuse of terminology should
not cause problems, since in this paper we discuss only the necessary conditions. Clearly, all necessary
conditions for a W1,∞ sequential weak-* local minimizer will also be necessary for a L∞ local minimizer.
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Local instabilities manifest themselves at a point and are geometry independent. In
mechanical terms they are usually interpreted as material instabilities that can mani-
fest themselves through the nucleation of cracks, cavities, nuclei of a new phase, dis-
location loops, shear bands, etc. (Hill 1975; Ball 1982, 2002; Maloney and Lemaître
2004; Li et al. 2004; Michel et al. 2007). Reaching local marginal stability thresholds
usually means termination of an equilibrium branch and often indicates transition
from statics to dynamics.

It is important to mention that material instabilities, epitomized by marginally sta-
ble equilibria, serve as indicators that a system has reached the limit of applicability of
classical continuum elasticity, in particular, that the description of local deformation
in terms of affine Cauchy–Born scheme is about to fail. To advance beyond the limits
of marginal stability the theory must be augmented either by admitting singularities
or by incorporating internal length scales. In the first case additional hypotheses of
a physical nature must be added allowing one to locate (track) these singularities in
space. In the second case, these singularities must be appropriately regularized and
captured as high gradient regions in the framework of some meso-scopic theory. Even
more radical solution is to consider directly the micro-scopic theory which is usually
discrete or to build hybrid discrete–continuum numerical schemes. All these exten-
sions of the classical elasticity allow one to see how marginal instability ultimately
resolves itself.

Recently it has become clear that marginally stable states also play a crucial role
in quasi-static evolution of distributed mechanical systems with non-convex energy,
e.g. (Puglisi and Truskinovsky 2005; Salman and Truskinovsky 2012). In particular,
marginally stable states are fundamentally important for self-organization towards
criticality as observed in plasticity, friction, earthquakes, fracture, martensitic phase
transitions and damage propagation (Zaiser 2006; Alava et al. 2006; Sethna 2007;
Salman and Truskinovsky 2012). Such driven systems exhibit a capability of lock-
ing themselves in marginally stable states and the corresponding locus is known in
different mechanical settings as yield limit, dynamic friction limit, Griffith limit, or
martinsitic hysteresis limit.

The simplest examples of material instabilities that can be linked to the two
topologies studied in this paper can be found in the theory of fluid equilibria where
the loss of weak local stability is associated with spinodal decomposition, and the
corresponding marginally stable states lie on the spinodal (Langer 1974), while the
loss of strong local stability is associated with nucleation of a new phase, and the
corresponding stability threshold is called the binodal (van der Waals 1903). In this
paper we propose a far reaching generalization of these physical concepts in the con-
text of calculus of variation. In the absence of better choices we continue using the
terms spinodal and binodal as the indicators of weak and strong marginally stable
states, respectively.

In the classical calculus of variation, dealing with either scalar or one-dimensional
problems, the physical ideas of spinodal and binodal correspond to the notions of
local and global convexity limits. The spinodal is then a manifold where Hessian
degenerates, while the binodal can be associated with appropriate zeros of the Weier-
strass excess function (Gelfand and Fomin 1963; Giaquinta and Hildebrandt 1996).

The general vectorial criterion of weak local stability is given by the Legendre–
Hadamard condition whose relation to ellipticity loss of the Euler–Lagrange equa-
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tions and associated bifurcations has been thoroughly studied (Van Hove 1947;
Baker and Ericksen 1954; Ericksen and Toupin 1956; Crandall and Rabinowitz 1971;
Knowles and Sternberg 1978; Ball 1980; Ogden 1997). In the context of nonlinear
elasticity, the locus of weak marginally stable deformation gradients which we call
elastic spinodal can often be fully characterized analytically (Knowles and Sternberg
1975; Zee and Sternberg 1983; Dacorogna 2001).

The mathematical notion of strong local, or material stability in vectorial problems
is expressed by the quasi-convexity condition (Morrey 1952; Ball 1976/1977; Šilhavý
1997; Ball 2002; Dolzmann 2003). Unlike the Legendre–Hadamard condition, this
constraint is non-local and is much harder to explicate (Kristensen 1999). The quasi-
convexification is known explicitly only in a few very special cases (Khachaturyan
1983; Kohn and Strang 1986; Kohn 1991; Allaire and Kohn 1993a; Pedregal 2001;
Dolzmann 2003) and our goal is to solve a simpler problem of computing the elastic
binodal, without getting into a task of relaxing a non-quasi-convex energy.

We first observe that the spinodal and the binodal regions, where our two notions
of local stability are strictly violated, can be characterized in terms of the parametric
variational inequalities:

S =
{
F ∈ M : inf

φ∈C1
0 (B1;Rm)

∫
B1

(
WFF (F )∇φ(z),∇φ(z)

)
dz < 0

}
, (1.2)

for the spinodal region and

B =
{
F ∈ M : inf

φ∈C1
0 (B1;Rm)

∫
B1

{
W

(
F + ∇φ(z)

) − W(F )
}

dz < 0

}
. (1.3)

for the binodal region, where WF (F ) denote the array of partial derivatives ∂W/∂Fiα

with i = 1, . . . ,m and α = 1, . . . , d . These definitions, however, cannot be considered
as universal tools allowing one to characterize either spinodal or binodal regions di-
rectly by solving the corresponding Euler–Lagrange equations. Even if minimizers
can be determined in this way, such a characterization is usually not the simplest.

One way to obtain a constructive definition of spinodal and binodal regions is to
formulate problems equivalent to (1.2) and (1.3) in extended spaces of admissible test
functions where all unnecessary smoothness and growth conditions are eliminated.
Different formulations defining the same critical sets form an equivalence class. We
show that in the case of weak local minima, a particular equivalent reformulation of
the original problem allows one to fully characterize the spinodal region in the space
of gradients and to localize the spinodal as its boundary.

Similarly exhaustive reformulation in the case of a general binodal remains elu-
sive. Here, in contrast with the classical bifurcation theory, which is fully adequate
in the case of the spinodal (Truesdell and Noll 2004; Ogden 1997; Šilhavý 1997),
the implied generalized bifurcation problem cannot be understood by linearization.
In the absence of a general solution of such nonlinear bifurcational problem we fo-
cus in this paper on the task of characterizing different subsets of binodal region and
constructing in this way some bounds separating (strongly) unstable states from the
(strongly) stable ones.
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We use the crucial observation that in order to characterize the binodal we do not
need to know the value of the infimum in (1.2) and (1.3) but only its sign. This sim-
plifies the equivalence criterion and allows one to formulate alternative parametrized
variational inequalities that are more amenable to analysis. In particular, we show that
in this way one can characterize a subset of “unsafe loading conditions” by solving
auxiliary problems formulated either for a system of partial differential equations or
an algebraic system. More specifically, we show that by probing a homogeneous con-
figuration with the test functions from sufficiently large spaces one can obtain a par-
tial characterization of the binodal (see earlier related work reviewed in Lurie 1993;
Cherkaev 2000; Cherkaev and Kucuk 2004a, 2004b). How tight the ensuing bounds
are depends on specifics of the non-convexity of the energy density function.

The main tool in our analysis of the binodal is the notion of stability with respect to
nucleation, which we formulate, building on some earlier insights (Lifshits and Gul-
ida 1952b, 1952a; Roytburd and Slutsker 1999a, 1999b, 2001; Khachaturyan 1983;
Kaganova and Roytburd 1988; Freidin and Chiskis 1994a, 1994b; Freidin 2007), in
terms of solvability conditions for an auxiliary problem in all physical space. The
infinite size of the domain reflects the fact that marginalization of an equilibrium in
strong topology is a manifestation of local instability. Here it is appropriate to men-
tion similar development in the theory of shape optimization where non-convex func-
tionals arise naturally and where our nucleation problem can be linked to the com-
putation of ‘topological’ or ‘Hadamard derivatives’ (Sokolowski and Zolesio 1992;
Allaire 2002).

The nucleation problem can be formulated in different but equivalent ways, de-
pending on the assumed behavior of the test functions at infinity and we raise the
problem of maximal extension of the space of test functions in order to obtain the
broadest possible notion of the energy-neutral nucleus. In particular, we observe that
seemingly natural requirement of the energy density decay at infinity is inadequate
for capturing non-compact nuclei represented by cylinders and plates or by the sets
of interacting nuclei spreading to infinity.

To supplement the PDE-based bounds we also consider a nucleation problem
for gradient Young measures of the sequences of test functions converging only
weakly (Young 1937, 1942; Ball 1989; Ball and Murat 1989; Pedregal 1997;
Tartar 2009). Finding the optimal Young measures in the general case is hardly pos-
sible, however, simple algebraic bounds on the binodal can be obtained by energy
minimization with respect to a subclass of Young measures represented by lami-
nates. This leads to the concept of partially relaxed energy density which can be
used in the secondary nucleation PDE-based problem. The generalized bifurcations
in the resulting PDE can be interpreted as nucleation of composite precipitates (Royt-
burd and Slutsker 1999a, 1999b, 2001; Zhang et al. 2009; Knüpfer and Kohn 2011;
Knüpfer et al. 2013) and our work establishes a rigorous connection between the cor-
responding ‘polydomain nucleation problem’ and the task of identifying the limits of
strong stability.

In addition to isolated inclusions we also consider arrays of interacting inclusions
that are periodic in some directions and decay in others. In physical terms the peri-
odicity assumption means that the elastic interaction between individual inclusions is
necessary for optimality and that we are dealing here with a cooperative phenomenon.
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The most dramatic example of collective nucleation is provided by multi-rank lami-
nates. While the resulting bounds are in no way exhaustive they may be very useful
in applications, where one has no hope of computing the explicit quasi-convex en-
velopes.

To illustrate our formal development, we consider two examples in full detail. In
the first example we deal with the simplest energy exhibiting two incompatible (non
rank one connected) wells. The material is isotropic and the double well structure is
imposed only on the TrF dependence of the energy. In the second example we con-
sider general isotropic energy with two quadratic wells which has been broadly stud-
ied in composite theory and in the theory of martensitic transformations. For these
two examples we show that the PDE-based methods combined with the laminate-
based methods allow one to locate the entire elastic binodal. It is, of course, not
surprising since in both cases quasi-convexification is known to coincide with rank
one convexification.

Several important issues are not addressed in this paper. For instance, it is known
that both weak and strong versions of material stability have nontrivial heteroge-
neous versions when the point of interest is located on the Neumann part of the
external boundary (Agmon et al. 1959, 1964; Biot 1965; Ball and Marsden 1984;
Simpson and Spector 1989; Šilhavý 1997; Mielke and Sprenger 1998) or on an in-
ternal point of inhomogeneity (Edelstein and Fosdick 1968; Le Dret 1987; Gutiérrez
1998/1999). In the case of weak local minima the corresponding theory is rather
well developed (Simpson and Spector 1989; Šilhavý 1997; Mielke and Sprenger
1998) and the associated concept of surface spinodal is straightforward. For strong
local minimizers, one needs to find the limits of the quasi-convexification-on-the-
boundary set (Ball and Marsden 1984; Simpson and Spector 1987; Šilhavý 1997;
Ball et al. 2011) which makes an explicit characterization of the surface binodal a
formidable challenge. Although the associated instabilities play an important role in
applications, e.g., (Tanaka et al. 1987; Hohlfeld and Mahadevan 2011), we left this in-
teresting subject outside the scope of the present paper. Similarly, we did not attempt
the differential characterization of the binodal (Clausius–Clapeyron type relations)
and did not specifically study the nucleation conditions at the non-smooth part of the
binodal associated with simultaneous activation of distinct nucleation mechanisms.

While we succeeded in building some conceptual links between the notions of
spinodal and binodal, the ensuing stability limits remain fundamentally unconnected
in the framework of classical nonlinear elasticity which does not have an internal
length scale. The situation changes fundamentally if one considers regularized theory
where the jumps of deformation gradients are replaced by smooth transition layers.
In such settings (e.g. gradient theory, phase field theory, etc.) binodal and spinodal
become parts of a single stability diagram where the (regularized) spinodal indicates
the actual bifurcation of a homogeneous configuration while the (regularized) binodal
marks the transition between the trivial and the nontrivial branches of the global
minimization path (see Bates and Fife 1993; Truskinovsky and Zanzotto 1996 for 1D
examples). These issues deserve a careful separate study.

This paper is organized as follows. In Sect. 2 we introduce the concepts of elastic
spinodal and elastic binodal as the boundaries of the larger sets on which certain vari-
ational functionals are non-negative. To identify these boundaries one needs to solve a
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bifurcation problem in the case of the spinodal and a nucleation problem in the case of
the binodal. In Sect. 3 we present several examples of equivalent formulations of the
bifurcation and nucleation problems and propose the existence and the computability
of solutions as possible selection criteria. In Sect. 4 we obtain an explicit characteri-
zation of the spinodal and binodal sets for some classes of test functions. In particular,
we study the case when the binodal is detectable by solving a system of PDEs com-
plemented with additional conditions allowing one to specify locations of gradient
discontinuities. A case study for an important class of bi-quadratic energies with two
isotropic wells is presented in the last Sect. 5 where we deal with arbitrary space di-
mensions and make the nucleation-based bounds on the binodal fully explicit. While
similar calculations have been performed many times before (Khachaturyan 1983;
Lurie 1993; Freidin and Chiskis 1994a, 1994b; Cherkaev and Kucuk 2004a, 2004b)
their direct relation to the notion of quasi-convexity has not rigorously been estab-
lished.

2 Spinodal and Binodal

Consider a rather general variational functional used in nonlinear elasticity theory

E(y) =
∫
Ω

W
(∇y(x)

)
dx −

∫
∂ΩN

(
t(x),y

)
dS(x), (2.1)

where Ω is a smooth open and bounded domain in R
d , and ∂ΩN is the Neumann part

of the boundary. We assume that the values of y(x) are prescribed on the Dirichlet
part ∂ΩD = ∂Ω \ ∂ΩN . Further regularity assumptions will be stated below. We
observe that in general it is possible to absorb the boundary term into the volume
integral by replacing the energy density with an appropriate more general Lagrangian,

E(y) =
∫
Ω

L
(
x,y(x)∇y(x)

)
dx. (2.2)

To formulate our two notions of local stability (or metastability) we define Var =
{u ∈ C1(Ω;R

m) : u(x) = 0,x ∈ ∂ΩD}. The weakly and strongly stable states are
defined as follows.

Definition 2.1 A sequence un ∈ Var is called an admissible weak variation if
‖un‖C1 → 0, as n → ∞.

Definition 2.2 We say that y(x) is a weak local minimum if for all admissible weak
variations un we have E(y + un) ≥ E(y) when n is sufficiently large.

Definition 2.3 A sequence sn ∈ Var is called an admissible strong variation if
‖sn‖C0 → 0, as n → ∞.

Definition 2.4 We say that y(x) is a strong local minimum if for all admissible strong
variations sn we have E(y + sn) ≥ E(y) when n is sufficiently large.
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2.1 Generalized Second Variation

Suppose that we are testing stability of a given configuration y ∈ C1(Ω;R
m). We al-

ways assume that the energy density L(x,y,F ) is of class C2 on the extended graph
{(x,y(x),∇y(x)) : x ∈ Ω} of y(x). Consider a general (weak or strong) admissible
variation2 {gε} ⊂ Var. We can expand the energy increment as follows:

�E(gε) = E(y + gε) − E(y) = δE(gε) + δ2E(gε), (2.3)

where

δE(gε) =
∫
Ω

{
(LF ,∇gε) + (Ly,gε)

}
dx.

The second term

δ2E(gε) =
∫
Ω

L	(x,gε,∇gε)dx,

where

L	(x,u,H ) = L
(
x,y(x) + u,∇y(x) + H

) − L(x) − (
LF (x),H

) − (
Ly(x),u

)
,

can be formally interpreted as the “generalized second variation”. Indeed, for the
weak variations of the form

gε = εu, u ∈ C1(Ω;R
m
) ∩ Var, (2.4)

we have

δ2E(gε) = ε2

2

∫
Ω

{
(LFF ∇u,∇u) + 2(LyF ∇u,u) + (Lyyu,u)

}
dx + o

(
ε2).

Since the linear term δE(gε) in the expansion (2.3) vanishes due to the Euler–
Lagrange equation, the requirement �E(gε) ≥ 0 implies, for the class of special
weak variations (2.4), the non-negativity of the classical second variation

∫
Ω

{
(LFF ∇u,∇u) + 2(LyF ∇u,u) + (Lyyu,u)

}
dx ≥ 0, (2.5)

where u ∈ Var is arbitrary. The condition of non-negativity of the generalized sec-
ond variation condition can be also specified if we consider a special class of strong
variations

gη = ηφ
(
(x − x0)/η

)
, x0 ∈ Ω, φ ∈ C1

0

(
B1;R

m
)
, (2.6)

where Br denotes the ball of radius r centered at the origin. Then, if ∇y(x) is con-
tinuous at x0, the generalized second variation has the form

δ2E(gη) = ηd

∫
B1

W ◦(∇y(x0),∇φ(z)
)

dz + o
(
ηd

)
.

2Variations can either be sequences as in the Definitions 2.1 and 2.3 or continuum families, such as Gε ,
where the limit as n → ∞ is replaced by the limit as ε → 0.

Author's personal copy



J Nonlinear Sci (2013) 23:891–969 899

Here

W ◦(F ,H ) = EL

(
x0,y(x0),F ,F + H

)
, (2.7)

and

EL

(
x,y,F ,F ′) = L

(
x,y,F ′) − L(x,y,F ) − (

LF (x,y,F ),F ′ − F
)

is the classical Weierstrass excess function for the Lagrangian L (Young 1969;
Giaquinta and Hildebrandt 1996). We see that W ◦(F ,H ) can be expressed entirely
in terms of the localized version of the Lagrangian

W(F ) = L
(
x0,y(x0),F

)
, (2.8)

where the dependence on x0 ∈ Ω is suppressed in the notation. We note that if the
Lagrangian L(x,y,F ) comes from the energy of the form (2.1) then our definition
of W(F ) differs from the original W(F ) by at most a linear term, which does not
affect any of the subsequent equations.

The requirement �E(gη) ≥ 0 for the class of special strong variations (2.6) is
equivalent to the quasi-convexity at ∇y(x0), (Morrey 1952; Ball 1976/1977):

∫
B1

W ◦(∇y(x0),∇φ(z)
)

dz ≥ 0, (2.9)

for all φ ∈ C1
0(B1;R

m). Notice that the infinitesimal perturbation (2.6) at a point
x0 ∈ Ω is transformed by rescaling (zooming in) into a finite perturbation prescribed
on the unit ball. It is well known that the condition (2.9) does not depend on the
support of φ(x) and the unit ball B1 can be replaced by any bounded domain in R

d .
The smoothness of φ(x) is also not important, in particular, the condition (2.9) would
be unchanged if we require that φ be of class C∞, or if we allow φ to be merely
Lipschitz continuous.

The removal of the linear term in (2.3) is natural since we consider stability of an
equilibrium state and this step is straightforward in the case of weak local minima.
For strong local minima, the removal of the linear term is also useful because finite
perturbations in a small domain create small perturbations outside this domain, and
the latter become invisible if the linear part of the functional is removed. This was
first realized by Weierstrass in a one-dimensional setting.

We emphasize that while the quasi-convexity condition (2.9) is domain-local, i.e.
it depends only on the behavior of the deformation y(x) in any neighborhood of the
point x0, the second variation condition (2.5) is domain-global. The two conditions,
however, have a nontrivial intersection that can be achieved either by performing
the “localization” u(x) �→ ηv((x − x0)/η) in (2.5) with v ∈ C1

0(B1;R
m) or by the

“weakening” φ(z) �→ εv(z), in (2.9) with v ∈ C1
0(B1;R

m). Independently of whether
we take the limit ε → 0 in (2.9) or the limit η → 0 in (2.5) we obtain

∫
B1

(
WFF

(∇y(x0)
)∇v(z),∇v(z)

)
dz ≥ 0 (2.10)

for all v ∈ C1
0(B1;R

m).
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2.2 Definitions of Spinodal and Binodal

The necessary conditions (2.9) and (2.10) of strong and weak stability motivate the
following definitions of spinodal and binodal.

Definition 2.5 The deformation gradient F ∈ M is called weakly locally stable if
∫
B1

(
WFF (F )∇v(z),∇v(z)

)
dz ≥ 0 (2.11)

for all v ∈ C1
0(B1;R

m). The set

S = {F ∈ M : F is not weakly locally stable}
is called the spinodal region.

Definition 2.6 The boundary surface Spin = ∂S of the spinodal region is called the
spinodal.

Definition 2.7 The deformation gradient F ∈ M is called strongly locally stable if
∫
B1

W ◦(F ,∇φ(z)
)

dz ≥ 0, (2.12)

for all φ ∈ C1
0(B1;R

m). The set

B = {F ∈ M : F is not strongly locally stable} (2.13)

is called the binodal region.

Definition 2.8 The boundary surface Bin = ∂B of the binodal region is called the
binodal.

Our goal is to formulate conditions on F under which the inequalities (2.11) and
(2.12) become violated. The spinodal and the binodal regions can be characterized in
terms of the parametric variational inequalities already mentioned in the Introduction
which we rewrite here for convenience

S =
{
F ∈ M : inf

v∈C1
0 (B1;Rm)

∫
B1

(
WFF (F )∇v(z),∇v(z)

)
dz < 0

}
, (2.14)

B =
{
F ∈ M : inf

φ∈C1
0 (B1;Rm)

∫
B1

W ◦(F ,∇φ(z)
)

dz < 0

}
. (2.15)

One way to characterize the spinodal and binodal is to compute the infima in (2.14)
and (2.15). The infimum in (2.14) is not hard to compute explicitly. The infimum in
(2.15) can be expressed in terms of the quasi-convex envelope (Dacorogna 1982)

QW(F ) = 1

|B1| inf
φ∈C1

0 (B1;Rm)

∫
B1

W
(
F + ∇φ(z)

)
dz, (2.16)
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however, the general problem of finding the function QW(F ) is notoriously difficult,
except for the scalar case min(m,d) = 1, where QW = CW is the convex envelope
of W(F ).

