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FPU PROBLEM: ANALYTICAL SOLUTION

In this problem the characteristic function L(k) has the following properties: L(−k) = L(k) and L(k) = L(k) and, hence,
the real and purely imaginary roots of the characteristic equation L(k) = 0 come in pairs while other complex roots come
in quadruplets. Therefore, it is enough to search for the roots of the characteristic equation in the quarter of the complex
plane Im k ≥ 0 and Re k ≥ 0. The associated roots can be conveniently sorted between the sets Z± = Z∓c ∪ Z±r with
Z±c = {k : L(k) = 0, ±Im k > 0} and Z±r = {|k| > 0 : L(k) = 0, Im k = 0, ±kL′(k) > 0}, see Fig. 1.

0 10 20 30 40 50

Re k

0

1

2

3

4

5

Im
k

0 2 4 6 8 10

0

1

2

ω = V k

ω(k)

Figure 1: Real and complex roots L(k) = 0 for the FPU problem. The inset shows the dispersion relation.

With the roots known, the integration in Eq. 2 in the main text can be performed explicitly which allows one to obtain the
expression for the full strain field:

ε(η) =


ε+ +

∑K
j=1Aj sin (kjη + ϕj)−

∑
kj∈Z+

σ0ω
2(kj)

kjL′(kj)
e−ikjη, η > 0,

ε− +
∑K
j=1Aj sin (kjη + ϕj) +

∑
kj∈Z−

σ0ω
2(kj)

kjL′(kj)
e−ikjη, η < 0,

(S1)

To use the switching condition ε(0) = εc, we need to recall the following general properties of the roots of the characteristic
equation [1] ∑

kj∈Z+
c

ω2(kj)

kjL′(kj)
+
∑

kj∈Z−
c

ω2(kj)

kjL′(kj)
= − 1

1− V 2
−
∑
kj∈Z+

r

ω2(kj)

kjL′(kj)
−
∑

kj∈Z−
r

ω2(kj)

kjL′(kj)
, (S2)

∑
kj∈Z+

c

ω2(kj)

kjL′(kj)
=

∑
kj∈Z−

c

ω2(kj)

kjL′(kj)
. (S3)

We can rewrite the switching condition in two equivalent forms ε± = εc ∓ σ0/2
1−V 2 + σ0Q+

∑K
j=1Aj sinϕj , where

Q =
1

2

∑
kj∈Z+

r

ω2(kj)

kjL′(kj)
− 1

2

∑
kj∈Z−

r

ω2(kj)

kjL′(kj)
. (S4)

Next, we compute the rate of dissipation by lattice waves:

R± =
∑

kj∈Z∓
r

〈Ej〉|ω′(kj)− V |, (S5)
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Figure 2: Amplitudes of the AC sources A∗
j (V ), j = 1, 2, ..,K for K = 1, 3, 5...; insets show strains ε(η) = ε(η)/εc at V = 0.15 and

V = 0.5 with corresponding A∗
j marked by solid circles. Black lines correspond to admissible solutions, red - to non admissible. Parameters:

σ0 = 2, εc = 1.

where Ej = v2j /2 + w(εj) is the energy density carried by the linear wave with the (real) wave number kj > 0 and ω′(kj)− V
is the velocity of the energy drift relative to the velocity of the defect; the signs indicate waves carrying the energy to ±∞.
The particle velocity here v(η) = −V du/dη can be obtained by inverting the kinematic relation in the Fourier space v̂(k) =
−V k exp (ik/2)/[2 sin (k/2)]ε̂(k). We obtain explicitly:

v(η) =


−V ε+ −

∑K
j=1

AjV kj
2 sin (kj/2)

sin (kj(η − 1/2) + ϕj) +
∑

kj∈Z+

σ0V kjω
2(kj)

2kj sin(kj/2)L′(kj)
e−ikj(η−1/2), η > 1/2,

−V ε− −
∑K
j=1

AjV kj
2 sin (kj/2)

sin (kj(η − 1/2) + ϕj)−
∑

kj∈Z−

σ0V kjω
2(kj)

2kj sin(kj/2)L′(kj)
e−ikj(η−1/2), η < 1/2.

