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To account for the possibility of an externally driven taxis in active systems, we develop a model of a guided
active drift which relies on the presence of an external guiding field and a vectorial coupling between the
mechanical degrees of freedom and a chemical reaction. To characterize the ability of guided active particles
to carry cargo, we generalize the notion of Stokes efficiency extending it to the case of stall conditions. To show
the generality of the proposed mechanism, we discuss guided electric circuits capable of turning fluctuations into
a directed current without a source of voltage.

DOI: 10.1103/PhysRevE.100.042608

I. INTRODUCTION

Self-propelling systems have become a subject of intense
interest across several disciplines of physics [1]. The most
well-known examples are active Brownian particles (repre-
senting motile cells, “walking” grains, etc.) [1–5], and Brow-
nian rachets (representing moving protein machines, synthetic
molecular motors, etc.) [6–9].

Less studied are active agents that are softly guided by
temporarily and spatially varying, deterministic, or fluctuating
external fields as in the cases of chemotaxis [10–12], contact
guidance [13–15], and durotaxis [16–18]. For instance, in
the phenomenon of contact guidance cells can sense and be
steered by the alignment of the fibers in the surrounding
matrix. Viewed as self-propelling particles, they would show
persistence (directed motion) only along the guiding field
whose dynamics may be further coupled to the motion of the
particles themselves. Thus, in the case of contact guidance
fiber alignment may be strain-induced and therefore affected
by the cell motion.

In this paper we introduce a prototypical model of a
guided active drift (GAD) which relies on a vectorial coupling
between mechanical and chemical degrees of freedom and
implies a “strong” violation of detailed balance (DB) as
defined below. In the proposed model the chemical subsystem
acts as a feedback controller for the mechanical degrees of
freedom, and spatial asymmetry derives from an inherently
nonequilibrium process involving sensing and adaptation: ac-
tive forces follow the environment in the same way as one can
guide the sail to accommodate the direction of the wind.

The proposed mesoscopic mechanism of chemomechan-
ical coupling leads to the emergence of directed drift with
a possibility to carry cargo. It mimics the ability of living
organisms to maintain control of their environment through
self-regulating, self-powered feedback loops responsible for
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interconversion of chemical and mechanical energy. At the
microscale, it implies the existence of an autonomous, self-
sustained system which actively responds to guidance ensur-
ing the targeted performance [19–21].

The paper is organized as follows. In Sec. II we intro-
duce the general three-dimensional (3D) model and derive
its analytically transparent one-dimensional (1D) version. In
Sec. III we compare the proposed guidance activity mech-
anism with the existing models. In Sec. IV we analyze the
dynamical aspects of the model, including force-velocity rela-
tion, anomalous diffusion, and the activity dependence of the
decorrelation time. Stochastic thermodynamics of the model
is the subject of Sec. V, where we introduce a definition of
efficiency extending Stokes efficiency in a way that allows us
to access stall conditions. The nontrivial procedure of deriving
the overdamped (Smoluchowski) limit for such systems is
outlined in Sec. VI, where we also analyze the anomalous
behavior exhibited in this limit by thermodynamic quanti-
ties. An experimentally feasible circuit analog of the model
is discussed in Sec. VII. Our conclusions and some future
directions are discussed in Sec. VIII.

II. GUIDED ACTIVE PARTICLES

We propose a mechanism of directional motility that ap-
pears at first glance to be purely dissipative because it relies
on velocity-dependent forces with strictly positive effective
viscous damping coefficient. Consider an inertial dynamics of
a particle

mv̇ = F + f ,

where m is the mass of the particle, f is an external fixed load,
and

F = −γ̂ (v)v

is a frictional force with γ̂ � 0 being a velocity-dependent
friction coefficient. At zero temperature this system is dissi-
pative in steady-state conditions with f v � 0. However, as
we show below, if one exposes the same particle to a thermal
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reservoir so that

mv̇ = F + f + ξ, (1)

where 〈ξ 〉 = 0 and 〈ξ (t )ξ (t ′)〉 ∼ δ(t − t ′), the ensuing system
may, for special choices of γ̂ (v), exhibit “antidissipative” be-
havior with f 〈v〉 � 0. In particular, such particle can behave
as a Brownian motor with a nonzero drift 〈v〉 at zero force f
[22].

A. 3D model

To expound the above discussion, consider an under-
damped Brownian particle in 3D exposed to friction and
thermal noise, and assume that its translational dynamics is
coupled to a chemical reaction:

mv̇ = F(v, ζ ) + f + ξ,

ζ̇ = A(v, ζ ). (2)

Here m is the mass of the particle, f is an external load, F is a
frictional or steering force, and A is the driving force acting on
the reaction coordinate ζ . The noise is assumed to be Gaussian
and white, with 〈ξi(t )〉 = 0, and 〈ξi(t )ξ j (t ′)〉 = 2γ T δi jδ(t −
t ′), where γ > 0 is the “bare” viscosity coefficient and T is
the temperature of the bath (Boltzmann constant is set equal
to one).

