
Continuum Mech. Thermodyn. (2007) 19: 211–243
DOI 10.1007/s00161-007-0044-y

ORIGINAL ARTICLE

Yury Grabovsky · Lev Truskinovsky

The flip side of buckling

Received: 22 February 2007 / Accepted: 2 March 2007 / Published online: 26 June 2007
© Springer-Verlag 2007

Abstract Buckling of slender structures under compressive loading is a failure of infinitesimal stability due
to a confluence of two factors: the energy density non-convexity and the smallness of Korn’s constant. The
problem has been well understood only for bodies with simple geometries when the slenderness parameter is
well defined. In this paper, we present the first rigorous analysis of buckling for bodies with complex geom-
etry. By limiting our analysis to the “near-flip” instability, we address the universal features of the buckling
phenomenon that depend on neither the shape of the domain nor the degree of constitutive nonlinearity of the
elastic material.
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1 Introduction

Despite its seemingly straightforward treatment in introductory engineering courses, buckling instability of
slender elastic bodies is known to be tricky. Already the first computation of a critical load for a strut under
uniaxial compression by Euler was contested by D’Alembert, who claimed that due to flip instability (see
Fig. 1) the buckling load should be equal to zero [41, p. 258]. In fact, the original Euler’s argument [12]
left several mathematical questions unanswered. For instance, the formula for the critical load contains the
slenderness parameter h even though it is derived from the one-dimensional theory corresponding to the limit
h → 0. Furthermore, Euler’s apparent use of linear elasticity for the derivation of the critical load formally
contradicts the uniqueness theorem of Kirchhoff. Consequently, two different approaches have been pursued
in an attempt to treat buckling with full mathematical rigor.

The first approach is to perform, by driving h to zero, a controlled asymptotic dimension reduction, and
then study the stability problem in a low-dimensional setting [7]. While this method was used by Euler himself,
only recently the original insights into the structure of the limiting energy functional for rods and plates have
been confirmed by the rigorous analysis implying global minimization of the energy [15,30–32]. The formal
problem remains, however, with the equally rigorous treatment of the local minima of the energy which are
often essential in structural stability. Another problem concerns the necessity to deal with compressive prestress
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Fig. 1 The two instability modes: a flip, b buckling

which lowers bending rigidity of the structure and ultimately triggers the buckling instability. The prestress
enters the linearized elasticity problem in a nontrivial way since, somewhat paradoxically, the linearized strain
during buckling is large while the finite strain is small [3,17,40]. Despite those remaining analytical problems,
the advanced engineering theories of buckling which are based on semi-empirical low-dimensional models
for slender bodies, usually account for the above physical effects correctly and give adequate predictions for
the critical loads (e.g., [4,24]). The problem is that those theories remain largely intuitive and are therefore
restricted to simple geometries. Most importantly, the exact domain of their application is unclear.

The second approach to buckling is to deal directly with an instability at finite h. In this case, the critical
load can be found from the analysis of the positive definiteness of the second variation for a 3D elasticity
problem [9,14,18,26,33,38]. The ensuing eigenvalue computations are notoriously tedious and specific to
the particular geometry and energy density structure. Although such studies, usually possible only for simple
shapes and constitutive laws, expose for thicker bodies a sequence of transitions between buckling and bar-
relling, and establish an important link between buckling and surface instabilities, they conceal, in the case
of slender bodies, a direct relation between the Euler’s buckling and the D’Alembert’s flip, and obscure an
intuitively appealing relation between the critical load and the Korn constant. The theories which deal with
finite slenderness but stop short of solving the full eigenvalue problem are usually focused exclusively on the
bounds for the critical load which can be made explicit, again, only for bodies with simple geometry [1,10,
11,21].

In this paper, we present a treatment of buckling instability which can be placed in between the two above
approaches. More precisely, we conduct the analysis of the second variation for the full elastic problem and then
take the limit h → 0. The fact that we perform the dimension reduction in the stability conditions, instead of
the energy itself, distinguishes our approach from most other mathematical papers on the subject (see the recent
review in [25]). We find it necessary to deal directly with the conditions of instability because of our focus on
local rather than global minimization of the energy. The latter is the target of the powerful methods based on
Gamma-convergence which may or may not be adequate for buckling depending on whether the bifurcation
is supercritical or subcritical. An approach similar to ours, but based on formal asymptotic expansions, has
been applied previously to prismatic bars under specific constitutive assumptions in [36]. Here, we go further
and obtain rigorous theorems that do not depend on the material model and are largely independent of either
the details of loading or the geometry of the domain, encompassing therefore the problem of imperfection
sensitivity.

Our approach is based on the new interpretation of buckling bifurcation as a delayed flip instability taking
place when the compressive dead loads are supplemented by additional constraints that keep the flip from
occurring at infinitesimal compression. The appropriate additional constraints are expected to generate a genu-
inely mixed type loading because in purely hard device buckling is forbidden, while in soft device it degenerates
into flip. We show that the delayed flip instability, i.e., near-flip buckling, involves the interplay of two factors.
On the one hand, the structure in purely soft device is unstable at arbitrarily small compressive loads due to the
intrinsic nonconvexity of the energy density function. On the other hand, the mixed type boundary conditions
promote stability. Buckling is then understood as failure of the stabilizing force to overcome the destabilizing
force. While Korn’s constant is a known characteristic of the stabilizing effect of traction-dominated loading
and slenderness of the domain, the parameter which fully characterizes the destabilizing effect of compressive
loading has been unknown and is introduced in this paper for the first time.

We recall that the peculiarity of dead compressive loading was first realized by Signorini [37] who has found
that in soft device even for small loads there are multiple equilibria. While all those equilibrium configurations
have the Cauchy–Green strain tensor C close to I (the identity matrix) only one of them has the deforma-
tion gradient F close to I . More recently, the corresponding bifurcation has been studied in full detail [5,
6]. In particular, it was found that the branch converging to I is not always stable and that in the case of
a compressed strut, the instability manifests itself through the rigid rotation (flip). In the present paper, we
extend these ideas to the case of mixed loading for slender bodies with complex geometry and explain how the
flip bifurcation transforms into buckling. Along the way we re-evaluate buckling from the perspective of the
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non-commutativity of the two apparently well understood asymptotic procedures: linearization and dimension
reduction. From the times of Signorini, linearization has been known to be formally ill defined in the vicinity
of a bifurcation point [28], and in the case of near-flip buckling it is the dimension reduction that is responsible
for the ultimate shrinking of the domain where the linearization is legitimate [29]. As we make clear, the
non-uniformity of the classical linear elastic limit is due to the fact that the work of the pre-stress is neglected
during standard linearization while it clearly dominates the energy in the dimension reduction limit.

The inherent nonlinear nature of buckling is concealed by the dependence of the critical load exclusively on
the linear elastic moduli. Yet, it has long been realized that buckling results from the energy density non-con-
vexity which, in turn, follows from material frame indifference [2,19,41]. The apparent constitutive linearity
of the Euler’s theory of the critical load arises from the fact that in the case of near-flip buckling the prohibited
full linearization can be replaced by a procedure that we call “constitutive linearization” (see [3,40] for the
earlier insights). In fact, our proof of the asymptotic equivalence between the full nonlinear and the constitu-
tively linearized theories of near-flip buckling can be viewed as a rigorous extension of the Föppl–von Kármán
theory of buckling for plates and rods [8,13,16,34,43] to bodies with complex geometries. Furthermore, we
show that the engineering theory generates satisfactory predictions for the critical loads only in the cases
which we interpret as “smooth” or “Euler” buckling. In those cases our main results are related to the domain
of applicability of the conventional approaches. More strikingly, we provide the counterexamples showing
that the engineering formulas may fail in the “non-Eulerian” cases including buckling of the rather common
“multi-element” structures.

The paper is organized as follows. In Sect. 2, we introduce the main players: the intrinsic energy noncon-
vexity and the Korn constant. The prototypical flip instability of D’Alembert is introduced in Sect. 3. Buckling
of slender bodies or the “near-flip” buckling is defined and studied in Sect. 4. In Sect. 5, we demonstrate
that behind the universality of the near-flip buckling lies the possibility to perform partial (or constitutive)
linearization of the problem.We use the term “buckling equivalence” or B-equivalence for situations when
the asymptotics of the critical load can be computed directly from the partially linearized problem. Sec-
tion 6 contains the preliminary definition of compressiveness of the loading device which allows us to prove
B-equivalence under special smoothness assumptions encompassing Euler’s original setting (Sect. 7). We then
show in Sect. 8 that Euler buckling is far from being generic. A general study of B-equivalence, presented in
Sect. 9, reveals a more subtle nature of the concept of compressive loads. A convenient sufficient condition for
B-equivalence, going far beyond Euler’s case, is presented in Sect. 10. In Sect. 11, we show that if the loading
is compressive in the strong sense, the first term in the h-asymptotics of the critical load can be interpreted as
a generalized Korn constant. Subsequently, we show how this interpretation can be used to derive new bounds
on both safe and unsafe loads. In the two technical Appendixes we study existence of the homogeneous trivial
branch and present a heuristic justification of the Kirchhoff–Love ansatz for arbitrary anisotropic materials.

Throughout the paper, we use standard index-free tensor notation and some other useful conventions.
For instance, 〈 f 〉 denotes the average of the function f over the domain of its definition, |a| denotes the
Euclidean norm for a vector a, Frobenius norm Tr (aat )1/2 for the matrix a and an operator norm for the map
a : End(R2) → End(R2). The symbol ‖ f ‖ always denotes the L2 norm of | f (x)| and ‖ f ‖∞ denotes the L∞
norm of | f (x)|. The equivalence relation a(h) ∼ b(h) is understood in the sense that limh→0 a(h)/b(h) = 1.

2 Preliminaries

To highlight ideas we limit our exposition to the simplest nontrivial case which is 2D elasticity, even though
our approach is largely dimension-independent.1 We assume that the elastic response of the body is governed
by the energy density function W (F), which is C3 in the vicinity of the stress-free state F = I . We also
assume that F = I is the point of local minimum for the energy density W (F). In particular,

WF(I) = 0. (2.1)

If we load a body � by the dead loads t(x), x ∈ ∂�, the resulting deformation y(x) is expected to be at
least a weak local minimizer of the energy

E( y) =
∫

�

W (F(x))dx −
∫

∂�

(u(x), t(x))ds, (2.2)

1 We will indicate throughout the text, when 3D analogs of our results differ from their 2D counterparts.
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where F(x) = ∇ y(x) is the deformation gradient, u(x) = y(x) − x is the displacement vector and ds is the
element of the arc length on ∂�. The loading t(x) should be equilibrated in the sense that:

∫

∂�

t(x)ds = 0,

∫

∂�

(t(x), S y(x))ds = 0, (2.3)

where

S =
[

0 −1

1 0

]
(2.4)

is a skew-symmetric matrix. While only surface loads are explicitly indicated here, bulk dead loads can be
easily included as well.

In parallel to dead loading we shall also consider an equilibrium under mixed loading when in addition to
specifying information on applied boundary tractions we also impose constraints on the boundary displace-
ments, say

y(x) = y0(x), x ∈ ∂�1 ⊂ ∂�.

In general, we will assume that y is constrained to belong to the affine subspace F ⊂ W 1,∞(�; R
2) of

admissible deformations. In other words, we assume that there exists y0 ∈ W 1,∞(�; R
2) and a subspace

V 0 ⊂ W 1,∞(�; R
2), such that F = y0 + V 0.