(S6)

After the substitution we obtain

G± =
R±

V
=

∑
kj∈Z±

r ,kj>0

[(
±2

σ0ω
2(kj)

kjL′(kj)
−Aj sinϕj

)2

+A2
j cos2 ϕj

] ∣∣∣∣ω′(kj)V
− 1

∣∣∣∣ . (S7)

The first term in the square parenthesis reveals the interaction between the waves generated by AC forces and the waves radiated
by the defect. The second term corresponds to the contribution from the AC sources only. If we use the definitions of GM , Eq.
4, and Gm, Eq. 5, in the main text and substitute the expressions of the fields ε(η) and v(η), we obtain the relation

G = GM +Gm = G+ +G−. (S8)

To verify this identity it is enough to observe that 2ω2(kj)/(kjL
′(kj)) = V/(ω′(kj)− V ).

In the presence of AC driving the rate of dissipation G depends not only on the velocity of the defect V but also on the
parameters of the AC sources Aj and ϕj where j = 1, ...,K. In the simplest case of a single source we obtain G = σ2

0Q −
σ0A1 sinϕ1 + (1/2)A2

1|ω′(k1)/V − 1| = G(V,A1, ϕ1). Here the dependence on the phase shift ϕ1 is periodic and bounded
and we can conclude that each choice of V and A1 generates an interval of Gs (which reduces to a point when A1 = 0). The
generic structure of the resulting kinetic domain at a particular A1 6= 0 is depicted in Fig.2 of the main text where we only show
admissible solutions.

From the representation (S7) it is now straightforward to conclude that the condition GM + Gm = 0 is satisfied if we set
ϕj = ϕ∗j = π/2 and choose amplitudes Aj = A∗j = (−1)jσ0V/(ω

′(kj)− V ), j = 1, 2, ...,K, see Fig. 2.

FPU PROBLEM: NUMERICAL SOLUTION

To show how the DC and AC driving can be actually implemented and to show stability of the obtained analytical solutions
we we conducted a series of direct numerical experiments with a finite chain comprised of N = 1001 masses connected by
bi-stable springs.

Our initial conditions contained a pre-existing defect (phase boundary) located at n0 = 200. We assigned initial displacements
(linear with j) in the form uj(0) = ε̃−j for j ≤ n0 and uj(0) = ε̃−n0+ε̃+(j−n0) for j > n0, where ε̃± = εc∓σ0/2+ε+−A/2.
Here and below, constants ε± correspond to the limiting strains and A is an amplitude of the AC drive which we use in the
analytical solution. The initial velocities are set to 0 for each mass: u̇j(0) = 0.
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We fix the end of the chain on the right side by setting: uN+1(t) = uN (0) + ε̃+. The left end is loaded by a constant force
F = σ(ε−) + σ0V/(2(1 + V )) representing the DC driving so that: ü1(t) = σ(u1 − u2)− FH(t− t0).

The time shift t0 is needed for the energy from the AC source to arrive to the defect located at n = n0. We associate the AC
driving source with the two neighboring masses j0 = 400 and j0 = 401 which are located sufficiently far ahead of the initial
defect and the right end of a chain. More specifically, we assume that a time periodic pair of force is applied to the spring located
between these masses ensuring that the strain in this spring remains the same all the time. The resulting system of equations can
be written in the form:

üj(t) = σ(uj+1 − uj)− σ(uj − uj−1)−A(δjj0 + δj(j0+1)) sin(νt), (S9)

where δij is the Kronecker delta, ν = k1V and k1 is the first real positive root of the equation L(k) = 0.
We performed simulations with 100 transition events taking place before the waves reflected from the boundaries of the chain

took any effect. The defect was shown to approach the steady-state TW regime for several values of velocity V which suggests
that the corresponding analytical solution is a dynamic attractor.