The crucial observation is that in order to construct the set B it is not necessary to
compute the quasi-convex envelope. The reason is that we do not need to know the
value of the infimum in (2.15) but only its sign which means that the problem is much
easier. In particular, there is a possibility to modify both the functional and the set of
admissible functions in (2.15) without changing the corresponding set B. If such
a modified variational problem possesses minimizers, which can then be identified
as solutions of the Euler–Lagrange equation, then the corresponding points on the
binodal can also be identified.

2.3 Equivalent Variational Characterizations

We now make formal definitions of equivalent variational characterizations of the
spinodal and binodal.

Definition 2.9 Let F ⊂ W 1,∞(Rd ;R
m) and let I (F , φ) be a functional on F . We

say that the pair (I, F) bounds the spinodal (binodal) if for every F /∈ S (F /∈ B)

inf
φ∈F

I (F , φ) ≥ 0. (2.17)

We say that the pair (I, F) characterizes the spinodal (binodal) if, in addition to
(2.17), for every F ∈ S (F ∈ B)

inf
φ∈F

I (F , φ) < 0. (2.18)

We already know that the pair

F = C1
0

(
B1;R

m
)
, I (F ,v) =

∫
B1

(
WFF (F )∇v(z),∇v(z)

)
dz

characterizes the spinodal, while the pair

F = C1
0

(
B1;R

m
)
, I (F , φ) =

∫
B1

W ◦(F ,∇φ(z)
)

dz

characterizes the binodal. Another well-known example of the binodal characterizing
pair is (Y 0

c ,Λ
◦) (Kinderlehrer and Pedregal 1991), where Y 0

c is the space of homo-
geneous compactly supported gradient Young measures with zero first moment and
Λ◦ is a linear functional on Y 0

c defined by

Λ◦(ν) =
∫

M

W ◦(F + H )dν(H ), ν ∈ Y 0
c . (2.19)

Since none of these characterizations of the binodal is practical, our goal will be to
present other pairs (F , I ) that characterize the binodal. As we have already men-
tioned, we are interested in finding the spaces F that allow one to characterize the
binodal in terms of computable solutions of a system of PDEs.
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We also observe that the notions of pairs characterizing and bounding the binodal
may go beyond a simple extension of a function space. For example, nucleation of
a precipitate containing martensitic twins microstructure in a shape memory alloy
(Roytburd and Slutsker 1999a, 1999b, 2001; Zhang et al. 2009; Knüpfer and Kohn
2011; Knüpfer et al. 2013), suggests that the set F may contain parametrized families
of Young measures. Then the functional I in the pair (F , I ) will be derived as a limit
of the original functional on the sequences generating the Young measures.

3 Examples of Equivalent Problems

In this section we present several examples of spinodal-characterizing, binodal-
characterizing and binodal-bounding pairs that are different from those given in
(2.14) and (2.15) and are better suited for obtaining explicit constraints for the sets
Spin and Bin.

3.1 Spinodal

In the case of spinodal, the functional in (2.11) is quadratic, and hence, it is natural
to extend the space C1

0(B1,R
m) to the space

S0 = {
v ∈ L2

loc

(
R

d ;R
m
) : ∇v ∈ L2(

R
d;M

)}
. (3.1)

Then the pair (S0, I0) is spinodal-characterizing, where

I0(F ,v) =
∫

Rd

(
WFF (F )∇v(z),∇v(z)

)
dz, v ∈ S0. (3.2)

Let us show that, generically, when d > 1 the associated Euler–Lagrange equation

∇ · (WFF (F )∇v
) = 0, v ∈ S0 (3.3)

does not have non-zero solutions. Indeed, taking the Fourier transform of (3.3) we
obtain (Van Hove 1947; Truesdell and Noll 2004; Šilhavý 1997)

A(m;F )̂v(m) = 0,

where the acoustic tensor A(m;F ) at F is defined as the linear map on R
m given by

a �→ A(m;F )a = (
WFF (F )(a ⊗ m)

)
m. (3.4)

As we can see the L2 function v̂(m)⊗m must be supported on the union of rays Rn,
where |n| = 1 solves detA(n;F ) = 0. Generically, this union is a closed and nowhere
dense subset of R

d , when d > 1. Hence ∇̂v(m) = 0 for a.e. m ∈ R
d , and the problem

(3.3) has only trivial solutions in S0. The reason for non-existence in (3.3) is that the
eigenfunctions of the second order differential operator with constant coefficients are
single Fourier modes ei(n,z)a, where a is an eigenvector of the acoustic tensor and
these eigenfunctions do not belong to S0.
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The set of functions containing the eigenmodes of the linear operator (3.3) should
be sufficient to characterize the spinodal. One possible choice is the set of functions

FS = {
φ
(
(z,n)

)
a : φ ∈ H 1(R)

}
, (3.5)

whose distributional Fourier transform is supported on a single ray Rn.
Observe that the functions from (3.5) decay at infinity only in one direction n

and the quadratic functional in (3.2) is no longer defined. To fix this problem we
can approximate functions (3.5) by a sequence of functions vη ∈ S0 and consider an
equivalent functional

I (F ,v) =
∫

Rd (WFF (F )∇v,∇v)dz∫
Rd |∇v|2 dz

, v ∈ S0. (3.6)

Indeed, it is obvious that I (F ,v) ≥ 0 for all v ∈ S0 if and only if (3.2) holds. Let
ρ(x) be a smooth compactly supported function then

lim
η→0

I
(
F , ρ(ηz)φ

(
(z,n)

)
a
) = (

A(n;F )a,a
)
. (3.7)

This formula follows from the relation

lim
η→0

∫
Rd

(
WFF (F )∇vη,∇vη

)
dz

= (
A(n;F )a,a

)(∫
R

φ′(t)2 dt

)(∫
(Rn)⊥

ρ(u)2 dS(u)

)
,

where

vη(z) = η
d−1

2 ρ(ηz)φ
(
(z,n)

)
a.

It is now easy to show that the pair (FS, IS) with FS given by (3.5) and

IS
(
F , φ

(
(z,n)

)
a
) = (

A(n;F )a,a
)

(3.8)

characterizes the spinodal. The Plancherel’s identity applied to (3.2) implies

∫
Rd

(
A(m;F )̂v(m), v̂(m)

)
dm ≥ 0. (3.9)

It is obvious, now, that if the acoustic tensor A(n;F ) ≥ 0 in the sense of quadratic
forms for all n ∈ S

d−1, then (3.9) and hence (3.2) holds. Conversely, (3.7) shows that
(3.2) implies non-negativity of the acoustic tensor.

Remark 3.1 Due to the homogeneity of the functional IS we can also write

inf
φ∈FS

IS(F , φ) = −IndSc (F ), (3.10)

Author's personal copy



904 J Nonlinear Sci (2013) 23:891–969

where IndSc (F ) is the indicator function3 of the complement to the spinodal re-
gion S.

3.2 Binodal

Here we proceed in parallel with the analysis for the spinodal. We begin by extending
the space of admissible test functions from C1

0(B1;R
m) to the space

S = {
φ ∈ W 1,∞(

R
d;R

m
) : ∇φ ∈ L2(

R
d;M

)}
, (3.11)

for which the integral

I ◦(F , φ) =
∫

Rd

W ◦(F ,∇φ(z)
)

dz (3.12)

is convergent. We emphasize the additional assumption of uniform boundedness of φ
and ∇φ in the definition of the space S . From a technical standpoint the assumption
φ ∈ S0 is insufficient to ensure convergence of the integral (3.12).

Interestingly, the phenomenon of cavitation (Ball 1982; Stuart 1985), which is
outside the scope of this paper, can be interpreted as existence of unbounded Sobolev
test fields φ ∈ W 1,p(Rd ;R

m) that in the hard device can lower the energy of a ho-
mogeneous state, which is not in the binodal region. Thus, examples in Müller et al.
(1999) and Pericak-Spector et al. (2002) feature cavitation for globally polyconvex
energies, whose binodal regions are empty sets.

Theorem 3.2 The pair (S, I ◦) characterizes the binodal.

Proof If the inequality (2.12) fails for some φ ∈ C∞
0 (B1;R

m) then the inequality
I ◦(F , φ) ≥ 0 also fails, since φ ∈ S , if extended by zero outside of B1.

First we prove I ◦(F , φ) ≥ 0, assuming that (2.12) holds. For each R > 0 let ηR ∈
C∞

0 (B2R) be a cut-off function such that ηR takes values between 0 and 1, ηR(x) = 1
for all x ∈ BR and |∇ηR(x)| ≤ C/R for all x ∈ R

d with constant C independent of R.
We extend ηR(x) by zero to the complement of B2R . The theorem will be proved if
we show that for each φ ∈ S there exist a constant4 c ∈ R

m and a sequence Rk → ∞,
such that

lim
k→∞

∫
Rd

W ◦(F ,∇(
ηRk

(φ − c)
)

dz =
∫

Rd

W ◦(F ,∇φ)dz. (3.13)

Indeed, if F satisfies (2.12) then∫
Rd

W ◦(F ,∇(
ηRk

(φ − c)
))

dz =
∫
B2Rk

W ◦(F ,∇(
ηRk

(φ − c)
))

dz ≥ 0

for all k ∈ N, and hence the relation (3.13) implies the inequality I ◦(F , φ) ≥ 0.

3The indicator function of a set equals zero on the set and +∞ on its complement.
4When d ≥ 3 there is a canonical choice of the constant c, such that φ − c ∈ L2d/d−2(Rd ;R

m) (see
Theorem A.1). When d = 1 the choice of the constant is irrelevant. However, when d = 2 there is no
canonical choice of the constant c, which cannot be chosen arbitrarily.
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To prove (3.13) we use the inequality

∣∣W ◦(F ,G + H ) − W ◦(F ,G)
∣∣ ≤ C

(|G||H | + |H |2), (3.14)

which holds for all |G| ≤ M and |H | ≤ M , where the constant C depends on M , F ,
and W . Taking M = ‖φ‖1,∞, we have

∣∣W ◦(F ,∇(
ηR(φ − c)

)) − W ◦(F , ηR∇φ)
∣∣ ≤ C

(
1

R
|φ − c||∇φ| + 1

R2
|φ − c|2

)
,

where the constant C is independent of x and R. Lemma 3.3 below implies there
exist a constant c ∈ R

m and a subsequence Rk , such that

lim
k→∞

∫
Rd

W ◦(F ,∇(
ηRk

(φ − c)
))

dz = lim
k→∞

∫
Rd

W ◦(F , ηRk
∇φ)dz.

The inequality W ◦(F ,H ) ≤ C|H |2 holds for all |H | ≤ M , where the constant C

depends M . Using this inequality with M = ‖φ‖1,∞ permits the application of the
Lebesgue dominated convergence theorem, resulting in (3.13). �

Now we formulate the lemma which we needed in Theorem 3.2.

Lemma 3.3 For any φ ∈ S there exists a constant c ∈ R
m, such that

lim
R→∞

∫
AR

{
1

R
|φ − c||∇φ| + 1

R2
|φ − c|2

}
dx = 0,

where AR = B2R \ BR .

The proof of the lemma is in Appendix A.

Remark 3.4 In the statement of Lemma 3.3 the liminf can be replaced by limit as
R → ∞ (as we can see from the proof), except when d = 2. When d = 2, the use of
liminf is essential. Indeed, let φ(x) = u(|x|), where

u(r) = 2 sin(ln ln r) + cos(ln ln r)

ln r
, r ≥ e. (3.15)

We compute

〈φ〉AR
= 2

3R2

∫ 2R

R

ru(r)dr = 2

3R2

(
r2 sin(ln ln r)

)∣∣2R
R

= 2 sin(ln lnR) + o(1),

as R → ∞. We see that 〈φ〉AR
has no limit as R → ∞ and that we can choose any

c ∈ [−2,2] so that there is a sequence Rk for which 〈φ − c〉ARk
→ 0, as k → ∞.
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3.2.1 Localized Test Functions

While the space S is adequate for test fields produced by compact precipitates, it
does not contain functions of the form (3.5) corresponding to nucleation of slabs.
The proof of equivalence in Theorem 3.2, and especially Lemma 3.3 suggests that
the test functions φ must satisfy

lim
R→∞

∫
AR(h(R))

{ 1
h(R)2 |φ − c|2 + |∇φ|2}dx∫

BR
|∇φ|2 dx

= 0, (3.16)

for some constant c ∈ R
m, where h(R) is a monotonically increasing function, such

that h(R)/R → 0, as R → ∞. Here

AR(h) = {
x ∈ R

d : R − h < |x| <R
}
.

Without attempting to achieve the maximal extension, we can simplify the foregoing
exposition by pointing out that in all of our applications we use only the functions
φ(x) for which

lim
R→∞

∫
AR(h(R))

|∇φ|2 dx∫
BR

|∇φ|2 dx
= 0 (3.17)

for every monotonically increasing function h(R) = o(R). This property can be re-
stated as a relative uniform continuity of the function

K(R) =
∫
BR

|∇φ|2 dx.

The notion of relative uniform continuity is the same as the classical notion of uni-
form continuity, except the absolute errors are replaced with relative errors. More
precisely, K(R) is relatively uniformly continuous if for every ε > 0 there ex-
ists δ > 0 such that for any R1 > R2 > 1 for which (R1 − R2)/R1 < δ, we have
(K(R1) − K(R2))/K(R1) < ε. We can also restate this property using classical uni-
form continuity. Observe that the exponential function converts absolute errors into
relative errors. Therefore, the relative uniform continuity of K(R) is equivalent to the
classical uniform continuity of f (x) = lnK(ex) on [0,+∞).

Definition 3.5 We say that the test function φ ∈ W 1,∞(Rd ;R
m) is localized if K(R)

is relatively uniformly continuous at infinity and there exist a constant c ∈ R
m and a

monotonically increasing function h(R) = o(R) such that

lim
R→∞

1

K(R)h(R)2

∫
AR(h(R))

|φ − c|2 dx = 0. (3.18)

It is easy to see that any localized test function φ satisfies (3.16). One can also
construct radial test functions φ(x) = u(|x|) that satisfy (3.16) but are not localized
in the sense of Definition 3.5.
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Remark 3.6 If d = 1 or 2, then the condition (3.18) is a consequence of (3.17) for
any choice of c. If d ≥ 3, then the condition (3.18) is not a consequence of (3.17).
Indeed, if d = 1 we have

1

h(R)2

∫
AR(h(R))

|φ − c|2 dx ≤ ‖φ − c‖2∞
h(R)

,

and (3.18) follows as long as h(R) → ∞, as R → ∞. When d = 2, we consider two
cases. If

lim
R→∞K(R) < +∞,

then φ ∈ S and (3.18) follows from Lemma 3.7 below. If K(R) → +∞, as R → ∞,
then

1

h(R)2

∫
AR(h(R))

|φ − c|2 dx ≤ 3π‖φ − c‖2∞
R

h(R)
.

We can now choose h(R) = o(R) that grows sufficiently fast, so that R/

(K(R)h(R)) → 0, along some subsequence Rk → ∞. This is proved formally in
Lemma B.1. If d ≥ 3, then the functions φ(x) = |x|−α satisfy (3.17) but not (3.18),
when 0 < α < (d − 2)/2.

The terminology “localized test function” reflects the fact that these functions re-
tain those features of the original smooth, compactly supported test functions that
are essential for defining the binodal via the localization (2.6). The definition sug-
gests that we may regard the test function φ (or more precisely, φ − c) as supported
on a compact set K ⊂ BR for a sufficiently large R. This corresponds, via (2.6) to
variations supported on a small ball BηR(x0) ⊂ Ω .

If we now wish to distinguish between the binodal and the interior of the bin-
odal region we need to further restrict our attention to the functions satisfying “zero
volume fraction condition”

lim
R→∞ −

∫
BR

|∇φ|2 dx = 0. (3.19)

In the minimization of the blow up functional (3.12), the condition (3.19) represents
additional constraint on the behavior of the test function φ at infinity.

It is now natural to extend the space of admissible test functions from the space S
to

S∗ = {
φ : φ is localized and satisfies (3.19)

}
.

Lemma 3.7 S ⊂ S∗.

The proof is in Appendix B.
It is clear that for φ ∈ S∗ the integral (3.12) does not have to converge. By analogy

with (3.6) we replace it with the normalized functional

I∗(F , φ) = lim
R→∞

∫
BR

W ◦(F ,∇φ)dx∫
BR

|∇φ|2 dx
. (3.20)
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Observe that for any φ ∈ S∗ the functional I∗(F , φ) is finite, since ∇φ(x) is uni-
formly bounded.

Theorem 3.8 The pair (S∗, I∗) characterizes the binodal.

Proof If the inequality (2.12) fails for some φ ∈ C∞
0 (B1;R

m) then I∗(F , φ) < 0,
since φ ∈ S∗. Now assume that (2.12) is satisfied. Our goal is to prove that
I∗(F , φ) ≥ 0 for all φ ∈ S∗. Let us fix φ ∈ S∗. Let h(R) and c ∈ R

m be as in the
Definition 3.5. Let ηR(x) be a Lipschitz cut-off function such that 0 ≤ ηR(x) ≤ 1,
ηR(x) = 0, when |x| ≥ R and ηR(x) = 1, when |x| ≤ R − h(R). In addition we can
choose ηR(x) such that |∇ηR(x)| ≤ 1/h(R). We have due to (3.14)

∫
BR

∣∣W ◦(F ,∇(
ηR(φ−c)

))−W ◦(F ,∇φ)
∣∣dx ≤ C

∫
AR(h(R))

{ |φ − c|2
h(R)2

+|∇φ|2
}

dx.

Therefore,

I∗(F , φ) ≥ lim
R→∞

∫
BR

W ◦(F ,∇(ηR(φ − c)))dx∫
BR

|∇φ|2 dx
≥ 0.

The theorem is proved. �

The next logical step is to write down explicit conditions on φ ∈ S∗ minimizing
(3.20). However, the definition of the functional I∗(F , φ) makes it difficult to study
its minima by classical variational methods. It is not even clear if the space S∗ is a
vector space. It is then natural to search for subsets of S∗ that are vector spaces on
which the functional I∗(F , φ) can be represented by a classical variational integral
without violating the binodal characterization property.

3.2.2 Periodic-Decaying Test Fields

The analysis of spinodal in Sect. 3.1 suggests to consider the test fields that are pe-
riodic (or constant) in some directions and decaying in the remaining ones. More
precisely, we choose our test functions φ(x) to be in S “along” a k-dimensional sub-
space L of R

d and to have (d − k) periods in the orthogonal complement L⊥.
More precisely, we assume that

φ(x + uj ) = φ(x), {u1, . . . ,ud−k} ⊂ L⊥ is a basis of periods. (3.21)

Let {e1, . . . , ek} be an orthonormal basis of L and {ek+1, . . . , ed} an orthonormal
basis of L⊥. We define

ψ(t,p) = φ

(
k∑

j=1

tjej +
d∑

j=k+1

pj−kej

)
, t = (t1, . . . , tk) ∈ R

k,

p = (p1, . . . , pd−k) ∈ Qd−k, (3.22)
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where Qd−k is the period cell in p variables. We assume that ψ ∈ Sk(Qd−k), where

Sk(Qd−k) = {
ψ ∈ W 1,∞(

Yk;R
m
) : [ψt ψp] ∈ L2(Yk;R

m×d
)}

, Yk = R
k × Qd−k.

Hence, we introduce the space of “periodic-decaying” test functions

Ck =
{
φ(x) = ψ(Rx,Qx) : ψ ∈ Sk(Qd−k),

[
R

Q

]
∈ SO(d),

Qd−k—a parallelepiped

}
.

The k × d matrix R has rows e1, . . . , ek , while (d − k) × d matrix Q has rows
ek+1, . . . , ed . Observe that the sets Ck are the unions of the family of vector spaces
smoothly parametrized by a finite-dimensional manifold Gd,k ×GL(d−k,R)/SL(d−
k,Z). The first factor is the Grassmannian of k-dimensional subspaces L ⊂ R

d , while
the second factor is the set of all distinct oriented Bravais lattices in R

d−k . Here
GL(n,R) denotes the set of all invertible real n×n matrices, while SL(n,Z) denotes
the set of all n × n matrices with integer components and determinant equal to 1.
Such matrices map the lattice Z

n onto itself.
We remark that in the case k = 1 the functions φ ∈ C1 correspond to the physical

idea of the nucleation of either a homogeneous plate (Lurie 1964, 1993; Cherkaev
2000) or a composite plate (Roytburd and Slutsker 1999a, 1999b, 2001; Cherkaev
and Zhang 2011, while the case k = d can be viewed as nucleation of a fully local-
ized precipitate (Lifshits and Gulida 1952b, 1952a; Kaganova and Roytburd 1988;
Cherkaev and Kucuk 2004a, 2004b).

We also distinguish special subspaces of Ck generated by functions ψ ∈ Sk(Qd−k)

that do not depend on the p variables explicitly. We denote these subspaces by S̃k

and C̃k , respectively:

S̃k = {
ψ ∈ W 1,∞(

R
k;R

m
) : ∇ψ ∈ L2(

R
k;R

m×k
)};

C̃k = {
φ(x) = ψ(Rx) : ψ ∈ S̃k, R : R

d → R
k, RRT = I k

}
.