Both boundary conditions and equilibrium equations can be obtained from the following variational equa-
tion ∫

�

(WF(F(x)), ∇ϕ)dx −
∫

∂�

(ϕ(x), t(x))ds = 0 (2.5)

satisfied for all ϕ ∈ V 0. Let L(F) = WF F(F) denote the set of tangential elastic moduli. We call the admissi-
ble deformation y(x) of the reference configuration � ⊂ R

2 infinitesimally stable if it solves the equilibrium
equations of elastostatics (2.5) and the second variation of the energy

δ2E(F,ϕ) =
∫

�

(L(F(x))∇ϕ, ∇ϕ)dx (2.6)

is nonnegative for all ϕ ∈ V , where V is a closure of V 0 in W 1,2(�; R
2). The above conditions are known to

be necessary and sufficient for y(x) to be a weak local minimizer for the energy (2.2) (with uniform positivity
of second variation for sufficiency, see [39,42]).

A crucial role in what follows will be played by an additional assumption that the energy density function
W (F) is objective (material frame indifferent). It requires that

W (RF) = W (F) (2.7)

for all rotation matrices R ∈ SO(2) and all 2 × 2 matrices F with positive determinant. The condition (2.7)
implies that F = I is not a strict local minimum of W (F), in particular the Hessian L0 of W (F) at F = I ,

L0 = L(I) = WF F(I) (2.8)

is singular:
L0 S = 0. (2.9)

We assume that the degeneracy of L0 does not go beyond (2.9), meaning that

(L0ξ , ξ) ≥ γ0|ξ |2, for all ξ ∈ Sym(R2), (2.10)

where Sym(R2) is the space of symmetric 2 × 2 matrices and γ0 is the smallest eigenvalue of L0 understood
as a linear operator on Sym(R2).
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The objectivity assumption (2.7) implies that there exists a function Ŵ (C), defined on symmetric positive
definite matrices C = Ft F (Green’s strain tensor), such that W (F) = Ŵ (C). According to our assump-
tions, the function Ŵ (C) has a strict local minimum at C = I . The straightforward computation gives
WF(F) = 2FŴC(C) and

(L(F)ξ , ξ) = 2(ŴC(C), ξ tξ) + 4(ŴCC(C)(Ftξ), Ftξ) (2.11)

for any 2 × 2 matrices ξ and F.
If C ≈ I , the second term in the right hand side of (2.11), representing the stabilizing effect of the conven-

tional elastic rigidity, is always non-negative, while the first term may be either positive or negative. In the case
of compressive loading, the first term is negative and represents the destabilizing effect of stiffness reduction.
The study of the competition between these two terms constitutes the main subject of any theory of buckling.

To clarify the meaning of the two terms in the right hand side of (2.11), we recall that there exist matrices
F, arbitrarily close to the identity matrix, such that the quadratic form ξ �→ (L(F)ξ , ξ) is non-convex [20].
Indeed, if F is close to I and ξ = S—a skew-symmetric matrix, defined in (2.4), then, by symmetry of C , the
second term in (2.11) is of order O(|F − I |2):

(ŴCC(C)(Ft S), Ft S) = (ŴCC(C)((F − I)t S), (F − I)t S) = O(|F − I |2). (2.12)

The first term in (2.11), however, is of order O(|F − I |):
2(ŴC(C), St S) = 2Tr (ŴCC(I)(C − I)) + O(|F − I |2) = Tr (L0(F − I)) + O(|F − I |2). (2.13)

Therefore, when ξ = S and F is close to the identity matrix, the first term in (2.11) may dominate the
second term causing an instability. More specifically, if Tr (L0(F − I)) < 0 (compressive stresses), then
(L(F)S, S) < 0.

The other two main pre-conditions of buckling—traction-dominated loading and slenderness of the
domain—are conveniently characterized by the smallness of Korn’s constant. The Korn constant is a non-
negative number K (V ) associated with the subspace V ⊂ W 1,2(�; R

2). It is defined as the largest number for
which the Korn inequality [22]

∫

�

|e(ϕ)|2dx ≥ K (V )

∫

�

|∇ϕ|2dx (2.14)

holds for all ϕ ∈ V , where e(ϕ) = (∇ϕ + (∇ϕ)t )/2 is the symmetrized gradient. One can think of K (V ) as
the “distance” between V and the 1D subspace spanned by Sx.

We will need a slightly extended notion of the Korn constant. If L is a fourth order tensor of the positive
definite quadratic form ξ �→ (Lξ , ξ) on Sym(R2), then we define KL(V ) as the largest number for which the
inequality

∫

�

(Le(ϕ), e(ϕ))dx ≥ KL(V )

∫

�

|∇ϕ|2dx (2.15)

holds for all ϕ ∈ V . The classical Korn constant simply corresponds to L = I – the fourth order identity tensor.
Sometimes it will be convenient to represent the Korn constant in the variational form:

KL(V ) = inf
ϕ∈V

‖∇ϕ‖=1

∫

�

(Le(ϕ), e(ϕ))dx. (2.16)

Formula (2.16) shows that all Korn-type constants are equivalent in the following sense. Take any pair of
positive definite quadratic forms L1 and L2. Then there are constants c(L1, L2) and C(L1, L2), independent of
V , such that

c(L1, L2)KL1(V ) ≤ KL2(V ) ≤ C(L1, L2)KL1(V ). (2.17)

For this reason the geometric meaning of KL(V ) as a function of V is not different from K (V ), except that
KL(V ) also depends on the degree of convexity of the quadratic form L. More precisely, if L1 < L2 in the
sense of quadratic forms, then KL1(V ) < KL2(V ).
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3 Flip instability

Consider a body loaded by dead tractions and occupying an equilibrium configuration y(x). If we replace this
configuration by its rotation through the angle ε

yε(x) = Rε y(x) (3.1)

the associated energy increment can be written, in view of (2.7), as

�E = −
∫

∂�

(t(x), Rε y(x) − y(x))ds.

By using Rε = I cos ε + S sin ε we obtain, via (2.3)

�E = (1 − cos ε)

∫

∂�

(t(x), y(x))ds. (3.2)

If the actual configuration of the body is �∗ = y(�) then∫

∂�

(t(x), y(x))ds =
∫

�∗
Tr τ ( y)d y,

where τ ( y) is the Cauchy stress tensor. Therefore for compressive loading with

Tr 〈τ 〉 < 0, (3.3)

the rotations through the infinitesimal angle ε will lower the total energy producing flip instability. Despite its
infinitesimal character, the flip instability cannot be captured by linearized theory because expansion in ε in
(3.2) starts with quadratic terms.

To study the bifurcation leading to flip instability we need to analyze the second variation of the energy.
Assume that the body is subjected to tractions t(x; λ) parameterized by a small parameter λ. Consider a family
of deformations yλ(x) that satisfy the equations of equilibrium (2.5) with V 0 = W 1,∞(�; R

2) and assume
that it is sufficiently regular in λ.2 More precisely, we assume that y0(x) = x and the function T : λ �→ yλ(x)
that maps a small neighborhood of zero in R into W 1,∞(�; R

2) is of class C1 (in the norm topology of W 1,∞).
In other words we assume that there exists a Lipschitz function u′(x) such that

Fλ(x) = ∇ yλ(x) = I + λH ′(x) + o(λ), as λ → 0, (3.4)

where H ′ = ∇u′ and o(·) is understood in the sense of uniform convergence. In what follows we will refer to
H ′(x) as the incremental strain and to

σ ′(x) = L0e(u′) (3.5)

as the incremental stress.
An example is provided by the family yλ(x) = Fλx of deformations corresponding to the loading program

t(x; λ) = λP0n(x), (3.6)

where P0 is a given constant symmetric matrix. For the homogeneous deformation gradient Fλ the Euler–
Lagrange equation (2.5) reduces to

WF(Fλ)n(x) = t(x; λ), x ∈ ∂�,

which is equivalent to
WF(Fλ) = λP0. (3.7)

If Tr P0 �= 0 the existence ofFλ satisfying (3.7) is guaranteed by Lemma A.1 proved in Appendix A.3

We are now in a position to formulate the sufficient conditions for flip instability. To emphasize compressive
character of the loading we set λ < 0 throughout the paper.

2 Note, that we do not assume neither uniqueness nor stability of these deformations.
3 In 3D the equivalent condition would be that P0 has no pairs of opposite eigenvalues.
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Theorem 3.1 Consider dead loading t(x; λ) and assume that yλ(x) is regular in the sense of (3.4). Assume
that Tr 〈σ ′〉 > 0. Then there exists ς > 0 such that δ2E(Fλ, Sx) < 0 for all λ ∈ (−ς, 0).

Proof Let Lλ(x) = L(∇ yλ(x)). Substituteϕ(x) = Sx in (2.6) and observe that in view of (2.12) and (2.13)

(Lλ(x)S, S) = Tr (L0(Fλ(x) − I)) + O(|Fλ − I |2).
Then, by (3.4) and (3.5)

(Lλ(x)S, S) = λTr (L0 H ′(x)) + o(λ) = λTr σ ′(x) + o(λ). (3.8)

��
Equation (3.8) can be regarded as a Taylor expansion of (Lλ(x)S, S) and therefore the coefficient in front

of λ can be expected to represent the third order elastic moduli. However, the relevant non-linearity is of purely
geometrical nature and therefore this coefficient can be reduced to the expression depending only the second
order elastic moduli. One can show that behind this reduction are material-independent relations between
second and third order elastic moduli, that can be derived from (2.7) by differentiation.

Observe that the trivial branch may be flip-unstable even without our sufficient conditions being satisfied.
Indeed, if we replace λ by −λ2 in the simplest case of homogeneous loading (3.6), the incremental stress and
strain become equal to zero, while flip instability persists. Therefore our condition Tr 〈σ ′〉 > 0 performs two
tasks: it signifies the compressive nature of the loading and simultaneously identifies its scale. The condition
analogous to Tr 〈σ ′〉 > 0 in Theorem 3.1 in 3D is that at least one of the following three inequalities hold (e.g.,
[20])

σ1 + σ2 > 0, σ2 + σ3 > 0, σ3 + σ1 > 0, (3.9)

where σ1, σ2 and σ3 are the eigenvalues of 〈σ ′〉.
We now turn to the necessary conditions for flip instability. Define

m(λ) = inf‖∇ϕ‖=1

∫

�

(Lλ(x)∇ϕ(x), ∇ϕ(x))dx. (3.10)

If m(λ) > 0 then the second variation is positive and the trivial branch is stable. If m(λ) < 0 we can identify
the energy-decreasing variation ϕλ. Let ϕλ be such that ‖∇ϕλ‖ = 1 and

δ2E(Fλ,ϕλ) − m(λ) = o(λ), (3.11)

where Fλ = Fλ(x) = ∇ yλ(x). We will call ϕλ an almost-minimizer4 for m(λ).

Theorem 3.2 Consider dead loading t(x; λ) generating the trivial branch yλ(x) which is regular in the sense
of (3.4). Then, either there exists ς > 0 such that m(λ) > 0 for all λ ∈ (−ς, 0) or Tr 〈σ ′〉 ≥ 0 and the family
of almost-minimizers ϕλ has a subsequence λn → 0 such that

lim
n→∞ ∇ϕλn

= ± S√
2|�|

in L2(�).

Proof Assume that that there exists a sequence λn → 0− such that m(λn) ≤ 0 for all n. Let ϕn = ϕλn
, then

∫

�

{(L0e(ϕn), e(ϕn)) + ((Lλn (x) − L0)∇ϕn, ∇ϕn)}dx − m(λn) = o(λn). (3.12)

Assumption of regularity for the trivial branch implies that

|Lλn (x) − L0| ≤ C |λn|
4 The variational problem (3.10) may have no solutions.
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for all x ∈ �. We, therefore, can write∫

�

(L0e(ϕn), e(ϕn))dx ≤ C |λn|.

