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Abstract

We show that, contrary to popular belief, lower order dispersive regulariza-

tion of hyperbolic systems does not exclude the development of the localized

shock-like transition fronts. To guide the numerical search of such solutions,

we generalize Rankine–Hugoniot relations to cover the case of higher order

dispersive discontinuities and study their properties in an idealized case of a

transition between two periodic wave trains with different wave lengths. We

present evidence that smoothed stationary fronts of this type are numerically

stable in the case when regularization is temporal and one of the adjacent states

is homogeneous. In the zero dispersion limit such shock-like transition fronts,

that are not travelling waves and apparently require for their description more

complex anzats, evolve into travelling wave type jump discontinuities.

Keywords: dispersive regularization, expansion shocks, zero dispersion limit.

Mathematics Subject Classi�cation numbers: 35L40, 35Q35, 35Q74.

(Some �gures may appear in colour only in the online journal)

1. Introduction

Hyperbolic systems, representing conservation laws and describing non-dissipative wave-like

processes, are known to generate discontinuities even under smooth initial data [6, 7].Dissipa-

tive regularization can resolve such singularities replacing them with smooth transition fronts

[52, 55, 66]. The situation is more complex in the case of dispersive regularization which
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leaves the system dissipation-free remaining faithful to the conservative nature of the original

problem [32, 33, 66].

Dispersive regularization is usually either spatial or temporal. Spatial regularization brings

�nite length scales and is usually accomplished through higher space derivatives or by space

discretization [14, 62, 65]. Steady discontinuities are then replaced by non-steady modu-

lated wave trains [26, 30]. Instead, temporal regularization, bringing �nite time scales, either

through memory kernels or through higher order time derivatives [4, 8, 18, 20, 45, 49], was

shown to support at least stationary localized shocks which survive as smoothed transients in a

class of shallow water models, including unidirectional (Benjamin–Bona–Mahony) [15] and

bidirectional (Boussinesq) [16] equations. Localized travelling wave (TW) solutions were also

found in models with high-order dispersion where they correspond to heteroclinics connecting

periodic orbits [1, 5, 13, 31, 56].

In this paper we provide the �rst evidence that even the low-order dispersive temporal reg-

ularization can support stationary shock-like transition fronts that are not dispersive TW. As a

prototypical example we use the simplest strictly hyperbolic p-system [6, 52] which is regular-

ized by the lowest time derivatives as it is done, for instance, in the theory of bubbly �uids [3].

To guide the numerical search for localized transition fronts, we �rst use the Hamilton principle

to derive a set of higher order Rankine–Hugoniot (RH) jump conditions for a general disper-

sively regularized model. We use the ensuing kinematic and dynamic compatibility conditions

to identify admissible dispersive discontinuities in the general case and then work out in full

detail the case when the transition is between two periodic TWs with different wave lengths.

While such composite waves, even if they are RH admissible, are not smooth TW solutions by

themselves, they play an important role as building blocks for the construction of the desired

shock-like transition fronts.

We ultimately limit our construction to the special case when the transition fronts are sta-

tionary and one of the coexisting states is homogeneous. We show that if our generalized RH

conditions are satis�ed, the obtained composite solutions can withstand the spreading effect of

dispersion. In such solutions the ‘destabilizing’ activity of the internal time scale is effectively

disabled by the stationarity of the front, which is similar to what was observed in [15, 16].

To illustrate the numerical stability of the constructed transition fronts, we conduct numeri-

cal experiments using as a convenient example a fully nonlinear Serre–Green–Naghdi (SGN)

system designed to describe long gravity waves [23, 24, 51, 59]. Our tests cover a broad class

of Riemann-type initial value problems involving ‘cold’ (homogeneous) states arbitrarily nar-

rowly linked to ‘hot’ (oscillatory) states. We show that in a certain parameter range, numerical

evolution of such ‘composite’ initial data leads to the formation of an apparently stationary,

shock-like transition fronts which satisfy our generalized dispersive RH jump conditions.

In a �rst approximation, the emerging transition fronts can be described as truncated solitary

waves smoothly joining the matching cnoidal-type waves. More precisely, one far �eld state

is a degenerate periodic solution with zero wave number and another one is a co-propagating

wave with a �nite wave number. The two waves are connected by a non-analytic transition

region occurring over the length scale of a single oscillation of a periodic wave. At the time

scale of numerical simulations the size of the transition region remained unchanged, which

clearly distinguishes the obtained solutions from conventional dispersive shocks and transient

dispersive discontinuities. We also stress that such shock-like fronts emerge robustly from a

whole class of initial data.

The fact that numerically resolved transition fronts sharpen as the dispersive time scale tends

to zerowhile the limiting periodic patternsmaintain their amplitude suggest weak convergence.

However, similar to the examples presented in [15, 16], the formal weak limits of the obtained

fronts are unstable (entropically non-admissible) in the framework of the original p-system.
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They owe their stability exclusively to dispersive regularization and therefore, instead of the p-

system, the limitingmeasure valued pro�les [9, 37, 38] can be expected to serve as admissible

weak solutions of the Whitham-type higher order hyperbolic system [12, 14, 57, 66]. It can be

either a system of conservation laws for the parameters of modulated periodic traveling waves

or a higher order system of multiphase modulation equations.

The rest of the paper is organized as follows. In section 2we use the action principle to derive

the generalized jump conditions for a regularized model with spatial and temporal dispersion.

In section 3 we focus on the case of temporal dispersion, introduce periodic TW solutions

and study the possibility of discontinuous and smoothed connections between them. A speci�c

example (SGNmodel) is considered in section 4. Numerical evidence of dynamical stability for

the constructed stationary shocks-like transformation fronts is presented in section 5. To show

robustness of the obtained picture we reproduce it for a simpli�ed Boussinesq-typemodel with

linearized dispersion. The �nal section 6 contains our conclusions. The numerical algorithm

and some other technical issues are discussed in four appendices.

2. Regularized model

Variational formalism. Conservative models in continuum mechanics can be obtained from

the Hamilton principle which requires that the action functional is stationary on the trajectories

of the system [22]. For our purposes it will be suf�cient to consider the functionals of the form

L =

∫

Ω

L(x,a , x,ab) dq
1dq2, (1)

where L is a Lagrangian density. The deformation is de�ned by the function x(qa), a = 1, 2,

representing trajectories of material particles, where q1 = q is the spatial Lagrangian coordi-

nate and q2 = t denotes time. The subscript after a comma in (1) indicates partial derivative.

The integration in (1) is over the two-dimensional space–time domainΩ representing the evolv-

ing body between the time instants t = t0 and t = t1. In such representation of dynamics the

trivial identities x,ab = x,ba can be viewed as describing mass balance.

We �rst obtain the Euler–Lagrange equations

(

δL

δx,a

)

,a

= 0, (2)

where δL
δx,a

= ∂L
∂x,a

−
(

∂L
∂x,ad

)

,d
is the variational derivative and the summation over repeated

indexes is implied. Due to the symmetry of the second derivatives one has to count the mixed

derivatives in (2) only once, so the summation is over a and d > a. The equilibrium condition

(2) usually represent the linear momentum balance.

In view of (2), and the translational invariance of the Lagrangian density, one can also obtain

from (1) two conservation laws (Noether identities)

(

x,b
δL

δx,a
+ x,cb

∂L

∂x,ca
− L δab

)

,a

= 0, (3)

where δab is the Kronecker symbol. The relations (3) must be satis�ed along the actual trajec-

tory of the system. The temporal component of (3) is the energy balance equation; the spatial

component is known in �uid mechanics as the Bernoulli equation [2] and in solid mechanics

as the Eshelby equation [44].
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Suppose now that the domain Ω contains a propagating interface Σ. Suppose also that the

particle trajectories are continuous on Σ so [x] = 0 but their derivatives experience disconti-

nuities; here [ f ] = f+ − f− with the superscripts± denoting the limiting values of f. On such

interfaces (if they exist) the action principle imposes the constraints which can be viewed as

the generalized RH jump conditions
[

δL

δx,a

]

na = 0, (4)

[

∂L

∂x,ab

]

nanb = 0. (5)

Here na is the unit vector normal to Σ and facing the + direction. The �rst equation (4) is

standard representing the balance of linear momentum. The second equation (5) is speci�c for

high gradient theories ensuring the balance of hyper-momentum [47].

The Hadamard geometric and kinematic compatibility conditions on Σ ensuring the conti-

nuity of particle trajectories can be written in the form [x,a] = µna, where µ is a scalar. Note

that the spatial n1 and the temporal n2 components of the normal vector toΣ are related through

n2 = −n1VwhereV is the Lagrangian velocity of the discontinuity. Eliminatingµwe obtain the

relation V[x,1]+ [x,2] = 0 representing the balance of mass balance across the discontinuity.

Finally, the Noether identities (3) on Σ reduce to
[

x,b
δL

δx,a
+ x,cb

∂L

∂x,ca
− L δab

]

na = 0. (6)

These two equations represent the energy balance and the Bernoulli–Eshelby con�gurational

force balance on the discontinuity. In contrast to (4) and (5), none of the relations (6) can be

expected to satisfy on the discontinuities in view of their inherently dissipative nature [7, 52].

Unregularized system. To recover the underlying hyperbolic system, we now drop the

dependence of L on second derivatives and additively decompose the Lagrangian density into

the kinetic and internal energy related parts:

L =
u2

2
− e(w). (7)

Here we introduced special notations for the derivatives w(q, t) = xq (strain) and u(q, t) = xt
(velocity) implying that the deformation is now written as x = x(q, t) where q is the (mass)

Lagrangian coordinate; from now on a subscript without a comma will indicate derivative.