For example, the test functions in C̃1 must have the form

φ(x) = f
(
(n,x)

)
, f ∈ W 1,∞(

R;R
m
)
, f ′ ∈ L2(

R;R
m
)
, (3.23)

where n ∈ S
d−1 is constant but arbitrary. In physical terms these test functions corre-

spond to the nucleation of long and thin platelets.

Theorem 3.9 For any 1 ≤ k ≤ d we have Ck ⊂ S∗ and

I∗(F , φ) =
∫
Yk

W ◦(F ,ψtR + ψpQ)dp dt∫
Yk
(|ψt |2 + |ψp|2)dp dt

=
∫
Y
W ◦(F ,∇φ)dx∫
Y

|∇φ|2 dx
, (3.24)

for any φ ∈ Ck , where Y = [RT QT ]Yk = L × QT Qd−k .
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The proof is in Appendix C.
Suppose now that A ∈ GL(d −k,R) maps Qd−k onto [0,1]d−k . If ψ ∈ Sk(Qd−k),

then

ψ(t,p) = ψ0(t,Ap),

where ψ0 ∈ Sk([0,1]d−k)
def= S 0

k . Since the denominator in (3.24) is always non-
negative, the conclusion of our analysis is that the functional

Jk(F ,ψ,R,Q,A) =
∫
Y 0
k

W ◦(F ,ψt (t,p)R + ψp(t,p)AQ
)

dp dt (3.25)

defined on S 0
k is the desired replacement of the functional in (2.12). Here Y 0

k =
R

k × [0,1]d−k . Next we show that the spaces Ck contain enough test functions to
characterize the binodal.

Theorem 3.10 For any 1 ≤ k ≤ d , any orthogonal splitting [RT QT ] ∈ SO(d) of R
d ,

and any A ∈ GL(d − k,R) the pairs (S 0
k , Jk) characterize the binodal.

Proof Theorem 3.9 implies that if for given R, Q, and A there exists ψ ∈ S 0
k

for which Jk(F ,ψ,R,Q)<0, then the corresponding function φ(x)=ψ(Rx,

AQx)∈ S∗ satisfies I∗(F , φ) < 0. By Theorem 3.8 we conclude that F ∈ B.
Now assume that F ∈ B. Then there exists φ ∈ C1

0(B1;R
m) for which the in-

equality (2.12) fails. Let us first extend the function φ(x) by zero to all of R
d . Let us

split the space R
d into an orthogonal sum R

d = RT
R

k ⊕ QT
R

d−k . Let ψ0(t,u) =
φ(RT t + QT u). Let Qd−k be the period cell mapped by A ∈ GL(d − k,R) onto
[0,1]d−k . Let c ∈ Qd−k be the center of Qd−k and a > 0 be so large that ψ0(t,u) =
0, if u /∈ a(Qd−k −c). Let ψ̃(t,u) be the a(Qd−k −c)-periodic extension of ψ0(t,u).
Let ψ(t,p) = a−1ψ̃(at, aA−1p). Then ψ ∈ S 0

k . Also

Jk(F ,ψ,R,Q,A) = a−d |detA|
∫
B1

W ◦(F ,∇φ)dz < 0. �

Remark 3.11 We observe that if φ ∈ Ck and λ > 0, then φλ = λφ(x/λ) ∈ Ck , and
∫
Y

W ◦(F ,∇φλ)dx = λd

∫
Y

W ◦(F ,∇φ)dx.

Therefore,

inf
φ∈Ck

Jk(F , φ) = −IndBc (F ),

where IndBc(F ) is the indicator function of the complement of the binodal region.

If φ ∈ C̃k then the functional Jk reduces to

J̃k(F ,ψ,R) =
∫

Rk

W ◦(F ,∇ψ(t)R
)

dt . (3.26)
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Observe that the pairs (C̃k, J̃k) only bound the binodal, while the pairs (S 0
k , Jk) char-

acterize it.

3.2.3 Laminates

Crossing the binodal may not be detectable by solving the Euler–Lagrange equa-
tions in one of the above problems. For instance, one can show that in the exam-
ple considered in Sect. 5 with d = 2 there are parts of the binodal that can only
be detected by test functions whose gradient is supported on three specific gra-
dients (Grabovsky et al. 2013). To construct such objects we need sequences of
test functions in C1 that converge only weakly. The limiting value of the func-
tional J1 will then be expressed in terms of the finitely many parameters describ-
ing the geometry and piecewise-constant elastic fields in the limiting configura-
tion.

More precisely, we consider elastic fields described by finitely supported proba-
bility measures (Chipot and Kinderlehrer 1988; Kinderlehrer 1988)

ν =
r∑

j=1

λj δH j
,

r∑
j=1

λj = 1, λj > 0. (3.27)

Given such a measure it is in general difficult to verify if ν is a gradient Young mea-
sure. However, one may easily construct a large class of such Young measures via
the process of lamination (Müller and Šverák 2003).

Definition 3.12 Let 1 ≤ j0 ≤ r , s ∈ (0,1), θ ∈ [0,1], and {B1,B2} ⊂ M are such
that B1 − B2 is rank-1 and H j0 = sB1 + (1 − s)B2. We say that the probability
measure

ν′ = ν + θλj0

(
sδB1 + (1 − s)δB2 − δH j0

)

is obtained from ν by lamination.

Definition 3.13 A finite-rank laminate is a finitely supported probability measure
(3.27) for which there exists a sequence of probability measures ν1, . . . , νm, such that
ν1 = δH , νm = ν, and for each k = 1, . . . ,m − 1 the measure νk+1 is obtained from
νk by lamination.

For a measure ν given by (3.27) we define its “center of mass” by

ν =
r∑

j=1

λjH j .

We observe that if ν′ is obtained from ν by lamination then ν′ = ν. Hence, the matrix
H in the definition of a finite-rank laminate Young measure is equal to ν.
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Theorem 3.14 Suppose ν is a finite-rank laminate with ν = a ⊗ n. Then there exists
a sequence {φn} ⊂ C1, such that φn → φ0 uniformly, where φ0(x) is given by

φ0(x) =

⎧⎪⎪⎨
⎪⎪⎩

a, if (n,x) ≥ 1,

0, if (n,x) ≤ 0,

(n,x)a, if 0 < (n,x) < 1,

(3.28)

and such that

lim
n→∞J1(F , φn,R,Q, I ) = J (F , ν) =

∫
M

W ◦(F ,H )dν(H ) =
r∑

j=1

λjW
◦(F ,H j ),

(3.29)
where the 1 × d matrix R can be identified with the unit vector n.

The proof of Theorem 3.14 can be found in Appendix D.
We can now define the space

L = {
ν—finite-rank laminate Young measure, rank(ν) = 1

}
.

Corollary 3.15 The pair (L, J (F , ν)) bounds the binodal.

Proof If F /∈ B then J1(F , φn,R,Q, I ) ≥ 0 for any n ≥ 1, where the sequence {φn}
is as in Theorem 3.14. Formula (3.29) then implies that J (F , ν) ≥ 0. Hence, the pair
(L, J (F , ν)) bounds the binodal. Obviously, this result also follows from the fact that
any quasi-convex function is rank-1 convex. �

4 Characterization of Spinodal and Binodal

In this section we use our equivalent formulations to derive explicit necessary condi-
tions characterizing the spinodal and bounding the binodal.

4.1 Spinodal

We recall from (3.8) that the deformation gradient F is weakly locally stable if and
only if

IS
(
F , φ

(
(x,n)

)
a
) = (

A(n;F )a,a
) ≥ 0, for all a ∈ R

m, n ∈ S
d−1. (4.1)

The conditions of weak marginal stability can then be interpreted as the emergence
of a �= 0 and n ∈ S

d−1 such that

IS
(
F , φ

(
(x,n)

)
a
) = 0.

If the above equality is satisfied because F crosses into the spinodal region, then the
pair (a,n) must be minimizing for IS(F , φ((x,n))a). Therefore, the equilibrium
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equations

∇aIS
(
F , φ

(
(x,n)

)
a
) = 0, (4.2)

∇nIS
(
F , φ

(
(x,n)

)
a
) = 0 (4.3)

must hold.

Remark 4.1 The space FS defined by (3.5) has m+d−1 degrees of freedom a ∈ R
m

and n ∈ S
d−1. The equation (4.2) describes equilibrium with respect to the variation

of the local values of the field, as in the Euler–Lagrange equation. Equation (4.3)
describes an equilibrium with respect to “configurational” degrees of freedom n that
describe the large-scale structure of the field (directions in which φ ∈ FS does not
decay at infinity). In this respect it is analogous to the Noether–Eshelby equation
which is usually used to find configuration of singularities, (Noether 1918; Eshelby
1970, 1975; Maugin 1993; Giaquinta and Hildebrandt 1996; Gurtin 2000). Indeed,
the lack of proper decay of the field φ(x) can be regarded as a singularity at infinity.

One can see that Eqs. (4.2)–(4.3) always have a family of trivial solutions (a,n),
characterized by a = 0. Hence, we may regard the problem of finding the nontrivial
solutions of (4.2)–(4.3) as a bifurcation problem. Explicitly, Equations (4.2)–(4.3)
read

A(n;F )a = 0, A∗(a;F )n = 0, (4.4)

where A∗(a;F ) is the co-acoustic tensor defined as the linear map on R
d given by

m �→ A∗(a;F )m = (
WFF (F )(a ⊗ m)

)T
a. (4.5)

Observe that equations in (4.4) are not independent. There is one relation between
the left-hand sides in (4.4):

(
A∗(a;F )n,n

) = (
A(n;F )a,a

)
.

The equations in (4.4) are also homogeneous in a and n and, therefore, they can be
regarded as m + d − 1 constraints on md + (m − 1) + (d − 1) unknowns. As such
they describe a co-dimension 1 surface in M, which we can interpret as “an equation
of spinodal”.

While the points on the spinodal satisfy (4.4), the converse need not be true, i.e.
some other points inside the spinodal region may satisfy (4.4). It is possible to reduce
the size of the system (4.4) by eliminating a in the case when rank(A(n)) = m − 1.
In that case the vector a spanning its kernel is determined up to a scalar multiple, or,
if we normalize it to the unit length, up to a sign. Then

cof
(
A(n)

) = αa ⊗ a, α = Tr cof
(
A(n)

) �= 0. (4.6)

Using the Einstein summation convention, the second equation in (4.4) and the first
equation in (4.6) can be written as

WFiαFjβ
aiajnβ = 0, aiaj = 1

α
cof

(
A(n)

)
ij
,
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respectively. Hence, we obtain

WFiαFjβ
cof

(
A(n)

)
ij
nβ = 0. (4.7)

We can write (4.7) in index-free notation
(
cof

(
A(n;F )

)
,B(n, η;F )

) = 0, Tr cof
(
A(n;F )

) �= 0. (4.8)

for all η ∈ R
d , if we introduce a bilinear matrix-valued form

B(n, η;F )ij = WFiαFjβ
(F )nαηβ.

Conversely, if we take η = n in (4.8) we obtain detA(n) = 0. Hence, there ex-
ists a �= 0, such that the first equation in (4.4) is satisfied. The relation (4.6) also
holds, since Tr cof(A(n)) �= 0. Thus, the second equation in (4.4) and the first equa-
tion in (4.8) are equivalent. We remark that the side condition Tr cof(A(n)) �= 0 in
(4.8) is important, since for generic fully anisotropic tensors WFF the set {F ∈ M :
rank(A(n;F )) ≤ m − 2 for some |n| = 1} has full dimension, if d ≥ 3. We regard
conditions (4.8) and (4.4) as generically equivalent, since at the spinodal we expect,
in the generic case, the single smallest eigenvalue of A(n) to attain its minimum value
of 0.

It turns out that there are no domain-local constraints on ∇y(x) other than
∇y(x) /∈ S that follow from stability with respect to weak variations under the
assumption of non-degeneracy of A(n;F ). Indeed, due to Simpson and Spector
(1987) and the van Hove theorem (Van Hove 1947), the homogeneous deformation
y0(x) = Fx is a weak local minimizer of (2.1) on the unit ball with Dirichlet bound-
ary conditions, provided A(n;F ) > 0 for all |n| = 1.

Example 4.2 As a simple illustration, consider the energy (Budiansky et al. 1983;
Abeyaratne and Guo-Hua 1989)

W(F ) = f (Tr ε) + μ

∣∣∣∣ε − 1

d
(Tr ε)I

∣∣∣∣
2

, ε = 1

2

(
F + F T

)
, μ > 0. (4.9)

In this model the acoustic tensor can be written explicitly

A(n) = μ
(|n|2I − n ⊗ n

) +
(
f ′′(Tr ε) + 2μ

(
1 − 1

d

))
n ⊗ n.

From (4.5) we immediately find that A∗(a) = A(a). The system (4.4) then becomes

{
μ|n|2a + (f ′′(Tr ε) + μ(1 − 2

d
))(a,n)n = 0,

μ|a|2n + (f ′′(Tr ε) + μ(1 − 2
d
))(a,n)a = 0.

We see that a must be a scalar multiple of n and the system reduces to

f ′′(Tr ε) + 2μ

(
1 − 1

d

)
= 0. (4.10)
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Fig. 1 The double-well energy f (θ) from the example in Remark 4.2. Spinodal region is the projection
of the bold part of the graph onto the θ -axis and spinodal points are S1 and S2

Equation (4.8) can be written as

dμd−1
(
f ′′(Tr ε) + 2μ

(
1 − 1

d

))
n = 0.

and it is clear that this equation is equivalent to (4.10). The actual spinodal in this
example is the union of hyperplanes of the form Tr ε = θ , where θ is any zero of
φ(θ) = f ′′(θ)+ 2μ(1 − 1/d), around which φ(θ) changes sign. The latter condition,
of transversality, has to be imposed externally, since it is not captured by Eq. (4.10).
Our general theorems will feature such external transversality conditions, enabling
us to assert the marginal stability of F . If the function f (θ) has a double-well shape
and its second derivative is shaped like a parabola, then the spinodal and the spinodal
region are shown in Fig. 1. We see how according to (4.10) the spinodal lies in the
region, where f ′′ < 0.

4.2 Binodal

In this section we consider different explicit characterizations of the binodal. In par-
ticular we distinguish the PDE problem associated with nucleation of classical inclu-
sions from the algebraic problem associated with nucleation of laminates.

4.2.1 Classical Nucleation

To obtain specific constraints on the value of F we need to study necessary condi-
tions of equilibrium for the functionals Jk , k = 1, . . . , d , defined by (3.25). Before
writing these conditions it is necessary to identify independent degrees of freedom
associated with the spaces Ck : ψ ∈ S 0

k , the subspace L ⊂ R
d , described by the k × d

matrix R satisfying RRT = Ik , and the shape and orientation of the period cells
Qd−k described by the matrix A ∈ GL(d − k,R). As in the case of the spinodal
we identify the finite-dimensional parameters R and A as configurational degrees of
freedom associated with “singularities at infinity”5 The lack of rank-1 convexity of

5The functions in the much larger space S∗ would possess infinitely many configurational degrees of
freedom at infinity corresponding to the infinite variety of possible asymptotic behaviors of φ ∈ S∗.
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W(F ) allows the field variable ψ ∈ S 0
k to possess additional configurational degrees

of freedom associated with singularities allowed by the Euler–Lagrange equations at
finite x ∈ R

d .
Our next two theorems introduce the classical Euler–Lagrange equations and

the configurational Noether–Eshelby equations (Noether 1918; Eshelby 1970, 1975;
Maugin 1993; Giaquinta and Hildebrandt 1996; Gurtin 2000).

Theorem 4.3 Assume that for F ∈ Bin there exists 1≤k≤d , orientation [RT QT ] ∈
SO(d), a period cell shape Qd−k (i.e. A ∈ GL(d − k,R)) and a non-zero function
ψ ∈ S 0

k such that Jk(F ,ψ,R,Q,A) = 0, while

Jk ≥ 0

for all test functions φ ∈ Ck . Then

F + ∇φ(x) /∈ B for a.e. x ∈ R
d, (4.11)

and the test field φ(x) = ψ(Rx,AQx) has to satisfy the Euler–Lagrange and the
Noether–Eshelby equations in R

d

{∇ · P (F + ∇φ) = 0,

∇ · P ∗(F + ∇φ) = 0,
(4.12)

where P (F ) = WF (F ) and P ∗(F ) = W(F )I − F T P (F ).6 The optimal orientation
and the period cell shape are determined by the additional conditions∫

Y

P̂
∗
(∇φ)dx = 0, (4.13)

where P̂
∗
(H ) = W ◦(F ,H )I − H T W ◦

H (F ,H ).

Proof By assumption, φ is the minimizer of the functional

φ �→
∫
Y

Ŵ (∇φ)dx

over all φ ∈ Ck , where

Ŵ (H ) = W ◦(F ,H ). (4.14)

The classical optimality conditions (Ball 1976/1977) then imply (4.11) and (4.12).
Indeed,

P̂ (H ) = ŴH (H ) = P (F + H ) − P (F ),

which means that the Euler–Lagrange for the energy density (4.14) coincides with
the first equation in (4.12). We also compute

P̂
∗
(H ) = P ∗(F + H ) + F T P (F + H ) + N(H ), (4.15)

6In elasticity theory the tensors P (F ) and P ∗(F ) are called the Piola–Kirchhoff tensor and the Eshelby
tensor, respectively.
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where

N(H ) = H T P (F ) − (
H ,P (F )

)
I − W(F )I .

Therefore, the Noether–Eshelby equation ∇ · P̂
∗
(∇φ) = 0 for the energy density

(4.14) is equivalent to the second equation in (4.12), since ∇ · N(∇φ) = 0 for any
smooth vector field φ. Finally, (4.11) follows from a simple observation that H is a
point of quasi-convexity for Ŵ if and only if F + H is a point of quasi-convexity
for W .

The additional integral constraint (4.13) comes from variations in R, Q, and A. If
we fix ψ and A, and if we vary [RT QT ] ∈ SO(d), we obtain

∫
Y

∇φT P̂ (∇φ)dx ∈ Sym
(
R

d
)
. (4.16)

Fixing ψ , R, and Q and varying A results in
∫
Y

Q∇φT P̂ (∇φ)QT dx = 0. (4.17)

By assumption

∫
Y

W ◦(F ,∇φ)dx = 1

|detA|Jk(F ,ψ,R,Q,A) = 0.

This, together with (4.17), implies
∫
Y

QP̂
∗
(∇φ)QT dx = 0.

Hence, in order to prove the theorem we need to show that
∫
Y

RP̂
∗
(∇φ)QT dx = 0,

∫
Y

RP̂
∗
(∇φ)RT dx = 0,

since, according to (4.16)
∫
Y

P̂
∗

dx ∈ Sym(Rd). The relation (4.13) then follows from
Lemma 4.4 below. �

Lemma 4.4 Equation (4.12) implies that
∫
Y

P̂
∗
(∇φ)RT dx = 0. (4.18)

The proof is in Appendix E.
Several remarks are in order. The first remark concerns the necessary condition

(4.11).

Definition 4.5 If φ ∈ Ck \ {0} satisfies (4.12) and (4.13), but fails (4.11) then φ is
called a spurious solution.
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The failure of quasi-convexity means that it is possible to modify the function φ

locally, such that the modified function still belongs to Ck , but gives a negative value
to the functional Jk . This implies that F ∈ B. In other words, spurious solutions
do not correspond to points F on the binodal. Conversely, if φ satisfies (4.11), then
obviously F /∈ B.

The Eshelby–Noether equation (4.12)2 is the condition of equilibrium with respect
to the degrees of freedom associated with the singularities of ψ ∈ S 0

k . Indeed, in the
absence of singularities the well-known Noether identity (Noether 1918)

∇ · P ∗(∇φ) = −(∇φ)T ∇ · P (∇φ) (4.19)

says that (4.12)2 is a consequence of (4.12)1. If the singularities of ψ ∈ S 0
k are

smooth surfaces of a jump discontinuity, then the PDE (4.12)2 can be replaced with
an algebraic equation on the singular surface Σ (Eshelby 1970, 1975; Maugin 1993;
Giaquinta and Hildebrandt 1996; Gurtin 2000; Berdichevsky 2009a)

�P ∗�n = 0, x ∈ Σ, (4.20)

where �P ∗� = P ∗+ − P ∗−, is the jump of P ∗(F + ∇φ(x)) across Σ . Here n is a unit
normal to Σ . The region into which n points is called the “+” region, while the region
from which n points is called the “−” region. It is well known that the d algebraic
equations (4.20) can be reduced to a single scalar Maxwell relation (Erdmann 1877;
Eshelby 1970)

p∗ = �W � − ({{P }}, �F �
) = 0, x ∈ Σ, (4.21)

where {{P }} = (P + + P −)/2, interestingly (4.21) survives even in the dynamics
(Truskinovsky 1987). Now, if all the singularities of φ(x) are smooth surfaces of
jump discontinuity the system (4.12) is equivalent to the system (4.12)1, (4.21). How-
ever, while the relation (4.21) will be convenient in the analysis of the example in
Sect. 5, in the general theory we are not making any assumptions on the nature of
singularities of ∇φ(x), and Eq. (4.12)2 must be retained along with (4.12)1.