Since L0 is a positive definite tensor, there exists C > 0 such that for all n ≥ 1

‖e(ϕn)‖2 ≤ C |λn| → 0, n → ∞. (3.13)

Lemma 3.3 Suppose ‖∇ϕn‖ = 1 and ‖e(ϕn)‖ → 0, as n → ∞. Then there exists a subsequence nk such
that ∇ϕnk

→ α0 S as k → ∞ in L2(�; R
2×2), where |α0| = 1/

√
2|�|.

Proof Let us choose a subsequence (not relabeled) such that 〈∇ϕn〉 → ξ0 as n → ∞. By Korn’s inequality
there exists a constant K0 depending only on � such that for all ϕ ∈ W 1,2(�; R

2)

‖e(ϕn) − 〈e(ϕn)〉‖ ≥ K0‖∇ϕn − 〈∇ϕn〉‖.
Then

‖∇ϕn − ξ0‖ ≤ ‖∇ϕn − 〈∇ϕn〉‖ + ‖〈∇ϕn〉 − ξ0‖ ≤ 1

K0
‖e(ϕn) − 〈e(ϕn)〉‖ + ‖〈∇ϕn〉 − ξ0‖.

It follows from (3.13) that ∇ϕn → ξ0 in L2 and therefore e(ϕn) → (ξ0)sym, so that ξ0 = α0 S. Here |α0| can
be found from the condition that 1 = ‖∇ϕn‖ → ‖ξ0‖ = √

2|�||α0|. ��
Now consider a subsequence nk from Lemma 3.3 and relabel in back into n.The inequality m(λn)/λn ≥ 0

and relation (3.12) imply that

lim
n→∞

1

λn

∫

�

((Lλn (x) − L0)∇ϕn, ∇ϕn)}dx ≥ 0.

By way of (3.8) and Lemma 3.3 we can now conclude that α2
0Tr 〈σ ′〉 ≥ 0. ��

To avoid immediate flip instability in a compressive loading one must impose additional constraints that exclude
the infinitesimal rotations Sx. In hard device the instability is eliminated completely, while in mixed device
the bifurcation point may shift to small but non-zero loads. Below we will be using the term near-flip buckling
to characterize this “postponed” instability which shares with flip the essential link to the failure of convexity
of the elastic energy, due to objectivity.

4 Near-flip buckling

To distinguish the near-flip buckling from the flip we introduce a new small parameter h. Suppose that both
the applied tractions and the domain geometry depend on h. Assume that the admissible set of deformations
has the form

Fh,λ = yh(x; λ) + V 0
h ,

where yh(x; λ) is a given function and V 0
h is a subspace in W 1,∞(�h; R

2) that is independent of λ. Let Vh

be the closure of V 0
h in W 1,2(�h; R

2). The role of h is to parameterize the sequence of Korn constants K (Vh)
representing increasing distance between the current loading configuration and the soft device configuration.

Assume again that there exists a trivial branch yh,λ(x) and a Lipschitz function u′
h(x) such that

Fh,λ(x) = ∇ yh,λ(x) = I + λH ′
h(x) + o(λ), as λ → 0−, (4.1)

where H ′
h = ∇u′

h and o(·) is understood in the sense of uniform convergence in both x and h. In addition,
H ′

h(x) is assumed to be uniformly bounded as h → 0.5 We note that in order to compute u′
h it is not necessary

5 While we are not aware of a general theorem that would guarantee the existence of such equilibrium deformations yh,λ
satisfying (4.1), the existence of a trivial branch for the special case of a thin periodic plate was proved in [29].
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to know the function Fh,λ(x); it is sufficient to show that (4.1) holds. Indeed, Fh,λ(x) solves (2.5) with t(x)

replaced by th(x; λ) and V 0 replaced by V 0
h . Differentiating this equation in λ at λ = 0 we obtain

∫

�h

(L0e(u′
h), e(ϕ))dx −

∫

∂�

(t lin
h ,ϕ)ds = 0, (4.2)

for all ϕ ∈ Vh . Here u′
h − uh ∈ V 0

h , where

uh = ∂ yh

∂λ
(x; 0), t lin

h (x) = ∂ th

∂λ
(x; 0).

Next we introduce the function

m(h, λ) = inf
ϕ∈Vh‖∇ϕ‖=1

∫

�h

(L(Fh,λ(x))∇ϕ(x), ∇ϕ(x))dx (4.3)

which defines the stability locus

S = {(h, λ) ∈ (0,+∞) × (−∞, 0) : m(h, λ) ≥ 0}.
The critical load can now be defined as the smallest in absolute value λ making the trivial branch unstable.
More precisely,

λ(h) = sup{λ < 0 : m(h, λ) < 0}. (4.4)

Definition 4.1 An instability of the trivial branch is called a near-flip buckling if

λ(h) < 0 (4.5)

for sufficiently small h and
lim
h→0

λ(h) = 0. (4.6)

Below we show that the near-flip buckling is indeed “close” to flip in the sense that the variationϕ that decreases
the energy is close to the space of infinitesimal rotations.

First observe that since the admissibility of a variation

ϕ = Sx + a (4.7)

already leads to flip in a stress-free configuration, the infinitesimal stability of a configuration that is close to
the stress-free state should be linked to the order of magnitude of the Korn constant KL0(Vh), which vanishes
if Vh contains a map (4.7). Thus,

|m(h, λ) − KL0(Vh)| ≤ sup
ϕ∈Vh‖∇ϕ‖=1

∣∣∣∣∣∣∣
∫

�h

((L(Fh,λ(x)) − L0)∇ϕ, ∇ϕ)dx

∣∣∣∣∣∣∣
≤ C |λ| (4.8)

and, in particular,

lim
λ→0

m(h, λ) = inf
ϕ∈Vh‖∇ϕ‖=1

∫

�h

(L0e(ϕ), e(ϕ))dx = KL0(Vh). (4.9)

One can see that if K (Vh) does not vanish as h → 0 (recall that K (Vh) = 1/2 in hard device), buckling will
be prohibited. We conclude that condition

KL0(Vh) → 0, as h → 0 (4.10)

is necessary for near-flip buckling. Moreover, we can prove the following bound on the critical load (see also
[21]).
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Lemma 4.2 There exists a constant c > 0 such that

λ(h) ≤ −cKL0(Vh). (4.11)

Proof The inequality (4.8) can be written as

KL0(Vh) − C |λ| ≤ m(h, λ) ≤ KL0(Vh) + C |λ|, (4.12)

where C > 0. Taking λ = λ(h) and using m(h, λ(h)) = 0, we obtain (4.11) with c = 1/C . ��
The lemma says that the Korn constant provides a lower bound on the magnitude of the critical load. While
condition (4.10) is necessary for (4.6), it is surely not sufficient. Indeed, a square body under dead tension has
Korn constant zero, but is perfectly stable. This shows that the smallness of the Korn constant expresses only
the potential susceptibility of the structure to buckling that may occur under an appropriate load (or to flip, if
Korn constant is zero). For a given load that potential may or may not be realized.

As a corollary of Lemma 4.2, we conclude that the condition

KL0(Vh) > 0 (4.13)

is sufficient for (4.5). Yet, it is not necessary for the near-flip buckling. Indeed, if the structure is a square under
a dead tension with an attached slender arm under a dead compression, then the Korn constant is again zero. At
the same time flip instability is ruled out by the large and positive value of the average Cauchy stress (condition
(3.3) is violated). The slender arm, however, will buckle at a finite compressive loading. This example confirms
that in general we cannot expect the Korn constant alone to give even the order of magnitude for the critical
load.

Our next aim is to find, in the case of near-flip buckling, the analog of the condition Tr 〈σ ′〉 > 0, which
has proved to be sufficient for the flip. To this end, we observe that the inequality

m0(λ) = lim
h→0

m(h, λ) < 0,

that holds for all sufficiently small λ < 0 (compressive loads), is a sufficient condition for (4.6). Taking a limit
in the inequality (4.8), as h → 0 and using (4.10) we obtain

|m0(λ)| ≤ C |λ|.
Thus, to understand the sign of m0(λ) at small λ < 0, we need to study the sign of

m′
0 = lim

λ→0−

m0(λ)

λ
. (4.14)

In particular, we may already conclude that the inequality m′
0 > 0 is sufficient for (4.6).

The sufficient condition we have just derived is not entirely satisfactory because m′
0 is not represented in

terms of the linear elastic parameters as one would expect, given the smallness of the load. Our next step is
therefore to replace the function m(h, λ) by a simpler “linearized” expression, which preserves its asymptotics
near (0, 0).

5 Constitutive linearization

When λ is small, while h is finite, one would normally fully linearize the problem by discarding terms that are
infinitesimal in λ and replace δ2E(Fh,λ,ϕ) with

∫
�h

(L0e(ϕ), e(ϕ))dx. Indeed, if ‖∇ϕ‖ = 1 then
∣∣∣∣∣∣∣
δ2E(Fh,λ,ϕ) −

∫

�h

(L0e(ϕ), e(ϕ))dx

∣∣∣∣∣∣∣
≤ C |λ|, (5.1)

where the constant C > 0 is independent of h and ϕ. The second term on the left hand side of (5.1) is bounded
from below by the Korn constant KL0(Vh), because ϕ ∈ Vh . If the Korn constant degenerates in the limit of
small h (e.g., if condition (4.10) is satisfied), the zeroth order term,

∫
�h

(L0e(ϕ), e(ϕ))dx, may not necessarily
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dominate the terms that we have discarded in our development of δ2E(Fh,λ,ϕ). In other words, the classical
linearization procedure may fail when both λ and h are small.

In order to recover the full two-parameter structure of the asymptotics of m(h, λ) we utilize the view
of buckling as a near-flip instability. More precisely, we show that, in parallel with Theorem 3.2 the almost
minimizers ϕh,λ for m(h, λ) are close to infinitesimal rotations. The mean-square distance from the former to
the latter, ‖e(ϕh,λ)‖, is to be regarded as a measure of the deviation of the near-flip buckling from the flip.

Let ϕh,λ ∈ Vh be an almost-minimizer in (4.3), i.e., ‖∇ϕh,λ‖ = 1 and

δ2E(Fh,λ,ϕh,λ) − m(h, λ) = o(λ), (5.2)

where o(λ) is understood in the sense of uniform in h convergence, as λ → 0. Then, according to (5.1)
and (5.2),

‖e(ϕh,λ)‖2 ≤ 1

γ0
m(h, λ) + C |λ|,

where γ0 > 0 is the smallest eigenvalue of L0 regarded as an operator on Sym(R2). Applying inequality (4.8),
we obtain the desired estimate

‖e(ϕh,λ)‖2 ≤ 1

γ0
KL0(Vh) + C |λ| (5.3)

meaning, in particular, that
lim

(h,λ)→(0,0)
‖e(ϕh,λ)‖ = 0. (5.4)

Relation (5.4) will allow us to improve the naive linearization attempt (5.1). We recall that according to (2.11),

δ2E(Fh,λ,ϕh,λ) = T1 + T2,

where

T1 =
∫

�h

4(ŴCC(Ch,λ)(Ft
h,λ∇ϕh,λ), Ft

h,λ∇ϕh,λ)dx

and

T2 =
∫

�h

2(ŴC(Ch,λ), (∇ϕh,λ)
t∇ϕh,λ)dx.

Expanding Fh,λ by means of (4.1), we obtain the asymptotic expansions of T1 and T2, as (h, λ) → (0, 0):

T1 =
∫

�h

(L0e(ϕh,λ), e(ϕh,λ))dx + O(λ‖e(ϕh,λ)‖) + o(λ).

and

T2 = λ

∫

�h

(σ ′
h(x), (∇ϕh,λ)

t∇ϕh,λ)dx + o(λ).