In an unguided passive system we may write A = �μ

where �μ(ζ ) is the affinity of the chemical reaction. To
simulate guiding, we assume that the fluxes are related to
forces through pseudolinear relations [7]

F = −γ v + λ(v/‖v‖)�μ,

A = −λ(v · m) + �μ, (3)

where the coefficient λ characterizes chemomechanical cou-
pling and �μ may now depend on both v and ζ . The unit
vector m introduces a preferred (space and time-dependent)
guiding direction; for instance, in the case of chemotaxis,
the field m(x, t ) indicates the local direction of an exter-
nal concentration gradient. Unless m = v/‖v‖, the obtained
system is active: the chemical subsystem acts as a feedback
controller for the mechanical degrees of freedom, accelerating
or slowing the advance of the reaction depending on the
relative orientation of the velocity with respect to m.

Note that while chemistry affects dynamics along the
direction of motion, the reciprocal effect is controlled by
a projection of velocity on a particular direction. In this
sense the gradient structure of dissipation is compromised,
and, as we show below, such strategy of breaking the DB
is fundamentally more efficient than the one relying on the
asymmetry of an external potential.

To clarify the physical picture we now compute the
“dressed” friction coefficient γ̂ (v) in the limit where the
chemical degree of freedom is fast and can be adiabat-
ically eliminated. To this end we assume the separation
of timescales in the sense that ζ̇ ≈ 0. Then F = −γ̂ (v)v
where γ̂ (v) = γ [1 − ε (m · v)/(‖v‖)]. Here we introduced
ε = λ2/γ , a nondimensional parameter measuring the degree
of activity. One can, for instance, think that in response to
the measurement of the angle between m and v the active
system is able to adjust its effective cross section produc-

ing the velocity-dependent friction. A more general analysis
would not rely on the assumption of fast chemistry and would
include measurement-related noise in the chemical dynamics;
however, these issues are outside the scope of the present
paper.

B. 1D model

To illustrate the nontrivial aspects of the proposed model,
it is sufficient to focus on the simplest case when the system
is 1D and the vector field m is time-independent and spatially
homogeneous. The ensuing scalar model is described by the
equation

mv̇ = −γ̂ (v)v + f + ξ, (4)

where

γ̂ (v) = γ [1 + ε sgn(v)],

and sgn is the signum function. The obtained model implies
the breakdown of time reversal symmetry (TRS) at the level of
the microscopic friction law. Indeed, note that γ̂ (v) �= γ̂ (−v)
even though the system is formally dissipative in the sense
that γ̂ (v) � 0 (in the interesting range |ε| < 1). If we write

−γ̂ (v) = −γ + g(v)/v,

where g(v) is the nonlinear contribution to friction, we ob-
serve that

g(v) �= −g(−v).

This is in contrast with the models respecting the condition
g(v) = −g(−v), for instance, the Rayleigh-Helmholtz active
particle model [1,3,23,24] and the dry friction model [25–29],
where the TRS is not broken at the level of the microscopic
friction law and the violation of DB stems from fundamentally
different reasons.

III. DEGREE OF NONEQUILIBRIUM

To explain why we associate frictional asymmetry with
a “strong” violation of DB, it is instructive to consider a
1D model with general nonlinearity g(x, v), where we now
introduce explicitly an additional dependence on the spatial
variable to account for the more general case when the system
is also exposed to an external potential. The existence of the
steady state is guaranteed if we consider a particle moving
along a circle, which implies that the function g encodes the
underlying spatial periodicity.

A. Active drift

Consider first the case of a free particle and denote by L
the spatial period. The dynamics is described by the system of
equations ẋ = v and mv̇ = −γ v + √

2γ T ξ . The correspond-
ing Kramers equation is ∂tρ = L†

0ρ where

L0 = γ T

m2
∂2
v − γ

m
∂v + v∂x (5)

is the generator and the symbol † stands for transposition.
The steady state corresponds to Maxwellian equilibrium with
ρeq(x, v) = Z−1 exp[−mv2/2T ].

042608-2



GUIDED ACTIVE PARTICLES PHYSICAL REVIEW E 100, 042608 (2019)

Suppose now that we add the nonlinearity perturbatively,

g(x, v) = εg1(x, v) + O(ε2),

where ε 
 1. We can then write

L = L0 + ε

m
g1(x, v)∂v + O(ε2). (6)

We now look for a stationary solution of the Kramers
equation in the form ρs(x, v) = λ(ε)ρeq(v) + ερ1(x, v) + · · · ,
with λ(ε) = 1 + ελ1 + · · · , to ensure that the stationary dis-
tribution is properly normalized at all orders in ε. Using the
stationarity condition, L†ρs = 0, we obtain

0 =
∫

x,v
vL†ρs(x, v) =

∫
x,v

ρs(x, v)Lv

= − γ

m

∫
x,v

ρs(x, v)v + ε

m

∫
x,v

ρs(x, v)g1(x, v) + · · · , (7)

which gives for the stationary velocity

〈v〉 = ε

γ

∫
x,v

ρeq(v)g1(x, v) + O(ε2). (8)

Here and above we use the notation
∫

x,v = ∫ L
0 dx

∫ ∞
−∞ dv.