The relation between the Eulerian and Lagrangian descriptions is detailed in appendix A.

In the case when the Lagrangian density is given by (7) the main system, which includes the

linear momentum balance equation and the mass balance equation, is known as the p-system.

It can be written in the form

wt − uq = 0, ut + pq = 0, (8)

where p(w) = −ew. For instance, in 1D compressible hydrodynamics w is the speci�c vol-

ume, u is the �uid velocity, e(w) is the energy density and p(w) is the �uid pressure [6, 52].

From now on we assume that eww > 0 which makes the system (8) strictly hyperbolic with the

characteristic speeds c± = ±√
eww.

Choosing b = 2 in (3) we obtain the energy conservation law

(

u2

2
+ e

)

t

+ (pu)q = 0, (9)
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while the component b = 1 of (3) gives the Bernoulli–Eshelby conservation law

(wu)t +

(

e+ wp− u2

2

)

q

= 0. (10)

Both equations (9) and (10) are satis�ed identically for smooth solutions of the system (8).

Discontinuous solutions of (8) must satisfy the mass conservation and the linear momentum

conservation conditions:

V [w]+ [u] = 0, (11)

−V [u]+ [p] = 0, (12)

where again V is the Lagrangian shock velocity. The Noether jump identities (9) and (10) are

equivalent and can be written as a single condition

[

V2w2

2
+ e+ pw

]

= 0. (13)

Note again that for classical shocks in hyperbolic systems the variational condition (13) is not

satis�ed.

Regularized system. When both space and time micro-scales are taken into account in a

conservative setting we obtain a more general Lagrangian:

L̃ =
u2

2
− ẽ(w,wt,wq), (14)

where ẽ(w, 0, 0) = e(w). In such model the mass and linear momentum balance equations

remain the same as in the associated p-system, however the local constitutive relation for the

‘pressure’ is replaced by

p= −
(

∂ẽ

∂w
− ∂

∂t

(

∂ẽ

∂wt

)

− ∂

∂q

(

∂ẽ

∂wq

))

. (15)

The energy balance takes the form

(

ε+
u2

2

)

t

+

(

pu − wt

∂ẽ

∂wq

)

q

= 0, (16)

where we introduced a new energy density ε = ẽ− wt
∂ẽ
∂wt

. The corresponding

Bernoulli–Eshelby conservation law reads

(

wu − wq

∂ẽ

∂wt

)

t

−
(

u2

2
− wp+ wq

∂ẽ

∂wq

− ẽ

)

q

= 0, (17)

with (16) and (17) remaining equivalent for smooth motions.

Jump discontinuities in the regularized model must respect the generalized RH relations

(11) and (12) which remain the same. The two Noether jump conditions again reduce to a

single equality which also maintains its form. The only new condition is (5) which we can

write in the form

V

[

∂ẽ

∂wt

]

=

[

∂ẽ

∂wq

]

. (18)
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In the case of purely spatial regularization, when ẽ = ẽ(w,wq), an analog of this condition

was obtained in [64], while in the case of purely temporal regularization, when ẽ = ẽ(w,wt),

a special form of (18) was found in [21]. In the latter case, which is of main interest to us here,

the condition (18) simpli�es to

V

[

∂ẽ

∂wt

]

= 0. (19)

Zero dispersion limit. While we now have all the necessary conditions on dispersive dis-

continuities, their relevance remains to be demonstrated. Below we use these conditions to

construct ‘composite’ TW solutions. We �rst constrain them to satisfy only classical RH bal-

ances.We then replace the discontinuities by smoothed transition layers involving half-solitons

and satisfying higher order RH conditions. The ensuing smooth solutions are then shown to

serve as close approximations of the outcomes of numerical tests showing the emergence

of stationary transition fronts. As we conjecture, the actual discontinuities satisfying all RH

conditions arise only in the zero-dispersion limit.

3. Composite travelling waves

Periodic microstructures.An important class of microscopically inhomogeneous and macro-

scopically homogeneous solutions of the regularized p-system (8) and (15) is comprised of

periodic, cnoidal-type TWs of the type (w(θ), u(θ)), where θ = q− D̃t and D̃ is the (phase)

velocity of the wave in Lagrangian coordinates. Using this ansatz we obtain a system of

ordinary differential equations with two integrals

D̃w + u = D̃w + u, −D̃u+ p= −D̃u+ p, (20)

where the pressure is p= −ẽw + d
dθ

(

ẽwq − D̃ẽwt
)

. Note also that here wq = dw/dθ and wt =

−D̃dw/dθ. The ‘overbars’, representing constant values, will be later associated with period

averaging. The three constants w, u, p, instead of two, were introduced for later convenience.
We can similarly integrate the energy balance equation (16) to obtain

−D̃
(

ε⋆ +
u2

2

)

+ pu = −D̃
(

ε⋆ +
u2

2

)

+ pu, (21)

where we denoted ε⋆ = ẽ− wtẽwt − dw
dθ ẽwq = ε− dw

dθ ẽwq and introduced additional constants

ε⋆, u2, pu. Using the conservation laws (20), we can re-write (21) in the equivalent form

ε⋆ + (p+ D̃2w)w − D̃2

2
w2

= ε⋆ − D̃2

2
w2 + (p+ D̃2w)w, (22)

featuring yet another integration constant w2. The following identities linking all these

constants can be obtained directly from (20)

u2 − (u)2 = D̃2(w2 − (w)2), (23)

pu− p u = D̃3(w2 − (w)2). (24)

Specializing energy density. To �nd explicit relations between the integration constants

we need to specify the energy density and in what follows we limit our attention to the case of

temporal regularization with quadratic dependence of the energy density ẽ(w,wt) onwt. More

speci�cally, we assume that
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ẽ(w,wt) = e(w)+ a(w)w2
t .

Note that in this case ε⋆ = ε. We also assume that the regularization is perturbative in the sense

that there is a small parameter ǫ in front of the w2
t term.

To illustrate this choice, consider a rod with circular cross-section of radius l undergoing

small longitudinal deformations. Given that q is the mass coordinate (see appendix A), the

linearized energy density of such rod, accounting for transverse inertia [46, 49], can be written

in the form

ẽ(w,wt) =
c2

2

(

w2 − ν2
(

l

c

)2

w2
t

)

,

where w is the longitudinal strain, c =
√

E/ρ0 is the characteristic velocity, ρ0 is the material

density, E is Young’s modulus and ν is Poisson’s ratio. The time scale l/c is responsible for the
dispersive effects and its perturbative character becomes apparent in the long wave limit when

the characteristic wave length L≫ l is used to non-dimensionalize space. In the normalized

variables the regularizing term in the energy appears with the small multiplier ǫ = (l/L)2 ≪ 1.

Another example can be taken from the theory of bubbly �uids [3]. Suppose that the bubbles

are spherical with radius R(t, q) and their number per unit mass n is �xed. Assuming that the

�uid component is incompressible with the �xed density ρf , and that the compressible gas is

polytropic with exponent γ > 1, we can write the speci�c energy of the mixture in the form

[18, 20]

ẽ(R,Rt) =
4

3
πR3n

(

p0

γ − 1

(

R0

R

)3γ

− 3ρf
2
R2
t

)

,

where p0 is the equilibriumpressure andR0 is the equilibriumbubble radius. Note that the coef-

�cient in front of the regularizing term R2
t contains a time scale R0/

√

p0/ρf which is inversely
proportional to the Minnaert frequencyω2 = 3γp0/(ρfR

2
0). This time scale characterizes small

oscillations of a single bubble in a �uid and is ultimately responsible for dispersive effects.

Once again, if the non-dimensionalization of space involves the macroscopic characteristic

length L≫ R0, we are left with the small parameter ǫ = (R0/L)
2 ≪ 1 which characterizes the

volume fraction of gas bubbles.

Our third example, describing propagation of long surface gravity waves, will be discussed

in full detail in section 4.

Four parametric family of TW solutions. In the case of TWs, the role of the perturbative

parameter ǫ in front of the regularizing term in the energy density reduces to re-scaling of the

co-moving spatial coordinate θ. Therefore, unless we deal with dimensional quantities, we can

assume without loss of generality that ǫ = 1.

In the case of quadratic temporal regularization and, independently of the structure of the

hyperbolic part of the model, the dimensionless equation (22) reduces to

w2
θ = F(w;A,B,C), (25)

where

A =
D̃2

2
, B = p+ D̃2w, C = ε− D̃2

2
w2 + (p+ D̃2w)w.

The function F(w) depends on the structure of the dispersive model.

Suppose that there is a domain of parameters A,B,C where F(w) has two simple zeros

0 < w1 < w2 while remaining positive in the interval between these two roots. Then (25)
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has periodic solutions and the constants w, w2, p, ε can be interpreted as the correspond-

ing period averaged quantities. These parameters can be then expressed as functions of the

three constants A,B,C, see for instance [18, 19]. Given that the constant u does not enter

(25), we conclude that the whole family of TW solutions is determined by four independent

parameters.

Dynamic coexistence of wave trains.Consider now the case when a dispersive discontinu-

ity moving in Lagrangian coordinates with a constant velocity V separates two different wave

trains. The integration constants, de�ning each of these wave trains, have to be appropriately

matched on the discontinuity surface.

Note �rst that for the composite wave train to be a TW, the velocity V must coincide with

the (phase) velocities of both coexisting TW solutions:

V = D̃−
= D̃+. (26)

In other words both microstructures must be ‘frozen’ inside the structure of the macroscopic

shock.