Here
σ ′

h(x) = L0e(u′
h) (5.5)

is the incremental stress (cf. (3.5)).
In classical linearization one drops all terms of order λ and smaller. However, if ∇ϕh,λ were skew-sym-

metric, relations (2.12) and (2.13) would tell us that it is the “main term” that needs to be discarded. In
our case, when ∇ϕh,λ are close to infinitesimal rotations, both the main term and order-λ term need to be
retained. Our error estimates show that, unless order-λ term vanishes, the error terms are negligible in the limit
(h, λ) → (0, 0). Thus,

m(h, λ) ∼
∫

�h

(L0e(ϕh,λ), e(ϕh,λ))dx + λ

∫

�h

(σ ′
h(x), (∇ϕh,λ)

t∇ϕh,λ)dx.
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This analysis suggests that m(h, λ) may be replaced by a much simpler functional

m̂3D(h, λ) = inf
ϕ∈Vh‖∇ϕ‖=1

∫

�h

{(L0e(ϕ), e(ϕ)) + λ(σ ′
h(x), (∇ϕ)t∇ϕ)}dx. (5.6)

In what follows we refer to this reduction of the problem as constitutive linearization because only the material
behavior has been linearized, not the geometry. While such approximation is similar in spirit to the nonlinear
Föppl–von Kármán theory of plates [8,13,16,34,43], our functional (5.6) deals with arbitrary geometries and
should be rather considered as the extension and formalization of a heuristic linearization approach of Biot
[3].

In 2D (our main case of interest) one can simplify the functional m̂3D(h, λ) a bit further, by replacing ∇ϕ
with its skew-symmetric part ∇ϕ − e(ϕ) and observing that in 2D

(∇ϕ − e(ϕ))t (∇ϕ − e(ϕ)) = 1

4
|∇ × ϕ|2 I .

Thus, using the identity

|∇ϕ|2 = |e(ϕ)|2 + 1

2
|∇ × ϕ|2,

we obtain:

(σ ′
h(x), (∇ϕh,λ)

t∇ϕh,λ) = 1

2
Tr σ ′

h(x)|∇ϕh,λ|2 + O(|e(ϕh,λ)|). (5.7)

Notice that Tr σ ′
h in (5.7) and Tr σ ′ in (3.8) appear for the same reason: an application of (2.11) with ξ = S.

We can now summarize our results. After the partial linearization of the problem, we obtained that

m(h, λ) =
∫

�h

{
(L0e(ϕh,λ), e(ϕh,λ)) + λth(x)|∇ϕh,λ|2

}
dx + O(λ‖e(ϕh,λ)‖) + o(λ), (5.8)

as (h, λ) → (0, 0), where

th(x) = 1

2
Tr σ ′

h(x). (5.9)

This suggests that we may replace the original functional m(h, λ) with

m̂(h, λ) = inf
ϕ∈Vh‖∇ϕ‖=1

∫

�h

{
(L0e(ϕ), e(ϕ)) + λth(x)|∇ϕ|2} dx. (5.10)

Next, we define the analogs of m′
0 and λ(h) (see (4.14) and (4.4)) as

m̂′
0 = lim

λ→0−
lim
h→0

m̂(h, λ)

λ
(5.11)

and
λ̂(h) = sup{λ < 0 : m̂(h, λ) < 0}. (5.12)

Observe that the quantities m̂′
0 and λ̂(h) are expressed in terms of linear elastic parameters. As such they are

much simpler to compute than the original quantities m′
0 and λ(h). For example, in the special case of homoge-

neous trivial branch th(x) = th , the functional m̂(h, λ) can be computed explicitly: m̂(h, λ) = KL0(Vh)+λth .
Therefore m̂′

0 = limh→0 th and

λ̂(h) = − KL0(Vh)

th
.

By contrast, m(h, λ) cannot always be computed explicitly even in the homogeneous case.
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Definition 5.1 We say that m(h, λ) and m̂(h, λ) are buckling-equivalent or B-equivalent, if m̂′
0 = m′

0 and the
corresponding critical loads λ(h), λ̂(h) have the same asymptotics as h → 0, i.e.,

lim
h→0

λ̂(h)

λ(h)
= 1. (5.13)

One of the goals of the paper is to formulate a criterion for B-equivalence of m(h, λ) and m̂(h, λ). To this end
we first notice that by (5.8) and (5.3)

m(h, λ) ≥ m̂(h, λ) + o(λ), (5.14)

as (h, λ) → (0, 0).
The reverse inequality is also true because the process of passing from m(h, λ) to m̂(h, λ) is reversible.

Indeed, the argument leading to (5.14) is based on the estimate (5.3) for the almost minimizer ϕh,λ for m(h, λ).
The estimate (5.3) in turn, follows from regularity of the trivial branch (4.1) and the inequality (5.1). Clearly,
the estimate (5.3) also holds for the almost minimizer ϕ̂h,λ of m̂(h, λ) because the inequality (5.1) holds if
δ2E(Fh,λ,ϕ) is replaced by

∫

�h

{
(L0e(ϕ), e(ϕ)) + λth(x)|∇ϕ|2} dx.

Thus,

m(h, λ) = m̂(h, λ) + o(λ), (5.15)

as (h, λ) → (0, 0). The relation (5.15) already incorporates the preceding asymptotic analysis and will serve
as a main tool for proving B-equivalence.

6 Compressive loads

In Sect. 4, we have identified m′
0 > 0 as a sufficient condition for near-flip buckling. In this section, we

show that this condition may be interpreted as the criterion for existence of a sufficiently compressed slender
element. We begin with an introduction of a new implicit measure of compressiveness for the applied loads.

Definition 6.1 We say that the loading is compressive if c > 0, where

c = sup
ϕh∈Vh‖∇ϕh‖=1

‖e(ϕh )‖→0

lim
h→0

∫

�h

th(x)|∇ϕh |2dx. (6.1)

Theorem 6.2 If (4.10) and (4.13) hold, and the loading is compressive, then the trivial branch undergoes a
near-flip buckling instability in the sense of Definition 4.1. Moreover,

m′
0 = m̂′

0 = c. (6.2)

Proof The first equality in (6.2) is an immediate consequence of (5.15). To prove the second equality in (6.2),
we recall that an almost-minimizer ϕh,λ for m(h, λ) satisfies (5.8). Then, by positive definiteness of L0, we
have

m′
0 ≤ lim

λ→0−
lim
h→0

∫

�h

th(x)|∇ϕh,λ|2dx.

We claim that

lim
λ→0−

lim
h→0

∫

�h

th(x)|∇ϕh,λ|2dx ≤ c. (6.3)
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Indeed, there exist sequences λn → 0− and hn → 0+ such that

lim
λ→0−

lim
h→0

∫

�h

th(x)|∇ϕh,λ|2dx = lim
n→∞

∫

�hn

thn (x)|∇ϕhn ,λn
|2dx.

Thus, in view of (5.4), the inequality (6.3) holds.
Conversely, suppose that ϕh ∈ Vh is any sequence satisfying both ‖∇ϕh‖ = 1, and ‖e(ϕh)‖ → 0 as

h → 0, (such sequences exist, due to condition (4.10)). Using this sequence as test functions in the variational
principle (5.10) we obtain

m̂′
0 ≥ lim

h→0

∫

�h

th(x)|∇ϕh |2dx.

Taking supremum over all such sequences we confirm that m′
0 ≥ c. ��

7 Euler buckling

We can prove B-equivalence of the original and the linearized problems by making additional smoothness
assumptions on m̂(h, λ).

Theorem 7.1 Assume that for all h sufficiently close to zero the function λ �→ m̂(h, λ) is differentiable in a
neighborhood of λ = 0 and that the partial derivative ∂m̂(h, λ)/∂λ is continuous at (0, 0). Assume further
that c > 0. Then m and m̂ are B-equivalent and

λ(h) ∼ − KL0(Vh)

c
. (7.1)

Proof The behavior of the function m̂(h, λ) in the vicinity of (0, 0) is described by the Lagrange’s mean value
theorem

m̂(h, λ) = KL0(Vh) + λch,λ, (7.2)

where

ch,λ = ∂m̂

∂λ
(h, θ(h, λ)),

and θ(h, λ) ∈ (λ, 0). Formula (5.11) gives m̂′
0 = ∂m̂(0, 0)/∂λ. Therefore, by Theorem 6.2 and continuity of

∂m̂(h, λ)/∂λ at (0, 0), we get

lim
(h,λ)→(0,0)

ch,λ = c.

If c > 0, then, according to Theorem 6.2, λ̂(h) < 0, λ(h) < 0 and

lim
h→0

λ̂(h) = lim
h→0

λ(h) = 0. (7.3)

Substituting λ = λ̂(h) into (7.2), dividing by λ̂(h) and passing to the limit as h → 0, we obtain

0 = lim
h→0

KL0(Vh)

λ̂(h)
+ c. (7.4)

Combining (7.2) and (5.15), we can write that

m(h, λ) = KL0(Vh) + λch,λ + o(λ), (7.5)

as (h, λ) → (0, 0). Substituting λ = λ(h) into (7.5), dividing by λ(h) and passing to the limit as h → 0, we
obtain

0 = lim
h→0

KL0(Vh)

λ(h)
+ c.

��
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Fig. 2 Flip that is not close to buckling

Observe that the formula (7.1) makes explicit the competition between the stabilizing and the destabilizing
forces. In particular, the parameter c > 0 indicates the destabilizing presence of flip instability, while KL0(Vh)
is a measure of the stabilizing effect of the domain geometry and mixed type loading. In the special case of a
homogeneous trivial branch, Theorem 7.1 is applicable and condition c > 0 is equivalent to Tr σ ∗ > 0, where

σ ∗ = lim
h→0

σ ′
h .

Comparing this with Theorem 3.1 we see that in the homogeneous case the sufficient conditions for flip insta-
bility and buckling instability coincide. This phenomenon is peculiar to two dimensions. In 3D, the sufficient
conditions for buckling is that all three inequalities (3.9) hold, where σ1, σ2 and σ3 are now the eigenvalues
of σ ∗. This is different from the sufficient condition for flip, requiring that only one of the inequalities (3.9)
hold. Figure 2 shows the loading of a slender structure that is susceptible to flip, but not to buckling. In other
words every near-flip buckling instability is close to a flip, but in 3D, unlike in 2D, not every flip instability is
close to buckling.

To illustrate the case when the smoothness assumptions in Theorem 4 are justified consider the problem of
the Euler buckling (e.g., [9,25,26,38,44]). Suppose that the domain �h is a rectangle Rh = [0, 1]×[−h/2, h/2]
depicted in Fig. 3; here h can be viewed as the non-dimensional aspect ratio. The long sides x2 = ±h/2 are
assumed to be free

WF(F(x))e2 = 0, at x2 = ±h/2, (7.6)

while on the short sides x1 = 0, 1 we apply compressive dead loading

WF(F(x))e1 = λe1, at x1 = 0, 1, λ < 0. (7.7)

If a homogeneous deformation yλ(x) satisfies (7.6)–(7.7) then its deformation gradient Fλ satisfies (3.7) with
P0 = e1 ⊗ e1:

WF(Fλ) = λe1 ⊗ e1. (7.8)

Notice that Lemma A.1 in Appendix A guarantees the existence of the smooth in λ function Fλ satisfying
(7.8). Differentiating (7.8) in λ at λ = 0 we obtain

σ ′
h = e1 ⊗ e1, th = 1

2
.