It is now clear from (8) that if g1(x, v) �= −g1(x,−v),
the system exhibits nonzero drift velocity as long as∫

g1(x, v) dx �= 0. We associate such active drift, which
emerges as a O(ε) effect, with “strong” violation of DB.
Instead, if g1(x, v) = −g1(x,−v), the drift velocity is zero up
to first order in ε: it can then emerge only as a “weak” effect
of order O(ε2).

B. Violation of detailed balance

We now explain the idea of “strong” violation of DB in
more detail. Consider the perturbed system introduced above
with the physically meaningful choice

g1(x, v) = g1(v) − ∂xU (x),

where U (x) is an external potential. To write the correspond-
ing Kramers equation ∂t ρ = −∇ · J we introduce the proba-
bility current J = (Jx, Jv ). It will be convenient to split J into
a sum of reversible and dissipative contributions J = Jr + Jd,
where [30–32]

Jr =
(

v ρ,
ε

m

[
ge

1(v) − U ′(x)
]
ρ + O(ε2)

)
(9)

and

Jd =
(

0,
1

m

[
εgo

1(v) − γ v
]
ρ − γ T

m2
∂vρ + O(ε2)

)
. (10)

Here we distinguish between the even and the odd contri-
butions to the nonlinear part of the friction force by defining

ge,o
1 = [g1(v) ± g1(−v)]/2.

The reversible contribution to the current encodes the stream-
ing or Liouville term, plus the velocity-dependent forces that
are symmetric upon velocity inversion. Instead, the dissipative
part describes the effect of the thermal reservoir and of the
velocity-dependent forces that are antisymmetric upon veloc-
ity inversion.

For the DB condition to be satisfied, we must have
Jd = 0 in the steady state, which means that ∂v ln ρs =
(m/γ T )[εgo

1(v) − γ v] up to the terms of order O(ε). This
implies that ρs must factorize into the product of a velocity-
dependent and a position-dependent functions. In the station-
ary state we must also have ∇ · Jr = 0 or

∂x ln ρs − ε

T
U ′ = ε

T

[
ge

1 − T ∂vge
1

m v

]
+ O(ε2). (11)

Since the r.h.s. of (11) cannot depend on v due to the factoriza-
tion mentioned above, one must have ge

1 = 0. Moreover, we
see from (11) that for systems with ge

1 = 0 but go
1 �= 0 (say,

the Rayleigh-Helmholtz model), the DB condition holds to
the first order and breaks only at the order O(ε2) (i.e., only in
the presence of a coupling with an external potential [25,26]).
Instead, when ge

1 �= 0 but go
1 = 0, the detailed balance is

already broken at the first order in ε without a need for
external interactions. This is another demonstration that our
model exhibits a stronger breakdown of DB compared to some
other active particle models.

IV. DYNAMICS

We now study in detail the dynamics of the analytically
tractable model with

g(v) = −εγ sgn(v) v,

which, in particular, implies that

ge(v) = [g(v) + g(−v)]/2 �= 0.

Using dimensionless variables ṽ = v
√

m/T , t̃ = tγ /m, and
f̃ = ( f /γ )

√
m/T , we rewrite the main dynamic equation (1)

in the form
˙̃v = −[1 + εsgn(ṽ)]ṽ + f̃ + ξ̃ , (12)

where now 〈ξ̃ (t̃ )ξ̃ (t̃ ′)〉 = 2δ(t̃ − t̃ ′).

A. Drift

The f̃ dependence of the steady-state drift velocity ṽs =
〈ṽ〉 can be computed explicitly. Indeed, the stationary proba-
bility distribution for Eq. (12) takes the form

ρs(ṽ; f̃ , ε) =

⎧⎪⎨
⎪⎩

Z−1( f̃ , ε) exp
[
−(1 − ε) ṽ2

2 + f̃ ṽ
]

if ṽ < 0,

Z−1( f̃ , ε) exp
[
−(1 + ε) ṽ2

2 + f̃ ṽ
]

if ṽ > 0,

(13)
where we defined Z = Z+ + Z− with

Z±( f̃ , ε) =
√

π

2(1 ± ε)
exp

[
f̃ 2

2(1 ± ε)

]
erfc

[
∓ f̃√

2(1 ± ε)

]
.

(14)

The stationary velocity of the particle ṽs( f̃ , ε) =∫ ∞
−∞ d ṽ ṽ ρs(ṽ; f̃ , ε) can then be calculated explicitly:

ṽs( f̃ , ε) = f̃

1 − ε2
− ε

{
2 + f̃

[
Z+( f̃ , ε) − Z−( f̃ , ε)

]}
(
1 − ε2

)
Z ( f̃ , ε)

. (15)

The typical ṽs( f̃ ) curves are illustrated in Fig. 1(a). One can
see that in the case 0 < ε < 1 in addition to the two purely
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(a) (b)

FIG. 1. Stationary response of the system (12): (a) drift velocity and (b) diffusion coefficient. Solid black lines correspond to the case
ε = 0.6, and solid dashed lines to the symmeric case m → −m when ε = −0.6.

dissipative regimes ṽ±( f̃ ) = f̃ /(1 ± ε) reached at f̃ → ±∞
the system also exhibits active regimes where f̃ ṽs < 0, which
we can associate with thermal rounding of the ṽ − f̃ curve at
a small value of force.