It is clear that the verification of (4.11) may be difficult without complete knowl-
edge of the binodal. Yet, even partial knowledge of the binodal region can be used to
demonstrate that condition (4.11) fails, thereby ruling out some of the spurious solu-
tions of (4.12)–(4.13). For instance, there are several easy-to-evaluate consequences
of (4.11), especially on a smooth surface of jump discontinuity Σ of ∇φ. These con-
ditions are discussed in detail in Grabovsky and Truskinovsky (2013c). One important
example is the roughening equilibrium equation (Grabovsky and Truskinovsky 2011)

�P (F + ∇φ)�T �∇φ�n = 0, x ∈ Σ. (4.22)

This condition and the optimal orientation condition (4.13) are related via a localiza-
tion argument. Indeed, consider the pair of fields F± = F + ∇φ±(x0) at a point x0
on the surface of jump discontinuity. This implies a configuration where an infinite
slab carrying the field F− is embedded in the infinite space where the field is F+.
Such a configuration solves Eq. (4.12)1 if and only if

{
�F � = a ⊗ n, for some a ∈ R

m,

�P �n = 0,
(4.23)
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where n is the normal to the boundary of the slab. It solves (4.12)2 if and only if
(4.21) is satisfied and it satisfies (4.13) if and only if (4.22) holds.

Another consequence of (4.11) is the roughening stability inequality (Grabovsky
and Truskinovsky 2011). It is stated as

C±(a,n) =
[

A±(n) B±(a,n) + �P �

B±(a,n)T + �P �T A∗±(a)

]
≥ 0 (4.24)

in the sense of quadratic forms on the orthogonal complement of R[a,−n]. Here
A±(n) = A(n;F±), A∗±(a) = A∗(a;F±), and

B±(a,n)m = A(n,m;F±)a = (
WFF (F±)(a ⊗ m)

)
n

is the bilinear form satisfying B±(a,n)n = A±(n)a and BT±(a,n)a = A∗±(a)n.
The second remark concerns condition (4.13). Its compact general form comprises

two relations: (4.18), which is a consequence of (4.12), and

∫
Y

P̂
∗
(∇φ)QT dx = 0, (4.25)

which is an algebraic condition of optimality with respect to orientation and period
cell shape. We observe that there is an analogy between Eqs. (4.12), (4.17) and the
first equation in (4.4), and between (4.16) and the second equation in (4.4). Observe
that if we dot the first equation in (4.4) with a we obtain IS(F , φ((x,n))a) = 0,
implying that generically F must lie in S—the closure of the spinodal region. How-
ever, it cannot describe the spinodal alone. Indeed, if F in the spinodal region is
such that the function S

d−1 � n �→ detA(n;F ) changes sign then there will be an
entire neighborhood of F where this is true. Therefore, for each F with this property
we can find n �= 0 with detA(n;F ) = 0. This shows that the existence of nontrivial
solutions of the first equation in (4.4) describes entire subregions of the spinodal re-
gion. The second equation in (4.4) eliminates most of these solutions and describes a
co-dimension 1 surface containing the spinodal.

Our next theorem relates the existence of non-zero solutions to the system (4.12)–
(4.13), i.e. the generalized bifurcation, with the marginal stability of F . More pre-
cisely, we show that, generically, the existence of nontrivial solutions implies that
F must be either on the binodal or inside the binodal region. The solutions corre-
sponding to the latter possibility are “spurious”, and one must use both the partial
knowledge of B and computable consequences of (4.11) (see Grabovsky and Truski-
novsky 2013c), in order to eliminate them.

Theorem 4.6 Suppose 1 ≤ k ≤ d and φ ∈ Ck solves (4.12) and satisfies (4.13). Then
Jk(F ,ψ,R,Q,A) = 0.

The proof is given in Appendix F
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Corollary 4.7 If (4.12) has solution (ψ,R,Q,A) such that ψ �= 0, and

∂Jk(F ,ψ,R,Q,A)

∂F
�= 0, (4.26)

then F must lie in the closure of B.

Corollary 4.7 implies that F cannot lie in the interior of the complement of B, so
F ∈ Bin. Therefore nontrivial solution of (4.12) corresponds to F ∈ Bin if and only
if it is not spurious.

We give the following definition in order to distinguish parts of the binodal that
could be identified by the test functions from Ck .

Definition 4.8 We say that F belongs to the nucleation set Nk if there exists a funda-
mental domain Y = L ×QT Qd−k such that the system (4.12) has a non-zero solution
φ ∈ Ck satisfying (4.13).

In Sect. 5 we show that sometimes the sets Nk can be characterized without com-
plete knowledge of the binodal set B.

Example 4.9 As a simple illustration of a case where binodal can be fully character-
ized by our method, consider again the energy (4.9). The Euler–Lagrange equation
from (4.12) becomes

μ�φ + ∇
(
f ′(TrF + ∇ · φ) + μ(d − 2)

d
∇ · φ

)
= 0. (4.27)

Taking the divergence of this equation we obtain

�Φ ′(TrF + ∇ · φ) = 0, Φ(θ) = f (θ) + μ(d − 1)

d
θ2. (4.28)

By assumption, ∇ · φ(x), and hence Φ ′(TrF + ∇ · φ(x)) is bounded on R
d . There-

fore, Φ ′(TrF + ∇ · φ(x)) = const. Taking the curl of (4.27) we obtain

�
(∇φ − (∇φ)T

) = 0

in the sense of distributions. Hence, the boundedness of ∇φ(x) implies that ∇φ −
(∇φ)T = 2M , where M is a constant anti-symmetric matrix. Therefore, φ(x) =
Mx + ∇h(x) for some locally integrable function h(x). The boundedness of φ(x)

implies that M = 0. Indeed, if M �= 0, there exists a unit vector e1 such that Me1 �= 0.
Let e2 = Me1/|Me1|. Then, the unit vector e2 is orthogonal to e1, by anti-symmetry
of M , and (Me1, e2) = |Me1| > 0. For any R > 0 let xR(t) = Re1 cos t + Re2 sin t

be a closed loop. We conclude that

∣∣∣∣
∫ 2π

0

(
φ
(
xR(t)

)
, ẋR(t)

)
dt

∣∣∣∣ ≤ 2πR‖φ‖∞.
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At the same time we have

∫ 2π

0

(∇h
(
xR(t)

)
, ẋR(t)

)
dt = 0,

∫ 2π

0

(
MxR(t), ẋR(t)

)
dt = 2πR2(Me1, e2).

Thus, φ(x) = ∇h(x), while Φ ′(TrF + �h) = C = const. We claim that C =
Φ ′(TrF ). Indeed, if C �= TrF , then for every x ∈ R

d the number ∇ · φ(x) = �h(x)

must belong to a finite set of solutions of the equation Φ ′(TrF + η) = C, none of
which is zero. Hence, |∇φ(x)| > δ > 0 for all x ∈ R

d for some positive number δ.
But then condition (3.19) will not be satisfied. If the graph of function f (θ) has the
shape shown in Fig. 1, then the equation

Φ ′(TrF + η) = Φ ′(TrF ) (4.29)

will either have a unique solution, η = 0, or three solutions, two of which, η1 and η2,
are non-zero. In the former case the Euler–Lagrange PDE (4.12)1 has only trivial
solutions in S∗. In the latter case condition (4.11) helps us to rule out some of the
spurious solutions. Observe that one of the three solutions of (4.29) is always inside
the spinodal region. Hence, assuming that TrF is not in the spinodal region we only
need to consider solutions of the form

�h = ηχΩ(x), (4.30)

where η is the unique non-zero solution of (4.29) for which TrF + η is not in the
spinodal region, and Ω is an arbitrary measurable subset of R

d , satisfying the “zero
volume fraction condition”,

lim
R→∞

|Ω ∩ BR|
|BR| = 0,

so that the corresponding solution φ satisfies (3.19). In this case any choice of an open
and bounded subset Ω ⊂ R

d provides a solution φ ∈ S to (4.12)1 via the solution
h ∈ H 2(Rd) of (4.30).

Equation (4.12)2 is difficult to use directly in this example. Instead we restrict the
class of solutions of the bifurcation system (4.12) only to those where the set Ω has
a smooth boundary. In this case Eq. (4.12)2 can be replaced by the Maxwell relation
(4.21),

f (TrF + η) − f (TrF ) − f ′(TrF )η + μ

∣∣∣∣�∇∇h� − 1

d
��h�I

∣∣∣∣
2

= 0.

Observe that due to the assumed smoothness of the boundary of ∂Ω and elliptic
regularity we conclude that �∇∇h� must be a rank-1 matrix on ∂Ω . Hence, �∇∇h� =
ηn(x) ⊗ n(x), x ∈ ∂Ω . Thus, we obtain

f (TrF + η) − f (TrF ) − f ′(TrF )η + μη2
(

1 − 1

d

)
= 0.

Author's personal copy



922 J Nonlinear Sci (2013) 23:891–969

Fig. 2 Common tangent to the graph of the function Φ(θ) from Example 4.9 and its image on the graph
of the function f (θ)

Rewriting this in terms of the function Φ(θ) we obtain

Φ(TrF + η) − Φ(TrF ) − Φ ′(TrF )η = 0. (4.31)

Equations (4.29) and (4.31) have a geometric interpretation. They tell us that the
straight line connecting the points (TrF ,Φ(TrF )) and (TrF + η,Φ(TrF + η)) on
the graph of Φ(θ) must be a common tangent at both points. Figure 2 shows that
if f (θ) is as shown on Fig. 1 then there is a unique common tangent to the graph
of Φ(θ), touching it at the points θ = θ1 and θ = θ2. Thus, either TrF = θ1 and
�h(x) = (θ2 − θ1)χΩ(x), or TrF = θ2 and �h(x) = (θ1 − θ2)χΩ(x).

Suppose now that Ω is an arbitrary (d − k)-periodic array of arbitrary smooth
inclusions where

�h(x) = �θ�χΩ(x). (4.32)

Computing Fourier transform in t variables and Fourier coefficients in p variables
in (4.32) we can easily verify that φ ∈ Ck . It remains to verify condition (4.13). We
have, after straightforward calculations, taking into account (4.29) and (4.31),

1

μ
P̂

∗ = (|∇∇h|2 − (�h)2)I + 2
(
�h∇∇h − (∇∇h)2).

Integration by parts gives
∫
Y

|∇∇h|2 dx =
∫
Y

(�h)2 dx,

∫
Y

(∇∇h)2 dx =
∫
Y

�h∇∇hdx.

Therefore, (4.13) is satisfied. Hence, the sets Nk are all the same for all k and are
given by

Nk = {
F : TrF ∈ {θ1, θ2}

}
,

where θ1, θ2 are determined as θ -coordinates of the two points of common tangency,
as shown in Fig. 2. In Grabovsky and Truskinovsky (2013b) we show that in this
example Bin = Nk . It is also clear that if the graph of Φ(θ) admits more than one
common tangent, then the system (4.12)–(4.13) will also have spurious solutions cor-
responding to the interior points of the binodal region.
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4.2.2 Microstructure Nucleation

The main difference between the Legendre–Hadamard condition and the quasi-
convexity condition is that in the former case the set of test functions (3.5) “exhausts”
possible localized instabilities. This leads to algebraic system (4.8), whose nontrivial
solutions signal instability whenever F crosses the spinodal. Similarly, it may be in-
tuitively appealing to think that crossing the binodal always manifests itself through
the bifurcation in (4.12)–(4.13) in the class of decaying-periodic fields. However, we
know that some points F on the binodal can be revealed only by studying nucleation
of finite-rank laminates. In this case the functional

J (F , ν) =
r∑

j=1

λjW
◦(F ,H j ) (4.33)

is non-negative for any finite-rank laminate ν, with ν = a ⊗ n, while achieving its
minimum value of zero at a specific finite-rank laminate, a �= 0 and n ∈ S

d−1. Finding
the corresponding bounds for the binodal leads to an algebraic problem formulated
below.

We recall that on each step of the construction of the measure ν in Definition 3.13
by means of lamination we introduced free parameters that can be varied in order to
minimize J (F , ν) given by (4.33). The equilibrium equations obtained from such a
minimization are constraints on the matrices H j and weights λj in (3.27) get more
and more complicated with the growth of the rank of the laminate. Below, we exhibit
the recursive structure of the ensuing algebraic system by examining the passage from
rank-1 to rank-2 laminates.

The rank-1 laminate corresponds to ν1 = δa⊗n. This Young measure is attained on
the special test field φ0 ∈ C̃1 given by (3.28). In that case

J (F , ν1) = J̃1(F , φ0,n) = W ◦(F ,a ⊗ n).

The field value F is marginally stable if the following equations are satisfied:

⎧⎪⎪⎨
⎪⎪⎩

W ◦(F ,a ⊗ n) = 0,

∇aW
◦(F ,a ⊗ n) = 0,

∇nW
◦(F ,a ⊗ n) = 0.

(4.34)

This system places F on the jump set J (see Grabovsky and Truskinovsky 2011). The
second-rank laminate ν2 is obtained from ν1 by means of lamination in the sense of
Definition 3.12. We have

ν2 = (1 − θ)δa⊗n + θsδH 1 + θ(1 − s)δH 2,

sH 1 + (1 − s)H 2 = a ⊗ n, H 2 − H 1 = b ⊗ m.

Observe that J (F , ν2) is affine in θ . Hence, it is minimized either at θ = 0 corre-
sponding to a rank-1 laminate or at θ = 1. The goal of using rank-r laminates is to
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capture points on the binodal that cannot be captured using rank-(r − 1) laminates.
Therefore, we only need to consider the case θ = 1. Then

J (F , ν2) = sW ◦(F ,a ⊗ n − (1 − s)b ⊗ m
) + (1 − s)W ◦(F ,a ⊗ n + sb ⊗ m).

The field value F is marginally stable when the laminate with s ∈ [0,1], {a,b} ⊂
R

m \ {0} and {n,m} ⊂ S
d−1 yields the global minimum to J (F , ν2), which is equal

to 0. Observe that both s = 0 and s = 1 correspond to rank-1 laminates, and are
therefore excluded from the analysis of rank-2 laminates. Hence, we are interested
only in the case when s ∈ (0,1). If the minimum of J (F , ν2) is attained at a rank-2
laminate, then the following system of equations must hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sW(F 1) + (1 − s)W(F 2) − W(F ) − (P (F ),a ⊗ n) = 0,

W(F 2) − W(F 1) − (sP (F 1) + (1 − s)P (F 2),F 2 − F 1) = 0,

(sP (F 1) + (1 − s)P (F 2) − P (F ))n = 0,
(sP (F 1) + (1 − s)P (F 2) − P (F ))T a = 0,
(P (F 2) − P (F 1))m = 0,
(P (F 2) − P (F 1))

T b = 0,

(4.35)

where

F 1 = F + a ⊗ n − (1 − s)b ⊗ m, F 2 = F + a ⊗ n + sb ⊗ m

are the values of the deformation gradient in the internal laminate. There are 2m+2d
independent equations in (4.35) with 2m + 2d − 1 unknowns s, a, b, m, and n,
where n and m are constrained to be unit vectors. We conclude that the system (4.35)
restricts F to a co-dimension 1 surface corresponding to nucleation of second-rank
laminates.

Next we observe that

F 2 − F 1 = b ⊗ n. (4.36)

Therefore, in view of either the fifth or the sixth equation in (4.35), we can rewrite
the second equation in (4.35) as the Maxwell relation

W(F 2) − W(F 1) − (
P (F 2),F 2 − F 1

) = 0. (4.37)

The system (4.35) can then be decomposed into two systems: the micro-level system
and the macro-level system. The micro-level system consists of the fifth and the sixth
equation in (4.35), as well as (4.36) and (4.37):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W(F 2) − W(F 1) − (P (F 2),F 2 − F 1) = 0,

(P (F 2) − P (F 1))m = 0,
(P (F 2) − P (F 1))

T b = 0,
F 2 − F 1 = b ⊗ n.

(4.38)

This is exactly the same system as in (4.34) defining the jump set J. In particular,
{F 1,F 2} ⊂ J. The structure of the macro-level system becomes clear if we introduce
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the notation

F = sF 1 + (1 − s)F 2, P = sP (F 1) + (1 − s)P (F 2),

W = sW(F 1) + (1 − s)W(F 2).
(4.39)

Then the macro-level system can be written as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W − W(F ) − (P (F ),F − F ) = 0,

(P − P (F ))n = 0,

(P − P (F ))T a = 0,

F − F = a ⊗ n.

(4.40)

Observe that the system (4.40) has a structure very similar to structure of the system
defining the jump set J, except the energy density W(F ) is replaced by a modified
function W(F ). To define this function we first introduce the set

Ĵ = {
sF 1 + (1 − s)F 2 : s ∈ [0,1], F 1,F 2 solve (4.38)

}
.

Next, for F /∈ Ĵ we assume that W(F ) = W(F ), while for F ∈ Ĵ we define

W(F ) = min
F=sF 1+(1−s)F 2

{
sW(F 1) + (1 − s)W(F 2) : F 1,F 2 solve (4.38)

}
. (4.41)

One can see that W(F ) is a Lipschitz continuous function that agrees with W(F ) on
the complement of Ĵ.

We claim now that F is located on the jump set of W(F ), i.e.

W(F ) = W, WF (F ) = P , (4.42)

where F , P , and W are given by (4.39). We say that the point F ∈ Ĵ is regular if the
minimum in the definition of W(F ) is achieved at a unique pair F 1, F 2.

Theorem 4.10 Assume that F /∈ Ĵ and F ∈ Ĵ is regular, i.e. there are unique values
F 1, F 2, and s minimizing (4.41). Then, F 1 and F 2 are on the jump set J of the
energy W(F ), and F and F are on the jump set J of the energy W(F ) if and only if
F , F 1, F 2, and s solve (4.35).

Proof By definition of F 1, F 2 the system (4.38) is satisfied. The system (4.40) places
F and F on the jump set J of the energy W(F ) if and only if (4.42) holds. To prove
(4.42) we perturb a regular point F within Ĵ. Then, the values F 1, F 2, and, hence, b
and m will also be smoothly perturbed. Therefore,

δF = δF 2 − sδ�F � − (δs)�F �,

where �F � = F 2 − F 1. We also get

δW = (
P (F 2), δF 2

) − (δs)�W � − s
((

P (F 2), δF 2
) − (

P (F 1), δF 1
))
.
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Replacing �W � = W(F 2) − W(F 1) with (P (F 1), �F �) and δF 1 with δF 2 − δ�F �
we obtain

δW = (
P (F 1), δF

) + (1 − s)
(

�P �, δF 2
) = (

P (F 1), δF
) + (1 − s)

(
�P �, δF

)
,

since (
�P �, �F �

) = (
�P �, δ�F �

) = 0,

due to (4.38). Thus,

WF (F ) = sP (F 1) + (1 − s)P (F 2) = P . �

We conclude that the set of field values F for which the system (4.35) has a non-
trivial solutions can be interpreted as the jump set J for W(F ) defined by (4.41).
By replacing the function W(F ) with W(F ), and by iterating this process, we can
continue to define higher order jump sets for laminates of any rank. By analogy with
(4.26) we also have a simple non-degeneracy condition.

Theorem 4.11 If a finite-rank laminate ν given (3.27) minimizes J (F , ν) with the
minimal value of zero then F must lie in the closure of B, provided

A(n;F )a �= 0. (4.43)

Proof To prove the theorem it is enough to show that (4.43) guarantees that
∂J (F ,ν)

∂F �= 0. Indeed, we compute

∂J (F , ν)

∂F
= P −P (F )−WFF (a⊗n) �= 0, P =

∫
M

P (F +H )dν(H ). (4.44)

It is clear that if

ν′ =
r∑

j=1

λj δH ′
j

is a finite-rank laminate with ν′ = 0, then the measure

ν =
r∑

j=1

λj δH ′
j+a⊗n

is also a finite-rank laminate with ν = a ⊗ n. Hence, if the H ′
j are fixed, then the

function

j
(
a,n, ν′) =

r∑
j=1

λjW
◦(F ,H ′

j + a ⊗ n
)

must be minimized in a. Hence,

0 = ∇aj
(
a,n, ν′) = (

P − P (F )
)
n.
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Fig. 3 Possible relations between the envelopes W(F ) and QW(F )

Therefore, according to (4.44),

∂J (F , ν)

∂F
n = A(n;F )a.

The theorem is now proved. �

Observe that by minimizing j (a,n, ν′) in n we also obtain

(
P − P (F )

)T
a = 0, (4.45)

which is the macro-level roughening equilibrium condition (4.40)3. For an example
where a part of the binodal can be captured only via Eq. (4.35) we refer to Grabovsky
et al. (2013).

The fact that the binodal of W(F ) must lie in the closure of the binodal region of
W(F ) is illustrated in Fig. 3. The original energy W(F ) is shown by a solid line, the
quasi-convexification by a dashed line, and W(F ) by a dotted line. The left figure
illustrates the case where the jump set (points B1 and B2 in the figure) captures the
binodal, without W(F ) necessarily capturing the values of QW(F ). In the vicinity
of points B1 and B2 the dashed and dotted lines may or may not coincide. The right
figure shows a different situation, where the jump set is strictly inside the binodal
region, while the binodal (points B1 and B2 in the figure) can only be obtained by
studying other nucleation patterns, for instance, precipitates of a more general shape
or higher rank laminates.