In order to avoid flip instability, we augment the boundary conditions (7.6)–(7.7) with an additional requirement
that the average displacements of the sides x1 = 0, 1 in the x2 direction are zero6:

h/2∫

−h/2

y2(0, x2)dx2 =
h/2∫

−h/2

y2(1, x2)dx2 = 0. (7.9)

It is easy to see that the deformation yλ(x) = Fλx satisfies additional boundary conditions (7.9). Indeed, due
to frame indifference the matrix WF(Fλ)Ft

λ = λe1 ⊗ Fλe1 is necessarily symmetric and therefore e1 must
be an eigenvector for Fλ. Then

( yλ(1, x2), e2) = (Fλe1, e2) + x2(Fλe2, e2) = x2(Fλe2, e2) = ( yλ(0, x2), e2),

6 In his classical paper [12, pp. 102–103] Euler speaks about the column “placed vertically upon the base” and adds that it has
“to be so constituted that it can not slip”.
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x1

x2

−h/2

h/2

1

Fig. 3 Two-dimensional Euler strut Rh

and (7.9) is satisfied. Next we verify conditions (4.13) and (4.10) that are necessary for near-flip buckling. The
space Vh of admissible variations corresponding to the Euler strut with loading (7.6)–(7.9) is

Vh =

⎧⎪⎨
⎪⎩ϕ ∈ W 1,2(Rh; R

2) :
h/2∫

−h/2

(ϕ(0, x2), e2)dx2 =
h/2∫

−h/2

(ϕ(1, x2), e2)dx2 = 0

⎫⎪⎬
⎪⎭ . (7.10)

Condition (4.13) is satisfied because Vh does not contain maps of the form Sx + a. Condition (4.10) follows
from [35], where it was shown that

K (V R
h ) = 1

4

(
1 − πh

sinh(πh)

)
∼ π2h2

24
.

Here

V R
h =

{
ϕ ∈ W 1,2(Rh; R

2) : (ϕ(0, x2), e2) = (ϕ(1, x2), e2) = 0, x2 ∈
[
−h

2
,

h

2

]}
,

and V R
h ⊂ Vh .

The asymptotics of the critical load is determined by Theorem 7.1, which gives

λ(h) ∼ −2KL0(Vh), (7.11)

where we have used that c = limh→0 th = 1/2. Also, according to [35], λ(h) = O(h2). In fact, we can
compute the asymptotics of the (anisotropic) Korn constant exactly.

Theorem 7.2

lim
h→0

KL0(Vh)

h2 = Eπ2

24
,

where
E = (L−1

0 (e1 ⊗ e1), e1 ⊗ e1)
−1 (7.12)

is the (anisotropic) Young’s modulus.7

Proof The idea of the proof is to bound the asymptotics of the Korn constant from above and from below
and show that the bounds agree. The upper bound is obtained by means of the special test function in Korn’s
inequality (2.15) (the reasoning behind this choice is presented in Appendix B)

ϕ0(x) = α(x1)e2 − α′(x1)x2e1 + 1

2
α′′(x1)νx2

2 − 1

24
α′′(x1)νh2. (7.13)

7 If L0 is isotropic, i.e., L0ξ = κ(Tr ξ)I + µ(ξ + ξ t − (Tr ξ)I), then E = 4κµ/(κ + µ) is the 2D Young’s modulus.
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Here ν is the anisotropic Poisson’s ratio (B.2) and α(x1) ∈ C2([0, 1]) with α(0) = α(1) = 0. Clearly, the
map ϕ0, restricted to Rh belongs to the space Vh for all h > 0. The ansatz essentially equivalent to (7.13)
was first proposed by Kirchhoff in his analysis of the bending of thin plates [23] and was later generalized for
shells by Love [27]. The link between buckling (and therefore bending) and the Korn constant is suggested
by Theorem 7.1 that holds for the Euler strut (plate in 3D). The formula (7.1) in Theorem 7.1 implies that
minimizers representing buckling modes and the optimal functions in the Korn inequality (2.15) are asymp-
totically equivalent. Hence, Kirchhoff–Love ansatz for bending should also be appropriate for estimating the
Korn constant.

Observe that the gradient of the ansatz ϕ0 can be interpreted as a “parameterized flip”,

∇ϕ0(x) = α′(x1)S + O(h). (7.14)

In other words, if the slender Euler strut is viewed as a union of loosely connected rigid square blocks of size
h, then formula (7.14) interprets buckling as a coherent combination of flips of the individual blocks.

Using ϕ0 as a test function in the generalized Korn’s inequality (2.15), we obtain

lim
h→0

KL0(Vh)

h2 ≤ lim
h→0

∫
Rh

(L0e(ϕ0), e(ϕ0))dx

h2‖∇ϕ0‖2 =
∫ 1

0 (L0�(x1),�(x1))dx1

24
∫ 1

0 (α′(x1))2dx1

, (7.15)

where

�(x1) = α′′(x1)(ν � e2 − e1 ⊗ e1) (7.16)

and � denotes the symmetrized tensor product

a � b = 1

2
(a ⊗ b + b ⊗ a). (7.17)

Observing that

(L0(ν � e2 − e1 ⊗ e1), ν � e2 − e1 ⊗ e1) = (L−1
0 (e1 ⊗ e1), e1 ⊗ e1)

−1 = E,

we get

lim
h→0

KL0(Vh)

h2 ≤ E
∫ 1

0 (α′′(x1))
2dx1

24
∫ 1

0 (α′(x1))2dx1

.

However,

min
α(0)=α(1)

∫ 1
0 (α′′(x1))

2dx1∫ 1
0 (α′(x1))2dx1

= π2, (7.18)

and so we obtain

lim
h→0

KL0(Vh)

h2 ≤ Eπ2

24
.

The reverse inequality can be proved by the application of the dimension reduction lemma, which is a linear-
ized version of the results obtained in [15,30]. Indeed, if we rescale the domain Rh to R1 = [0, 1]×[−1/2, 1/2]
through the change of variables z2 = x2/h and introduce the rescaled operators

∇h u =
(

∂u
∂x1

,
1

h

∂u
∂z2

)
, eh(u) = 1

2
(∇h u + (∇h u)t ),

with u = u(x1, z2), we can prove the following
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Lemma 7.3 Suppose a sequence uh ∈ W 1,2(R1; R
2) satisfies ‖∇h uh‖ ≤ C and ‖eh(uh)‖ ≤ Ch for small

h and for some constant C independent of h. Then there exists a subsequence (not relabeled) and a function
α(x1) ∈ W 2,2([0, 1]) such that

∇h uh → α′(x1)S (7.19)

in L2(R1; End(R2)), as h → 0, and

lim
h→0

1

h2

∫

R1

(L0eh(uh), eh(uh))dx1dz2 ≥ E

12

1∫

0

(α′′(x1))
2dx1.

Here the Young modulus E is given by (7.12).

The proof of Lemma 7.3 is analogous to the proof in [30, Theorem 2.1] with SO(3) replaced by RS—the Lie
algebra of SO(2), and we only indicate here the main idea: apply Korn inequality to each square of size h (after
scaling back from R1 to Rh) and derive the difference quotient estimate for ∇h u (S. Müller, personal com-
munication). Essentially, we need to estimate how closely the deformation in each of the “loosely connected”
rigid square block of size h alluded to above, matches the infinitesimal rotation (flip).

Returning to the proof of the Theorem 7.2, we let ϕh ∈ Vh be such that ‖∇ϕh‖ = 1 and

lim
h→0

∫
Rh

(L0e(ϕh), e(ϕh))dx

KL0(Vh)
= 1.

Then the sequence uh(x1, z2) = √
hϕh(x1, z2h) satisfies conditions of Lemma 7.3. It follows that there exists

α(x1) ∈ W 2,2([0, 1]) such that

1 = lim
h→0

‖∇ϕh‖2 = lim
h→0

∫

R1

|∇h uh |2dx1dz1 = 2

1∫

0

(α′(x1))
2dx1 (7.20)

and

lim
h→0

1

h2

∫

Rh

(L0e(ϕh), e(ϕh))dx = lim
h→0

1

h2

∫

R1

(L0eh(uh), eh(uh))dx1dz2 ≥ E

12

1∫

0

(α′′(x1))
2dx1.

Thus,

lim
h→0

KL0(Vh)

h2 ≥ E
∫ 1

0 (α′′(x1))
2dx1

24
∫ 1

0 (α′(x1))2dx1

. (7.21)

Let us show that ϕh ∈ Vh implies that α(0) = α(1). Indeed, (7.19) implies that ∇vh → 0 in L2(R1), where

vh = uh − α(x1)e2.

By the Poincaré inequality, there exists a sequence of constant vectors ch such that vh − ch → 0 in W 1,2(R1).
Therefore,

lim
h→0

1/2∫

−1/2

(vh(0, z2) − ch, e2)dz2 = lim
h→0

1/2∫

−1/2

(vh(1, z2) − ch, e2)dz2 = 0.

We also have

1/2∫

−1/2

(uh(0, z2), e2)dz2 =
1/2∫

−1/2

(uh(1, z2), e2)dz2 = 0,
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λ

λ

Fig. 4 Asymptotic regions of stability in the (h, λ) plane near (0, 0)

since uh(x1, x2/h) ∈ Vh . Thus,

α(0) = − lim
h→0

(ch, e2) = α(1),

and the inequality (7.21) implies together with (7.18) that

lim
h→0

KL0(Vh)

h2 ≥ min
α(0)=α(1)

E
∫ 1

0 (α′′(x1))
2dx1

24
∫ 1

0 (α′(x1))2dx1

= Eπ2

24
.

��
Our Theorem 7.2 together with (7.11) gives the explicit asymptotics of the critical load for the Euler strut:

lim
h→0

λ(h)

h2 = −π2 E

12
. (7.22)

Furthermore, the preceding analysis results in the asymptotic stability diagram shown in Fig. 4. It is instruc-
tive to examine the domain of small compressive loadings on this diagram. In the region between the lines
λ = 0 (dotted line) and λ = λ(h) (thick line) the classical linearization procedure is valid and the trivial
solution is unique (the Kirchhoff theorem applies). However, the range of λ corresponding to this classical
linearization domain shrinks to zero as h → 0, making the linearization limit non-uniform in h ( see also
[29]). Notice that any path corresponding to small fixed λ < 0 and h → 0 eventually enters into the region of
the stability diagram where the linearization around a trivial branch does not make sense. Therefore the two
limiting procedures, linearization and dimension reduction, do not commute and the critical curve λ = λ(h)
marks the crossover between the two qualitatively different asymptotic regimes.

8 Non-Euler buckling

Theorem 7.1 established B-equivalence between the finite elasticity problem and the constitutively linearized
problem when the function m̂(h, λ) is smooth (Euler buckling). In this section, we show that for structures
containing multiple slender elements the function ∂m̂(h, λ)/∂λ is never continuous at (0, 0) leading to what
we call non-Euler buckling.

To emphasize ideas, we consider a somewhat schematic setting, where all irrelevant difficulties are elim-
inated. More specifically, we assume that the structure �h is represented by a union of three disjoint8 Euler
struts of aspect ratios h,

√
h and h2. We will be referring to them as C1, C1/2 and C2, respectively. The load

within each strut is homogeneous but different struts have different loads, so that

th(x) =
⎧⎨
⎩

1, if x ∈ C1,
10, if x ∈ C1/2,
−1, if x ∈ C2.

8 Disjointness in this example should not be understood literally. Our conclusions remain valid for an Euler strut which is
cracked, meaning that the elements remain attached to the main structure by their slender bases.
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Fig. 5 The graph of m̂(h, λ) for the split strut example

The most slender strut C2 is under tension and is, therefore, stable. The thickest strut C1/2 is much more
compressed than the strut C1 of intermediate thickness. Nevertheless it is the latter strut that will buckle first,
and so,

λ(h) ∼ − Eπ2h2

24
. (8.1)

To show that Theorem 7.1 fails to deliver the correct asymptotics for the critical load (8.1) we first observe
that the Korn constant for the domain �h is

KL0(Vh2) ∼ Eπ2h4

24
,

with the most slender strut C2 responsible for the value. At the same time the value c = 10 is determined by
the load on the thickest strut C1/2. Then the expression

− KL0(Vh2)

c
∼ − Eπ2h4

240

neither delivers the correct asymptotics to the critical load nor makes any physical sense, as it combines
quantities that are produced by the unrelated elements of the structure. To understand the problem we need to
examine the function

m̂(h, λ) = min{KL0(Vh) + λ, KL0(V√
h) + 10λ, KL0(Vh2) − λ}.