A simple expression can be obtained for the maximal active
force at f̃ = 0:

ṽm
s (ε) =

√
2

π

√
1 − ε − √

1 + ε√
1 − ε2

. (16)

When ε → 0, we obtain −ṽm
s ∼ ε or, in dimensional vari-

ables, −vm
s ∼ ε

√
T/m. In the presence of cargo, the same

scaling can be obtained for the active part of the drift

va
s = vs − f /γ , (17)

so that again −va
s ∼ ε

√
T/m for small ε. This suggests that

in the overdamped regime the active behavior emerges only if
ε ∼ √

m, which then implies a double limit ε → 0 and m →
0. See more about this in Sec. VI.

B. Diffusion

The analytical transparency of the 1D model allows us to
also compute the force dependent effective diffusion coeffi-
cient

D̃ = lim
t̃→∞

〈x̃2(t̃ )〉 − 〈x̃(t̃ )〉2/(2t̃ ).

Indeed, using Green-Kubo relation [33], we can write D̃ =∫ ∞
0 C(t̃ ) dt̃, where C(t̃ ) = 〈ṽ(t̃ )ṽ(0)〉 − ṽ2

s , is the velocity
autocorrelation function. If we now introduce the conditional
probability p(ṽ, t̃ |ṽ0) satisfying

∂t̃ p(ṽ, t̃ |ṽ0) = ∂2
ṽ p(ṽ, t̃ |ṽ0) − ∂ṽ{[ f̃ − γ̂ (ṽ)ṽ]p(ṽ, t̃ |ṽ0)},

(18)
with initial condition p(ṽ, t̃ = 0|ṽ0) = δ(ṽ − ṽ0), we
can write C(t̃ ) = ∫ ∞

−∞ G(ṽ, t̃ )ṽ d ṽ, where G(ṽ, t̃ ) =∫ ∞
−∞ p(ṽ, t̃ |ṽ0)(ṽ0 − ṽs)ρs(ṽ0) d ṽ0. The function G(ṽ, t̃ )

satisfies the equation

∂t̃ G(ṽ, t̃ ) = ∂2
ṽ G(ṽ, t̃ ) − ∂ṽ{[ f̃ − γ̂ (ṽ)ṽ]G(ṽ, t̃ )}, (19)

with initial condition G(ṽ, 0) = (ṽ − ṽs)ρs(ṽ). It can
be solved using the Laplace transform Ĝ(ṽ, u) =∫ ∞

0 G(ṽ, t̃ )e−ut̃ dt̃ . Then, using the Green-Kubo formula,
we can write D̃ = ∫ ∞

−∞ Ĝ(ṽ, u = 0)ṽ d ṽ, which leads to the

final expression:

D̃ =
∫ ∞

−∞

d ṽ

ρs(ṽ)

[ ∫ ṽ

−∞
(ṽ′ − ṽs)ρs(ṽ

′) d ṽ′
]2

. (20)

These results are illustrated in Fig. 1(b). The purely dis-
sipative, large force limits are again different: D̃± = 1/(1 ±
ε)2. We can also write D̃± = T̃±/γ̃± viewing the system as
equilibrated with two reservoirs having different temperatures

T̃± = 1/(1 ± ε)

and characterized by different friction coefficients, γ̃± = 1 ±
ε. Note that γ̃+T̃+ = γ̃−T̃− = 1.

Using this notation we can rewrite (12) in the form

˙̃v =
{

−γ̃−ṽ + f̃ +
√

2γ̃−T̃− ξ− ṽ < 0,

−γ̃+ṽ + f̃ +
√

2γ̃+T̃+ ξ+ ṽ > 0,
(21)

with 〈ξi(t̃ )ξ j (t̃ ′)〉 = δi jδ(t̃ − t̃ ′) and i, j = ±. Such a reformu-
lation stresses the fact that guidance in this system can be
interpreted as the exposure to two reservoirs with different
temperatures T̃±.

C. Persistence and criticality

The representation of the dynamics in terms of two
Ornstein-Uhlenbeck processes (21) makes explicit that guid-
ance emerges as the directional dependence of the viscous
relaxation time. We now consider the simplest case, f̃ = 0,
and compute the effective persistence time that emerges from
the asymmetry of viscous relaxation.

Persistence is linked to the decorrelation in the orientation
of the velocity; the latter can be assessed from the correlation
function of the orientation C(t̃, t̃ ′) = 〈sgn[ṽ(t̃ )]sgn[ṽ(t̃ ′)]〉.
More specifically, we can associate the persistence time with
the spectral gap τ = −1/λ where λ is the largest (negative)
eigenvalue of the generator L = ∂2

ṽ − ṽ [1 + ε sgn(ṽ)] ∂ṽ. To
find τ we need to solve the eigenvalue problem

g′′(ṽ) − ṽ(1 + ε)g′(ṽ) = λg(ṽ), for ṽ > 0,

g′′(ṽ) − ṽ(1 − ε)g′(ṽ) = λg(ṽ), for ṽ < 0, (22)

supplemented by the matching conditions: g(0+) = g(0−) and
g′(0+) = g′(0−).
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FIG. 2. (a) Persistence time as a function of ε for f̃ = 0.The inset shows typical stochastic realizations of the trajectory of the particle at
ε = 0.6 (regime 1), and in the critical state, ε = 1 (regime 2). (b) “‘Finite time” diffusion coefficient in the critical and non critical regimes.