Remark 4.12 By the rank-1 convexity of the quasi-convex envelope we have
QW(F ) ≤ W(F ) and QW(F ) = QW(F ). The points F corresponding to the non-
trivial solutions of (4.12)–(4.13) with W(F ) replaced by W(F ) can be regarded
as unstable to the nucleation of composite precipitates represented by a continu-

ously varying first rank laminate. The iteration process W(F ) → W(F ) → W →
·· · brings additional flexibility to the binodal detection by allowing composite
precipitates represented by a continuously parametrized rank-r laminates. Exam-
ples of such composite precipitates have been studied in Roytburd and Slutsker
(1999a, 1999b, 2001), Zhang et al. (2009), Knüpfer and Kohn (2011), and Knüpfer
et al. (2013).
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Example 4.13 As a simple illustration of a complete characterization of the binodal
by studying nucleation of simple laminates, we consider again our test case (4.9). Let
us begin with the system of equations (4.34) describing the jump set. Straightforward
calculations show that the third equation in (4.34) follows from the other two, and
that the system can be reduced to the following one:

TrF = θ−, a = �θ�n, �Φ ′(θ)� = 0, �Φ(θ)� − �θ�{{Φ ′(θ)}} = 0,

where Φ(θ) is given in (4.28). We see that the jump set is characterized in terms of
θ = TrF , where θ is a point where the tangent line to the graph of Φ(θ) touches the
graph at some other point; see Fig. 2. The jump set consists of the surfaces TrF = θ1
and TrF = θ2. This is the same set of points as identified by the nucleation conditions
obtained in Sect. 4.2.1. This is not surprising, since the analysis in Sect. 4.2.1 showed
that the shape of the precipitate in this case can be arbitrary, including a slab used for
computing the jump set. We also observe that each F = F− ∈ J can be paired with
F+ = F− + �θ�n ⊗ n for any unit vector n.

Now a straightforward calculation gives the formula for W(F ),

W(F ) =
{
W(F ), TrF /∈ (θ1, θ2),

f (Tr ε) + μ|ε − 1
d
(Tr ε)I |2, TrF ∈ (θ1, θ2),

where

f (Tr ε) = θ2 − Tr ε

�θ�
Φ(θ1) + Tr ε − θ1

�θ�
Φ(θ2) − μ(d − 1)

d
(Tr ε)2.

One can show that in fact W(F ) = QW(F ) (Grabovsky and Truskinovsky 2013b),
which means that, in this case, studying simple laminates is sufficient for a complete
characterization of the binodal.

5 Bi-quadratic Energy

In this section we apply our approach to a nontrivial example where a rather com-
plete picture of the binodal can be obtained by studying several specific families of
test functions. The spinodal in this example is degenerate, since the loss of rank-1
convexity occurs via a sharp non-smooth transition from one well to the other. The
spinodal in this example can be identified as the surface of jump discontinuity of
WF (F ), rather than via the theory of Sect. 4.1.

More specifically we consider the bi-quadratic energy density of the form

W(F ) = min
{
f+(ε), f−(ε)

}
, ε = 1

2

(
F + F T

)
, f±(ε) = 1

2
(C±ε, ε) + w±,

(5.1)
We assume that the elastic tensors C± are isotropic:

C±ξ = λ±(Tr ξ)I + 2μ±ξ, for any ξ ∈ Sym
(
R

d
)
,
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and elliptic:

λ+ + 2μ+ > 0, λ− + 2μ− > 0.

Additionally we assume that

λ± + μ± �= 0, �μ� �= 0, k�λ� + 2�μ� �= 0. (5.2)

This energy plays an important role both in the mathematical theory of com-
posite materials (Lu 1993; Grabovsky 1995; Cherkaev and Kucuk 2004a, 2004b;
Chenchiah and Bhattacharya 2008) and in the modeling of martensitic phase tran-
sitions (Kublanov and Freidin 1988; Freidin and Chiskis 1994a, 1994b).

Even in this piecewise linear example we cannot find all solutions to the sys-
tem (4.12)–(4.13). However, we can obtain bounds on the binodal by computing in
Sect. 5.1 nucleating solutions in C̃k , 1 ≤ k ≤ d that have ellipsoidal k-dimensional
cross-section. In Sect. 5.2 we also present an example of a solution in C1 \ C̃1 in 2D.

While the calculations presented below illustrate the general theory of binodal
developed in this paper, their origin lies (at least for positive definite C±) in the lit-
erature on optimal bounds for composite materials, e.g. (Gibiansky and Cherkaev
1984, 1987; Allaire and Kohn 1993b); the link with the theory of phase transi-
tions is also well known (Lu 1993; Grabovsky and Kohn 1995b; Grabovsky 1995;
Chenchiah and Bhattacharya 2008).

5.1 Isolated Cylindrical Inclusions

The goal of this section is to obtain bounds on the binodal in arbitrary dimensions us-
ing elliptical cylinders as test functions. Expanding on prior work (Lifshits and Gul-
ida 1952b, 1952a; Eshelby 1957; Berdichevsky 1983; Kaganova and Roytburd 1988;
Kublanov and Freidin 1988; Freidin and Chiskis 1994a, 1994b) we can compute the
solutions of (4.12) for the bi-quadratic energy (5.1) corresponding to infinite elliptical
cylinders explicitly. The explicit representation of these test functions in Kunin and
Sosnina (1971, 1973, 1973) allows us to estimate their decay at infinity and prove
that they are in C̃k , so that our general theory applies. In 2D these solutions can be
viewed as limiting cases of composite strips computed in Sect. 5.2, as the period p

goes to infinity.
For each k ≥ 1 we will look for a solution of the system (4.12) in the form of an

elliptical k-cylinder. We therefore define the sets Nell
k as in Definition 4.8.

Definition 5.1 We say that ε belongs to the elliptical k-cylinder nucleation set Nell
k ,

k = 1, . . . , d , if there exists an elliptical k-cylinder inclusion satisfying (4.12) and
(4.13).

Observe that for k = 1 such a cylinder is a plate, while for k = d , it is an
ellipsoid. Moreover, general elliptical k-cylinders can be regarded as ellipsoids
with some of the aspect ratios going to infinity (Kublanov and Freidin 1988;
Freidin 2007). This suggests that in order to map the entire binodal it is enough to
consider only ellipsoids. However, the parts of the binodal identified by the elliptical
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cylinders are of the same dimension (md − 1) as the parts of the binodal identified by
the ellipsoids. Thus, for the strategy of passing to the limits in the space of ellipsoid
parameters to succeed one needs to test against arbitrary ellipsoids and then optimize
the explicit results over orientations and aspect ratios, allowing infinite values of the
parameters to capture plates and cylinders. It is a challenging technical problem. Our
approach, which treats elliptical k and r-cylinders as distinct, when k �= r , has the
advantage of identifying singular optimal shapes directly.

If we align our coordinate system with the cylindrical inclusion in such a way
that vectors e1, . . . , ed are directed along the coordinate axes, then we can write
x = (t1, . . . , tk, xk+1, . . . , xd). The test field φ(x) = ψ(t) and we write the field ε

at infinity in the block form

ε =
[
ε0 ET

E ε′

]
,

where ε0 is a k × k matrix, E is a (d − k) × k matrix and ε′ is a (d − k) × (d − k)

matrix. We also use the notation

λ(t) = λ−
(
1 − χ(t)

) + λ+χ(t), μ(t) = μ−
(
1 − χ(t)

) + μ+χ(t),

where χ(t) is the characteristic function of the elliptical cylinder. One can see that
the label “+” refers to the materials and fields inside the inclusion, while the label
“−” refers to the materials and fields outside the inclusion. Finally, let C(t) be the
local elasticity tensor defined by its action on an arbitrary strain ξ by

C(t)ξ = λ(t)(Tr ξ)I + 2μ(t)ξ, for any ξ ∈ Sym
(
R

d
)
.

We observe that the elastic tensor C(t) and the elastic constants λ(t) and μ(t) are
piecewise constant with a jump discontinuity across the boundary of the elliptical
k-cylinder.

5.1.1 Euler–Lagrange Equations

The isotropy of the materials cause Euler–Lagrange equation in (4.12) to decouple
into separate PDEs for ψ0(t) = (ψ1(t), . . . ,ψk(t)) and ψ ′(t) = (ψk+1(t), . . . ,ψd(t)):

⎧⎨
⎩

∇ · C(t)(e(ψ0) + ε0 + �λ� Tr ε′
k�λ�+2�μ�

Ik) = 0,

∇ · μ(t)(∇ψ ′ + 2E) = 0.
(5.3)

Equation (5.3) decouples into equations of elasticity in R
k and an additional general-

ized anti-plane shear. The elastic strain field

e(φ) =
[
e(ψ0)

1
2 (∇ψ ′)T

1
2∇ψ ′ 0

]
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is smooth inside and outside of the elliptical k-cylinder

k∑
i=1

t2
k

a2
k

= 1, (5.4)

but has a jump discontinuity across its boundary. Thus, in the application of the gen-
eral theory we may replace the Noether–Eshelby equation (4.12)2 with the Maxwell
relation (4.21) on the boundary of the cylinder.

We know that both e(ψ0) and ∇ψ ′(t) are uniform inside the ellipsoid (Mura
1987). The values of these fields are determined uniquely by the fields at infinity
and the shape of the ellipsoid described by the k× k matrix a = diag(a1, . . . , ak). Es-
helby (1957, 1959) has presented the solution for 3D isotropic ellipsoidal inclusions
in the isotropic external medium. We will use the elegant formulas that are valid in
any dimensions and for general anisotropic media due to Kunin and Sosnina (1973).

Recall the definition of the fourth order tensor KC(n), which is a Fourier space
representation of the fundamental solution for the equations of linear elasticity in the
general anisotropic medium C. Suppose u(t) solves

∇ · Ce(u) = ∇ · τ, t ∈ R
k,

where the symmetric external stress field τ(t) is smooth and compactly supported.
Then the Fourier transform of the strain will satisfy

ê(u)(ω) = KC(ω)̂τ (ω).

Explicitly,

KC(n)ξ = AC(n)
−1ξn � n,

where AC(n) is the acoustic tensor of C.

Theorem 5.2 (Kunin and Sosnina 1973)

(a) Suppose that u : R
k → R

k satisfies

∇ · C(t)
(
e(u) + ε∞) = 0,

where C(t) = (1 − χ(t))C− + χ(t)C+ and χ(t) is the characteristic function of
the ellipsoid (5.4). Then

ε∞ = ε+ + 〈
KC−(n)

〉
a

�C�ε+, (5.5)

where ε+ = e(u+) + ε∞ is the strain field in the inclusion, and

〈
KC−(n)

〉
a

= −
∫

Sk−1
KC−

(
a−1n

)
dS(n), a = diag(a1, . . . , ak).

(b) Suppose that v : R
k → R

p satisfies

∇ · μ(t)
(∇v + e∞) = 0,
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where μ(t) = (1 − χ(t))μ− + χ(t)μ+. Then

e∞ = e+ + �μ�

μ−
e+〈

Γ (n)
〉
a
, (5.6)

where e+ = ∇v+ + e∞ is the strain field in the inclusion. Here

〈
Γ (n)

〉
a

= −
∫

Sk−1
Γ

(
a−1n

)
dS(n), Γ (ω) = ω ⊗ ω

|ω|2 .

The proof of part (a) can be found in Kunin and Sosnina (1973). Part (b) is
proved in exactly the same way (with simpler calculations). In particular, the ex-
plicit formulas for the solution shows that both ψ0(t) and ψ ′(t) are bounded and
∇ψ0 ∈ L2(Rk;R

k×k) and ∇ψ ′ ∈ L2(Rk;R
d−k×k). Hence, the corresponding test

function φ ∈ C̃k , and our general theory applies.

Remark 5.3 The tensor 〈KC−(n)〉a has the property that

S = 〈
KC−(n)

〉
a
C−

is the Eshelby tensor (Eshelby 1957) for the ellipsoidal inhomogeneity relating the
eigenstrain ε∗ = �C−1 �σ+ and the inhomogeneity strain εd = ε+ − ε∞.

Theorem 5.2 provides a relation between the strain at infinity and the uniform field
in the inclusion. For instance, the explicit Fourier space representation of the field in
the exterior of the inclusion can be written as

ê(u)(ω) = −χ̂ (ω)KC−(ω)�C�ε+, ∇̂v(ω) = − �μ�

μ−
χ̂ (ω)e+Γ (ω).

For our purposes, however, we would only need the relations (5.5) and (5.6).

5.1.2 Noether–Eshelby Equations

In this problem the Noether–Eshelby equation provides additional conditions only at
the discontinuities of ∇φ and reduces to the Maxwell relation (4.21). In Kublanov and
Freidin (1988) Kublanov and Freidin studied the ellipsoidal inclusions in 3D space
that satisfy the Maxwell condition, where they also computed the Eshelby tensor
explicitly for such ellipsoids. Here we generalize some of their results to elliptical
cylinders with arbitrary dimension k of cross-section in R

d .
In Grabovsky et al. (2013) we have shown that the Maxwell relation for the energy

(5.1) takes the form

�w� + 1

2

(
�C�ε+, ε+

) + 1

2

(
KC−(n)q+, q+

) = 0, (5.7)

where q+ = −�C�ε+ and n is the outward unit normal on the boundary of the in-
clusion. For isotropic materials C± we can choose the coordinate axes aligned with
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the ellipsoid’s principal directions and the generators of the elliptical cylinder. In that
case the normal n has the last d − k components equal to zero, while the first k com-
ponents form an element of the unit sphere S

k−1. We will denote this n ∈ S
k−1 for

short. It will be convenient to write the matrix q+ in the block form

q+ =
[
q0 pT

p q ′

]
,

where q0 is k × k, p is (d − k)× k, and q ′ is (d − k)× (d − k). Hence, the Maxwell
relation (5.7) becomes

|q0n|2 + |pn|2
μ−

− (λ− + μ−)(q0n,n)
2

μ−(λ− + 2μ−)
+ �λ�(Tr ε+)2 + 2�μ�|ε+|2 + 2�w� = 0

(5.8)
for all n ∈ S

k−1.

Lemma 5.4 Let α �= 0. The function

f (n) = |q0n|2 + |pn|2 − α(q0n,n)
2

is constant on S
k−1 if and only if q0 = q0I k and pT p = p2

0I k . In particular, this
implies that p = 0, if k > d/2.

Proof Let

f (n) = f1(n) + f2(n) − αf3(n),

where

f1(n) = (
q2

0n,n
)
, f2(n) = (

pT pn,n
)
, f3(n) = (q0n,n)

2.

The function f (n) is constant on the sphere S
k−1 if and only if its differential is

zero on at any n ∈ S
k−1. Let n0 be an eigenvector of q0 (and therefore of q2

0 ).
Then df1(n0) = df3(n0) = 0. Hence, we must have df3(n0) = 0. Therefore, n0

must be an eigenvector of pT p. Hence, q0 and pT p have a common orthonormal
eigenbasis. Suppose that n1 and n2 are orthogonal unit eigenvectors correspond-
ing to the eigenvalues ν1 and ν2 of q0 and eigenvalues τ1 and τ2 of pT p. Let
φ(θ) = f (n1 cos θ + n2 sin θ). We compute

φ(θ) = (
ν2

1 + τ1
)

cos2 θ + (ν2 + τ2) sin2 θ − α
(
ν1 cos2 θ + ν2 sin2 θ

)2
.

Now it is easy to see that φ(θ) is constant if and only if ν1 = ν2 and τ1 = τ2. We
conclude that both q0 and pT p must be multiples of the identity, since the pair of
eigenvectors was chosen arbitrarily. Conversely, if q0 = q0I k and pT p = p2

0I k , then
f (n) = (1 − α)q2

0 + p2
0. �
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The assumption (5.2) ensures applicability of the lemma to (5.8). We conclude
that

ε+ =
[
e(ψ+

0 ) + ε0
1
2 (∇ψ ′+)T + ET

1
2∇ψ ′+ + E ε′

]
=

[
ε+

0 I k ET+
E+ ε′+

]
, ET+E+ = E2

0I k,

(5.9)
where the scalars ε+

0 and E0 satisfy the Maxwell relation

(�kλ + 2μ�ε+
0 + �λ� Tr ε′)2

λ− + 2μ−
+ �λ�

(
ε+

0 k + Tr ε′)2 + 2k�μ�
(
ε+

0

)2

+ 4�μ�(kμ− + �μ�)

μ−
E2

0 + 2�μ�|ε′|2 + 2�w� = 0. (5.10)

Applying Theorem 5.2 to (5.3) and using (5.9) we obtain
⎧⎨
⎩
ε0 = ε+

0 I k + ε+
0 �kλ+2μ�+�λ� Tr ε′

λ−+2μ− 〈Γ (n)〉a,
E = E+(I k + �μ�

μ− 〈Γ (n)〉a).
(5.11)

We note that the explicit expressions for 〈Γ (n)〉a is available for k = 1 (〈Γ (n)〉a =
1), k = 2 (〈Γ (n)〉a = cof(a)/Tra) and k = 3, when it can be expressed in terms of
the elliptic integrals. However, we do not need to know 〈Γ (n)〉a explicitly, we only
need the set of diagonal matrices

G = {〈
Γ (n)

〉
a

: a = diag(a1, . . . , ak), ai > 0, i = 1, . . . , k
}
.

Lemma 5.5

G = {
A = diag(A1, . . . ,Ak), Ai > 0, i = 1, . . . , k, TrA = 1

}
.

The proof of the lemma is in Appendix G.
We now apply Lemma 5.5 by taking the trace of the first equation in (5.11). We

obtain

ε+
0 = (λ− + 2μ−)Tr ε0 − �λ� Tr ε′

kλ+ + 2kμ− + 2�μ�
. (5.12)

The denominator in (5.12) is positive if either �λ� > 0 or �μ� < 0. It could change
sign if �λ� < 0 and �μ� > 0. We therefore place the material with larger λ or smaller
μ inside the inclusion. In the well-ordered case (λ+ > λ−, μ+ > μ−), either mate-
rial can be placed inside the inclusion, while in the non-well-ordered case only the
material with larger λ and smaller μ can be placed inside.

5.1.3 Optimal Orientation

In our example the optimal orientation equation (4.13) becomes

Q

∫
Rk

(
C(t)

(
ε∞ + e(φ)

) − C−ε∞)∇ψ dt = 0. (5.13)
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We can rewrite the left-hand side in (5.13) as the sum of two terms T1 and T2:

T1 = Q

∫
Rk

χ(t)
(

�C�ε∞)∇ψ dt, T2 = Q

∫
Rk

(
C(t)e(φ)

)∇ψ dt .

We compute

T1 = (
2�μ�E∇ψ+

0 + �λ�
(
Tr ε0 + Tr ε′)∇ψ ′+ + 2�μ�ε′∇ψ ′+

)∫
Rk

χ(t)dt,

T2 =
∫

Rk

{
μ(t)∇ψ ′∇ψ0 + λ(t)(∇ · ψ0)∇ψ ′}dt .

Using integration by parts we can rewrite T2 as

T2 = −
∫

Rk

ψ ′ ⊗ ∇ · (C(t)e(ψ0)
)

dt +
∫

Rk

∇ · (μ(t)∇ψ ′) ⊗ ψ0 dt .

Using Eq. (5.3) we get

∇ · (C(t)e(ψ0)
) = −∇ · (χ(t)�C� ε̂0

)
, ∇ · (μ(t)∇ψ ′) = −2�μ�∇ · (χ(t)E

)
,

where

ε̂0 = ε0 + �λ� Tr ε′

k�λ� + 2�μ�
I k.

Thus, we obtain

T2 =
∫

Rk

χ(t)
{−∇ψ ′(�C� ε̂0

) + 2�μ�E(∇ψ0)
T
}

dt .

Computing �C� ε̂0 and combining with T1 we write (5.13) as

Ee
(
ψ+

0

) + 1

2
ε′∇ψ ′+ − 1

2
∇ψ ′+ε0 = 0. (5.14)

Substituting the values

e
(
ψ+

0

) = ε+
0 I k − ε0,

1

2
∇ψ ′+ = E+ − E,

obtained from (5.9), into (5.14) we get

(
ε+

0 I k − ε′)E = E+ε0 − ε′E+. (5.15)

Substituting the second equation in (5.11) into (5.15) we obtain

�μ�

μ−
(
ε+

0 Ik − ε′)E+
〈
Γ (n)

〉
a

= E+
(
ε0 − ε+

0 I k

)
.
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Applying the first equation in (5.11) and the invertibility of 〈Γ (n)〉a we finally con-
clude

[
(λ−�μ� − kμ−�λ�)ε+

0 − μ−�λ� Tr ε′]E+ = (λ− + 2μ−)�μ�ε′E+. (5.16)

Equations (5.9) and (5.16) say that, provided E0 �= 0, the k columns of the (d −k)×k

matrix E+/E0 are orthonormal eigenvectors of the (d − k) × (d − k) matrix ε′. All
of them correspond to the same eigenvalue

ν = (λ−�μ� − kμ−�λ�)ε+
0 − μ−�λ� Tr ε′

(λ− + 2μ−)�μ�
. (5.17)

5.1.4 Explicit Bounds

If E0 = 0 then E+ = 0 and the relation (5.16) is identically satisfied. In that case
the equation for the sets Nell

k introduced in Definition 5.1 is provided by the relation
(5.10), which becomes

(λ− + 2μ−)(�kλ + 2μ� Tr ε0 + k�λ� Tr ε′)2

�kλ + 2μ�(kλ+ + 2kμ− + 2�μ�)
+ 2�λ� �μ�(Tr ε′)2

�kλ + 2μ�
+ 2�μ�|ε′|2 + 2�w�

= 0. (5.18)

Equation (5.18) provides a characterization of the union of
(
d
k

)
surfaces in the space

of eigenvalues of ε. Different surfaces in this union are obtained by choosing k of
the d eigenvalues of ε forming the diagonal of the k × k diagonal matrix ε0. Another
union of

(
d
k

)
surfaces are obtained by exchanging “+” and “−” subscripts in (5.18).

The entire collection of 2
(
d
k

)
surfaces comprises the part of the set Nell

k corresponding
to E0 = 0.