The mass and linear momentum conservation on the shock can be written in terms of the

period averaged quantities:

[Vw + u] = 0, [−Vu+ p] = 0. (27)

The energy balance equation (16) reads

[

−V
(

ε+
u2

2

)

+ p u+
V3

2

(

w2 − (w)2
)

]

= 0.

While neither the energy balance, nor the Bernoulli–Eshelby conservation law (17) have to be

satis�ed on the discontinuity, they remain equivalent for the shocks which satisfy condition

(26).

If we now group the two conditions (26) with the two RH conditions (27), we obtain four

equations for the four unknowns de�ning the state after the shock (given that the state ahead

of the shock is known). The still missing constraint on the shock velocity V is delivered by the

higher order RH condition (19)
[

∂ẽ

∂wt

]

= 0. (28)

It is appropriate to mention here that while the nonlinear RH conditions associated with the

energy balance and the equivalent Bernoulli–Eshelby condition cannot be warranted due to

the inevitable dissipation on singularities (due to macro-micro channelling), the linear higher-

order RH condition (28), being a direct analog of the momentum balance, should necessarily

hold.

Cold–hot discontinuity. Consider now a special case of a dispersive discontinuity between

a degenerate state ‘−’, with an in�nite wave length (‘cold’ state), and a non-degenerate peri-

odic wave train representing state ‘+’ with �nite wave length (‘hot’ state). While in the ‘hot’

state we must require that V = D̃+, where D̃+ is the phase velocity of the wave train, in the

‘cold’ state, the parameter D̃− should be understoodas the velocity of the solitarywaveV−
s = V

with the homogeneous con�guration ‘−’ as a background. Solitary waves can be viewed as

in�nite wavelength limits of the wave trains and therefore an appropriate ‘half soliton’ would

naturally interpolate a homogeneous ‘cold’ state and a periodic ‘hot’ state. At �nite ǫ the result-
ing composite construction can be, of course, viewed only as an approximation with the real

‘cold–hot’ discontinuity emerging in the limit ǫ→ 0.
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GeneralizedRiemann problem. The classical Riemann problem for a hyperbolicp-system

allows only for ‘cold’ states in the initial conditions [6, 52]. Here we extend this de�nition

for the case of a regularized system. The corresponding generalized Riemann problem can

have initial conditions with two bordering macroscopically homogeneous but microscopi-

cally inhomogeneous states. This allows, in particular, for the initial coexistence of two ‘hot’

states. In section 5 we study such a generalized Riemann problem numerically in the special

case when the initial data contain an isolated ‘cold–hot’ discontinuity. In the whole generality

such Riemann problems can be studied in the framework of the averagedWhitham model [11,

12, 14, 26, 27].

4. Serre–Green–Naghdi model

Due to its many applications, we have chosen the Serre–Green–Naghdi (SGN) model of dis-

persive gravity waves as an illustrative example for our general theory. The SGN model can

be obtained by averaging the free-surface incompressible Euler equations over the depth while

keeping only the �rst order terms in ǫ = (d/L)2 ≪ 0, where d is the mean depth and L is a

characteristic wave length. The rigorous derivation of the SGN model can be found in [36, 43,

50]; the numerical approaches are discussed in [10, 17, 39, 42].

The main system. As it is usual in �uid mechanics, we use Eulerian spatial coordinate x

instead of the mass Lagrangian coordinate q, see appendixA for the detailed mapping. The two

main unknown functions are the �uid level h(x, t) (replacing the strainw) and the �uid velocity
averaged over the depth u(x, t). Adding to the list of dimensional constants the acceleration of

gravity g we can introduce non-dimensional independent variables t̃ = (
√
gd/L)t, x̃ = x/L,

and dependent variables h(t, x) = d h̃(̃t, x̃), u(t, x) =
√
g d ũ(̃t, x̃). The SGN system takes the

form

h̃̃t + (h̃ũ)x̃ = 0, (h̃ũ)̃t +

(

h̃ũ2 +
h̃2

2
+

ǫ

3
h̃2

d2h̃

d̃t2

)

x̃

= 0, (29)

where d2h̃
d̃t2

= d
d̃t

(

dh̃
d̃t

)

and dh̃
d̃t

= h̃̃t + ũ h̃x̃. Note that the small parameter ǫ in (29) is proportional

to the fourth power of the ratio of the two characteristic time scales
√

L/g and L/
√
gd. When

ǫ is suf�ciently small the dispersive term can be neglected and the SGN system (29) reduces to

the classical Saint-Venant system; the latter is a hyperbolic and genuinely nonlinear p-system

with characteristics propagating with velocities ũ±
√

h̃ [7, 52].

Going back to dimensional variables and assuming that ǫ = 1 we obtain the system of

equations [23, 24, 51, 59]

ht + (hu)x = 0, (hu)t + (hu2 + p)x = 0, (30)

wherewe introduced the pressure integrated over the �uid depth p= gh2

2
+ 1

3
h2 d

2h
dt2

.The energy
conservation law takes the form

(

h

(

u2

2
+ ε

))

t

+

(

hu

(

u2

2
+ ε

)

+ pu

)

x

= 0, (31)

where ε = 1
6

(

dh
dt

)2
+

gh
2
. The associated Lagrangian is [20, 45]

L = h

(

u2

2
+

1

6

(

dh

dt

)2

− gh

2

)

.
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In terms of the variable w(q, t) = h−1, used in (14), the internal energy density is

ẽ(w,wt) =
g

2w
− w2

t

6w4
.

Note that in this case the regularizing term depends not only on wt but also on w.
Periodic TWs. A detailed description of the TW solutions to SGN equations (30) can be

found in [12]. We summarize it here in the form suitable for further analysis.

Suppose that h = h(ξ), u = u(ξ), where ξ = x − Dt andD is a constant wave velocity. From

(30) we obtain

h(u− D) = m, (32)

p+
m2

h
= ι, (33)

where we introduced the constants m and ι. Equation (33) can be rewritten as

1

2
gh2 +

1

3
m2h

(

h′

h

)′
+
m2

h
= ι.

It has a �rst integral

1

6

(

h′

h

)2

+
gh

2m2
− 1

2h2
+

ι

m2h
= e, (34)

where e is another integration constant. The equation (34) can be recast in the form

(h′)2 = F(h), (35)

with F(h) = − 3g

m2 h
3 + 6eh2 − 6ι

m2 h+ 3 =
3g

m2P(h). In terms of the roots of the polynomial

P(h) = (h− h0)(h− h1)(h2 − h), where 0 < h0 6 h1 < h2 < ∞, the integration constantsm2,

ι and e can be expressed explicitly

m2
= gh0h1h2, ι =

g

2
(h0h1 + h0h2 + h1h2), e =

h0 + h1 + h2

2h0h1h2
. (36)

The periodic (cnoidal) solutions exist in the domain h0 < h1 < h2 with oscillations between

the values h1 and h2. It can be written explicitly in the form:

h(ξ) = h1 + (h2 − h1)cn
2(κ ξ; s), u(ξ) = D+

m

h(ξ)
, (37)

where κ2 = 3
4

(h2−h0)
h0h1h2

, s2 = h2−h1
h2−h0 . Note that the sign of the mass �ux m = ±√

g h0 h1 h2 is cho-

sen to be negative (positive) for right (left)-facing waves. The Jacobi elliptic function cn(u; s)

is de�ned by the equality cn(v; s) = cos(ϕ(v, s)), where the function ϕ(v, s) can be obtained

implicitly from the relation
∫ ϕ

0
(1− s2 sin2(θ))−1/2dθ = v. The wave length can be found from

the constraint

λ = 2

∫ h2

h1

dh√
F(h; h0, h1, h2)

. (38)

The relation between the special set of parameters h0, h1 and h2, used here, and the set A, B, C,

used in the general theory, can expressed explicitly in terms of complete elliptic integrals [12].

As we have already mentioned, the whole family of such solutions is four-parametric and is

fully de�ned, for instance, by the constants h0, h1, h2 and D.
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Solitary waves. In the in�nite wavelength limit the above construction produces isolated

solitary waves. The solution of (35) corresponding to λ = ∞ is selected by the condition h0 =

h1 and can be written explicitly

h(ξ) = h1 + (h2 − h1) sech
2

(

ξ

2

√

3(h2 − h1)

h2h
2
1

)

, u(ξ) = D+
m

h(ξ)
, m = h1 (u1 − D) . (39)

Here h1, h2 are the �uid levels at in�nity and under the soliton’s crest, while u1 is the velocity

at in�nity. Under the assumption that the solitary wave moves to the right we obtain m =

−h1
√
g h2 and therefore

D = u1 +
√

gh2. (40)

The whole family of such solutions is three-parameteric and is fully de�ned by the constants

h1, h2 and D.

Admissible ‘hot-to-cold’ transitions. From now on we use the notation ⋆ to indicate

the ‘cold’ state. Assuming �rst that it is homogeneous with h ≡ h⋆, u ≡ u⋆ we can write the

Rankine–Hugoniot relations for the mass and linear momentum in the form

hu = h⋆u⋆ = m, (41)

m2

h
+
gh2

2
+
m2

3

d2 h

dx2
− m2

3h

(

dh

dx

)2

=
m2

h⋆
+
gh2⋆
2

= ι. (42)

Here we have already used the assumption VE = D = 0, where VE stands for the Eulerian

shock velocity. Under this assumption, the additional condition (19) reduces in the Eulerian

coordinates to

m2

[

dh

dx

]

= 0. (43)

Since in the homogeneous state dh
dx

≡ 0 the condition (43) suggests that a ‘hot-to-cold’

discontinuity must necessarily involve the extremas h1, h2 of the ‘hot’ state.