The solution of this problem can be written explicitly in
terms of Hermite functions Hν (z) [34],

g(ṽ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A+H−λ/γ̃+

(
ṽ

√
γ̃+
2

)
for ṽ > 0,

A−H−λ/γ̃−

(
− ṽ

√
γ̃−
2

)
for ṽ < 0,

(23)

and A+ and A− are two constants. Using the continuity condi-
tions we can eliminate A+ and A− and obtain the eigenvalue
equation, g′(0+)/g(0+) = g′(0−)/g(0−), or equivalently

√
γ̃+

B
(

λ
2γ̃+

, 1
2

) +
√

γ̃−
B
(

λ
2γ̃−

, 1
2

) = 0, (24)

where B(x, y) is the β function [35]. To obtain Fig. 2(a) we
solved (24) numerically.

For the passive system (ε = 0) we have τ = 1/2. In the
presence of activity, the spectral gap tends to close as ε in-
creases, causing the increase of the decorrelation (persistence)
time. In Fig. 2(a) we show the function τ (ε) for f̃ = 0.

The divergence of τ at ε → 1− indicates that (ε, f̃ ) =
(1, 0) corresponds to a dynamic critical point. Note that in the
limit ε → 1− the effective temperature of the “hot reservoir”
T̃− diverges and the velocity dynamics in the corresponding
direction (ṽ < 0) becomes Brownian. As a result both the
average drift velocity and the recrossing time (from negative
to positive velocity) also diverge and the dynamics becomes
critical exhibiting (in average) anomalous unidirectional per-
sistence; see the inset in Fig. 2(a).

To quantify more explicitly the divergence of the persis-
tence time, note that in the limit ε → 1−, we obtain that γ̃+ →
2 and λ → 0. Then Eq. (24) can be approximately written as
λ + 2

√
γ̃+γ̃−/B( λ

2γ̃−
, 1

2 ) ≈ 0, or equivalently λ
2γ̃−

B( λ
2γ̃−

, 1
2 ) ∼√

γ̃+/γ̃−. Since the right-hand side of this equation diverges
when ε → 1−, and λ < 0, the value of λ

2γ̃−
must be close

to the largest (negative) pole of the β function, i.e., λ
2γ̃−

≈
−1. Expanding to the lowest order in the associated Laurent
series, we obtain λ

2γ̃−
∼ −1 + 1

2
√

2

√
1 − ε. We can then write

λ = −2(1 − ε) + O[(1 − ε)3/2], or τ = −1/λ ∼ (1 − ε)−σ ,
with critical exponent σ = 1. Note also that in this limit we
observe superdiffusive behavior with 〈x̃〉 ∼ −t̃3/2, and the
anomalous behavior of the “finite time” diffusion coefficient
D̃(t ) = 〈x̃2(t̃ )〉 − 〈x̃(t̃ )〉2/(2t̃ ) ∼ t̃2; see Fig. 2(b).

V. THERMODYNAMICS

We now turn to the stochastic thermodynamics of GAD. It
will be convenient to reintroduce dimensional variables and
start with a slightly more general 1D model:

mv̇ = −γ v + ge + f + ξ, (25)

where the function ge(v) is assumed to be even. The goal is to
formulate the first and second laws of thermodynamics for the
system (25) and to associate an adequate concept of efficiency
with the energy transduction process. The latter is assumed to
be driven by the external source described by the function ge

and resulting in active transport of the cargo f .

A. Energy balance

The energy balance along a particular trajectory of duration
t can be derived by multiplying (25) by v and integrating over
time, which gives [36,37]

Et = Ua
t − Wt − Qt .

Here

Et = (m/2)[v2(t ) − v2(0)]

is the change in kinetic energy of the particle,

Ua
t =

∫ t

0
dt ′vge(v)

is the active work performed on the particle by the guiding
device,

Wt = − f
∫ t

0
dt ′v

is the work of transporting cargo, and

Qt =
∫ t

0
dt ′v(γ v − ξ ) (26)

is the released heat [36].
The conventional form of the first law of thermodynamics

can be obtained if we average the above expressions over
the ensemble of possible trajectories (in what follows we
denote such averages by italic capital letters) and take time
derivatives, for instance, Ė = (d/dt )〈Et 〉. In a stationary state
Ė = 0 we obtain

U̇ a = Ẇ + Q̇, (27)

where, for instance, Ẇ = − f vs.
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B. Entropy production

The entropy production along a particular stochastic trajec-
tory can be split into a contribution from the system (particle)
and from the reservoir (equilibrium component of the envi-
ronment) [37]:

St = Ss
t + Sr

t . (28)

To define these entries, consider a trajectory {v(t ′)}t
t ′=0,

starting at the velocity value v0, which is sampled from
the initial probability distribution with the density p0(v0).
Assume that after time t , the probability density function for v

(reflecting the forward dynamics) is pt (v). Consider also the
time-reversed trajectory {v̂(t ′)}t

t ′=0 ≡ {−v(t − t ′)}t
t ′=0, whose

starting velocity v̂0 = −vt is sampled from the probability
distribution with the density pt (−v̂0) ≡ pt (vt ).