If E0 �= 0, then the optimality of orientation condition (5.16) requires ε′ to have k

equal eigenvalues. Together with the relation (5.10) this places ε on a co-dimension k

surface in Sym(Rd). Such surfaces cannot be candidates for the binodal when k > 1
and are therefore discarded, leaving only the case k = 1. In this case 〈Γ (n)〉a = 1 and
the matrices E and E+ are vectors in R

d−1, related via (5.11)

E = μ+
μ−

E+. (5.19)

If we choose one of the coordinate axes to be aligned with E, then, according to
(5.16), ε must have the following structure:

ε =
⎡
⎢⎣

ε0
μ+
μ− E0 0

μ+
μ− E0 ν 0

0 0 ε′′

⎤
⎥⎦ , (5.20)

where ν is given by (5.17) with k = 1. Writing it in terms of ε0 and ε′′, using (5.12)
we obtain

ν = (λ−�μ� − μ−�λ�)ε0 − μ+�λ� Tr ε′′

μ+�λ + 2μ� + λ+�μ�
. (5.21)
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In order to write the equation for Nell
1 in terms of the eigenvalues of ε we introduce

the notation

ε1 =
[

ε0
μ+
μ− E0

μ+
μ− E0 ν

]
.

The eigenvalues of ε are split into two groups: the group of d − 2 eigenvalues, com-
prising the diagonal of ε′′, and the group containing the two eigenvalues of ε1. It will
be convenient to introduce variables

X = Tr ε1√
2

, Y 2 = 1

2

(
(Tr ε1)

2 − 4 det ε1
)
, Z = Tr ε′′

√
2

,

which are well-known functions of the eigenvalues. Then the formula (5.12) becomes

ε+
0 = (μ−�λ + 2μ� + λ−�μ�)ε0 − √

2�λ� �μ�Z

μ+�λ + 2μ� + λ+�μ�
. (5.22)

From the equation ε0 + ν = Tr ε1 we find

ε0 = (μ+�λ + 2μ� + λ+�μ�)X + μ+�λ�Z√
2�μ�(λ+ + μ+)

. (5.23)

We also have

2E2
0 =

(
μ−
μ+

)2(
Y 2 −

(
μ+

�λ + μ�X + �λ�Z

�μ�(λ+ + μ+)

)2)
. (5.24)

If we now substitute (5.21), (5.22) and (5.24) into (5.10), taking into account (5.23),
we obtain a representation for the E0 �= 0 part of Nell

1 in terms of the eigenvalues of ε:

(λ− + μ−)�λ + μ�

λ+ + μ+
X2 + 2

(λ− + μ−)�λ�

λ+ + μ+
XZ + �λ�(λ− + μ+)

λ+ + μ+
Z2 + �μ�μ−

μ+
Y 2

+ �μ�|ε′′|2 = −�w�. (5.25)

We interpret (5.25) as the union of
(
d
2

)
surfaces. Each of these surfaces is character-

ized by two (out of d) eigenvalues corresponding to ε1. Another union of
(
d
2

)
surfaces

is obtained from (5.25) by interchanging “+” and “−” subscripts in the well-ordered
case. The entire collection of 2

(
d
2

)
surfaces comprises the part of the set Nell

1 corre-
sponding to E0 �= 0.

When k > 1 (and hence E0 = 0), we have only used the fact that Tr〈Γ (n)〉a = 1.
The positive definiteness of 〈Γ (n)〉a gives the validity domain for Eq. (5.18). Substi-
tuting (5.12) into (5.11) and solving for 〈Γ (n)〉a we obtain

(λ− + 2μ−)I k

kλ+ + 2kμ− + 2�μ�
≤ �kλ + 2μ�ε0 + �λ�(Tr ε′)I k

�kλ + 2μ� Tr ε0 + k�λ� Tr ε′ ≤ (λ− + 2μ+ + k�λ�)Ik

kλ+ + 2kμ− + 2�μ�
.

(5.26)
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This statement is equivalent to the inequalities 0 ≤ 〈Γ (n)〉a ≤ I k understood in the
sense of quadratic forms.

It is easy to check that the upper bound in (5.26) is a consequence of the lower
bound, due to the fact that

λ− + 2μ−
kλ+ + 2kμ− + 2�μ�

> 0,

and we conclude that for k > 1 (5.18) is the equation of Nell
k , provided

�kλ + 2μ�ε0 + �λ�(Tr ε′)I k

�kλ + 2μ� Tr ε0 + k�λ� Tr ε′ ≥ (λ− + 2μ−)I k

kλ+ + 2kμ− + 2�μ�
(5.27)

in the sense of quadratic forms. Equation (5.18) and inequality (5.27) reduce to the
results of Kublanov and Freidin (1988), when k = d = 3.

If the materials are well-ordered, we may interchange the materials (i.e. consider
an inclusion of phase “−” in the matrix of phase “+”). In that case the inequalities in
(5.26) and (5.27) are reversed, while the subscripts “+” and “−” are interchanged.

Notice that when k = 1 we have 〈Γ (n)〉a = 1 and there are no extra inequalities
in the case E0 = 0. However, when E0 �= 0, Equation (5.24) implies that the values
of the variables (X,Y,Z) must satisfy

|Y | ≥ μ+
∣∣∣∣ �λ + μ�X + �λ�Z

�μ�(λ+ + μ+)

∣∣∣∣. (5.28)

This is the range of the validity of Eq. (5.25).
Let us verify that all solutions to (4.12) satisfy the non-degeneracy condition (4.26)

of Corollary 4.7. An easy calculation shows that

W ◦
ε

(
ε, e(ψ)

) = �C�ε+χ(t). (5.29)

Hence, ∂Jk(F , φ)/∂F = 0 if and only if ε+ = 0. However, ε+ = 0 contradicts (5.10).

Remark 5.6 It will be shown in Grabovsky et al. (2013) that the surface patch Nell
2

given by (5.18), (5.26) is indeed a part of the binodal when d = 2. If we choose
F ∈ Nell

2 and the corresponding elliptical inclusion, then the field ε∞ + e(φ) will stay
strictly away from the singular boundaries of the quadratic energy wells.7 Hence, if
we choose F̃ /∈ B sufficiently close to F and solve (5.30) then the solution will
also be a nontrivial solution of (4.12)1, with W(F ) given by (5.1). Therefore, the
“bifurcation” in (4.12)1 alone is not sufficient to obtain any bounds on the binodal
region.

7By the regularity of the quasiconvex envelope theorem (Ball et al. 2000) the optimal fields must stay
strictly away from the singularities of W(F ). However, our results cannot guarantee that the field ε∞ +
e(φ) is indeed optimal.
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5.2 Interacting Cylindrical Inclusions

In this section we give an example of the test field φ ∈ C1 \ C̃1 satisfying (4.12)–(4.13).
More specifically, we construct a 1-parameter family of energetically equivalent C1
test fields interpolating between the C2 test fields (corresponding to elliptical inclu-
sions) and the rank-2 laminates discussed in Sect. 3.2.3.

5.2.1 Euler–Lagrange Equations

We are looking for equilibrium configurations where the materials “+” and “−” oc-
cupy complementary subdomains Ω+ and Ω− that are periodic with period 1 in the
y-direction. We further assume that the material “+” occupies a compact subset in
the fundamental region Y1 = R × [−1/2,1/2] with smooth boundary Σ . The first
equation in (4.12) is

∇ · (C(x)e(u)
) = 0, x ∈ R

2, (5.30)

understood in the sense of distributions. Here

e(u)ij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
.

Equation (5.30) can be written as the standard Lamé system in Ω± together with the
interface conditions

�u� = 0, �Ce(u)�n = 0, x ∈ Σ. (5.31)

The method of complex potentials (Muskhelishvili 1953) allows one to charac-
terize the set of solutions to (5.30)–(5.31) completely in 2D. Accordingly, the vector
u = (u1, u2) ∈ R

2 is written as a complex number u = u1 + iu2. If u solves the Lamé
system then

u(z) = Aφ(z) − B
(
ψ(z) + zΦ(z)

)
, (5.32)

where

Φ(z) = φ′(z), A = 1

κ
+ 1

2μ
, B = 1

2μ
.

Also, any 2 × 2 matrix M can be written as a pair of complex numbers M = [p,q],
according to the rule

M =
[
p1 −p2

p2 p1

]
+

[
q1 q2

q2 −q1

]
,

where p = p1 + ip2 and q = q1 + iq2. Then, the complex representation of the vector
Mv, v ∈ R

2, is pv + qv, and

∇u =
[
∂u

∂z
,
∂u

∂z

]
. (5.33)
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Applying (5.33) to (5.32) we obtain ∇u = [AΦ − BΦ,−2BΠ], where

Π(z) = 1

2

(
Ψ (z) + zΦ ′(z)

)
, Ψ (z) = ψ ′(z).

We also obtain

e(u) =
[�eΦ(z)

κ
,−Π(z)

μ

]
, σ = [

2�eΦ(z),−2Π(z)
]
.

The continuity of displacements �u� = 0 can be conveniently written in differential
form, via the representation (5.32):

�AΦ − BΦ�ż − 2�BΠ�ż = 0, (5.34)

where ż is the derivative of the parametrization z(t) of the interface Γ . The continuity
of tractions reads

��eΦ�ż + �Π�ż = 0, (5.35)

since the complex representation of the unit normal n is −iż/|ż|. In terms of the
variables ż = |ż|eiα , Φ(z) = X, and Π(z)e2iα = Y , the system (5.34)–(5.35) can be
written as {

�AX − BX� − 2�BY � = 0,

��eX� + �Y � = 0.
(5.36)

5.2.2 Noether–Eshelby Equations

Under the assumptions of the smoothness of the interfaces the second equation in
(4.12) can be replaced by the Maxwell relation (4.21), as discussed in Sect. 4.2.1,

�W � − ({{Ce(u)}}, �e(u)�
) = 0, x ∈ Σ, (5.37)

which in the X and Y variables can be written as
�

2

κ

�

�e(X+)�e(X−) +
�

2

μ

�

�e(Y+Y−) = �w�. (5.38)

5.2.3 Optimal Orientation

In addition, the necessary condition (4.11), though not computable by itself, implies
an easily verifiable additional condition (4.22), as discussed in Sect. 4.2.1. It can be
written in terms of X, Y as

��eX� �AX − BX� + 2��eX� �BY � + �Y � �AX − BX� + 2�Y � �BY � = 0.

If we eliminate �Y � and �BY � by means of (5.36) we obtain

��eX� �(A + B)ImX� = 0. (5.39)
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Hence, there are two possibilities. Either ��eX� = 0, corresponding to �σ � = 0 or
�(A+B)ImX� = 0, corresponding to a = λn and �σ � = βn⊥ ⊗n⊥ for some scalars
λ and β .

Case ��eX� = 0. In this case we get

⎧⎪⎪⎨
⎪⎪⎩

�eX+ = �eX− = �eX,

Y+ = Y− = � 1
μ

�−1(� 1
κ

��eX − i�( 1
κ

+ 1
μ
)ImX�),

� 1
κ

� � 1
κ

+ 1
μ

�(�eX)2 + �( 1
κ

+ 1
μ
)ImX�2 = 1

2 � 1
μ

� �w�.

(5.40)

Then, the function

f (z) =
{�eΦ+(z), z in +region,

�eΦ−(z), z in −region,

is bounded and harmonic on R
2. Hence, it is a constant. We conclude that Φ ′±(z) = 0

and hence the functions ImX±, and therefore Y± = 1
2Ψ±(z)ż/ż, are constants on Σ .

Hence, we obtain ψ+(z) = 2Y+z + γ+ on Σ . By assumption region “+” contains a
compact inclusion D with smooth boundary. Then we must have Y+ = 0, since

0 =
∫
∂D

ψ+(z)dz = 4iY+|D|. (5.41)

This contradicts (5.40).

Case �(A + B)ImX� = 0. Then the function

f (z) =
⎧⎨
⎩
( 1
κ+ + 1

μ+ )ImΦ+(z), z in + region,

( 1
κ− + 1

μ− )ImΦ−(z), z in − region,

must be both bounded and harmonic. Therefore, it is constant. Hence, Φ±(z) is con-
stant in the “±” region. We can assume without loss of generality that Φ−(z) is a
real constant. Hence, Φ+(z) is also a real constant. It follows from (5.36) that Y± are
constants on Σ . By assumption, region “+” contains a compact inclusion D, then we
must have Y+ = 0 due to (5.41). Hence, from (5.36) we get

�eX+ = κ+(κ− + μ−)

κ−(κ+ + μ−)
�eX−,

while

X− = �eΦ−(z) = 1

4
Trσ∞ = 1

2
κ− Tr ε∞.

Substituting these relations into (5.38) we get

(Tr ε∞)2 = −2�w�(μ− + κ+)

�κ�(κ− + μ−)
. (5.42)
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Fig. 4 Conformal mapping of the exterior of the periodic array of slits onto the exterior of the periodic
array of inclusions

Hence, in terms of Tr ε∞ we obtain

ψ+(z) = 0, φ+(z) = κ+(κ− + μ−)Tr ε∞
2(κ+ + μ−)

z, φ−(z) = 1

2
(Tr ε∞)κ−z.

(5.43)
We also have

ψ−(z) = cz + γ, z ∈ Σ, c = μ−�k� Tr ε∞
κ+ + μ−

. (5.44)

The parameter γ is locally constant on Σ and can be chosen to be zero if Σ is
connected. Observe that the trivial solution u = ε∞x corresponds to the complex
potentials

φ(z) = 1

2
(Tr ε∞)κ−z, ψ(z) = bz, b = μ−

(
ε(22)∞ − ε(11)∞ − 2iε(12)∞

)
.

Hence, the function p(z) = ψ−(z) − bz must be i-periodic. Thus,

ψ−(z + i) = ψ−(z) + bi. (5.45)

It is now easy to verify that the as yet unused condition (4.13) holds automatically
for any solution of the Lamé system satisfying (5.43). In fact, we have P̂

∗
(z) = 0 for

all z.

5.2.4 Optimal Shapes

We are now in a position to look for i-periodic structure of inclusions satisfying
(5.43) and (5.44). The analysis here is an adaptation of the analysis in Vigdergauz
(1976, 1977, 1989, 1994) and Grabovsky and Kohn (1995a) for the case of simply
periodic array of inclusions. Following Cherepanov (1974), Grabovsky and Kohn
(1995a), we map the exterior of a periodic array of slits in the ζ plane conformally
onto the region “−” in the z plane (see Fig. 4). More precisely, let z = w(ζ ) map the
i-periodic array of slits,

Mn = {
z = x + in : x ∈ [−α,α]}, n ∈ Z,
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of length 2α (to be determined) in the ζ plane to the i-periodic array of inclusions
with smooth boundary in the z plane. The map w must satisfy the following condi-
tions:

w(ζ + i) = w(ζ ) + i. (5.46)

At the endpoints of the slits w(ζ ) = O(
√
ζ − ζn) as ζ → ζn, where ζn = ±α + in

is an endpoint of the slit Mn, on account of the smoothness of the boundary of the
inclusion in the z plane.

Let us now substitute z = w(ζ ) in (5.44) and differentiate along the slit. Using the
notation Ψ (ζ ) = Ψ−(w(ζ )) we obtain

Ψ (ζ )w′(ζ ) = cw′(ζ ), ζ ∈ M. (5.47)

We can represent (5.47) using the following trick of Cherepanov (1974): Consider
two analytic functions F and G chosen such that

F ′(ζ ) = −Ψ (ζ )w′(ζ ) + cw′(ζ ), (5.48)

G′(ζ ) = −Ψ (ζ )w′(ζ ) − cw′(ζ ). (5.49)

Then (5.47) becomes

�eF ′(ζ ) = 0, ζ ∈ Mn,

�mG′(ζ ) = 0, ζ ∈ Mn.

}
(5.50)

Besides (5.50) the analytic functions F and G have the following properties: they are
i-periodic, since both Ψ (ζ ) and w(ζ ) are, and at the endpoints ζn of the slits Mn

F ′(ζ ) = O

(
1√

ζ − ζn

)
and G′(ζ ) = O

(
1√

ζ − ζn

)
as ζ → ζn; (5.51)

also F ′ and G′ are single valued and have no other singularities. Once such functions
are found, using (5.48), (5.49) we can easily reconstruct w(ζ ) and Ψ (ζ ). The result
is

w(ζ ) = 1

2c

(
F(ζ ) − G(ζ)

) + C0, (5.52)

where C0 is an arbitrary constant of integration, and

Ψ (ζ ) = −c
F ′(ζ ) + G′(ζ )
F ′(ζ ) − G′(ζ )

. (5.53)

Now let us construct the functions F and G. Consider the function (Cherepanov
1974)

v(ζ ) =
√

cosh(2πζ) − 1

cosh(2πζ) − λ
, λ = cosh(2πα). (5.54)

We claim that v(ζ ) has the following properties:
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1. v(ζ ) is single valued analytic function in the exterior of the periodic array of slits
{Mn : n ∈ Z};

2. v(ζ ) is i-periodic;
3. v(ζ ) = O( 1√

ζ−ζn
) as ζ → ζn, and v is bounded everywhere else;

4. �e(v(ζ )) = 0 on Mn.

To justify the claim we choose the branch of the square root such that
√

1 = 1, with
the branch cut along the negative real axis. Then the function v(ζ ) has a branch cut
wherever

cosh(2πζ) − 1

cosh(2πζ) − λ
< 0. (5.55)

This is equivalent to the condition that cosh(2πζ) ∈ (1, λ), which is satisfied only
along the cuts Mn (this is how the function (5.54) was constructed). Thus, proper-
ties 1 and 4 are proved. Property 2 follows from the i-periodicity of cosh(2πζ). And
property 3 follows from the fact that points ζn are simple points for cosh(2πζ) (the
derivative 2π sinh(2πα) �= 0).

We look for the functions F ′ and G′ in the form
{
F ′ = r1v(ζ ) + id1,

G′ = ir2v(ζ ) + d2,
(5.56)

where rj , dj ∈ R are constants to be determined. It is easy to see that Eq. (5.50)
is satisfied, as is the condition (5.51). In order to recover F and G from the above
formulas we have to use the function

V (ζ ) =
∫ ζ

i/2
v(z)dz. (5.57)

This function is single valued in the exterior of the periodic system of the slits because∮
ΓR

v(ζ )dζ = 0, where ΓR is a rectangle with vertexes ±R±i/2. Indeed, the function

v(ζ ) is even and i-periodic. Therefore,

∫ R

−R

v(x − i/2)dx = −
∫ −R

R

v(x + i/2)dx,

i

∫ 1/2

−1/2
v(R + iy)dy = −i

∫ −1/2

1/2
v(−R + iy)dy.

The i-periodicity of v(ζ ) implies that V (ζ + i)−V (ζ ) is independent of ζ . Therefore,

V (ζ + i) − V (ζ ) = lim
R→∞ i

∫ 1/2

−1/2
v(R + iy)dy = i. (5.58)

The periodicity condition (5.46) together with formulas (5.52), (5.56), and (5.58)
implies

d1 = r2, r1 − d2 = 2c.
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Thus

w(ζ ) = rV (ζ ) + (1 − r)ζ, r = r1 − ir2

2c
. (5.59)

By (5.53)

ψ2
(
w(ζ )

) = −c
(
rV (ζ ) + (r − 1)ζ

) + const. (5.60)

Now using the translation law (5.45) for the potential ψ− we obtain

r = 1

2
(1 − q), q = b

c
. (5.61)

We need to place further restriction on the value of parameter r (i.e. on ε∞) so that
the map w(ζ ) given by (5.59) maps the exterior of the i-periodic array of slits {Mn :
n ∈ Z} one-to-one and onto the exterior of the i-periodic array of inclusions Dn =
w(Mn). A necessary condition for univalence of w(ζ ) is that w′(ζ ) �= 0. In other
words v(ζ ) �= (r − 1)/r . The principal branch of the square root in (5.54) can take
any value in the right half-plane �ev ≥ 0. Hence, we require that �e((r − 1)/r) < 0.
In other words |r − 1/2| < 1/2, or equivalently, |q| < 1, i.e.

∣∣ε(22)∞ − ε(11)∞ − 2iε(12)∞
∣∣2 < − 2�w� �κ�

(κ+ + μ−)(κ− + μ−)
. (5.62)

It is easy to show that |q| < 1 is also sufficient for univalence. Indeed, we only need
to prove that w(ζ1) �= w(ζ2) for any ζ1 �= ζ2, such that Im(ζj ) ∈ (0,1), j = 1,2.
Observe that we can connect the points ζ1 and ζ2 by a straight line without crossing
any slits. Thus, we can write

w(ζ1) − w(ζ2)

ζ1 − ζ2
= 1 − r + r

∫ 1

0
v
(
tζ1 + (1 − t)ζ2

)
dt.

If w(ζ1) = w(ζ2), then we must have

∫ 1

0
v
(
tζ1 + (1 − t)ζ2

)
dt = r − 1

r
.

However, the left-hand side is in the right half-plane �e(v) > 0, while the right-hand
side is in the left half-plane, when |q| < 1. Thus, the map w(ζ ) is univalent if and
only if (5.62) holds.

The inequality (5.62) together with (5.42) describes a surface known to be in B,
since the non-degeneracy condition (4.26), which has the form (5.29) in our example,
is obviously satisfied. The surface (5.42), (5.62) coincides with (5.18), (5.27) for
d = k = 2.

We compute that for any ξ ∈ [−α,α]

V (ξ + 0i) = i

π
arccos

(
cosh(πξ)

cosh(πα)

)
.
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Fig. 5 Periodic array of
inclusions for α = 3 and
q = −0.4

√
2(1 + i)

Therefore the parametric equations of the upper half of the inclusion are

x = 1 + q1

2
ξ − q2

2i
V (ξ), y = 1 − q1

2i
V (ξ) − q2

2
ξ, ξ ∈ [−α,α],

where q = q1 + iq2. The parameter α is arbitrary. The structure for α = 3 and q =
−0.4

√
2(1 + i) is pictured in Fig. 5.