Here in a convenient abuse of notation, Vhα denotes the space of variations (7.10) for the single Euler strut
with aspect ratio hα; the space of variations corresponding to our problem is then Vh ⊕ V√

h ⊕ Vh2 . We may
also write

m̂(h, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

KL0(Vh2) − λ, if λ ∈
[

1

2
(KL0(Vh2) − KL0(Vh)), 0

]

KL0(Vh) + λ, if λ ∈
[

1

9
(KL0(Vh) − KL0(V√

h)),
1

2
(KL0(Vh2) − KL0(Vh))

]

KL0(V√
h) + 10λ, if λ ≤ 1

9
(KL0(Vh) − KL0(V√

h)).

It is easy to see that m̂(0, λ) = 10λ and c = ∂m̂(0, 0)/∂λ = 10. The function ∂m̂(h, λ)/∂λ has jump

discontinuities along the curves λ = 1

2
(KL0(Vh2) − KL0(Vh)) and λ = 1

9
(KL0(Vh) − KL0(V√

h)), shown in

Fig. 5, violating both assumptions of Theorem 7.1.9

9 If we had assumed that the individual struts were in fact attached to the “main structure” by their slender bases, only the
continuity of ∂m̂/∂λ at (0, 0) would have failed.



The flip side of buckling 231

We conclude that Theorem 7.1 is not applicable to complex structures with multiple slender elements.
Notice, however, that buckling in the above example is determined by the instability of a single Euler strut
C1 and therefore, even though the conditions of the Theorem 7.1 are violated, the problems for m and m̂ are
B-equivalent. Therefore, we could have solved the problem by applying Theorem 7.1 to the Euler buckling
of the strut C1—the substructure of �h that determines the critical load λ̂(h). The nontrivial question, however,
is how to extract such “most vulnerable” substructure in the general case.

9 B-equivalence

In this section, we relax the smoothness assumptions on m̂(h, λ), and prove a more general B-equivalence
theorem that is able to handle the non-Euler buckling discussed in Sect. 8.

First, to every sequence λ̃(h) < 0 such that λ̃(h) → 0 as h → 0, we associate a non-negative number10

(including infinity)

p = lim
h→0

λ̃(h)

λ̂(h)
.

We regard two different sequences λ̃(h) as equivalent if they correspond to the same p. Our goal then is to
find sufficient conditions for the sequence λ(h) to belong to the class p = 1.

The idea is to show that when h → 0, m(h, λ̃(h)) has different asymptotics for sequences λ̃(h) that belong
to different p-classes. The desired information on the asymptotics of m(h, λ̃(h)) can be obtained via the rela-
tion (5.15). In what follows we show that λ(h) belongs to the class p = 1, if the ratio of the main term to the
residual in (5.15) is sufficiently large.

For each p > 0 we use the sequence λ̃(h) = p̂λ(h) as a representative of the class p. Then, from (5.15),
we obtain

m(h, p̂λ(h)) = m̂(h, p̂λ(h)) + o(̂λ(h)).

The first term on the right hand side is the main term, while the second term represents the residual. We may
normalize the residual to obtain

m(h, p̂λ(h))

λ̂(h)
= fh(p) + o(1), (9.1)

where

fh(p) = m̂(h, p̂λ(h))

λ̂(h)
. (9.2)

The plan is to show that when h → 0 the normalized main term fh(p) depends on p in an “essential way” in
the vicinity of p = 1.

It is easy to see that functions fh(p) are uniformly bounded and uniformly Lipschitz continuous on any
compact subset of (0,+∞). Thus, by the Ascoli–Arzela theorem, there exists a subsequence hk and a contin-
uous function M(p) such that

lim
k→∞ fhk (p) = M(p) (9.3)

uniformly in p on compact subsets of (0,+∞). From now on we restrict our attention to this subsequence hk
and relabel it back to h to simplify notation.

To distinguish sequences λ̃(h) belonging to different classes p, we need the function M(p) to be strictly
monotone in the vicinity of p = 1. First we observe that

N (s) = lim
h→0

s fh

(
1

s

)
(9.4)

is a convex and non-increasing function on (0,+∞). Indeed, we can write

N (s) = lim
h→0

n

(
h,

s

λ̂(h)

)
,

10 If the limit does not exists, we restrict h to a convergent subsequence.
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where

n(h, τ ) = sup
ϕ∈Vh‖∇ϕ‖=1

∫

�h

{
τ(L0e(ϕ), e(ϕ)) + th(x)|∇ϕ|2} dx (9.5)

is a strictly monotone increasing and convex function of τ . Thus, N (s) is also convex and non-increasing
function of s. By passing to the limit as h → 0 in (9.4), we obtain

M(p) = pN

(
1

p

)
. (9.6)

This formula implies that M(p) is strictly monotone increasing in the vicinity of p = 1 if and only if N (s) is
strictly decreasing around s = 1. For real-valued, convex, non-increasing functions there is a simple charac-
terization of strict monotonicity near a point.

Lemma 9.1 Let N (s) be a non-increasing, convex function on (0, +∞). N (s) is strictly decreasing around
s0 > 0 if and only if N ′(s0+) < 0.

Proof For real-valued convex, non-increasing functions the one-sided derivatives

N ′(s±) = lim
ε→0±

N (s + ε) − N (s)

ε

always exist and are non-positive. If N ′(s0+) < 0 then N ′(s0−) ≤ N ′(s0+) because N (s) is a convex function
and its (one-sided) derivative is therefore a non-decreasing function of s (if we assume that s− < s+). But
then N (s) is strictly decreasing around s0.

Assume now that N ′(s0+) = 0. Then for any s > s0 we have

0 ≥ N ′(s+) ≥ N ′(s−) ≥ N ′(s0+) = 0.

Therefore, N ′(s±) = 0 for every s > s0. We conclude that N (s) = N (s0) for all s > s0. ��
Lemma 9.1 implies that M(p) is strictly monotone increasing around p = 1 if and only if c∗ > 0, where

c∗ = −N ′(1+) = M ′(1−). (9.7)

One can see that c∗ is exactly the measure of compressiveness c in the example from Sect. 8 corresponding to
the strut C1. Indeed, a straightforward calculation shows that in this case

M(p) = max{−p, p − 1} =
{ −p, if p ∈ [0, 1/2]

p − 1, if p > 1/2.

Thus, c∗ = M ′(1) = 1.
Clearly, computing c∗ may be demanding in cases, where m̂(h, λ) is not known explicitly. It is important

to realize, however, that we only need to verify that c∗ is positive without having to compute its value. The
following alternative, that is a simple corollary of Lemma 9.1 and formula (9.6), is important in both theory
and examples.

Corollary 9.2 Either c∗ > 0 and M(p) < 0, for all p ∈ (0, 1), and M(p) > 0, for all p > 1 or c∗ = 0 and
M(p) = 0 for all p ∈ (0, 1].
In order to complete the theory we need to show that B-equivalence indeed takes place when the asymptotics
of m̂(h, p̂λ(h)) depends on p in an “essential way”.

Theorem 9.3 Assume that c∗ > 0. Then m(h, λ) and m̂(h, λ) are B-equivalent.

Proof According to Corollary 9.2, c∗ > 0 implies that M(p) < 0 for all p ∈ (0, 1) and M(p) > 0 for all
p > 1. Let us choose any p > 1. Then

lim
h→0

m(h, p̂λ(h))

λ̂(h)
= lim

h→0

m̂(h, p̂λ(h))

λ̂(h)
= M(p) > 0,

due to (9.1). Therefore, there exists h0 > 0 such that m(h, p̂λ(h)) < 0 for all h < h0. It follows from the
definition of λ(h) that λ(h) ≥ p̂λ(h). Thus,

lim
h→0

λ(h)

λ̂(h)
≤ p.
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We conclude that

lim
h→0

λ(h)

λ̂(h)
≤ 1,

since, p > 1 was arbitrary.
Now, let p ∈ (0, 1). Then M(p) < 0 and, arguing as before, we conclude that there exists h0 > 0 such that

m(h, p̂λ(h)) > 0 for all h < h0. At this point, however, we cannot conclude that λ(h) ≤ p̂λ(h) because the
definition of λ(h) does not imply that m(h, λ) is negative for all λ < λ(h) and m(h, λ) does not have to enjoy
the same monotonicity properties as m̂(h, λ). Let us show, however, that the desired limit inequality never-
theless holds. Arguing ad absurdum, we assume that there is a sequence hn → 0 such that λ(hn) > p̂λ(hn).
According to the definition (4.4) of λ(h) there exists λn ∈ ( p̂λ(hn), λ(hn)) such that m(hn, λn) < 0. Hence,
by (5.15)

lim
n→∞

m̂(hn, λn)

λn
= lim

n→∞
m(hn, λn)

λn
≥ 0.

But

m̂(h, λ)

λ
= n

(
h,

1

λ

)
,

where n(h, τ ), defined by (9.5), is a strictly monotone increasing function. Therefore,

m̂(hn, λn)

λn
<

m̂(hn, p̂λ(hn))

p̂λ(hn)
,

since λn > p̂λ(hn). Passing to the limit in the last inequality, we obtain

0 ≤ lim
n→∞

m̂(hn, λn)

λn
≤ M(p)

p
< 0.

The contradiction above shows that there exists h0 > 0, such that λ(h) ≤ p̂λ(h) for all h < h0. Thus,

lim
h→0

λ(h)

λ̂(h)
≥ p

for all p < 1. ��
The measure of compressiveness c∗ has the same meaning as c, except that it is generated by the “substructure”
of �h that is responsible for the critical load, while c corresponds to the most compressed slender element. For
the Euler strut those two measures of compressiveness coincide, while for the split Euler strut from Sect. 8
they are different. Intuitively, it is obvious that c ≥ c∗, however to prove this inequality rigorously one needs
to formalize the “extraction of substructure” procedure.

Lemma 9.4 Assume that λ̂(h) < 0 for all small enough h and

lim
h→0

λ̂(h) = 0. (9.8)

Then
c ≥ c∗ ≥ 0. (9.9)

Proof Let ϕh ∈ Vh be an almost-minimizer for m̂(h, λ̂(h)) such that ‖∇ϕh‖ = 1 and

lim
h→0

∫

�h

{
(L0e(ϕh), e(ϕh))

λ̂(h)
+ th(x)|∇ϕh |2

}
dx = M(1) = 0. (9.10)
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According to (5.3), ‖e(ϕh)‖ → 0, as h → 0. Using ϕh as a test function for m̂(h, p̂λ(h)) we obtain

fh(p) ≥
∫

�h

{
(L0e(ϕh), e(ϕh))

λ̂(h)
+ pth(x)|∇ϕh |2

}
dx.

Passing to the limit as h → 0 and using (9.10) we obtain, for p < 1, that

M(p) ≥ (p − 1) lim
h→0

∫

�h

th(x)|∇ϕh |2dx.

Thus,

c∗ = lim
p→1−

M(p)

p − 1
≤ lim

h→0

∫

�h

th(x)|∇ϕh |2dx ≤ c.

To prove the last inequality in (9.9) we recall that N (s) is non-increasing. This implies that M(p) is non-neg-
ative, when p > 1 and non-positive, when p < 1. Thus, c∗ ≥ 0. ��

10 Failure of B-equivalence

In this section, we give examples showing that the variational problems for m and m̂ can be non B-equivalent
even in the case when λ̂(h) → 0. Obviously, in this situation we must have c∗ = 0, i.e., the integral

∫

�h

th(x)|∇ϕh,λ|2dx

must be small. This can be achieved if th(x) is either small or very oscillatory. The application of oscillatory
forces will not result in the oscillatory stress field because of the St. Venant’s principle (that expresses the
smoothing properties of Green’s functions of elliptic operators). Therefore, we concentrate on the case when
th(x) is uniformly small.