The next step is to introduce the (functional) probability
�[v|v0] for forward trajectories with initial condition v0 and
its time-reversed version �̂[v̂|v̂0]. Then the stochastic entropy
production over duration t can be written in the form [37]

St [v] = ln
p0(v0)

pt (vt )
+ ln

�[v|v0]

�̂[v̂|v̂0]
. (29)

The first term in (29) can be associated with the entropy
change in the system [37],

Ss
t = ln

p0(v0)

pt (vt )
;

in particular, its ensemble average 〈Ss
t 〉 is simply the change

of the Shannon entropy,

Ss
t = 〈ln[p0(v0)/pt (vt )]〉 =

∫
p0 ln p0 −

∫
pt ln pt .

The second term in Eq. (29) accounts for entropy production
in the reservoir

Sr
t = ln

�[v|v0]

�̂[v̂|v̂0]
. (30)

The conditional path probability in (30) can be written as

�[v|v0] = N exp{−A[v]},
where N is an unimportant normalization factor [37]. Here A
is the dynamic action A associated with (25) (see for, instance,
Ref. [32]):

A[v] = 1

2m

∫ t

0
dt ′∂vge(v)

+ 1

4γ T

∫ t

0
dt ′[mv̇ + γ v − ge(v) − f

]2
. (31)

Similarly, for the reversed trajectory {v̂(t ′)}t
t ′=0 = {−v(t −

t ′)}t
t ′=0 we can write

A[v̂] =A[v] − 1

m

∫ t

0
dt ′∂vge(v)

− 1

T

∫ t

0
dt ′ v[mv̇ − ge(v) − f ]. (32)

Note that

A[v̂] = A[v] − 1

m

∫ t

0
dt ′∂vge(v) + Qt

T
,

where Qt [v] was defined in (26).

We can now write

Sr
t = A[v̂] − A[v] = Qt

T
− Sa

t , (33)

where

Sa
t = m−1

∫ t

0
dt ′∂vge(v)

is the active contribution which has previously appeared in the
literature in the context of feedback cooling as the “entropy-
pumping” term describing information exchange [38–40].

To summarize, the total stochastic entropy production takes
the form

St = Ss
t + Qt

T
− Sa

t . (34)

If we average this expression over the ensemble of trajectories
assuming stationary conditions, take the time derivative with
respect to t , and use the fact that Ṡs = 0, we obtain the second
law of thermodynamics in the form

Ṡ = Q̇

T
− Ṡa � 0. (35)

The inequality in Eq. (35) can be justified if we note that

Ṡ = 1

T

∫
v[ge(v) + f ]ρs(v) dv

− m

T

∫
v
〈
v̇(t )δ[v − v(t )]

〉
s dv

− 1

m

∫
∂vge(v)ρs(v) dv. (36)

The notation 〈. . .〉s is used to stress that the average is taken
over stationary dynamics. Grouping the first and the last
integrals we write

Ṡ = − m

γ T

∫ [
ge(v) + f

]
Jd (v)− m

T

∫
v
〈
v̇(t )δ[v − v(t )]

〉
s
dv,

(37)

where Jd (v) = −m−1[γ v + (γ T m−1)∂v]ρs(v) is the dissi-
pative part of the stationary probability current. From the
stationary Fokker-Planck equation for this system we obtain

γ T

m
∂vρs(v) − [

ge(v) + f − γ v
]
ρs(v)

= −mJd (v) − [ge(v) + f ]ρs(v) = 0

⇒ ge(v) + f = −mJd (v)

ρs(v)
. (38)

We can then write

Ṡ = m2

γ T

∫
J2

d (v)

ρs(v)
dv − m

T

∫
v
〈
v̇(t )δ[v − v(t )]

〉
s dv. (39)

The second integral in (39) vanishes since〈
v̇(t )δ[v − v(t )]

〉
s = −∂t

〈
�[v − v(t )]

〉
s

= −
∫ v

−∞
∂t

〈
δ[v′ − v(t )]

〉
s
dv′ = −

∫ v

−∞
∂tρs(v

′) dv′ ≡ 0,

(40)

042608-6



GUIDED ACTIVE PARTICLES PHYSICAL REVIEW E 100, 042608 (2019)

which allows us to write

Ṡ = m2

γ T

∫
J2

d (v)

ρs(v)
dv � 0. (41)

C. Efficiency

To assess the efficiency of GAD we first introduce the
injection rate of the Helmholtz free energy

Ḟ a = U̇ a − T Ṡa.

Then the inequality (35) can be rewritten as

T Ṡ = Ḟ a − Ẇ � 0,

which suggests the following definition of the thermodynamic
efficiency [41,42]:

ηT = Ẇ /Ḟ a � 1. (42)

This definition, however, accounts neither for the capacity of
an active particle to self-propel at zero force nor for its ability
to generate force in stall conditions: in both limits the machine
works (either by achieving persistent unidirectional displace-
ment or equally persistent localization) with apparently zero
efficiency.

A known way to resolve the first of these issues is to
consider the Stokes efficiency [43],

ηS = (Ẇ + γ v2
s )/Ḟ a,

which, however, still vanishes in stall conditions. In other
words, it cannot be used to assess the force generation effi-
ciency of an active system.