We now show that there are only two homogeneous states h±⋆ which can be connected to

a stationary wave train through its extremal points h1 and h2. Indeed, from the RH conditions

(41)–(42) and the relations (36) we obtain that h⋆ must be a root of the third order polynomial:

Q(h⋆) = h3⋆ − (h0h1 + h0h2 + h1h2)h⋆ + 2h0h1h2. (44)

Since h0 < h1 < h2, the polynomial (44) always has three real roots h⋆: one is negative, and

two others h−⋆ < h+⋆ are positive, moreover,

h0 < h−⋆ < h1 < h+⋆ < h2, (45)

see appendix B for details. The shock connecting the states h−⋆ and h2 is schematically shown

in �gure 1.

It can be also shown by direct computation that for the right facing stationary wave with

m < 0 and D = 0 the inequalities

u−⋆ +

√

gh−⋆ < 0, u−⋆ −
√

gh−⋆ < 0, (46)

and

u+⋆ +

√

gh+⋆ > 0, u+⋆ −
√

gh+⋆ < 0, (47)

5487



Nonlinearity 33 (2020) 5477 S Gavrilyuk et al

Figure 1. Schematic representation of a discontinuity connecting a homogeneous state
h ≡ h⋆ to a periodic wave train at its maximum point h = h2.

Figure 2. Qualitative behaviour of the functions H(h, h±⋆ ).

are necessarily satis�ed, see appendixB. These inequalities, specifying the slopes of the shocks

in relation to the slopes of the incoming and outcoming of characteristics of the non-regularized

system, will be interpreted later.

To distinguish between the four eligible connections h1,2 → h±⋆ consider the function

H(h, h⋆) =
h0h1h2

2h2⋆
+ h⋆ −

h0h1h2

2h2
− h. (48)

The equation H(hi, h⋆) = 0 is equivalent to the condition of energy conservation on the

discontinuity

u2

2
+ gh+

m2

3h

d2h

dx2
− m2

6h2

(

dh

dx

)2

=
m2

2h2⋆
+ gh⋆. (49)

The qualitative behaviour of the function H(h, h±⋆ ) is illustrated in �gure 2. One can see that

the energy is lost at the discontinuities h2 → h±⋆ and is acquired at the discontinuities h1 → h±⋆
which makes the latter energetically inadmissible.

To separate the two remaining options h2 → h±⋆ it is instructive to look at these shocks from

the perspective of the hyperbolic theory (St-Venant equations). The latter deals with period

averaged con�gurations. While for the ‘cold’ state it is the actual con�guration, for the ‘hot’

state we need to de�ne the virtual homogeneous state

h ≡ hs(h0, h1, h2) = h0 + (h2 − h0)
E(s)

K(s)
,
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Figure 3. Schematic diagram showing the non-admissible expansion shock connecting
the averaged state h = hs with the homogeneous state h = h−⋆ and the admissible com-
pression shock connecting the homogeneous state h = hs with the homogeneous state
h = h+⋆ .

Figure 4. Schematic structure of characteristics in the hyperbolic problem for the sta-
tionary expansion shock connecting the homogeneous state h ≡ hs on the right with the
homogeneous state h ≡ h−⋆ on the left (left �gure), and for the stationary compressive
shock connecting the homogeneous state h ≡ hs on the right with the homogeneous state
h ≡ h+⋆ on the left (right �gure).

where K(s)=
∫

π
2

0 (1− s2 sin2 θ)−1/2 dθ and E(s)=
∫

π
2

0 (1− s2 sin2 θ)1/2 dθ are the complete

elliptic integrals of the �rst and second type with the modulus s2 = h2−h1
h2−h0 . In terms of such

averaged quantities and the corresponding hyperbolic theory, the transition hs → h−⋆ is an inad-

missible (expansion shock) while the transition hs → h+⋆ is admissible (compression shock),

see �gure 3.

Indeed, consider the structure of characteristics around each of these shocks. In the case of

the transition hs → h−⋆ we have u−⋆ +
√

gh−⋆ < 0 and u−⋆ −
√

gh−⋆ < 0. Therefore both char-

acteristics in the state with h ≡ h−⋆ have negative slopes, see �gure 4 (left �gure). The charac-

teristics in the state with h ≡ hs are presented in this �gure under the special assumption that

us = −
√

ghs which will be justi�ed below.With only two characteristics ‘coming’ to the front

it becomes ‘under-compressive’ and therefore unstable [63]. For the transition hs → h+⋆ the

pattern of characteristics is different, see �gure 4 (right �gure). In this case the characteristics

in the state h ≡ h−⋆ have velocities of opposite signs: u+⋆ +
√

gh+⋆ > 0 and u+⋆ −
√

gh+⋆ < 0,

while the con�guration of the characteristics in the state h ≡ hs remains the same. We see that

now three characteristics are coming and one is leaving, which is the classical con�guration

for a stable shock wave [63].
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Figure 5. Left �gure: half-soliton interpolating between a constant state h−⋆ and a peri-
odic wave train with the maximum at h2 at ǫ = 1 (shown in red). Right �gure: sharpening
of such interpolation as the scaling parameter ǫ tends to zero.

In the regularized problem the above stability assessment must be reversed because of

the presence of an additional RH condition. In particular, the under-compressive shocks

hs → h−⋆ become stabilized while the stability of the classical shocks hs → h+⋆ can no longer

be guaranteed. Our numerical experiments, reported in section 5, support this theoretical

prediction.

Interpolation.At �nite ǫ the admissible discontinuous transitions hs → h−⋆ do not formally

belong to the family of composite periodic TWs because the constant state h ≡ h−⋆ is different

from the periodic TW with λ = ∞ which must be a solitary wave. The solitary wave, compat-

ible with the transition hs → h−⋆ , must have the background h−⋆ and the maximum h = h2. A

half-soliton with these parameters will smoothly interpolate between the homogeneous state

h ≡ h−⋆ and an in�nite wave train with the average hs, see �gure 5 (left �gure). The background

velocity in such solitary wave is u1 = −√
gh2.

The obtained composite con�guration, however, is not a TW solution of the system (30),

because the equation, describing the TW solutions, is of the second order, and it does not have

heteroclinic orbits connecting periodic and homogeneous states. Thus, our composite wave

train can be considered only as an approximation to the actual solution which requires for its

construction a more complex anzatz containing non-TW elements.

Even though at �nite values of ǫ the described composite TW is only an approximation

of the actual solution, its ǫ→ 0 limit [�gure 5 (right �gure)] can be expected to approach

the exact discontinuous solution, see �gure 1. To the best of our knowledge, the emergence

in the zero dispersion limit of such generalized shocks, linking homogeneous con�gurations

with measure-valued in�nitely �ne dynamic mixtures, has not been reported before. To under-

stand stability of such shocks it is necessary to study the associated higher order hyperbolic

(Whitham) system [60].

GeneralizedRiemann problem. To illustrate these ideas consider the simplest initial value

problem when a non-trivial periodic TW solution is placed in contact with a constant state

characterized by the same averaged parameters. Suppose that the real axis is partitioned into

the following three domains:

(

h(0, x)

u(0, x)

)

=















































(

hR = hs

uR = 0

)

, if x > L,

(

hs(x)

us(x)

)

, if − L < x < L,

(

hL = hs

uL = 0

)

, if x < −L.

(50)
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Figure 6. The critical lineM = 1 in the plane (H1,H2) with Hi = hi/h0.

Here (hs(x), us(x)) is a periodic solution of the SGN system, with the average values

hs(x) and us(x) = 0. In the non-regularized (Saint-Venant) setting such initial value problem

would have had only a trivial solution.

To specify parameters,we need to choose the values h0, h1, h2 and select thewave velocityD.

We �rst recall that hs(us − D) = m, and m = −√
gh0h1h2 where the choice of the sign re�ects

the fact that the TW moves in Lagrangian coordinates to the right (D > 0). We can then write

D = us − mh−1
s . Since we can always choose us = 0 we write D = −m

(

h−1
s

)

. Also, using

the Galilean invariance we can choose the coordinate system moving with velocity D, which

will make the shock stationary in Eulerian coordinates. This will lead to the appearance of a

nonzero �ow at in�nity with uR,L = −D.
Under the transformation x→ x + Dt, u→ u+ D the initial data (50) transform into

(

h(0, x)

u(0, x)

)

=































































hR = hs

uR = m
(

h−1
s

)



 , if x > L,





hs(x)

us(x)+ m
(

h−1
s

)



 , if − L < x < L,





hL = hs

uL = m
(

h−1
s

)



 , if x < −L.

(51)

Choosing m and hs we �x two of the three parameters h0, h1, h2. The choice of the third

parameter remains unconstrained.