Now, for simplicity let us examine in more detail the case when the periodic di-
rection is chosen to be the eigendirection of ε∞. Then b ∈ R, and hence r ∈ (0,1).
The parameter α > 0 can be chosen arbitrarily. The resulting shapes are different for
different values of α, yet they all have the same energy. The equation of the upper
half of the inclusion centered at the origin is

y = 1 − q

2π
arccos

(cosh( 2πx
1+q

)

cosh(πα)

)
, x ∈

[
− (1 + q)α

2
,
(1 + q)α

2

]
.

When α → 0 the inclusions degenerate into the i-periodic array of small ellipses

x2

(1 + q)2
+ y2

(1 − q)2
= α2

4
.

When α → ∞ the structure becomes a periodic array of horizontal layers of thick-
ness r . However, for each large value α one needs to rescale the structure to keep the
width of the inclusions constant, i.e. we change variables

X = 2x

(1 + q)α
, Y = 2y

(1 + q)α
.

In the new variables the array of inclusions is p-periodic, where

p = 2i

(1 + q)α

is large, while the upper half of the inclusion centered at the origin has the equation

Y = 1

πα

1 − q

1 + q
arccos

(
cosh(παX)

cosh(πα)

)
, X ∈ [−1,1]. (5.63)
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Fig. 6 The shape of the component of a periodic array of inclusions for q = −0.8 and α = 1,4, and 10

When α → ∞ both the period p and the vertical dimensions of the inclusions will go
to zero and the structure will converge to a second-rank laminate with inner volume
fraction r , which is also known to permit detection of this part of the binodal.

Figure 6 shows the shapes of single inclusions given by (5.63) for q = −0.8 and
α = 1, 4, and 10. For each fixed value α the decay of the elastic fields along the
x-direction is exponential. Therefore, the corresponding test function φ = u − ε∞x

is in the space C1.
In summary, for each fixed value ε∞ satisfying (5.42) and (5.62), which are iden-

tical to (5.18), (5.27) for d = k = 2, we found a 1-parameter family of C1 test fields
satisfying (4.12)–(4.13) degenerating into C2 test fields (corresponding to elliptical
inclusions) when α → 0 and to rank-2 laminates when α → ∞. In other words, each
member of the solution family identifies exactly the same marginally stable value
of ε∞ as the simple elliptical inclusions, confirming previously obtained bounds.
The isotropy and high non-convexity of this example contributes to the abundance
of rank-1 connected pairs F+, F− on the jump set (Grabovsky and Truskinovsky
2011), described in Sect. 4.2.2. This in turn provides sufficient flexibility for mul-
tiple structures to identify same marginally stable values of deformation gradients.
For more general energies we expect fewer binodal points to be detectable through
classical nucleation. For example in Grabovsky (1996), essentially the same model
with anisotropic tensors C± was considered in 2d . It was shown there that the regime
analogous to (5.42), (5.62) can be detected only by second rank laminates, since the
support of the optimal Young measure in (2.19) consists of three specific points which
are inconsistent with classical nucleation.

5.3 Laminates

We have the following equations for ε on a second rank lamination set. The “micro-
level” system is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�ε� = b � m,

�Cε�m = 0,

�Cε�b = 0,

�w� + 1
2 (�C�ε±, ε±) = ∓ 1

2 (C∓�ε�, �ε�),

(5.64)
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while the macro-level system is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sε− + (1 − s)ε+ − ε = a � n,

(sC−ε− + (1 − s)C+ε+ − C±ε)n = 0,

(sC−ε− + (1 − s)C+ε+ − C±ε)a = 0,

�w� + 1
2 (�C�ε, ε) = ∓ 1

2 (C∓a � n,a � n),

(5.65)

where the upper sign corresponds to the situation when ε lies in the “+” well, while
the lower sign corresponds to the situation when ε lies in the “−” well. The detailed
analysis of this system of equations in 2D shows that by studying laminates one
can confirm the bounds obtained in the analysis of classical nuclei and obtain new
bounds inaccessible by the methods based exclusively on solving the associated PDE
problem (Grabovsky et al. 2013).

6 Conclusions

Marginal stability plays an important role in nonlinear elasticity because the associ-
ated minimally stable states delineate failure thresholds. In this paper we systemati-
cally juxtaposed the conditions of marginal stability for weak and strong local mini-
mizers in nonlinear elasticity. While the case of weak marginal stability, allowing one
to determine the spinodal, can be studied in full detail, the case of strong marginal
stability, bringing about the crucial notion of the binodal, is much less transparent.
The reason is that binodal coincides with the boundary of the typically inscrutable
quasi-convexity set. We have shown that in order to locate the binodal one does not
have to solve the difficult minimization problem for a non-convex integral functional
of nonlinear elasticity. Instead, one needs to deal with an equivalence class of para-
metric variational inequalities with the possibility that a particular formulation yields
a tractable characterization. We used this freedom to obtain several characterizations
of the binodal in terms of either PDEs or algebraic equations. In the former case the
test functions are “well-behaved” members of a function space, in the latter they are
weakly convergent sequences of gradients-generating laminate Young measures de-
scribed by finitely many parameters. While the proposed explicit characterization is
far from being exhaustive, we obtained a set of bounds which may be useful in appli-
cations where one has no hope of computing the explicit quasi-convex envelopes.
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This material is based upon work supported by the National Science Foundation under Grant No. 1008092
and the French ANR grant EVOCRIT (2008–2012).

Appendix A: Proof of Lemma 3.3

We note that S = W 1,∞(Rd ;R
m) ∩ S0. It will be important to use the following

embedding theorem for the space S0.
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Theorem A.1 Assume that φ ∈ S0 and d ≥ 3. Then there exists a unique constant

c ∈ R
m such that φ − c ∈ L

2d
d−2 (Rd ;R

m).

Proof First, we remark that without loss of generality we may take m = 1. Now recall
the well-known potential theory operators. The Riesz transforms Rj are defined by

F(Rjf )(ξ) = i
ξj

|ξ | f̂ (ξ),

where

F(f )(ξ) = f̂ (ξ) =
∫

Rd

f (x)e2πi(x,ξ) dx

is the Fourier transform. The operators Rj map L2(Rd) into L2(Rd). The Riesz po-
tential I1 is defined by

F(I1f )(ξ) = f̂ (ξ)

2π |ξ | .

It maps L2(Rd) into L
2d
d−2 (Rd), (Stein 1970).

If φ were smooth and compactly supported, we would have

φ = I1

(
d∑

j=1

Rj

(
∂φ

∂xj

))
.

Hence, we define

ψ(x) = I1

(
d∑

j=1

Rj(gj )

)
,

where g = ∇φ ∈ L2(Rd ;R
d).

Let η(x) be an arbitrary smooth compactly supported function. By definition of
the distributional derivative we have

∫
Rd

{
gk

∂η

∂xj
− gj

∂η

∂xk

}
dx = −

〈
φ,

∂2η

∂xk∂xj

〉
+

〈
φ,

∂2η

∂xj ∂xk

〉
= 0.

By Plancherel’s identity
∫

Rd

(ĝkξj − ĝj ξk)̂η dξ = 0.

We conclude that

ĝk(ξ)ξj = ĝj (ξ)ξk (A.1)

for a.e. ξ ∈ R
d . Thus,

−2πiξkψ̂(ξ) =
d∑

j=1

ξkξj ĝj (ξ)

|ξ |2 = ĝk(ξ),
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due to (A.1). By Plancherel’s identity

∫
Rd

ψ(x)
∂η

∂xk
dx = 2πi

∫
Rd

ξkψ̂ η̂ dξ = −
∫

Rd

ĝk(ξ )̂η dξ = −
∫

Rd

gk(x)η(x)dx.

Therefore, ∇ψ = g = ∇φ as distributions. The theorem is proved. �

The proof of Lemma 3.3 proceeds in different ways depending on the dimension d .
If d = 1, then

1

R

∫ 2R

R

|φ|∣∣φ′(x)
∣∣dx ≤ ‖φ‖∞√

R

(∫ 2R

R

∣∣φ′(x)
∣∣2 dx

)1/2

→ 0, as R → ∞,

1

R2

∫ 2R

R

∣∣φ(x)
∣∣2 dx ≤ ‖φ‖2∞

R
→ 0, as R → ∞.

Let d = 2. We estimate

1

R

∫
AR

|φ||∇φ|dx ≤ ‖φ‖∞
√

3π

(∫
AR

|∇φ|2 dx

)1/2

→ 0, as R → ∞.

By the Poincaré inequality
∫
AR

∣∣φ(x) − 〈φ〉AR

∣∣2 dx ≤ C0R
2
∫
AR

|∇φ|2 dx,

where C0 is the Poincaré constant for A1. The boundedness of φ implies that there
exists a sequence R = Rk such that

lim
k→∞〈φ〉ARk

= c.

Hence, by the triangle inequality

(∫
AR

|φ − c|2 dx

)1/2

≤
(∫

AR

∣∣φ − 〈φ〉AR

∣∣2 dx

)1/2

+ |AR|1/2
∣∣〈φ〉AR

− c
∣∣.

Then,

(
1

R2
k

∫
ARk

|φ − c|2 dx

)1/2

≤
(
C0

∫
ARk

|∇φ|2 dx

)1/2

+ √
3π

∣∣〈φ〉ARk
− c

∣∣ → 0,

as n → ∞.

Now assume that d ≥ 3. By Theorem A.1 there exists a unique constant c, such

that φ − c ∈ L
2d
d−2 (Rd ;R

m). Using the inequality ab ≤ (a2 + b2)/2 we get

1

R

∫
AR

|φ−c||∇φ|dx+ 1

R2

∫
AR

|φ−c|2 dx ≤ 1

2

∫
AR

|∇φ|2 dx+ 3

2R2

∫
AR

|φ−c|2 dx.
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By Hölder inequality

1

R2

∫
AR

|φ − c|2 dx ≤
(∫

AR

|φ − c| 2d
d−2 dx

) d−2
d → 0, as R → ∞.

The lemma is proved.

Appendix B: Proof of Lemma 3.7

Let us begin with a technical lemma.

Lemma B.1 Suppose α(R) > 0 is such that α(R) → 0, as R → ∞. Then there exists
a monotonically increasing function h(R) with h(R)/R → 0, as R → ∞, such that

lim
R→∞

(
R

h(R)

)
α(R) = 0. (B.1)

Proof We define

h(R) = max
r<R

(
r
√
α(r)

)
.

Then h(R) is monotonically increasing and h(R)/R → 0, as R → ∞. Indeed, for
any ε > 0

h(R) ≤ max
r<εR

(
r
√
α(r)

) + max
εR<r<R

(
r
√
α(r)

) ≤ εR
√
α(0) + R

√
α(εR).

Therefore,

lim
R→∞

h(R)

R
≤ ε

√
α(0).

Hence, h(R)/R → 0, as R → ∞. By definition of h(R) we have h(R) ≥ R
√
α(R).

Therefore,

R

h(R)
≤ 1√

α(R)
.

Thus, (
R

h(R)

)
α(R) ≤ √

α(R) → 0, as R → ∞. �

Now let us prove Lemma 3.7. First observe that for any φ ∈ S0

lim
R→∞

∫
BR

|∇φ|2 dx = ‖∇φ‖2
2,

while

lim
R→∞

∫
AR(h(R))

|∇φ|2 dx = 0.
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Hence, we only need to prove that there exist c ∈ R
m and a monotonically increasing

function h(R) = o(R) such that

lim
R→∞

1

h(R)2

∫
AR(h(R))

|φ − c|2 dx = 0. (B.2)

Remark 3.6 implies that we need to prove (B.2) for d ≥ 3. In that case, the constant

c ∈ R
m is chosen so that φ − c ∈ L

2d
d−2 (Rd ;R

m), which is possible by Theorem A.1.
The Hölder inequality gives

1

h(R)2

∫
AR(h(R))

|φ − c|2 dx ≤ C

(
R

h(R)

) 2(d−1)
d

(∫
AR(h(R))

|φ − c| 2d
d−2 dx

) d−2
d

.

By Theorem A.1

α(R) =
(∫

|x|≥R/2
|φ − c| 2d

d−2 dx

) d−2
2(d−1) → 0, as R → ∞.

We see that in each of the three cases we have a function α(R) → 0, as R → ∞,
which is independent of h(R). The application of Lemma B.1 concludes the proof of
Lemma 3.7.

Appendix C: Proof of Theorem 3.9

Step 1: Asymptotics of
∫
BR

|∇φ|2 dx.

We write x = p + RT t and |x|2 = |p|2 + |t |2. Therefore,

BR ⊂ VR = {
x ∈ R

d : x = p + RT t, |t | ≤ R, |p| ≤ R
}
.

∫
VR

|∇φ|2 dx =
∫

{|t |<R}

∫
{|p|<R}

{|ψt |2 + |ψp|2}dt dp.

If we make the change of variables p = Ru we obtain

1

Rd−k

∫
VR

|∇φ|2 dx =
∫

{|t |<R}

∫
{|u|<1}

{∣∣ψt (t,Ru)
∣∣2 + ∣∣ψp(t,Ru)

∣∣2}dudt .

Hence,

1

Rd−k

∫
VR

|∇φ|2 dx ≤
∫

{|u|<1}

∫
Rk

{∣∣ψt (t,Ru)
∣∣2 + ∣∣ψp(t,Ru)

∣∣2}dt du.

By the Riemann–Lebesgue lemma we get

lim
R→∞

1

Rd−k

∫
VR

|∇φ|2 dx ≤ ωd−k −
∫
Qd−k

∫
Rk

{∣∣ψt (t,p)
∣∣2 + ∣∣ψp(t,p)

∣∣2}dt dp,
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where ωn is the volume of the n-dimensional unit ball. Thus,

lim
R→∞

1

Rd−k

∫
BR

|∇φ|2 dx ≤ ωd−k −
∫
Qd−k

∫
Rk

{∣∣ψt (t,p)
∣∣2 + ∣∣ψp(t,p)

∣∣2}dt dp.

To get the reverse inequality we write
∫
BR

|∇φ|2 dx =
∫

{|t |<R}

∫
{|p|<r(R,t)}

{|ψt |2 + |ψp|2}dp dt,

where r(R, t) = √
R2 − |t |2. If we make a change of variables p = r(R, t)u we

obtain∫
BR

|∇φ|2 dx

=
∫

{|t |<R}
r(R, t)d−k

∫
{|u|<1}

{∣∣ψt

(
t, r(R, t)u

)∣∣2 + ∣∣ψp

(
t, r(R, t)u

)∣∣2}dudt .

By the Riemann–Lebesgue lemma we get

lim
R→∞

∫
{|u|<1}

{∣∣ψt

(
t, r(R, t)u

)∣∣2 + ∣∣ψp

(
t, r(R, t)u

)∣∣2}du

= ωd−k −
∫
Qd−k

{∣∣ψt (t,p)
∣∣2 + ∣∣ψp(t,p)

∣∣2}dp

for a.e. t ∈ R
k . By Fatous’s lemma we get

lim
R→∞

1

Rd−k

∫
BR

|∇φ|2 dx ≥ ωd−k

∫
Rk

−
∫
Qd−k

{∣∣ψt (t,p)
∣∣2 + ∣∣ψp(t,p)

∣∣2}dp dt .

Hence, we obtain the asymptotics of
∫
BR

|∇φ|2 dx:

lim
R→∞

1

Rd−k

∫
BR

|∇φ|2 dx = ωd−k

∫
Rk

−
∫
Qd−k

{∣∣ψt (t,p)
∣∣2 + ∣∣ψp(t,p)

∣∣2}dp dt .

(C.1)
In particular, we get

lim
R→∞ −

∫
BR

|∇φ|2 dx ≤ lim
R→∞

ωd

Rd

∫
VR

|∇φ|2 dx = 0,

establishing (3.19).

Step 2: Proof of (3.17).
For any h(R) = o(R) we have, using (C.1),

∫
AR(h(R))

|∇φ|2 dx∫
BR

|∇φ|2 dx
=

∫
BR

|∇φ|2 dx − ∫
BR−h(R)

|∇φ|2 dx∫
BR

|∇φ|2 dx
= 1 −

(
1 − h(R)

R

)d−k

uR,

where uR → 1, as R → ∞. Thus, (3.17) is proved.
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Step 3: Proof of (3.18). We have
∫
AR(h(R))

|φ|2 dx ≤
∫

|t |<R

∫
|p|<R

∣∣ψ(t,p)
∣∣2 dp dt .

The periodicity in the p variable implies that for any domain Ω ⊂ R
d−k

∫
Ω

∣∣ψ(t,p)
∣∣2 dp ≤ v(Ω)−

∫
Qd−k

∣∣ψ(t,p)
∣∣2 dp,

where v(Ω) is the (d − k)-volume of all period cells intersecting Ω . We further
estimate that

v(Ω) ≤ |Ω + BM |,
where M is the diameter of the period cell Qd−k . When R >M we obtain

v
({|p| ≤ R + M

}) ≤ ωd−k(2R)d−k.

Hence, we get the estimate

lim
R→∞

1
h(R)2

∫
AR(h(R))

|φ|2 dx∫
BR

|∇φ|2 dx

≤ 2d−k

‖∇φ‖2
L2(Y )

lim
R→∞

1

h(R)2

∫
|t |<R

−
∫
Qd−k

∣∣ψ(t,p)
∣∣2 dp dt . (C.2)

For convenience we introduce the truncated L2 norm

‖f ‖2
2,R =

∫
BR

∫
Qd−k

|f (t,p)|2 dp dt .

Lemma C.1 For every ψ ∈ Sk(Qd−k) there exists a constant c ∈ R
m such that

lim
R→∞

‖ψ − c‖2
2,R

R2
= 0.

Proof The proof of the lemma is different depending on whether k = 1, k = 2 or
k ≥ 3.

If k = 1 we can use the assumption of uniform boundedness of ψ and conclude
that

‖ψ‖2
2,R

R2
≤ 2‖ψ‖2∞

R
→ 0, as R → ∞.

If k ≥ 3, then, according to Theorem A.1, for a.e. p ∈ Qd−k there exists a unique
vector c(p) such that ∫

Rk

∣∣ψ(t,p) − c(p)
∣∣ 2k
k−2 < ∞.

However, we need a sharper statement
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Lemma C.2 There exists c ∈ R
m such that c(p) = c for a.e. p ∈ Qd−k .

Proof Let

〈ψ〉Qd−k
(t) = 1

|Qd−k|
∫
Qd−k

ψ(t,p)dp.

The Poincaré inequality implies

∥∥ψ − 〈ψ〉Qd−k
(t)

∥∥2
2,R ≤ C‖ψp‖2

2,R.

Therefore, ‖ψ − 〈ψ〉Qd−k
(t)‖2,R is bounded as R → ∞. Next observe that

〈ψ〉Qd−k
(t) ∈ S as a function of t . Hence, there exists c ∈ R

m such that 〈ψ〉Qd−k
(t)−

c ∈ L
2k
k−2 (Rk). It follows that

∥∥c(p) − c
∥∥

2,R ≤ ∥∥c(p) − ψ
∥∥

2,R + ∥∥ψ − 〈ψ〉Qd−k
(t)

∥∥
2,R + ∥∥〈ψ〉Qd−k

(t) − c
∥∥

2,R.

Let us apply the Hölder inequality to the first and third term on the left-hand side of
the above inequality:

∥∥c(p) − ψ
∥∥2

2,R ≤ CR2
∫
Qd−k

(∫
Rk

∣∣c(p) − ψ
∣∣ 2k
k−2 dt

) k−2
k

dp,

∥∥〈ψ〉Qd−k
(t) − c

∥∥2
2,R ≤ CR2|Qd−k|

(∫
Rk

∣∣〈ψ〉Qd−k
(t) − c

∣∣ 2k
k−2 dt

) k−2
k

.

We conclude that

lim
R→∞

1

R2

∥∥c(p) − c
∥∥2

2,R < +∞.

However, this would contradict

∥∥c(p) − c
∥∥2

2,R = |BR|
∫
Qd−k

∣∣c(p) − c
∣∣2 dp,

unless c(p) = c for a.e. p ∈ Qd−k . �

We will now establish Lemma C.1, in which the constant vector c is coming from
Lemma C.2. For simplicity of notation ψ(t,p) will now stand for ψ − c. In order to
prove Lemma C.1 we split the t -integral in the definition of ‖ψ‖2,R into the integral
over the ball {|t | < εR} and the annulus {εR < |t | < R}. Then we apply the same
Hölder inequality to both integrals and obtain the estimate

1

R2

∫
|t |<R

∣∣ψ(t,p)
∣∣2 dt ≤ ω

k
2
k ε

2
(∫

|t |<εR

∣∣ψ(t,p)
∣∣ 2k
k−2 dt

) k−2
k

+ ω
k
2
k

(
1 − εk

) k
2

(∫
εR<|t |<R

∣∣ψ(t,p)
∣∣ 2k
k−2 dt

) k−2
k

.
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Lemma C.2 then implies that for a.e. p ∈ Qd−k

lim
R→∞

1

R2

∫
|t |<R

∣∣ψ(t,p)
∣∣2 dt ≤ ω

k
2
k ε

2
(∫

Rk

∣∣ψ(t,p)
∣∣ 2k
k−2 dt

) k−2
k

.

Thus, for a.e. p ∈ Qd−k

lim
R→∞

1

R2

∫
|t |<R

∣∣ψ(t,p)
∣∣2 dt = 0. (C.3)

By Hölder inequality and Theorem A.1

1

R2

∫
|t |<R

∣∣ψ(t,p)
∣∣2 dt ≤ ω

2
k

k

(∫
|t |<R

∣∣ψ(t,p)
∣∣ 2k
k−2 dt

) k−2
k ≤ C

∫
Rk

∣∣ψt (t,p)
∣∣2 dt .