To fix this problem we now introduce a definition of
“active” efficiency

ηa = Ẇ a/Ġa, (43)

where in the denominator we replaced the rate of change of
the active Helmholtz free energy Ḟ a by the more natural (in
the presence of a cargo) rate of change of the active Gibbs
free energy

Ġa = Ḟ a − f va
s ,

where f va
s < 0. In the numerator we replaced the thermody-

namic work Ẇ = − f vs, entering the definition of the thermo-
dynamical efficiency ηT , and Ẇ S = − f vs + γ v2

s , entering the
definition of Stokes efficiency ηS , with the term,

Ẇ a = γ va
s

2
,

where va
s is given by (17). We observe that Ẇ a = Ẇ + γ vs

2 −
f vs + f 2/γ = Ẇ S − f vs + f 2/γ .

The chosen expression for the functional power Ẇ a can be
interpreted as the “necessary” dissipated work needed, for in-
stance, to self-propel against frictional forces, to hold the load
against gravity or to stretch a spring, and, most importantly,
to carry a load. Rewriting it as Ẇ a = γ (vs − f /γ )2 we see
that it can be also universally interpreted as the apparent work
against frictional forces in a reference frame that “moves” at
the effective velocity f /γ .

A more illuminating interpretation of the active effi-
ciency ηa can be obtained if we observe that the (squared)
total active force generated by the guiding device is

FIG. 3. Typical force dependence of the thermodynamic effi-
ciency ηT , Stokes efficiency ηS , and our efficiency ηa for the GAP
model (12) with ε = 0.9; f is normalized by the stall force fs.

〈ge(v)2〉s = γ Ḟ a − γ f va
s , while only an amount 〈ge(v)〉2

s =
(γ vs − f )2 = γ 2(va

s )2 is functional. Then our efficiency can
be seen to quantify active force generation:

ηa = 〈ge(v)〉2
s /〈ge(v)2〉s. (44)

Finally, we point out that the definition (43) is different
from the recently introduced notion of chemical efficiency,
which also allows one to account for stall force conditions
[44]. A comparison of all three efficiencies ηT , ηS , and ηa for
our system is presented in Fig. 3.

VI. OVERDAMPED LIMIT

We recall that active drift in our system survives in the
overdamped (Smoluchovski) limit with m → 0, only when we
simultaneously weaken the activity so that ε ∼ −v∗

a

√
πm/2T .

More precisely, only in this double limit does the active veloc-
ity va

s → v∗
a not vanish. The overdamped limit is of particular

importance for applications at the cellular level where inertial
terms are usually neglected. The theoretical challenge stems
from the fact that if we set directly m = 0 in our original
equation (1) we obtain an ill-defined problem.

To explain the difficulty, consider more general over-
damped stochastic differential equations of the form

φ(ẋ) = ξ (t ), (45)

where ξ (t ) is the standard white noise. If the function φ is
nonlinear, the mathematical nature of the ensuing problem is
obscure. However, one can assign a well-defined meaning to
the solutions of the regularized problem

mẍ + φ(ẋ) = ξ (t ). (46)

It is then natural to introduce the inertial solutions of (45) as
m → 0 limits of the solutions of (46). Some of the the chal-
lenges associated with such an interpretation are discussed
below.

A. Dynamics

Consider our special case (4) and define formally an auxil-
iary stochastic process

y(t ) = x(t ) + mϕ[v(t )],
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where the function h(v) = ∂vϕ(v) satisfies

γ T

m
∂vh(v) − γ̂ (v)vh(v) = vm

s − v. (47)

Here vm
s is the maximal active velocity (the average velocity

at zero force introduced in Sec. IV).
Looking for the bounded solution of the equation (47) on

the whole axis we obtain

h(v) = m

γ T
emγ̂ (v)v2/2γ T

∫ v

−∞
e−mγ̂ (v′ )v′2/2γ T

(
vm

s − v′) dv′.

(48)
To show that h(v) is uniformly bounded, consider first the case
−√

T/m � v � 0. If we introduce a variable v′ = z
√

T/m we
can use the explicit form of γ̂ (v) to rewrite (48) in the form

h(v) = 1

γ

√
m

T
vm

s em(1−ε)v2/2T
∫ v

√
m/T

−∞
e−(1−ε)z2/2 dz

+ 1/[γ (1 − ε)]. (49)

It is not difficult to show that in this interval of velocities,
h(v) converges to 1/γ [1 − ε(m = 0)] when m tends to zero
(provided vm

s stays bounded, which takes place for ε ∼ √
m)

and the convergence is uniform in v.
For v < −√

T/m we can write

h(v) − 1

γ (1 − ε)

= − vm
s

γ (1 − ε)v
− 1

γ

√
m

T
vm

s em(1−ε)v2/2T

×
∫ v

√
m/T

−∞
e−(1−ε)z2/2 1

(1 − ε)z2
dz, (50)

which in this range of v is uniformly bounded in absolute
value by a constant of order

√
m. Therefore also in this

interval we obtain uniform convergence of h(v) to 1/γ . A
similar argument holds for v > 0, with h(v) converging to
1/γ [1 + ε(m = 0)] = 1/γ .