Consider the rectangular domain Rh as in the Euler’s example in Sect. 7 and the loading given by (7.8),
with λ replaced by ρλh + λ2. The parameter ρ > 0 is fixed, but arbitrary. Let λ(h) and λ̂(h) = 2KL0(Vh)
denote the critical load of the Euler strut and its constitutively linearized counterpart, respectively. Let Fλ be
the homogeneous deformation gradient of the trivial branch for the Euler strut from Sect. 7. If F̃h,λ and λ̃(h)
are the trivial branch and the critical load for our example with re-parameterized loading, then

F̃h,λ = Fλ(λ+ρh)

and

λ̃(h) = −1

2

(
ρh −

√
ρ2h2 + 4λ(h)

)
.

In other words λ̃(h) is the larger (smaller in absolute value) of the two negative roots of

x2 + xρh = λ(h), (10.1)

provided

ρ >
2
√−λ(h)

h
= ρc.

If ρ < ρc the strut never gets sufficiently compressed to buckle.
In order to determine th for our example we differentiate

WF(F̃h,λ) = (ρλh + λ2)e1 ⊗ e1 (10.2)
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in λ at λ = 0 to obtain

σ̃ h = ρhe1 ⊗ e1.

Therefore,

th = ρh

2
,

and c = 0. The constitutively linearized critical load ̂̃λ(h) for our example is related to the constitutively
linearized critical load λ̂(h) for Euler strut via

̂̃λ(h) = λ̂(h)

ρh
.

If 0 < ρ < ρc then constitutively linearized problem predicts a buckling load ̂̃λ(h) → 0 while, in fact, the
strut does not buckle at all. We also observe that if ρ > ρc then

lim
h→0

λ̃(h)

̂̃λ(h)
=

6ρ

(
ρ −

√
ρ2 − Eπ2

3

)

Eπ2 > 1

and therefore m and m̂ are not B-equivalent. Taking into account (7.22) and (5.13) we obtain ̂̃λ(h) → 0, as
h → 0 and thus, by Lemma 9.4, 0 = c ≥ c∗ ≥ 0. Therefore, c∗ = 0.

The above example can be viewed as a generalization of our remark at the end of Sect. 3 showing the
possibility of a similar degeneracy in the case of flip. Here again the theory fails because it implicitly assumes
that λ gives the scale of magnitude of the applied loads. As in the case of the flip, the condition c∗ > 0 plays
a dual role: it ensures B-equivalence of m and m̂, and endows the parameter λ with the expected physical
meaning.

Notice that in our example the surface m̂(h, λ) was smooth and there was no difference between c∗ and c.
To show how the same scaling degeneracy presents itself in the non smooth case, where c �= c∗, we consider
two Euler struts, one with aspect ratio hα , the other with aspect ratio h. The load on the first strut will be given
by (7.8), with λ replaced by −λ2, while the load on the second strut will be exactly as in (7.8). The first strut
will buckle when the load is

−√−λ(hα) ∼ −πhα
√

E

2
√

3
,

while the second column will buckle at a load

λ(h) ∼ − Eπ2h2

12
.

If α < 2 and h is sufficiently small, the second strut will buckle first.
Now let us compute c∗. We easily see that

th(x) =
⎧⎨
⎩

0, x ∈ first strut

1

2
, x ∈ second strut

and

m̂(h, λ) = min{KL0(Vhα ), KL0(Vh) + 1

2
λ}.

A simple calculation yields, M(p) = (p − 1)/2, if 0 < α ≤ 1, and

M(p) = max

{
0,

1

2
(p − 1)

}
=
⎧⎨
⎩

0, if p ∈ [0, 1]
1

2
(p − 1), if p > 1,



236 Y. Grabovsky, L. Truskinovsky

if α ∈ (1, 2). Thus, when α ∈ (0, 1], we have c∗ = 1/2 > 0, while c∗ = M ′(1−) = 0, when α ∈ (1, 2). At
the same time, we have c = 1/2 > 0 for all α > 0. The problems m and m̂ are B-equivalent for all α ∈ (0, 2),
but c∗ = 0 for α ∈ (1, 2). Hence, B-equivalence does not imply c∗ = 0.

To summarize, even when the loading on a slender element that determines the critical buckling load is
compressive and scales “nicely” with λ, it does not guarantee that c∗ is positive. In fact, the condition c∗ > 0
requires that λ determines the scale of the load, not only on the element that buckles first, but also on the
elements that are more slender.

11 Simple sufficient conditions for B-equivalence

It is desirable to have conditions that guarantee positivity of c∗ without the full knowledge of the function
M(p). Intuitively, it is clear that if the most slender element in the structure is under compression, then c∗ > 0.
To express this condition we introduce a new measure of compressiveness

cK = sup
‖e(ϕh )‖2=O(K (Vh ))

‖∇ϕh‖=1

lim
h→0

∫

�h

th(x)|∇ϕh |2dx. (11.1)

The idea behind introducing cK is that condition ‖e(ϕh)‖2 = O(K (Vh)) forces us to include only those vari-
ations ϕh that are supported on the most slender element(s). Then, the condition cK > 0 says that one of the
most slender elements in the structure is under compressive load.11

The parameter cK has several useful properties. First, its definition (11.1) implies that

c ≥ cK . (11.2)

Then, in view of the second example in Sect. 10, condition cK > 0 ensures that λ is the correct loading scale
on the most slender element. Moreover we can prove

Lemma 11.1 The following three statements are equivalent

(a) λ̂(h) = O(K (Vh)).
(b) cK ≥ c∗ > 0.
(c) cK > 0.

Proof Let us show that (a) ⇒ (b). By our assumption

M(0) = lim
h→0

KL0(Vh)

λ̂(h)
< 0. (11.3)

Therefore, by Corollary 9.2, c∗ > 0. The proof of cK ≥ c∗ simply repeats the proof of the inequality (9.9) in
Lemma 9.4. We only need to point out that the almost-minimizerϕh for m̂(h, λ̂(h)) always satisfies ‖e(ϕh)‖2 =
O(|̂λ(h)|). The test function ϕh is admissible in the definition (11.1) of cK , since by assumption λ̂(h) =
O(K (Vh)).

The implication (b) ⇒ (c) is straightforward, so it remains to prove that (c) ⇒ (a). Arguing ad absurdum
we assume that there is a subsequence (not relabeled) such that K (Vh)/̂λ(h) → 0, as h → 0. Let ϕh ∈ Vh be
a sequence of test functions such that ‖∇ϕh‖ = 1, ‖e(ϕh)‖2 = O(K (Vh)) and

lim
h→0

∫

�h

th(x)|∇ϕh |2dx = cK .

Using the above sequence ϕh as a test function in the definition (5.10) of m̂ and applying the identity

m̂(h, λ̂(h)) = 0, we get

0 = m̂(h, λ̂(h))

λ̂(h)
≥ lim

h→0

∫

�h

th(x)|∇ϕh |2dx = cK > 0.

This contradiction shows that λ̂(h) = O(K (Vh)). ��
11 If �h contains multiple elements of maximal slenderness then cK corresponds to the most compressed one of those. The

element that buckles first will necessarily have maximal slenderness, but in general can still be different from the one that
generates cK .
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Even though positivity of cK ensures positivity of c∗, it is still possible for the element that buckles first
to be different from the element responsible for the value of the parameter cK . Therefore inequality (b) in
Lemma 11.1 may be strict. Consider for example a structure �h consisting of two disjoint Euler struts under
compression with aspect ratios h and 2h. If th(x) on the second strut is twice as large as on the first one:
t2 = 2t1, then, according to results of Sect. 7, the first strut will buckle first, resulting in c∗ = t1. At the same
time cK = t2 = 2c∗. If we add a third Euler strut of aspect ratio

√
h with the value of th(x) equal to t3 > t2,

then we get c = t3 > cK . Thus, even within the context of Lemma 11.1, all the numbers c, cK and c∗ may be
distinct. Observe also, that under the smoothness assumptions of Theorem 7.1, we have c∗ = c = cK . The first
equality follows from the proof of Theorem 7.1, where in this case M(p) = c(p − 1). The last equality is the
consequence of (11.2) and Lemma 11.1(b).

A new sufficient condition of B-equivalence is provided by the following:

Theorem 11.2 If cK > 0 then m(h, λ) and m̂(h, λ) are B-equivalent and λ(h) = O(K (Vh)).

Proof If cK > 0 then, according to Lemma 11.1, c∗ > 0 and λ̂(h) = O(K (Vh)). In that case Theorem 9.3
ensures that the functionals m(h, λ) and m̂(h, λ) are buckling-equivalent, and therefore, λ(h) = O(K (Vh)).

��
Corollary 11.3 If th(x) > t0 > 0 then m(h, λ) and m̂(h, λ) are B-equivalent.

We remark that the different measures of compressiveness and slenderness that have appeared so far in
the paper are in one way or another associated with the function M(p). For instance, the quantities cK and
KL0(Vh) are associated with the behavior of M(p) at p = 0. Indeed, by Lemma 11.1, cK > 0 if and only if
M(0) < 0, because

M(0) = lim
h→0

KL0(Vh)

λ̂(h)
.

The constant c = m̂′
0 is associated with the behavior of M(p) at p = ∞ because it corresponds to the limit

h → 0 at fixed λ. In fact,

N (0) ≥ m̂′
0 ≥ lim

p→∞
M(p)

p
= N (0+). (11.4)

The equality in the second position is secured if the element that buckles first is the most compressed one. If
the second inequality (11.4) is strict, we may interpret it as a statement that m̂′

0 is determined by the behavior
of M(p) “beyond p = ∞”. Finally, the quantities c∗ and λ̂(h) are associated with the behavior of M(p) at
p = 1 by virtue of their definitions,.

12 Critical load as a generalized Korn constant

The definition of Korn’s constant can be generalized as follows. Let � be an open and bounded subset of R
2

and let V be a closed subspace of W 1,2(�; R
2). Suppose that t (x) is an arbitrary L∞ function on �. We say

that t (x) is V -positive if there exists ϕ ∈ V such that∫

�

t (x)|∇ϕ|2dx > 0.

Let L be a fourth order elasticity tensor. Define

KL[t (x); V ] = inf
ϕ∈V∫

� t (x)|∇ϕ|2dx=1

∫

�

(Le(ϕ), e(ϕ))dx. (12.1)

Clearly, if t (x) = 1, we obtain the definition (2.15) of the Korn constant KL(V ). If t (x) is not V -positive then
the infimum in (12.1) is taken over an empty set, and KL[t (x); V ] = +∞.

Theorem 12.1 Let λ̂(h) < 0 be the critical load corresponding to m̂(h, λ). Then th is Vh-positive and

λ̂(h) = −KL0 [th(x); Vh].
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Proof Suppose λ < 0, is such that m̂(h, λ) < 0. Then there exists ϕ ∈ Vh , such that ‖∇ϕ‖ = 1 and∫

�h

{(L0e(ϕ), e(ϕ)) + λth(x)|∇ϕ|2}dx < 0. (12.2)

In particular, ∫

�h

th(x)|∇ϕ|2dx > 0, (12.3)

and th is Vh-positive. By using the definition (12.1) we obtain∫

�h

(L0e(ϕ), e(ϕ))dx ≥ KL0 [th(x); Vh]
∫

�h

th(x)|∇ϕ|2dx.

Applying this inequality to (12.2) we get

0 > (KL0 [th(x); Vh] + λ)

∫

�h

th(x)|∇ϕ|2dx.