By the Lebesgue dominated convergence theorem ‖ψ‖2
2,R/R

2 → 0, as R → ∞,
since the function

Φ(p) =
∫

Rk

∣∣ψt (t,p)
∣∣2 dt

is integrable over Qd−k .
The case k = 2 is the most delicate. Let us define

cR(p) = −
∫

|t |<R

ψ(t,p)dt .

Let Rn → ∞ be a strictly monotonic sequence such that

lim
n→∞〈cRn〉Qd−2 = c

for some vector c ∈ R
m. We claim that

lim
R→∞

∥∥cR(p) − 〈cR〉Qd−2

∥∥
2 dp = 0.

Indeed,

∥∥cR(p) − 〈cR〉Qd−2

∥∥2
2 ≤ C−

∫
|t |<R

∫
Qd−2

∣∣ψ(t,p) − 〈ψ〉Qd−2(t)
∣∣2 dp dt .

Applying the Poincaré inequality for the inner integral we get

∥∥cR − 〈cR〉Qd−2

∥∥2
2 ≤ C−

∫
|t |<R

∫
Qd−2

∣∣ψp(t,p)
∣∣2 dp dt → 0, as R → ∞.

We now prove that

lim
n→∞

1

R2

∥∥ψ(t,p) − c
∥∥2

2,R = 0.
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By triangle inequality we have

∥∥ψ(t,p)−c
∥∥

2,R ≤ ∥∥ψ −cR(p)
∥∥

2,R +∥∥cR(p)−〈cR〉Qd−2

∥∥
2,R +∥∥〈cR〉Qd−2 −c

∥∥
2,R.

We compute

∥∥〈cR〉Qd−2 − c
∥∥2

2,R = |Qd−2|πR2
∣∣〈cR〉Qd−2 − c

∣∣2.
Hence,

lim
n→∞

1

R2
n

∥∥〈cRn〉Qd−2 − c
∥∥2

2,R = 0,

∥∥cR(p) − 〈cR〉Qd−2

∥∥2
2,R = πR2

∥∥cR − 〈cR〉Qd−2

∥∥2
2.

Therefore,

lim
R→∞

1

R2

∥∥cR(p) − 〈cR〉Qd−2

∥∥2
2,R = 0.

Finally, we have

∥∥ψ − cR(p)
∥∥2

2,R =
∫
Qd−2

∫
{|t |<εR}

∣∣ψ − cR(p)
∣∣2 dt dp

+
∫
Qd−2

∫
{εR<|t |<R}

∣∣ψ − cR(p)
∣∣2 dt dp.

Using the uniform boundedness of ψ for the first term and the Poincaré inequality
for the second term, we get

∥∥ψ − cR(p)
∥∥2

2,R ≤ Cε2R2‖ψ − c‖2∞ + R2Cε

∫
Qd−2

∫
{εR<|t |<R}

∣∣ψt (t,p)
∣∣2 dt dp.

Thus,

lim
R→∞

1

R2

∥∥ψ − cR(p)
∥∥2

2,R ≤ Cε2‖ψ − c‖2∞.

The arbitrariness of ε > 0 implies that

lim
R→∞

1

R2

∥∥ψ − cR(p)
∥∥2

2,R = 0.

Lemma C.1 is proved now. �

Let Rn → ∞ be the monotonically increasing sequence for which ‖ψ −
c‖2,Rn/Rn → 0, as n → ∞. Let

α(R) = ‖ψ − c‖2,Rn

Rn

, Rn ≤ R <Rn+1.
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Then α(R) → 0, as R → ∞. By Lemma B.1 there exists a monotonically increasing
function h(R) such that h(R)/R → 0, as R → ∞ and

lim
R→∞

(
R

h(R)

)
α(R) = 0.

Hence,

lim
R→∞

(‖ψ − c‖2,R

h(R)

)2

≤ lim
n→∞

(
Rn

h(Rn)
α(Rn)

)2

= 0.

The estimate (C.2) together with (3.17) now implies (3.18). Thus, we have proved
that Ck ⊂ S∗ for any 1 ≤ k ≤ d .

Step 4: Proof of the formula (3.24). We have

1

Rd−k

∫
BR

W ◦(F ,∇φ)dx

=
∫

|u|≤1

∫
|t |≤R

√
1−|u|2

W ◦(F ,ψt (t,Ru)R + ψp(t,Ru)Q
)

dt du.

By the Riemann–Lebesgue lemma

lim
R→∞

∫
|u|≤1

∫
Rk

W ◦(F ,ψt (t,Ru)R + ψp(t,Ru)Q
)

dt du

= ωd−k −
∫
Qd−k

∫
Rk

W ◦(F ,ψt (t,p)R + ψp(t,p)Q
)

dt dp.

Thus, in order to finish the proof of the theorem we need to show that

ρ = lim
R→∞

∫
|u|≤1

∫
|t |≥R

√
1−|u|2

W ◦(F ,ψt (t,Ru)R + ψp(t,Ru)Q
)

dt du = 0.

(C.4)
Recall that φ ∈ W 1,∞(Rd ;R

m). Hence, there exists a number C > 0 depending on
‖φ‖1,∞, but independent of R such that

ρ ≤ C lim
R→∞

∫
|u|≤1

∫
|t |≥R

√
1−|u|2

{∣∣ψt (t,Ru)
∣∣2 + ∣∣ψp(t,Ru)

∣∣2}dt du.

For any ε ∈ (0,1) we have
∫

|u|≤1

∫
|t |≥R

√
1−|u|2

{∣∣ψt (t,Ru)
∣∣2 + ∣∣ψp(t,Ru)

∣∣2}dt du = T1(R, ε) + T2(R, ε),

where

T1(R, ε) =
∫

|u|≤1−ε

∫
|t |≥R

√
1−|u|2

{∣∣ψt (t,Ru)
∣∣2 + ∣∣ψp(t,Ru)

∣∣2}dt du,
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T2(R, ε) =
∫

1−ε<|u|≤1

∫
|t |≥R

√
1−|u|2

{∣∣ψt (t,Ru)
∣∣2 + ∣∣ψp(t,Ru)

∣∣2}dt du.

If |u| ≤ 1 − ε and |t | ≥ R
√

1 − |u|2 then |t | ≥ R
√
ε(2 − ε). In particular, |t | ≥√

(2 − ε)/ε, if R > 1/ε. Therefore, by the Riemann–Lebesgue lemma

lim
R→∞T1(R, ε) ≤ T ∞

1 (ε)

= ωd−k −
∫
Qd−k

∫
|t |≥√

(2−ε)/ε

{∣∣ψt (t,p)
∣∣2 + ∣∣ψp(t,p)

∣∣2}dp dt .

Also, by the Riemann–Lebesgue lemma

lim
R→∞T2(R, ε) ≤ T ∞

2 (ε)

= ∣∣{1 − ε < |u| ≤ 1
}∣∣−
∫
Qd−k

∫
Rk

{∣∣ψt (t,p)
∣∣2 + ∣∣ψp(t,p)

∣∣2}dp dt .

We conclude that ρ = 0, since

lim
ε→0

T ∞
1 (ε) = lim

ε→0
T ∞

2 (ε) = 0.

Appendix D: Proof of Theorem 3.14

We may assume, without loss of generality, that n = e1. By Lemma 3.2 in Müller and
Šverák (2003), applied to the bounded domain Q = [0,1]d , there exists a sequence of
functions un(x) converging uniformly in Q to u0(x) = x1a and such that ‖∇un‖∞
is a bounded sequence and for all 1 ≤ j ≤ r

lim
n→∞

∣∣{x ∈ Q : dist
(∇un(x),H j

)
< 1/n

}∣∣ = λj .

Let pn(x) denote the function defined in the layer 0 < x1 < 1, which is periodic with
periods e2, . . . , ed and equal to un(x) on Q. Finally, we let

vn(x) =

⎧⎪⎪⎨
⎪⎪⎩

a, if x1 ≥ 1,

0, if x1 ≤ 0,

pn(x), if 0 < x1 < 1.

Clearly, vn(x) → φ0(x) uniformly in R
d . However, the functions vn(x) have jump

discontinuities across the surfaces Γj,k = {xj = k,0 < x1 < 1}, j = 2, . . . , d , k ∈ Z,
as well as the planes Π0 = {x1 = 0} and Π1 = {x1 = 1}. Let εn = ‖vn − φ0‖∞. Then
εn → 0 as n → ∞. Let

Γ = Π0 ∪ Π1 ∪
(

d⋃
j=1

(⋃
k∈Z

Γj,k

))
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be the entire singular set. When n is sufficiently large there is a C∞(Rd) function
ηn(x) that is periodic with periods e2, . . . , ed , which is equal to 0 on Γ and 1 on
{x ∈ R

d : dist(x,Γ ) >
√
εn}, and such that ‖∇ηn‖∞ ≤ C/

√
εn. It follows that the

function

φn(x) = (
1 − ηn(x)

)
φ0(x) + ηn(x)vn(x)

is Lipschitz continuous with

‖∇φn‖∞ ≤ ‖∇φ0‖∞ + ‖∇un‖∞ + C
√
εn.

Obviously, φn(x) converges uniformly to φ0(x). In addition ∇φn(x) = 0 whenever
x1 < −√

εn or x1 > 1 + √
εn. It follows that (3.19) holds. Observe that φn(x) has

periods e2, . . . , ed , since both vn(x) and ηn(x) do. Thus, ψn ∈ S 0
1 , where

ψn(t,p) = φn

(
te1 +

d∑
j=2

pjej

)
.

Hence, φn ∈ C1. To finish the proof of the theorem we need to establish (3.29). This
is a consequence of the formula (3.24) and the relation

lim
n→∞

∫
R

(∫
[0,1]d−1

W ◦(F ,∇φn)dx2 · · ·dxd

)
dx1

= lim
n→∞

∫
Q

W ◦(F ,∇un)dx = J (F , ν).

Appendix E: Proof of Lemma 4.4

The lemma is best proved in the (t,p) variables, where instead of the [0,1]d−k peri-
odic field ψ we use a Qd−k periodic field, which we denote ψ as well, so that

φ(x) = ψ(Rx,Qx), ψ(t,p) = φ
(
RT t + QT p

)
.

In terms of ψ Eq. (4.12) becomes

⎧⎪⎪⎨
⎪⎪⎩

∇t · (P (F + ψtR + ψpQ)RT ) + ∇p · (P (F + ψtR + ψpQ)QT ) = 0,

∇t · (RP ∗(F + ψtR + ψpQ)RT ) = ∇p · (ψT
t P (F + ψtR + ψpQ)QT ),

∇p · (QP ∗(F + ψtR + ψpQ)QT ) = ∇t · (ψT
p P (F + ψtR + ψpQ)RT ),

(E.1)
while relation (4.18) reads

⎧⎨
⎩

∫
Rk

∫
Qd−k

RP̂
∗
RT dp dt = 0,∫

Rk

∫
Qd−k

ψT
p P̂RT dp dt = 0,

(E.2)
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where

P̂ = P̂ (ψtR + ψpQ) = P (F + ψtR + ψpQ) − P (F ).

Replacing P̂
∗

by its expression from (4.15) and using Eq. (E.1) we obtain

∇t · (RP̂
∗
RT

) = ∇p · (ψT
t P̂QT

) − ∇p · (RF T P (F + ψtR + ψpQ)QT
)
, (E.3)

since

∇t · (RN(ψtR + ψpQ)RT
) = −∇t · (ψT

t P (F )
)
.

Let

f 1(t) =
∫
Qd−k

RP̂
∗
RT dp,

f 2(t) =
∫
Qd−k

ψT
p P̂RT dp =

∫
Qd−k

ψT
p P (F + ψtR + ψpQ)RT dp.

Integrating (E.3) over Qd−k and using the periodicity we obtain ∇t · f 1(t) = 0.
Similarly, integrating the third equation in (E.1) over Qd−k we conclude that
∇t · f 2(t) = 0. We estimate

∣∣P̂ ∗∣∣ ≤ C
(|ψt |2 + |ψp|2), ∣∣ψT

p P̂
∣∣ ≤ C

(|ψt |2 + |ψp|2),
since ψt and ψp are assumed to be uniformly bounded. Then φ ∈ Ck implies that
{f 1,f 2} ⊂ L1(Rk). The statement of the lemma follows from

∫
Rk

f 1(t)dt = 0,
∫

Rk

f 2(t)dt = 0,

which is a consequence of a simple observation that any L1 divergence-free vector
field f (t) on R

k must satisfy
∫

Rk f dt = 0. Indeed, f ∈ L1 implies that its Fourier
transform f̂ (ω) is continuous. ∇ · f = 0 implies that ω · f̂ (ω) = 0 for any ω ∈ R

k .
Fixing ω �= 0 we obtain

ω · f̂ (εω)

|ω| = εω · f̂ (εω)

|εω| = 0.

Passing to the limit as ε → 0 and using continuity of f̂ (ω) we obtain ω · f̂ (0) = 0.
Thus f̂ (0) = 0, since ω ∈ R

k \ {0} was arbitrary.

Appendix F: Proof of Theorem 4.6

When the subspace L described by R is fixed we can simplify our notation by re-
garding the first k components of x as t and the remaining components as p. Then
∇φ = [ψt ,ψp]. We then have the corresponding splitting of P = [P 1,P 2] and

P ∗ = W
(
F +[ψt ,ψp])

[
I k 0

0 I d−k

]
−

[
ψT

t

ψT
p

]
[P 1,P 2] =

[
P ∗

1 −ψT
t P 2

−ψT
p P 1 P ∗

2

]
.
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Similarly, splitting the t and p components we have

P̂ (H ) = [P̂ 1, P̂ 2], P̂ i = P i

(
F + [ψt ,ψp]) − P i (F ), i = 1,2,

P̂
∗
(H ) =

[
P̂

∗
1 −ψT

t P̂ 2

−ψT
p P̂ 1 P̂

∗
2

]
,

where

P̂
∗
1 = W ◦(F , [ψt ,ψp])Ik − ψT

t P̂ 1, P̂
∗
2 = W ◦(F , [ψt ,ψp])I d−k − ψT

p P̂ 2.

Next we use the generalized Clapeyron theorem (Grabovsky and Truskinovsky
2013a) for Ŵ (H ):

∫
|t |≤R

∫
Qd−k

Ŵ (∇φ)dp dt = 1

d
(T1 + T2), (F.1)

where

T1 =
∫

|t |=R

∫
Qd−k

{(
P̂

∗
1nt , t

) − (
ψT

p P̂ 1nt ,p
) + (P̂ 1nt ,ψ)

}
dp dS(t),

T2 =
∫

|t |≤R

∫
∂Qd−k

{(
P̂

∗
2np,p

) − (
ψT

t P̂ 2np, t
) + (P̂ 2np,ψ)

}
dS(p)dt .

Next we observe that∫
∂Qd−k

ψT
t P̂ 2np dS(p) = 0,

∫
∂Qd−k

(P̂ 2np,ψ)dS(p) = 0,

since ψT
t P̂ 2 and (P̂ 2)

T ψ are Qd−k-periodic. By the divergence theorem we obtain
∫
∂Qd−k

(
P̂

∗
2np,p

)
dS(p) =

∫
Qd−k

{(∇p · P̂ ∗
2,p

) + Tr P̂
∗
2

}
dp.

The Noether–Eshelby equation gives

∇p · P̂ ∗
2 = ∇t · (ψT

p P̂ 1
)
.

We also compute

Tr P̂
∗
2 = (d − k)Ŵ − Tr

(
ψT

p P̂ 2
)
.

Hence, we obtain

T2 = (d − k)

∫
|t |≤R

∫
Qd−k

Ŵ (∇φ)dp dt + T ′
2,

where

T ′
2 =

∫
|t |=R

∫
Qd−k

(
ψT

p P̂ 1nt ,p
)

dp dS(t) −
∫

|t |≤R

∫
Qd−k

Tr
(
ψT

p P̂ 2
)

dp dt .
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Substituting this back into (F.1) we obtain
∫

|t |≤R

∫
Qd−k

Ŵ (∇φ)dp dt = 1

k

(
T̂1(R) + T̂2(R)

)
,

where

T̂1(R) =
∫

|t |=R

∫
Qd−k

{(
P̂

∗
1nt , t

) + (P̂ 1nt ,ψ)
}

dp dS(t),

T̂2(R) = −
∫

|t |≤R

∫
Qd−k

Tr
(
ψT

p P̂ 2
)

dp dt .

We observe that due to (4.17)

lim
R→∞ T̂2(R) = −Tr

(∫
Yk

ψT
p P̂ 2 dp dt

)
= 0.

To finish the proof of the theorem we need to show that T̂1(R) → 0, as R → ∞.
We have |P̂ | ≤ C|∇φ| and |P̂ ∗| ≤ C|∇φ|2, due to the uniform boundedness

of ∇φ, where the constant C depends on φ, but is independent of R. Thus, |T̂1(R)| ≤
CK(R) for a.e. R > 1, where

K(R) =
∫

|t |=R

∫
Qd−k

{
R|∇φ|2 + |φ − c||∇φ|}dp dS(t),

where c ∈ R
m can be chosen arbitrarily. We have, after an application of the Cauchy–

Schwartz inequality,

1

R

∫ 2R

R

K(r)dr ≤ 2
∫
R<|t |<2R

∫
Qd−k

|∇φ|2 dp dt

+ ‖φ − c‖2,2R

R

(∫
R<|t |<2R

∫
Qd−k

|∇φ|2 dp dt

)1/2

.

If k = 1 or k = 2 then the boundedness of φ implies that

lim
R→∞

1

R

∫ 2R

R

K(r)dr = 0. (F.2)

If k ≥ 3 then Lemma C.1 guarantees the choice of the constant c ∈ R
m such that (F.2)

holds. Therefore,

lim
R→∞

K(R) = 0.

Hence, ∣∣∣∣
∫
Y

Ŵ (∇φ)dx

∣∣∣∣ ≤ C lim
R→∞

K(R) = 0.

The theorem is proved.
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Appendix G: Proof of Lemma 5.5

We will prove that G = G0, where

G0 = {
A = diag(A1, . . . ,Ak), Ai > 0, i = 1, . . . , k, TrA = 1

}
.

If we write 〈Γ (n)〉a in components,

(〈
Γ (n)

〉
a

)
ij

= −
∫

Sk−1

ninj

aiaj
∑k

s=1 a
−2
s n2

s

dS(n),

we immediately see that G ⊂ G0.
To each a = (a1, . . . , ak) ∈ R

k we associate (without relabeling) the diagonal ma-
trix a = diag(a1, . . . , ak). Let � = {(a1, . . . , ak) : ai > 0,

∑k
i=1 ai = 1}. Then the

smooth map F(a) = 〈Γ (n)〉a maps � into itself. To prove the reverse inclusion
G0 ⊂ G we need to show that the map F : � → � is surjective. We first show that
the differential of the map F is non-degenerate. This implies, via the inverse function
theorem, that F(�) is an open subset of �.

In order to simplify the calculation we first change variables b = a−1/Tr(a−1).
Then

F(a) = G

(
a−1

Tra−1

)
, G(b) = −

∫
Sk−1

bn ⊗ bn

|bn|2 dS(n).

We compute

dF(a)η = −dG

(
a−1

Tra−1

)
a−1 Tr(a−1ηa−1) − a−1ηa−1 Tra−1

(Tra−1)2
,

where η is a diagonal trace-free matrix. If

a−1 Tr
(
a−1ηa−1) − a−1ηa−1 Tra−1 = 0

then η = λa for some scalar λ. Taking traces we conclude that λ = 0. Hence, the map

η �→ a−1 Tr(a−1ηa−1) − a−1ηa−1 Tra−1

(Tra−1)2

is a non-degenerate linear transformation on the space of diagonal trace-free matri-
ces. Hence, dF is non-degenerate if and only if dG is non-degenerate. We compute
explicitly

dGη = 2−
∫

Sk−1

{
ηn � bn

|bn|2 − bn ⊗ bn

|bn|4 (bn, ηn)

}
dS(n),

where η is diagonal and Trη = 0. Suppose dGη = 0 for some non-zero η. The lemma
will be proved if we show that only for η = 0. If this is not the case then we have
Tr(ηb−1dGη) = 0. We compute (using commutativity of the diagonal matrix multi-
plication)

Tr
(
ηb−1dGη

) = 2−
∫

Sk−1

|ηn|2|bn|2 − (bn, ηn)2

|bn|4 dS(n).
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The Cauchy–Schwartz inequality implies that the integrand is non-negative. For it to
be zero we would need ηn = α(n)bn for almost all n ∈ S

k−1. The equivalent relation
b−1ηn = α(n)n means that every unit vector is an eigenvector of b−1η. Hence, there
is a constant α0 such that η = α0b. Taking the trace, we obtain α0 = 0 and the non-
degeneracy of dG is proved.

The lemma will follow, if we show that if an → a◦ ∈ ∂� and F(an) → f ◦, as
n → ∞ then f ◦ ∈ ∂�. Let 1 ≤ i, j ≤ k be a pair of indices such that a◦

i = 0 and
a◦
j �= 0. Such a pair exists, since a◦ ∈ ∂�. We claim that f ◦

j = 0, finishing the proof
of the lemma. We estimate

Fj (a) ≤ −
∫

Sk−1

a−2
j n2

j

a−2
j n2

j + a−2
i n2

i

dS(n) = −
∫

Sk−1

a2
i n

2
j

a2
i n

2
j + a2

j n
2
i

dS(n).

Now, by the Lebesgue bounded convergence theorem,

f ◦
j = lim

n→∞Fj (an) = 0.

Lemma 5.5 is now proved.
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