Our Fig. 3 shows time evolution of the strain field. The insets in Fig. 3(c) show comparison between the numerically obtained
data and the analytical solution for A = 0.6, V = 0.45 and ε− = 2.21. In this case ε+ = −0.29 and GM + Gm = 0.27 (the
other parameters are σ0 = 2, εc = 1). The calculations were made with the ode45 solver of MATLAB.
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Figure 3: Snapshots of the normalized strains εj(t) = εj(t)/εc at different moments: (a) initial propagation of the wave from the AC forces
centred at j = j0 = 400 and j0 + 1; the initial defect is at j = n0 = 200; (b) the first transition event takes place at j = n0 soon after the
energy from the DC force (turned on at t = t0 = 600) at the left end arrived; (c) steady-state propagation achieved when the comparison with
the analytical solution (black solid lines) is possible; the insets on the right show snapshots of strains when the front is at j =280, 290 and 300.

In the attached Movie 2 we show the dynamic propagation of the phase boundary as demonstrated in the insets of Fig. 3(c).
The numerical solution is interposed with the analytical solution of the front moving at V = 0.45. During the propagation of
the defect, the points progressively move from the phase with ε+ to the phase with ε− by passing εc. The trajectories follow
precisely the analytical solution. To complement the animation we show in Fig. 4 the direct comparison of numerical and
analytical deformation histories in a generic location. The analytical solution, known as a function of η = n−V t, was re-scaled
to be compared with the numerically obtained field εn(t) corresponding to steady state.
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Figure 4: Perfect overlap of the normalized steady state strain history εj(t) = εj(t)/εc obtained in the simulation shown in Fig. 3 for j = 290
(red line) with the corresponding analytical solution (black line). Time t∗ marks the transition event.
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FPU PROBLEM: SPINODAL REGION

Suppose now that the FPU potential is C1 smooth and tri-parabolic which implies that it incorporates a spinodal region where
the elastic modulus of the connecting springs is negative. More specifically, we consider the dimensionless stress-strain relation
σ(ε) of the form

σ(ε) =


ε, ε < εc,

−(σ0/δ)(ε− εc) + εc, εc ≤ ε ≤ εc + δ,

ε− (δ + σ0), ε > εc + δ.

(S10)

Here the width of the spinodal region is denoted by δ while the other notations are the same as in the main paper.
Following [2, 3], we search for the TW solutions in the form:

σ(η) = ε(η)−
∫ 0

−z
w(s)H(s− η)ds,

∫ 0

−z
w(s)ds = δ + σ0, (S11)

where z determines the spacial width of the spinodal zone and w(η) is a new unknown function. The continuity of the strain
should be now enforced in two points: ε(0) = εc and ε(−z) = εc + δ.

If the function w(η) is known, we can again use the Fourier transform to obtain

ε(η) = εdr(η) +
1

2π

∫ ∞
−∞

ω2(k)

(0 + ik)L(k)
W (k)e−ikη dk, W (k) =

∫ 0

−z
w(s)eiks ds. (S12)

Here the dispersion relation ω(k) and the kernel L(k) are the same as in the main text. The action of applied loads is again
represented by the term εdr(η) satisfying the condition L(k)ε̂dr(k) = 0. To model the simplest external AC source we can
choose again εdr(η) = A1 sin (k1η + ϕ1) + C.