Sonic Riemann data. Our numerical experiments show that a generic ‘cold–hot’ station-

ary shock splits into a special stationary ‘cold–hot’ shock and a spreading dispersive shock
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Figure 7. The initial �uid level distribution h(x, 0) described by (51). The periodic wave
train parameters are: h0 ≈ 1.0962m, h1 = 1.1m, and h2 = 1.2m, λ ≈ 26.3767 m. The
corresponding period average value of h is hs ≈ 1.131 73 m. The ‘cnoidal-type’ wave
train in the middle can be closely approximated by an assembly of 180 single solitary
waves (37). Inset: a zoom into the transition region on the left. In the actual numer-
ical experiments the initial discontinuity between hs and h1 was smoothed using the
hyperbolic tangent interpolation (63).

wave. Since in the con�guration of interest the trailing edge of such dispersive shock would

move with the sonic velocity of the homogeneous state hs, the in�uence of the boundary of

the computational domain at x = −L can be eliminated if the initial shock also moves with the

same sonic velocity (in Lagrangian coordinates). It is then natural to select the initial conditions

respecting the conditionD = cs, where cs =
√

ghs is the sonic velocity in the state h ≡ hs. The

ratioD/cs is known as the Mach numberM (Froude number in hydraulics). In the SGN context

we can write (given that m < 0)

M = −mh−1
s

√

ghs
. (52)

Accordingly, our numerical experiments discussed in the next Section were conducted under

the assumption that Fr = 1. The ensuing constraint on the parameters h0, h1, h2 is illustrated in

�gure 6.
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Figure 8. Numerical solution of the generalized Riemann problem (51) at t = 1000 s;
the initial conditions are shown in �gure 7. The spatial distribution of wavelengths (dis-
tances between the closest local maxima) is shown in the bottom. The insets show two
progressive zooms around the emerging stationary shock.

5. Numerical solution of a generalized Riemann problem

To solve such a generalized Riemann problem, we used the numerical method developed for

the SGN system in [39]. Its adaptation to our problem is described in detail in appendix C; the

version we actually used is illustrated there for the benchmark test known as the ‘dam break

problem’.

Test 1. In �gure 7, we show the initial �uid level con�guration setting up the generalized

Riemann problem (51). The parameters are chosen to satisfy approximately the relationFr = 1.

For computational convenience we connected the initial homogeneous state to the adjacent

periodic solution smoothly; the smoothing procedure is discussed in appendix D.

A snapshot of the numerical solution at t = 1000 s is shown in �gure 8. Observe the forma-

tion of a new homogeneous state (the ⋆ state) between the dispersive shock wave moving to

the right in Lagrangian coordinates and the stationary discontinuity which also moves to the
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Figure 9. Upper left �gure: the initial condition for the generalized Riemann problem
with state h = h−⋆ on the left and the same wave train as in �gure 7 on the right. The
numerically obtained snapshots of the solution are shown at three time instants: t =
1000 s (upper right �gure), t = 2000 s (bottom left �gure), and t = 6000 s (bottom right
�gure).

right in Lagrangian coordinates effectively consuming the periodic wave train. The distribution

of wave lengths (shown in the lower portion of the �gure) suggests that the initial wave train

remains unperturbed by the breakdown of the original shock.

The analysis of subsequent snapshots shows that the front separating the emerging ⋆ state

and the initial periodic wave train is stationary in Eulerian coordinates. Our insets show that the

diffused interpolating layer starts at h−⋆ and ends exactly at the maximum point h = h2 of the

periodic solution, see �gure 8. The value of velocity u−⋆ is in agreement with the value calcu-

lated from themass conservation law: u−⋆ h
−
⋆ = −√

gh0h1h2. For the parameters h0 ≈ 1.0962m,

h1 = 1.1m, and h2 = 1.2m chosen in �gure 7, we obtained the values h−⋆ ≈ 1.098 08 and

u−⋆ ≈ −3.464 16.
As we have already explained, the spreading of the transition layer between the �uid levels

h = h−⋆ and h2 is due to the presence of a �nite scale ǫ = 1 in our problem.With this scale �xed

the numerical convergence of the numerical method as the mesh size goes to zero is illustrated

in the upper right inset in �gure 8; note in particular the convergence of the limiting values h−⋆
and h = h2 to the analytically predicted values. It can be also seen that the interpolating layer is

numerically close to the half of a stationary solitary wave (39), characterized by the conditions

D = 0 and h1 = h−⋆ ; the velocity of such soliton at in�nity is necessarily equal to u
−
⋆ .

Test 2. Next, consider the initial data where the homogeneous state on the left is chosen

to coincide exactly with the ⋆ con�guration so that the value h = h⋆ appears in (44) as the

minimal positive root, see �gure 9 (the left upper �gure). More precisely we choose h = h−⋆ ≈
1.098 08 m and u = u−⋆ ≈ −3.46416 m s−1 while the parameters of the periodic wave train

remain as before: h0 ≈ 1.0962m, h1 = 1.1m, h2 = 1.2m and g = 10ms−2. The goal of this

numerical experiment is to test the stability of the stationary shock emerging in test 1 and now

incorporated directly into the initial data. Once again, we connected the initial state ⋆ to the

adjacent periodic solution smoothly as discussed in appendix D.

The evolution of the solution is illustrated in �gure 9 at times t = 1000 s (the right

upper �gure), t = 2000 s (the bottom left �gure) and t = 6000 s (the bottom right �gure). A

quantitative comparison of these snapshots shows that neither the width nor the amplitude of

the stationary shock on the left changes with time at the scale of our numerical experiment.
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Figure 10. Upper �gures: initial conditions showing the state h−⋆ imposed both on the left
and on the right (left); the ensuing solution at time 2000 s (right). Bottom �gures: com-
parison of the transition front structures generated by the initial conditions with either
h = hs (red line) or h = h−⋆ (blue line) imposed on the right side of the computational
domain.

The snapshots at times t = 2000 s, and t = 6000 s show the sign of small non-stationary

�uctuations propagating along the constant state ‘⋆’. These small-amplitude waves moving to

the left are generated on the right extremity of the periodic wave train due a non-stationary

process over there (see more about this below). They have already passed the stationary shock-

like transition front and will be eventually absorbed by the computational boundary on the

left. Despite these external perturbations, the stationary pattern shows remarkable resilience

by maintaining its structure and showing only minimal modulation of the states on both sides

of the front.

To make sure that the modulation is indeed due exclusively to the waves arriving from the

right, and is not revealing the non-stationary nature of the shock-like transition front itself, we

performed a series of special numerical experiments. In particular, in an attempt to completely

suppress waves coming from the right, we initially imposed the state h = h−⋆ both on the left

and on the right, see the left upper �gure in �gure 10.

In the right upper �gure in �gure 10 we show the corresponding solution at time 2000 s.

While the global structure of the emerging wave pattern is rather different from the case when

the initial constant state on the right was h, the structure of the stationary shock-like front

(solitary wave merging with the ‘cnoidal’ type wave train) remains exactly the same and we

only see a small horizontal shift. The detailed comparison at time 2000 s is illustrated in the

two bottom �gures in �gure 10. In particular, one can see that the superimposed �uctuations

of the constant state, consciously present in the test with the state h imposed on the right,

completely disappear in the test when the state on the right is h−⋆ . All this suggests that the
obtained shock-like transition has at least a �nite range of stability.

In �gure 10 we used the notation h
L/2
⋆ to indicate that in the initial conditions the state

h−⋆ was matched to the periodic wave train using an interpolation over the length L⋆/2 (see

appendix D for details of this interpolation). In the test reported in �gure 10 we used as L⋆ the

length of the periodic wave with parameters h0, h⋆ and h2 which allowed us to relate smoothly

the periodic wave train and the state ‘star’ (with both the solution and its �rst derivative
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Figure 11. The same initial con�guration as in �gure 10 but without the initial smoothing
of the transition between the periodic wave train and the state ⋆. The initial data are
shown by the solid black line.

continuous). Smaller smoothing scales have been tried as well but they have all lead �nally to

the creation of the same transition layerwith the scale of a half of the solitarywave. To show that

the formation of shock-like stationary front does not depend on the interpolation length at all,

we present in �gure 11 the results of the simulations without any interpolation at all, when the

initial data were discontinuous. Note the transient adjustment of the solution through the for-

mation of large-amplitude solitonic perturbationwith oscillatory tail ahead (moving to the left).

However, it clearly leaves behind (on the right) exactly the stationary structure which we

discussed above (a one half of a solitary waves connecting smoothly the wave train with

the ⋆ state). This is yet another evidence of the numerical stability for the stationary fronts

constructed in this paper.

Finally observe that when the boundary condition on the right is h = hs, the initial periodic

wave train (‘hot’ con�guration) progressively transforms on the right extremity into another

‘hot’ con�gurationwith a larger wave length, see �gure 9. We can interpret this transition as an

expanding dispersive wave which effectively bridges ‘more hot’ and ‘less hot’ states. Note that

the average value of the variable h in the newly formed wave train is larger than in the original

state h = hs. The ensuing complex breakdown pattern can be potentially explained using the

Whitham’s averaged equations, for instance, in the zero dispersion limit the observed ‘hot–hot’

transition is suggestive of a higher dimensional hyperbolic rarefaction wave.

Test 3. Consider next a similar initial con�guration where instead of the state h−⋆ we choose

the state h+⋆ on the left. In terms of the underlying hyperbolic system we now have initially

a compression shock connecting the homogeneous state h = hs with the homogeneous state

h = h+⋆ , see �gure 4 (right �gure).

As we have already seen, the corresponding pattern of characteristics in the non-regularized

hyperbolic problem suggests instability, see �gure 4 (right �gure). In agreement with this pre-

diction, in our numerical experiment the stationary transition front is not forming, see �gure 12.

We observe instead a complex breakdown pattern which requires for its understanding a study

of the correspondingWhitham’s higher order system.
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Figure 12. The decomposition of the initial state with h = h+⋆ ≈ 1.164 71 on the left
and the same wave train as in �gure 7 on the right. The shown snapshot corresponds to
t = 300 s and shows the formation of an expanding dispersive shock.