In view of (12.3), the inequality

λ < −KL0 [th(x); Vh]
is satisfied whenever m̂(h, λ) < 0. By definition of λ̂(h) there exists a sequence λn < λ̂(h) such that m̂(h, λn) <
0 and such that λn → λ̂(h) as n → ∞. Thus, we conclude that

λ̂(h) ≤ −KL0 [th(x); Vh]. (12.4)

To prove equality in (12.4), let ϕ(n)
h ∈ Vh be a minimizing sequence in the definition of KL0 [th(x); Vh],

i.e., ∫

�h

th(x)|∇ϕ(n)
h |2dx = 1

and

lim
n→∞

∫

�h

(L0e(ϕ(n)
h ), e(ϕ(n)

h ))dx = KL0 [th(x); Vh].

Then, substituting

ϕ̂
(n)
h = ϕ

(n)
h

‖∇ϕ(n)
h ‖

into (5.10) we get

m̂(h, λ) ≤ 1

‖∇ϕ(n)
h ‖2

⎛
⎜⎝
∫

�h

(L0e(ϕ(n)
h ), e(ϕ(n)

h ))dx + λ

⎞
⎟⎠ .

If λ < 0 is such that m̂(h, λ) > 0, then for every n ≥ 1

λ > −
∫

�h

(L0e(ϕ(n)
h ), e(ϕ(n)

h ))dx.

Passing to the limit, as n → ∞, we obtain

λ ≥ −KL0 [th(x); Vh]. (12.5)

If the inequality (12.4) is strict then there exists λ0 such that λ̂(h) < λ0 < −KL0 [th(x); Vh]. Therefore
m̂(h, λ0) > 0, by definition of λ̂(h). Thus, λ0 satisfies (12.5), which is a contradiction. ��
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An important property of KL[t (x); V ] is its monotone dependence on t .

Theorem 12.2 Suppose t1(x) ≤ t2(x) for all x ∈ � and suppose that t1(x) is V -positive. Then

KL[t1(x); V ] ≥ KL[t2(x); V ].
Proof Clearly, t2(x) is V -positive, if t1(x) is. Moreover, if ϕ ∈ V is such that

∫

�

t1(x)|∇ϕ|2dx = 1, (12.6)

then ∫

�

t2(x)

∣∣∣∇
(ϕ

α

)∣∣∣2 dx = 1,

where

α2 =
∫

�

t2(x)|∇ϕ|2dx ≥ 1.

Then

KL[t2(x); V ] ≤ 1

α2

∫

�

(Le(ϕ), e(ϕ))dx ≤
∫

�

(Le(ϕ), e(ϕ))dx.

To prove the theorem we must now take infimum over all ϕ ∈ V satisfying (12.6). ��
The monotonicity of the generalized Korn constant allows one to derive bounds on the critical buckling load.
For example, the inequality th(x) ≤ ‖th‖∞ implies that

λ̂(h) ≤ − KL0(Vh)

‖th‖∞
. (12.7)

If in addition we know that th(x) ≥ t0 > 0 then

− KL0(Vh)

t0
≤ λ̂(h) ≤ − KL0(Vh)

‖th‖∞
. (12.8)

The inequalities (12.8) supplement results of Lemma 11.1 and Corollary 11.3. The second inequality in (12.8)
is equivalent to the (h, λ) → (0, 0) asymptotics of the best finite h bound obtained in [10,11]. In the homo-
geneous case the bounds (12.8) collapse, providing an explicit formula for the asymptotics of the critical load
as we have illustrated in the case of Euler’s strut.

Appendix A: Trivial branch

Here, we study the question whether for small λ �= 0 the Eq. (3.7) has a unique smooth solution Fλ in the
vicinity of F = I . The question is nontrivial because the implicit function theorem cannot be applied directly
due to the fact that L0 = WF F(I) has rank 3 < 4.

Lemma A.1 Let P0 ∈ Sym(R2) be such that Tr P0 �= 0. Then there exists a neighborhood N of I in End(R2)
where

WF(F) = λP0 (A.1)

has a unique solution Fλ for all sufficiently small λ �= 0. In addition, Fλ is as smooth as WF(F), and

lim
λ→0

Fλ = I . (A.2)
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Proof The objectivity of the energy WF implies that the matrix WF(F)Ft is symmetric. Then according to
(A.1) the matrix P0 Ft must also be symmetric. Define

L = {F ∈ End(R2) : P0 Ft = F P0}.

The space L is three-dimensional for any P0 �= 012 and the function

G(F, λ) = WF(F)Ft − λP0 Ft

maps the neighborhood of I ×{0} in L×R into the neighborhood of 0 in Sym(R2). In particular, G(I, 0) = 0
and

G F(I, 0) = L0,

where L0 is understood as a map between L and Sym(R2). One can check that Skew(R2)∩L = {0} if and only
if Tr P0 �= 0. Thus, the map L0 : L → Sym(R2) is a bijection and the implicit function theorem is applicable.
So, there exists a smooth function Fλ such that for small λ it satisfies (A.2) and G(Fλ, λ) = 0. Thus, for small
λ the matrices Fλ are invertible. Therefore, Fλ satisfies (A.1). ��

Both conditions on P0 in Lemma A.1 are necessary. Indeed, if Fλ is a solution of (A.1), then, differenti-
ating (A.1), with F = Fλ at λ = 0, we get L0 F′

0 = P0, from which it follows that P0 must be a symmetric.
If Tr P0 = 0, the question of solvability of (A.1) depends on the particular form of W , and below we present
an example when solution does not exist.

Fix any symmetric P0 �= 0 such that Tr P0 = 0. Then there exists a symmetric matrix M0 such that
M0 P0 is not symmetric and (M0, P0) > 0. Now let L0 represent a matrix of positive definite quadratic form
on Sym(R2) such that L0 M0 = P0. It is easy to verify that such a matrix always exists.

Lemma A.2 Let W (F) = 1

4
(L0(Ft F − I), Ft F − I), where L0 has been defined above. Then there is no C2

function Fλ satisfying (A.2) and solving (A.1).

Proof Suppose, on the contrary, that the desired function Fλ does exist. Then, for our particular choice of W

Fλ(L0(Ft
λ Fλ − I)) = λP0. (A.3)

If we substitute the asymptotics

Fλ = I + λF1 + λ2 F2 + o(λ2)

into (A.3) we obtain, equating terms of order λ and λ2

2L0 F1 = P0, L0(Ft
1 F1 + 2F2) + 2F1(L0 F1) = 0.

It follows from the first equation above and non-degeneracy of L0 that F1 = 1

2
M0 + N , where N is a

skew-symmetric matrix. The second equation implies that the matrix

F1(L0 F1) = 1

4
M0 P0 + 1

2
N P0

is symmetric. In 2D one can show that if P0 is symmetric and trace-free and N is skew-symmetric then N P0
is again symmetric and trace-free. Thus, the symmetry of F1(L0 F1) is equivalent to the symmetry of M0 P0,
which is false by construction. ��

12 In 3D the subspace L is 6-dimensional, unless rank(P0) ≤ 1.
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Appendix B: Justification of the Kirchhoff–Love ansatz

First recall that the almost minimizers ϕh in the definition of the Korn constant (2.16) satisfy Lemma 7.3.
Moreover, strong convergence in L2 of the rescaled gradients

√
h∇hϕh prevents oscillatory behavior. Thus,

without loss of generality we may assume that the almost minimizer ϕh depends on h smoothly and we can
expand ϕh(x) in the powers of (x2, h):

ϕh(x) = φ(x1) + ψ(x1)x2 + η1(x1)h + 1

2
ξ(x1)x2

2 + 1

2
η2(x1)h

2 + η12(x1)hx2 + O(h3).

We have

∇ϕh(x) = φ′(x1) ⊗ e1 + ψ(x1) ⊗ e2 + O(h)

and

e(ϕh) = (φ′(x1) + x2ψ
′(x1) + hη′

1(x1)) � e1 + (ψ(x1) + x2ξ(x1) + hη12(x1)) � e2 + O(h2),

where � is the symmetrized tensor product, defined in (7.17). If ϕh is the optimal test function in the Korn
inequality, then the leading term in e(ϕh) must vanish, while the one in ∇ϕh must remain of order 1. It then
follows that φ(x1) = α(x1)e2, while ψ(x1) = −α′(x1)e1. In that case ∇ϕh(x) = α′(x1)S + O(h), while

e(ϕh) = x2�(x1) + h
(x1) + O(h2),

where

�(x1) = ξ(x1) � e2 − α′′(x1)e1 ⊗ e1

and


(x1) = η′
1(x1) � e1 + η12(x1) � e2.

Then we obtain

∫

Rh

(L0e(ϕh), e(ϕh))dx = h3

12

1∫

0

{(L0�(x1),�(x1)) + 12(L0
(x1),
(x1))}dx1 + O(h4). (B.1)

Observe that the leading term in the asymptotics of ‖∇ϕh‖2 = 2h‖α′‖2 + O(h2) depends only on α(x1).
Therefore, in order to minimize

∫
Rh

(L0e(ϕh), e(ϕh))dx, while keeping ‖∇ϕh‖ fixed, we need to minimize

the h3 term in (B.1) with respect to ξ(x1), η1(x1) and η12(x1). The minimum is achieved at η1(x1) = 0 and
η12(x1) = 0. Thus, we arrive at the ansatz

ϕ0(x) = α(x1)e2 − α′(x1)x2e1 + 1

2
ξ(x1)x2

2 + 1

2
η2(x1)h

2,

subject to the constraint that ϕ0 ∈ Vh . It follows that we need to require that α(0) = α(1) = 0 and
(η2(x1), e2) = −(ξ(x1), e2)/12 at x1 = 0, 1. Observe, that η2 does not enter the estimate for the Korn constant.
Therefore, it will be convenient to choose η2(x1) = −ξ(x1)/12. Finally, we need to choose ξ(x1) in such a
way as to minimize (L0�(x1),�(x1)). Performing the minimization explicitly we obtain ξ(x1) = α′′(x1)ν,
where

ν = A(e2)
−1 A(e1, e2)e1 (B.2)

is the anisotropic Poisson’s ratio.13 Here, we used the standard notation for the acoustic form

(A(m, n)u, v) = (L0(m ⊗ u), n ⊗ v)

and the acoustic tensor A(n) = A(n, n).
We finish by mentioning one curious effect of the anisotropy of L0. Recall that according to the classical

“Kirchhoff’s hypothesis” the transversal fibers in a bent strut remain straight and orthogonal to the deformed

13 If L0 is isotropic, then ν = νe2 and ν = (κ − µ)/(κ + µ) is the 2D Poisson ratio.
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middle surface. In our 2D setting the images of the transversal fibers x1 = x0
1 (see Fig. 3) under the incremental

displacements uε = εϕ0(x) are given by the parametric equations:
⎧⎪⎨
⎪⎩

X1(t) = x0
1 − εα′(x0

1 )t + ε

2
α′′(x0

1 )ν1(t2 − h2/12),

X2(t) = t + εα(x0
1 ) + ε

2
α′′(x0

1 )ν2(t2 − h2/12),

where t ∈ [−h/2, h/2]. The orthogonality of these curves to the deformed midline in the limit h → 0 is readily
verified. A simple calculation shows that the curvature of the lines X(t) in the limit h → 0 is εα′′(x0

1 )ν1.
Thus, the curvature of the deformed cross-sections in the limit h → 0 is zero if and only if ν1 = 0. The
formula in the footnote 13 shows that this condition is indeed satisfied for all isotropic tensors L0. However,
for a generic anisotropic material the curvature will be different from zero because of the axial Poisson effect
(ν1 �= 0). Therefore the Kirchhoff–Love ansatz ϕ0 given by (7.13) requires the transversal fibers to bend in an
anisotropic material.
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