To find the equation for the function w(η) we need to first differentiate (S12) to obtain

ε′(η) = ε′dr(η)−
∫ 0

−z
w(s)q(η − s)ds, q(η) =

1

2π

∫ ∞
−∞

ω2(k)

L(k)
e−ikη dk (S13)

where the prime is the derivative with respect to η. On the other hand we know from (S11) that σ′(η) = ε′(η) + w(η) and
from (S10) that σ′(η) = −(σ0/δ)ε

′(η) when −z < η < 0. This allows us to eliminate ε′(η) from (S13) and obtain the desired
equation for w(η)

w(η) =
(

1 +
σ0
δ

)[∫ 0

−z
w(s)q(η − s)ds− ε′dr(η)

]
, −z < η < 0, (S14)

which must be supplemented by the normalization condition
∫ 0

−z w(s)ds = δ + σ0 allowing one to find the value of z.
Finally, to find the constant C we need to use the only remaining matching condition at η = 0. The solution ε(η) can be

equivalently written as

ε(η) = εdr(η) +

∫ 0

−z
w(s)ε0(η − s) ds, ε0(η) =

1

2π

∫ ∞
−∞

ω2(k)

(0 + ik)L(k)
e−ikη dk (S15)

where the term ε0(η) corresponds to εin(η) with σ0 = 1 in the main text of the paper. We define again the far field states for
ε0(η) obtaining ε+0 = 0 and ε−0 = 1/(1− V 2). Taking the limit and using the normalization condition we obtain

ε± = 〈εdr〉 (±∞) + ε±0 (σ0 + δ) (S16)

where ε± = 〈ε(η)〉 (±∞). We conclude that again C = ε+ but now ε− = ε+ + (σ0 + δ)/(1− V 2). Imposing the continuity at
η = 0 we obtain

C = εc −A1 sinϕ1 −
∫ 0

−z
w(s)ε0(−s) ds (S17)

We note that the condition ε(−z) = δ + σ0 is ensured by the imposed normalization condition on w(η). The admissibility
condition in this case becomes 

ε(η) < εc, η > 0,

εc < ε(η) < εc + δ, −z < η < 0,

ε(η) > εc + δ, η < −z
(S18)



5

For our purposes here it was sufficient to solve the linear integral equation (S14) numerically using the collocation method.
As in the case δ = 0 considered in the main part of the paper, for each set of the parameters V and A1 we find a one parametric
family of admissible solutions depending on the value of the phase shift ϕ1.
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Figure 5: (a) The rate of dissipation G(V ) for the the case K = 1 and δ = 0 (no spinodal region). Points α and γ mark minimum and
maximum of G when δ = 0 and V = 0.5. (b) The rate of dissipation as a function of ϕ1 at two values of A1 and V = 0.5 for δ = 0 and
δ = 0.3. Other parameters are σ0 = 2, εc = 1.

To illustrate these solutions we generalize for the case δ > 0 the formula for the macroscopic energy release rate GM =
0.5(σ0 +δ)(ε+ +ε−−2εc)+0.5(σ0−2εc)δ, while noting that the expression forGm remains unchanged. In Fig. 5(b) we show
the rate of dissipation for admissible solutions G(ϕ1) = GM (ϕ1) + Gm(ϕ1) at V = 0.5 and A1 = 0.2. We obtain the same
trends as in the case δ = 0, in particular, we see that AC driving can lower the friction. The study of the zero friction solutions
for the case δ > 0 will be presented separately.
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Figure 6: Normalized strain histories εj(t) = εj(t)/εc for j = 240, 282, ..., 290: (a) δ = 0 and (b) δ = 0.3. The insets show the comparison
of the analytical solutions (solid lines) with the numerically reached steady states at t = 40 (red markers).

In Fig. 6 we illustrate stability of the obtained analytical solutions. We solved numerically the FPU system with 500 springs
and initial data approximating the analytical solution with the lowest value of G in Fig. 5: the random perturbations of the initial
strain field were drawn from the uniform distribution on the interval [−0.1, 0.1]. The initial location of the front was at n0 = 250.
Our Fig. 6 shows convergence to the expected TW solutions in both cases, δ = 0 (no spinodal region) and δ = 0.3.