Linearized dispersion. Since the SGN regularizing term in the energy is nonlinear in h, it

is of interest to check whether the emergence of the shock-like stationary front is conditioned

by this (non-fundamental) nonlinearity. To this end, we now consider the Boussinesq type

approximation of the SGN system where the dispersive term in the energy is linearized. We

obtain the same system of equation (30) where no

p=
gh2

2
+
h̄20
3
htt. (53)

In contrast to the original problem, the coef�cient h̄0 in (53) is constant. The corresponding

TW solutions satisfy the equations:

h(u− D) = m,
m2

h
+
g

2
h2 +

D2h̄20
3

h′′ = ι,

where, again, m and ι are integration constants. Multiplying the second equation by h′ and
integrating once we obtain:

D2h̄20
6

(h′)2 = ιh − gh3

6
− m2 ln

(

h

H

)

. (54)

Here H is a new positive integration constant. The three real positive roots 0 < h0 < h1 < h2

of the right-hand side of (54) exist if the equation m2

h
+

g
2
h2 = ι has two positive roots; then

the solution oscillates between the values h1 and h2.

If we choose ι ≈ 19.22372 308, m2 ≈ 14.4 889 747, H ≈ 0.297 886, we obtain the same

roots as in the case of the periodic solution considered in the SGN setting: h0 ≈ 1.0962, h1 ≈
1.1 and h2 ≈ 1.2. The corresponding wave length is:

λ =
2Dh̄0√

6

∫ h2

h1

(

ιh− gh3

6
− m2 ln

(

h

H

))−1/2

dh. (55)
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Figure 13. Numerical solution of the generalized Riemann problem for the Boussinesq
system; the corresponding pressure is given by (53). The snapshot at t = 1000 s (left
�gure) shows the formation of a stationary shock which is similar to the one obtained
for the SGN model in �gure 8. A zoom in on the transition front is shown on the right
�gure.

We can now prescribe the same value ofD as in the generalized Riemann problem for the SGN

system, and take h̄0 = h0. The main difference between SGN and Boussinesq models is that

the latter is not invariant under the Galilean transformation which implies that the wave length

in the Boussinesq model depends on the phase velocity D.

The numerical solution of the Boussinesq model with the same initial data as in the SGN

model (test 1) is illustrated in �gure 13. Once again we see the formation of a stationary

transition front separating ‘cold’ and ‘hot’ states which points to the robustness of our results.

6. Conclusions

Hyperbolic conservation laws are ubiquitous in continuum physics. They describe adequately

the dynamics of dissipation-free systems at large scales where the �elds of interest are suf�-

ciently smooth. Such models, however, fail to adequately represent the underlying physics at

small scales which emerge inevitably due to the inherent nonlinearity.

The localization trend in hyperbolic systems leads to the formation of concentrations and/or

oscillations. To describe the underlying microscale phenomena in some detail, the hyperbolic

system needs to be regularized dispersively which leads to the appearance in the model of the

characteristic length and time scales.

In this paper we studied a class of temporarily regularized dispersive models which we

showed to generate highly localized and apparently stationary transition fronts. The existence

of such compact kink-type solutions in a model with convex energy is rather remarkable.

Moreover, if formally averaged, the emerging macroscopic discontinuities become unsta-

ble hyperbolic shocks. The evidence of stability for such solutions in the dispersive set-

ting was obtained so far only numerically: our simulations strongly suggest that they have

at least a �nite reserve of stability and that they are long-living. More analytical work is

needed to see if these shock-like fronts are indeed stable, at least in the zero dispersion limit

when they degenerate into jump discontinuities. The adequate averaging of such solutionsmust

necessarily involve the account of degrees of freedom associated with micro-oscillations as in

Whitham’s averaging method.

At least in the case of SGN system, the Whitham’s approach was shown to produce again a

hyperbolic problem [60]. The corresponding higher dimensional system generates singularities

and we conjecture that at least some of these singularities can be interpreted as the limits of the

dispersive shock-like fronts studied in this paper. An important step along these lines was made
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in [57] where the discontinuities emerging in the zero dispersion limit of the �fth order KdV

were shown to be stable shock solutions of the correspondingWhitham equations. In [57] the

shocks in Whitham’s equations were shown to emerge as pointwise limits of the smooth TW

solutions of dispersive equations representing heteroclinic connections between two periodic

orbits of an ODE. The dispersion considered in this paper is too ‘poor’ to support such smooth

‘homogeneous-to-periodic’ heteroclinic TW solutions. In this situation we expect the limiting

Whitham shocks to result from the non-smooth solutions of the corresponding ODEs.
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Appendix A. Lagrangian and Eulerian descriptions

Since our general theory is formulated in Lagrangian coordinates, which are usually used in

solid mechanics, while the analysis of the SGN model, which originates in �uid mechanics, is

performed in Eulerian description, we brie�y recall here the connection between the two ways

of describing the motion of a 1D continuum [52, 55].

If t is time, and q is the (mass) Lagrangian coordinate, the spatial Eulerian coordinate is

de�ned through the motion of the continuum x = x(t, q). The mass conservation equation in

the Lagrangian coordinates can be written as ρ(t, q)xq = ρ0(q), where ρ(t, q) and ρ0(q) are the
actual and the reference mass densities, so that dm = ρ0(q)dq = ρ(t, q)dx. One can see that

if we choose ρ0(q) ≡ 1, the Lagrangian variable q will effectively coincides with the mass

m; in this case the mass balance equation will take a particularly simple form xq ≡ w = ρ−1

[52, 55]. Making this the de�nition for the speci�c volume (the strain) w and de�ning the

�uid velocity u as u ≡ xt we obtain dx = udt+ wdq. Note that the partial derivative with

respect to t in such Lagrangian coordinates (t, q) becomes the material derivative in the Eule-

rian coordinates (t, x) and we can write ft(t, q) =
d f (t,x)

dt
= ft(t, x)+ u(t, x) fx(t, x). A general

conservation law in the Lagrangian coordinates at + bq = 0, can be rewritten in the Eulerian

coordinates as (ρa)t + (ρua+ b)x = 0. Indeed, consider a closed contour C0 in (t, q) space.

Then, the conservation law can be written in the integral form as
∮

C0
− a dq+ b dt = 0. In

Eulerian coordinates this integral transforms into
∮

Ct
− a

w
dx +

(

au
w
+ b
)

dt = 0, where Ct is

the image of C0 in (t, x) space. These integral relations can be also used to relate jump con-

ditions in the two spaces. Consider a shock having the velocity V in Lagrangian coordinates.

The corresponding Rankine–Hugoniot relation reads −V[a]+ [b] = 0. The same shock will

have the velocity VE in Eulerian coordinates and −V = ρ(u− VE). In terms of VE the above

Rankine–Hugoniot relation takes the form [ρ(u− VE)a]+ [b] = 0.

Appendix B. Sonic wave speeds

Here we show the inequalities (45)–(47) are always satis�ed for the jumps moving to the

right (m < 0). If m > 0, some obvious changes in the signs of the inequalities should be done.

Suppose that m < 0 and consider the polynomial (44):
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Q(h⋆) = h3⋆ − (h0h1 + h0h2 + h1h2)h⋆ + 2h0h1h2 = (h⋆ − h0⋆)(h⋆ − h−⋆ )(h⋆ − h+⋆ ).

Since Q(0) > 0, there exists a negative root h0⋆. Since Q(h0) > 0 and Q(h1) < 0, there exists

a positive root h−⋆ between h0 and h1. Since Q(h1) < 0 and Q(h2) > 0, there exists a positive

root h+⋆ between h1 and h2. Hence,

h0⋆ < 0 < h0 < h−⋆ < h1 < h+⋆ < h2,

and the inequalities (45) are established. Vieta’s formulas for Q(h⋆) are:

2h0h1h2 = −h0⋆h−⋆ h+⋆ , h0h1 + h0h2 + h1h2 = h−⋆ h
+
⋆ + h0⋆h

−
⋆ + h0⋆h

+
⋆ ,

h0⋆ + h−⋆ + h+⋆ = 0.

Using the expression form2 = gh0h1h2, themass conservation law andVieta’s formulaswritten

above, one obtains

u−⋆ +

√

gh−⋆ =
m

h−⋆
+

√

gh−⋆ =
−√

gh0h1h2

h−⋆
+

√

gh−⋆

=
−
√

−gh0⋆h−⋆ h+⋆
2

h−⋆
+

√

gh−⋆

= −

√

g(h−⋆ + h+⋆ )h
+
⋆

2h−⋆
+

√

gh−⋆

< −

√

g(h−⋆ + h+⋆ )

2
+

√

gh−⋆ < 0

because h+⋆ > h−⋆ . The inequality u+⋆ +
√

gh+⋆ > 0 can be proven in the same way. The

inequalities u+⋆ −
√

gh+⋆ < 0 and u+⋆ −
√

gh+⋆ < 0 are trivial because for the right facing

stationary waves the velocities u±⋆ are negative.

Appendix C. Numerical method

Overview. To �nd approximate solutions to SGN equations, we used the hyperbolic–elliptic

splitting approach developed previously in [39]. Our modi�ed version of this algorithm will

be presented in the form of two steps:

Hyperbolic step.At each time step∆twe solve the hyperbolic part of the system (30)written

in the form:

qt + f (q, u)x = ψ(q, u) (56a)

where q = (h, hK)T, f =
(

hu, hKu+ 1
2
gh2
)T
, K = u− 1

3h

(

h3ux
)

x
, and ψ =

(

0,
(

2
3
h3(ux)

2
)

x

)T
.