FK PROBLEM: ANALYTICAL SOLUTION
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Figure 7: Real and complex roots L(k) = 0 for the FK problem. The inset shows the dispersion relation.
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By performing integration in Eq. 7 in the main text we obtain the expression for the displacement field

u(η) =


u+ +

∑K
j=1Aj sin (kjη + ϕj)−

∑
kj∈Z+

σ0
kjL′(kj)

e−ikjη, η > 0,

u− +
∑K
j=1Aj sin (kjη + ϕj) +

∑
kj∈Z−

σ0
kjL′(kj)

e−ikjη, η < 0.
(S19)

The sets Z± are defined in the same way as in the FPU problem and demonstrated in Fig. 7.
The switching condition u(0) = uc can be again written in two equivalent forms u± = uc ∓ (σ0/2) + σ0R−

∑
j Aj sinϕj ,

where

R =
1

2

∑
kj∈Z+

r

1

kjL′(kj)
− 1

2

∑
kj∈Z−

r

1

kjL′(kj)
. (S20)

Next we compute the rate of energy dissipation R± = G±V following the same methodology as in the FPU problem. We
obtain:

G± =
∑

kj∈Z±
r ,kj>0

[(
±2

σ0
kjL′(kj)

−Aj sinϕj

)2

+A2
j cos2 ϕj

]
ω2(kj)

∣∣∣∣ω′(kj)V
− 1

∣∣∣∣ . (S21)

The energy balance (S8) remains the same and can be again verified by direct substitution. From (S21) one can see that the
choice ϕj = ϕ∗j = π/2 and Aj = A∗j = (−1)jσ0V/(ω(kj)

2(ω′(kj)− V )), j = 1, 2, ...,K ensures frictionless propagation of
the defect. The velocity dependence of A∗j for K > 1 is illustrated in Fig. 8.
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Figure 8: Amplitudes of the AC sources in FK problem: A∗
j (V ), j = 1, 2, ..,K for K = 1, 3, 5.... Insets show strains u(η) = u(η)/uc at

V = 0.2 and V = 0.5 with correspondingA∗
j marked by solid circles. Black lines correspond to admissible solutions, red - to non admissible.

Parameters: σ0 = 2, uc = 1.

PB PROBLEM: ANALYTICAL SOLUTION

With the TW ansatz applied, the Fourier transform reduces Eq. 11 to

L(k)û+(k) + û−(k) =
q̂(k)

ω2
−(k)− (V k)2

, (S22)

where superscripts ± define complex-valued functions which are analytic in the half-planes ±Im k > 0, respectively. To
represent the external DC/AC driving on the boundary of the chain, the function q̂(k) must be chosen to have a zero phys-
ical space image q(η) ≡ 0. The kernel function L(k) = (ω2

+(k) − (V k)2)/(ω2
−(k) − (V k)2) has zeros zj (roots of

ω2
+(zj) = (V zj)

2) and poles pj (roots of ω2
−(pj) = (V pj)

2). The symmetry properties L(−k) = L(k) and L(k) = L(k)
remain here the same as in FPU and FK problems. We can then define the sets of poles P± = P∓c ∪ P±r such that
P±c =

{
p : ω2

+(p)− (pV )2 = 0, ±Im p > 0
}

and P±r =
{
p > 0 : ω2

+(p)− (pV )2 = 0, Im p = 0, ±(ω′−(p)− V ) > 0
}

.
Similarly, we define the sets of zeros: Z± = Z∓c ∪ Z±r with Z±c =

{
z : ω2

+(z)− (zV )2 = 0, ±Im z > 0
}

and Z±r ={
z > 0 : ω2

+(z)− (zV )2 = 0, Im z = 0, ±(ω′+(z)− V ) > 0
}

. These poles and zeros are shown in Fig. 9.
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Figure 9: Real and complex zeros (blue markers) and poles (blue markers) of the kernel function L(k) for the PB problem. The inset shows
the dispersion relation.

The problem (S22) can be solved using the Wiener-Hopf technique [4]. The main step is the factorization of the function
L(k) = L−(k)/L+(k). The standard factorization formula gives on the real line

L±(k) = L∓1/2(k) exp

(
− 1

2πi
p.v.