Elliptic step.Using the approximate solutions h andK computed during the hyperbolic step,

we invert numerically the elliptic operator:

u− 1

3h

(

h3ux
)

x
= K (56b)

with the prescribed boundary conditions.
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Note that on the hyperbolic step, rather than writing (56a) in the conservation form as in

[39] with f =
(

hu, hKu+ 1
2
gh2 − 2

3
h3(ux)

2
)T

and ψ = 0 (which is ideal in the conservative

�rst-order setting [40], but is dif�cult to make higher than �rst order accurate), we write it in

the form of a balance law.We then obtain a standard elliptic problemwhich any state-of-the-art

method can resolve [41, 58].

Detailed numerical method for the hyperbolic step. To compute solutions to SGN

equations in the hyperbolic step, we use the semi-discrete �nite volume method written in a

wave-propagation form (cf [34, 35]). This method belongs to the class of �ux-vector splitting

methods for hyperbolic conservation laws [25, 40, 61], and has been applied to compressible

multiphase �ows (cf [54]), and in other instances of practical importance. For simplicity, we

describe the method on a uniform grid of N cells with �xed mesh spacing ∆x. The method is

based on a staggered grid formulation in which the value Qj(t) approximates the cell average

of the solutions q over the grid cell Cj:

Q j(t) ≈
1

∆x

∫ x j+1/2

x j−1/2

q(t, x) dx,

while Uj(t) ≈ u(t, xj) gives the pointwise approximation of the velocity u at xj at time t.

The semi-discrete version of the wave-propagation method is a method-of-lines discretiza-

tion of (56a) that can be written as a system of ordinary differential equations (ODEs) in the

form:

dQ j

dt
= L j (Q,U) , (57a)

with

L j (Q,U) = − 1

∆x

(

A+
∆Q j−1/2 +A−

∆Q j+1/2 +A∆Q j

)

+Ψ j (Q,U) , (57b)

for j = 1, 2, . . . ,N. Here, Q and U are the vectors with components Qj and Uj respectively,

A+∆Q j−1/2 and A−∆Q j+1/2, are the right- and left-moving �uctuations, respectively, that

are entering into the grid cell Cj, and A∆Q j is the total �uctuation within the cell. To deter-

mine these �uctuations, we need to solve Riemann problems (see below). Note that the term

Ψ j (Q,U) in (57b) represents a discrete version of ψ over the grid cell Cj which can be eval-

uated straightforwardly by numerical differentiation techniques such as the �nite-difference

approximation of derivatives (cf [41]).

Consider now the �uctuations A±∆Q j−1/2 arising from the edge ( j− 1/2) between cells

Cj−1 and Cj, for example. This amounts to solving the Cauchy problem for the homogeneous

part of (56a) in the form:







qt + f
(

q, uLj−1/2

)

x
= 0 if x < x j−1/2,

qt + f
(

q, uRj−1/2

)

x
= 0 if x > x j−1/2,

(58a)

with the piecewise constant initial data at a given time t0:

q (t0, x) =

{

qLj−1/2 if x < x j−1/2,

qRj−1/2 if x > x j−1/2.
(58b)

Here qL
j−1/2 = limx→x

( j−1/2)− q̃ j−1(x) and qR
j−1/2 = limx→x

( j−1/2)+
q̃ j(x) are the interpolated

states obtained by taking limits of the reconstructed piecewise-continuous function q̃ j−1(x) or
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q̃ j(x) (each of them can be determined by applying a standard interpolation scheme to the set of

discrete data {Qj(t0)}, see [25, 40, 53] for more details) to the left and right of the cell edge at

xj−1/2, respectively. To �nd the set of interpolate states of {uLj−1/2} and {uRj−1/2}, the approach
we propose here is to solve the elliptic equation (56b) based on the sets of data {qLj−1/2} and

{qRj−1/2}, respectively, which is a consistent approximation of u in the SGN model at the cell

edges.

Note that if the conservative version of the �ux f is being used in the problem formulation

[39], the governing equation in the Riemann problem would be







qt + f
(

q, uLj−1/2, (ux)
L
j−1/2

)

x
= 0 if x < x j−1/2,

qt + f
(

q, uRj−1/2, (ux)
R
j−1/2

)

x
= 0 if x > x j−1/2.

Then it should be clear that the need to interpolate the set of states {(ux)Lj−1/2} and {(ux)Rj−1/2}
consistently and to be more than �rst-order accurate would complicate the matter further, and

so it is preferable to use (56a) as the basis in the hyperbolic part of the method.

Here we are interested in the HLL (Harten, Lax, and van Leer) approximate solver [29] for

the numerical resolution of the Riemann problem (58) where the basic structure of the solution

is assumed to be composed of two discontinuities propagating at constant speeds sLj−1/2 and

sRj−1/2 to the left and right, sLj−1/2 < sRj−1/2, separating three constant states in the space–time

domain. We assume that sLj−1/2 and s
R
j−1/2 are known a priori by some simple estimates based

on the local information of the wave speeds (cf [39, 61]). Then it is easy to �nd the constant

state in the middle region, denoted by q∗j−1/2, as

q∗j−1/2 =
sRj−1/2q

R
j−1/2 − sLj−1/2q

L
j−1/2 − f(qRj−1/2, u

R
j−1/2)+ f (qLj−1/2, u

R
j−1/2)

sR
j−1/2 − sL

j−1/2

,

see [61] for more details. We then �nd the expression for the �uctuations in terms of jumps

across each discontinuity:

A±
∆Q j−1/2 =

(

sLj−1/2

)± (
q∗j−1/2 − qLj−1/2

)

+

(

sRj−1/2

)± (
qRj−1/2 − q∗j−1/2

)

, (59)

where s+ = max(s, 0) and s− = min(s, 0).

Similarly, we can de�ne �uctuation A∆Q j within cell Cj based on the solution of the

following Riemann problem at the cell centre xj:







qt + f
(

q, uRj−1/2

)

x
= 0 if x < x j,

qt + f
(

q, uLj+1/2

)

x
= 0 if x > x j,

with the initial condition

q (t0, x) =

{

qRj−1/2 if x < x j,

qLj+1/2 if x > x j.

To integrate the system of ODEs (57a) in time, we employ the strong stability-preserving

(SSP) multistage Runge–Kutta scheme [28]. That is, in the �rst-order case we use the Euler

forward time discretization as

Qn+1
j = Qn

j +∆tL j

(

Qn,Un
)

, (60a)
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wherewe start with the cell averageQn
j ≈ Q j(tn) andU

n ≈ U(tn) at time tn, yielding the solution

at the next time step Qn+1
j over∆t = tn+1 − tn. In the second-order case, however, we use the

classical two-stage Heun method (also called the modi�ed Euler method) as:

Q∗
j = Qn

j +∆tL j

(

Qn,Un
)

,

Qn+1
j =

1

2
Qn
j +

1

2
Q∗
j +

1

2
∆tL j

(

Q∗,U∗) .
(60b)

It is common that the three-stage third-order scheme of the form

Q∗
j = Qn

j +∆tL j

(

Qn,Un
)

,

Q∗∗
j =

3

4
Qn
j +

1

4
Q∗
j +

1

4
∆tL j

(

Q∗,U∗) ,

Qn+1
j =

1

3
Qn
j +

2

3
Q∗
j +

2

3
∆tL j

(

Q∗∗,U∗∗) ,

(60c)

is a preferred one to be used in conjunction with the third- or �fth-order WENO (weighted

essentially non-oscillatory) scheme that is employed for the reconstruction of q̃ j(x) during the

spatial discretization (cf [53]).

Detailed numerical method for the elliptic step. To �nd the �ow velocity u in SGNmodel

at a given time t, the elliptic equation (56b) is solved with h and K known a priori, and subject

to the prescribed boundary conditions (such as the Neumann and periodic boundaries con-

sidered here) at both ends. For simplicity, we use a three-point �nite difference method on a

uniform grid with mesh spacing∆x by �rst taking a backward difference for the outer deriva-

tive and then a forward difference for the inner derivative; collecting terms, we get the following

constant coef�cient difference formula for node j:

α jU j−1 + β jU j + γ jU j−1 = K j, (61)

with αj, β j, and γj de�ned by

α j = − 1

3H j

(H3) j−1/2

(∆x)2
,

β j =
1

3H j

(

(H3) j−1/2

(∆x)2
+

(H3) j+1/2

(∆x)2

)

+ 1,

γ j = − 1

3H j

(H3) j+1/2

(∆x)2
,

respectively, where (H3) j±1/2 = ((H j)
3 + (H j±1)

3)/2 ≈ (h(x j±1/2, t))
3 (cf [41]). Going through

all the nodal points for j = 1, 2, . . . ,N, and using the boundary conditions, we obtain a

nonsingular linear system for the unknown velocity U(t).

Let τ j be the local truncation error of (61) to the elliptic equation (56b), i.e.,

τ j = α̃ ju(t, x j−1)+ β̃ ju(t, x j)+ γ̃ ju(t, x j−1)− K(t, x j),

5503



Nonlinearity 33 (2020) 5477 S Gavrilyuk et al

where

α̃ j = − 1

3h(t, x j)

h3(t, x j−1/2)

(∆x)2
,

β̃ j =
1

3h(t, x j)

(

h3(t, x j−1/2)

(∆x)2
+
h3(t, x j+1/2)

(∆x)2

)

+ 1,

γ̃ j = − 1

3h(t, x j)

h3(t, x j+1/2)

(∆x)2
.

Then it is easy to show that τ j is on the order of (∆x)
2, i.e.,

τ j = − (∆x)2

12h(t, x j)

(

1

3
h3(t, x j)uxxxx(t, x j)+

2

3
h3x(t, x j)uxxx(t, x j)

)

+ O((∆x)4), (62)

and hence (61) is a second-order approximation to (56b) locally; the second-order global error

of the method can be ensured, when the method remains stable, i.e., the inverse of the matrix of

the resulting linear system from the �nite-difference approximation can be bounded by some

constant independent of∆x, as∆x→ 0 (cf [41]).

Validation tests. To access the numerical accuracy of our method, we performed conver-

gence studies for the two benchmark tests where the exact solutions are readily available for

comparison. In all the tests, the gravitational constant was chosen to be g = 10ms−2, and the

Courant number was set to 0.5 to ensure the stability of the hyperbolic solver.

Our �rst test is the propagation of a single solitary wave in a �uid which is at rest at in�nity,

see (39).We set h1 = 10m and h2 = 22.5m, yieldingD = 15ms−1; the computational domain

was of size 300m with periodic boundary conditions at both ends.

Our table C1 shows one-norm errors of the height at time t = 40 s (time it takes the solitary

wave crest to travel one period) for a convergence study of the solutions obtained using our

numerical strategy with four different mesh sizes N = 1200, 2400, 4800, and 9600, and three

different hyperbolic integration schemes. The underlying elliptic solver for (61) is the second-

order �nite difference scheme.

LetE1(h) = {E1
j (h)} for j = 1, 2, 3, 4 be the sequence of the one-normerror of the computed

height h to its true solution on anN = {1200, 2400, 4800, 9600}grid.With that, it is a common

practice to estimate the rate of convergence using the errors on two consecutive grids based on

the formula

convergenceorder =
ln
(

E1
j−1(h)/E

1
j(h)
)

ln
(

N j−1/N j

) .

From table C1, we observe that when Godunov method is employed in the hyperbolic step,

(i.e., the method uses zeroth-order piecewise constant reconstruction scheme for the Riemann

data at the cell edges, and the forward Euler method (60a) for the time discretization), the

order of accuracy of algorithm approaches to �rst-order accurate as the mesh is re�ned, and it

is second-order accurate, when MUSCL (monotonic upstream-centred scheme for conserva-

tion laws) is employed alternatively (i.e., both the �rst-order piecewise linear reconstruction

scheme and the Heunmethod (60b) are in use). In theWENO 3 case, however, (i.e., the method

uses the third-order WENO (weighted essentially non-oscillatory) scheme for Riemann data

reconstruction, and the third-order method (60c) for the time discretization), the order of accu-

racy in average is 2.1 approximately which is less than 3 (the formal order of accuracy of the

hyperbolic solver WENO 3); this result may not come as a surprise because our underlying
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Table C1. Numerical results for the solitary wave problem obtained using our algorithm
with four different mesh sizes and three different hyperbolic integration schemes; one-
norm errors in the height are shown at time t = 40 s. The elliptic equation (61) is solved
using second-order �nite difference scheme in all cases.

Hyperbolic step Godunov MUSCL WENO 3

N E1(h) Order E1(h) Order E1(h) Order

1200 2.595 × 10+02 4.894 × 10+00 2.622 × 10−01

2400 1.470 × 10+02 0.82 1.210 × 10+00 2.02 4.410 × 10−02 2.57

4800 7.834 × 10+01 0.91 3.005 × 10−01 2.01 1.178 × 10−02 1.90

9600 4.044 × 10+01 0.95 7.487 × 10−02 2.01 3.060 × 10−03 1.94

Table C2. Numerical results for the periodic TW problem; one-norm errors in the height
are shown at the time where the wave travelled over four periodic distance of the domain.

Hyperbolic step Godunov MUSCL WENO 3

N E1(h) Order E1(h) Order E1(h) Order

300 1.346 × 10−01 5.250 × 10−03 3.521 × 10−03

600 7.749 × 10−02 0.83 1.094 × 10−03 2.37 4.563 × 10−04 3.09

1200 4.100 × 10−02 0.92 2.482 × 10−04 2.15 5.927 × 10−05 2.96

2400 2.112 × 10−02 0.96 6.072 × 10−05 2.03 7.923 × 10−06 2.90

elliptic solver is only of O((∆x)2). Nevertheless, among all the three methods, WENO 3 gives

the smallest error in magnitude for each mesh size.

Our second example concerns the propagation of a TW in a periodic domain of one wave

length, see (37).

The periodic wave parameters were chosen to be h0 ≈ 1.0962m, h1 = 1.1m, and h2 =

1.2m. This yields the wave speed D ≈ 3.364 13ms−1 and wave length λ ≈ 26.3767m. The

computational domain was taken of the size of one wave length with periodic boundary

conditions at both ends.

The results of the convergence study in this case are shown in table C2. From the table,

we observe similar rate of convergence as in table C1, when the Godunov and the MUSCL

methods are in used in the hyperbolic step of the algorithm, and a slightly better behaviour of

error when WENO 3 is employed.

Finally, we present numerical results for the simulation of a dam break problem studied, for

instance, in [12, 39, 48]. Since there is no analytical solution to this problem, such a study is

rather qualitative, but it allows us to recover some qualitative characteristics of the solution (the

amplitude of the leading wave and its velocity, for example). We take the velocity vanishing in

the entire computational domain of size x ∈ [−300, 300]m, u(0, x) = 0ms−1, while the water

depth is piece-wise constant:

h(0, x) =

{

hL, if x < 0,

hR, if x > 0,

where hL and hR are chosen to be 1.8m and 1m, respectively. The discontinuous initial data

for the water depth will be replaced by a smooth function:

h(0, x) = hR +
hL − hR

2

(

1− tanh
( x

α

))

, (63)
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Figure C1. Left �gure: numerical result for the dam break problem for the initial data
(63) with α = 2m (S2 case in the terminology of [48]). The solid line is the water depth
at time t = 47.434 s, and the dashed line is the initial condition. The lines for h∗ and
hm are the depths of the post right-going undular bore and the leading solitary wave
(cf [12]), respectively. Right �gure: numerical result for the dam break problem for the
initial data (63) with α = 0.4m (S3 case in the terminology of [48]). The solid line is the
water depth at time t = 47.434 s, and the dashed line is the initial condition. The lines
for h∗ and hm are the depths of the post right-going undular bore and the leading solitary
wave (cf [12]), respectively.

where α = 2m or α = 0.4m. The structure of the solution (but not the velocity of the leading

solitary wave and its velocity) depends on the value of α. According to the terminology given

in [48], the case α = 2m produces S2 con�guration (�at structure of the �uid depth behind the

dispersive shock, �gure C1, (left), while α = 0.4m produces S3 con�guration (existence of a

node type point in the �uid depth pro�le, �gure C1, (right). The node point moves with the

velocity which can be estimated by using the continuity through dispersive shock of the Rie-

mann invariant of the corresponding Saint-Venant equations describing the waves advancing

to the right.

The comparison of the analytical and numerical results for the amplitude of the leading

solitary wave is shown in �gure C1 at time t = 47.434 s with the mesh size ∆x = 0.025m
(i.e., N = 24 000 meshes). As far as the global wave structure is concerned, our results are

in good agreement with the ones shown in [12] at time t = 150 s, where a different value of

the gravitational constant, g = 1ms−2, was employed. The computation was carried out using

our algorithm with the WENO 3 scheme in the hyperbolic part, and the second-order �nite

difference method in the elliptic part. Non-re�ecting boundary condition was used on the left

and right boundaries during the computations.

Appendix D. Smoothing procedure

Here we explain howwe interpolated the initial discontinuity connecting the constant state h ≡
h⋆ with the periodic wave train (with the period L). While the interpolation scale responsible

for the smoothing out of the jump was a crucial parameter in [15], in our case this parameter

was found to be irrelevant because independently of the initial conditions, the transition zone

quickly acquires the ‘half-solitary-wave-type’ structure discussed in the main text.
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Figure D1. (a) One period of the function h(x) is shown for the parameter choices
h0, h1, h2 (continuous line) and h0, h⋆, h2 (dashed line). (b) The initial smooth data for
h(x) joining the constant state ‘star’ (red line) and the initial wave train at the state h2
shown by dashed line.

Below, we present two types of interpolations which we used. The �rst type relies on the

smoothing over the length scale L⋆/2 where L⋆ is the length of the periodic wave with param-

eters h0, h⋆ and h2. More precisely, let the initial discontinuity be at x = 0. We replace h at the

interval [−L⋆/2, 0] by the explicit solution of (35) with h1 = h⋆ = h−⋆ :

h(x) = h⋆ + (h2 − h⋆) cn
2(κ⋆x, s⋆), x ∈ [−L⋆/2, 0],

whereκ2
⋆ =

3
4

h2−h0
h0h⋆h2

, and s2⋆ =
h2−h⋆
h2−h0 . Such initially regularized curve [dashed curve in �gureD1

(left graph)] joins smoothly the constant solution h = h−⋆ at the point x = −L⋆/2 with the

periodic wave train at maximum h = h2 (right graph in �gure D1). The expression for the

velocity u is obtained from the mass conservation condition u(x) = m/h−1(x).
The second type of interpolation is optimal in the sense that it bridges the states h−⋆ and h2

by a half of the solitary wave (see �gure 5):

h(x) = h−⋆ +
(

h2 − h−⋆
)

sech2





x

2

√

3(h2 − h−⋆ )

h2(h
−
⋆ )2



 , u(x) =
m

h(x)
.

Both types of interpolation give the same �nal structure: the state ‘star’ is related with

the wave train by a half of the solitary wave. In the main text we also show that even a

drastic departure from the smooth interpolation approach, where we start with discontin-

uous initial data, still brings us to the same stationary pro�le of the shock-like transition

front.
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