∫ ∞
−∞

Log L(ξ)

ξ − k
dξ

)
(S23)

We can alternatively apply the Weierstrass factorization theorem and present the factors as infinite products [4]. Then we obtain
the representation

L±(k) =

(
γ

1− V 2

)∓1/2
(0∓ ik)±1

[∏
zj∈Z±

r

(
1− (k/zj)

2
)∏

pj∈P±
r

(1− (k/pj)2)

∏
zj∈Z±

c
(1− (k/zj))∏

pj∈P±
c

(1− (k/pj))

]∓1
1

S
, (S24)

where for future convenience we defined

S =

∏
zj∈Z+

r
zj∏

pj∈P−
r
pj

∏
zj∈Z−

r
zj∏

pj∈P+
r
pj
. (S25)

These expressions can be evaluated if we know the location of the zeros zj and the poles pj introduced above.
We can now rewrite the left hand side of (S22) as a sum of ”+” and ”-” functions that are analytic in the upper and lower half

plane, respectively:

1

L+(k)
û+(k) +

1

L−(k)
û−(k) = Ψ(k). (S26)

The explicit solution of (S26) can be now obtained by decomposing the right hand side

Ψ(k) =
1

L−(k)

q̂(k)

ω2
−(k)− (V k)2

(S27)

into a sum of ”+” and ”-” functions. To represent the general DC and AC sources we can set

Ψ(k) = 2πCδ(k) + 2π
∑
kj

Cjδ(k − kj), (S28)

where the wave numbers kj are chosen from the set Z−r if the AC source is located ahead of the defect and from the set P+
r if

the source is behind the defect. Since L−(kj)
[
ω2
−(kj)− (V kj)

2
]

= 0, we have q(η) = 0 and the sources, parametrized by
the constants C (DC driving) and Cj (AC driving), are indeed invisible in the bulk.

If we further additively factorize the delta functions δ(k − kj) = 2π[1/(0 + i(k − kj)) + 1/(0− i(k + kj))] we can write

Ψ(k) = Ψ+(k) + Ψ−(k), Ψ±(k) =
C

0∓ ik
+

∑
kj∈Z−

r ∪P+
r

Aj
2

[
e−i(ϕj−π/2))

0∓ i(k − kj)
+

ei(ϕj−π/2)

0∓ i(k + kj)

]
. (S29)

In this representation the complex amplitudes Cj are replace by the real amplitudes Aj and real phases ϕj . The total number of
the corresponding sinusoidal waves is K = |Z−r |+ |P+

r |.
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We can now apply the Liouville theorem [4] to (S26) and obtain the explicit solution of our problem û±(k) = L±(k)Ψ±(k).
Given that û(k) = û+(k) + û−(k) we obtain in the physical space u(η) = 1

2π

∫∞
−∞ L±(k)Ψ±(k)e−ikη dk, when ±η > 0,

respectively, which gives Eq. 12 and Eq. 13 in the main text. We can now apply the switching condition to obtain C +∑K
j=1Aj sinϕj = uc. Then using the boundary condition at −∞ we obtain the link between the constant C and the amplitude

of the DC driving τ in the form τ = (C/S(V ))
√

(1− V 2)/γ. In the physical space the ensuing solution takes a form u±(η) =
u±1 (η) + u±2 (η), for η larger (smaller) than 0, respectively. Here

u±1 (η) =
∑

zj∈Z+
r /P

−
r

α±j cos (zjη + β±j ) +
∑

zj∈Z+
c /P

−
c

α±j e
−i(zjη+β±

j ) (S30)

are the terms which do not contain DC/AC driving amplitudes explicitly. However, in contrast to the previous cases, the implicit
dependence is present through the real coefficients α±j and β±j representing the complex numbers:

α±j e
−iβ±

j =
iΨ±(kj)L

∓(kj)γ

2kjV (ω′±(kj)− V )
, (S31)

where kj = zj when the sign is + and kj = pj if it is −. The part of the solution explicitly related to external driving can be in
turn split into a DC and an AC related parts: u±2 (η) = u±DC(η) + u±AC(η). Here u+DC(η) = 0 and

u−DC(η) =
C

S

√
1− V 2

γ

 ∑
zj∈Z−

c

i

zj
−
∑

pj∈P−
c

i

pj

− η
 . (S32)

The AC related term is

u±AC(η) =
∑

kj∈Z−
r /P

+
r

Aj |L±(kj)| sin (kjη + ϕj − arg L±(kj)). (S33)
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Figure 10: Amplitudes of the AC sources in PB problem: A∗
j (V ), j = 1, 2, ..,K. Insets show strains u(η) = u(η)/uc at V = 0.2 and

V = 0.4 with corresponding A∗
j marked by solid circles. Black lines correspond to admissible solutions, red - to non admissible. Parameters:

γ = 1, uc = 1.

In the main text we showed that in this problem the macro-level energy release rate is V GM (V ) = (τ2(1−V 2)/2−(γu2c)/2)V
while the rate of dissipation due to the AC driving is:

V Gm(V ) =
∑
zj∈Z−

r

A2
j |L+(zj)|2

2
ω2
+(zj)(V − ω′+(zj)) +

∑
pj∈P+

r

A2
j |L−(pj)|2

2
ω2
−(pj)(ω

′
−(pj)− V ). (S34)

The dissipation due to radiated elastic waves is:

V G+(V ) =
∑
zj∈Z+

r

(α+
j )2

2
ω2
+(zj)(ω

′
+(zj)− V ), V G−(V ) =

∑
pj∈P−

r

(α−j )2

2
ω2
−(zj)(V − ω′−(pj)). (S35)

The validity of the energy balance (S8) in this case was checked numerically for the whole range of velocity 0 < V < 1.



9

The total dissipation becomes equal to zero if α+
j = 0 and α−j = 0 which can be ensured if we adjust the amplitudes Aj in

such a way that Ψ+(zj) = 0 and Ψ+(pj) = 0. These conditions can be rewritten as a linear system for the amplitudes Aj :

∑
kj∈Z−

r ∪P+
r

Aj
k2j

k2j − p2i
= uc, pi ∈ P−r ,

∑
kj∈Z−

r ∪P+
r

Aj
k2j

k2j − z2i
= uc, zi ∈ Z+

r (S36)

with additional requirement that ϕj = ϕ∗j = π/2. The variety of solutions of this system is illustrated in Fig. 10.

CRITICAL EXPONENTS

As we mentioned in the main text, the dependence of the velocity of friction-free defects on the amplitude of AC driving
shows a supercritical bifurcation which can be interpreted as a continuous (second order) phase transition. The corresponding
critical exponents can be evaluated numerically and an interesting question is whether their values show universality.
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Figure 11: Amplitude dependence of V ∗ and the corresponding power law fit (solid line): (a) FPU model, (b) FK model, (c) PB model.

In Fig. 11 we reproduced the data for V ∗ = V ∗(A1) shown in Fig.2, Fig. 5, and Fig. 7 of the main text. In the same figure
we show the obtained asymptotic relations ∆V ∗ ∼ ∆Ar1 where ∆V ∗ = V ∗ − V ∗(0) and ∆A1 = A1 − A0

1. In the case of FK
model and PB model the computed values of the exponent r stay very close to 0.5 corresponding to mean field Landau theory
and hinting towards universality. Instead, in the case of FPU model the value of the exponent r is closer to 1.0 which suggests
a link with mean field depinning [5]. The presence of the two classes may be due to the fact that in FPU models the problem
is quasi-linear (nonlinearity concerns the (discretized) derivatives) while in both FK and PB models the problems is semilinear
(nonlinearity concerns the function itself). A potentially important signature of this difference is that in FPU model of relevance
is the dispersion of the acoustic branch while in both FK and PB models the main role is played by the dispersion of the optical
branch.
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