Now, recall that the function ϕ is defined up to a constant,
so, for instance, we can choose

ϕ(v) =
∫ v

0
h(v′) dv′.

Note also that the absolute value of ϕ grows at most linearly
in |v| and this growth is uniform in m (when m tends to zero).
In particular m ϕ(v) tends to zero with probability one when
m tends to zero.

After these preparations, we can use the Itô formula to
write

ẏ = ẋ + m ∂vϕ(v)v̇ + γ T

m
∂2
v ϕ(v)

= ∂vϕ(v)
[

f +
√

2γ T η(t )
] + vm

s , (51)

where in the last step we used the fact that ∂vϕ(v) = h(v)
together with Eq. (47). There is still the factor ∂vϕ(v) here
which depends on v, but in the limit m → 0 with ε ∼ √

m
we have vm

s → v∗
a and limm→0 ∂vϕ(v) ≡ limm→0 h(v) = 1/γ

uniformly; the uniform convergence is important since fluc-
tuations in v diverge as

√
T/m. At the end we obtain for the

process y the limiting equation ẏ = f /γ + v∗
a + √

2T/γ η. If

we now recall that for m → 0, y(t ) = x(t ) + mϕ(v) → x(t )
and mϕ(v) → 0 with probability one, we obtain the limiting
equation for x(t ):

ẋ = f

γ
+ v∗

a +
√

2T

γ
ξ. (52)

Observe the emergence in (52) of the active drift described
by the term v∗

a without any modifications in the diffusion co-
efficient. While models like (52) containing either externally
prescribed active force or active velocity are often postulated
phenomenologically in the study of Brownian motors [45], the
implied “weak” limits miss some important physical effects.
For instance, since they underrepresent velocity fluctuations
(of order ∼√

T/m) they are known to distort the stochastic
thermodynamics of the system [46–51]; see below.

B. Thermodynamics

We now proceed to show that in the overdamped limit,
(ε, m) → (0, 0) with ε ∼ √

m, the expressions for the ther-
modynamic observables for the system described by (4) may
contain nontrivial corrections comparing to their analogs com-
puted directly from the overdamped dynamics described by
(52).

From energy balance (27) we obtain

Q̇ = U̇ a − Ẇ =
∫

v[ge(v) + f ]ρs(v) dv

=
∫

v

[
γ T

m
∂vρs(v) + γ vρs(v)

]
dv

=−γ T

m
+ γ 〈v2〉s, (53)

where we used the stationary Fokker-Planck equation (38).
Using the identity dvs

df = m
γ T 〈[v − vs]2〉s we further obtain

〈v2〉s = v2
s + γ T

m
dvs
df , which allows us to rewrite (53) in the

form

Q̇ = γ v2
s + γ T

m

(
γ

dvs

df
− 1

)
. (54)

Now, in the overdamped limit, vs → v∗
a + f /γ , we can write

Q̇ = Q̇o + Q̇h, where the “overdamped” term

Q̇o = γ v2
s ≡ 1

γ
( f + γ v∗

a )2

describes the heat release (heat dissipation) rate in the over-
damped dynamics, while the remaining term

Q̇h = lim
m→0

γ T

m

(
γ

dvs

df
− 1

)
(55)

is the “hidden” heat dissipation rate.
We point out that the limit in (55) is nontrivial because

the relation vs → v∗
a + f /γ implies that γ (dvs/df ) − 1 →

0, while γ T/m → ∞. A more careful analysis gives the
asymptotics

γ
dvs

df
= 1 − ε f

γ

√
2m

πT
+

(
3

2
− 2

π

)
ε2 + · · · , (56)
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which yields

γ
dvs

df
= 1 + m

γ T
f v∗

a + m

T

(
3π

4
− 1

)
(v∗

a )2 + O(m2), (57)

where we used the scaling ε ∼ −v∗
a

√
πm/2T . The expression

for the “hidden” heat release now can be written explicitly:

Q̇h =
(

3π

4
− 1

)
γ (v∗

a )2 + f v∗
a . (58)

Next, we compute the limit value of the active work
rate. From the overdamped dynamics one simply has U̇ a

o =
γ vsv

∗
a = γ (v∗

a )2 + f v∗
a . Instead, the true active work rate is

U̇ a = Q̇ + Ẇ ≡ U̇ a
o + U̇ a

h , (59)

where the “hidden” contribution reads

U̇ a
h = Q̇h =

(
3π

4
− 1

)
γ (v∗

a )2 + f v∗
a . (60)

Note that the “hidden” active work rate exactly matches the
“hidden” heat dissipation rate. This is, of course, a conse-
quence of the energy balance, since the passive work rate does
not exhibit any “hidden” contributions.

Finally, we can use Eq. (41) and the last equality in (38) to
write an equivalent expression for the entropy production rate

Ṡ = 1

γ T

∫
[ge(v) + f ]2ρs(v) dv

= 〈ge(v)2〉s

γ T
+ (2γ vs − f ) f

γ T
, (61)

where we expanded the square and used the equation of
motion (25) to write 〈ge(v)〉s = γ vs − f . In the overdamped
limit vs → v∗

a + f /γ , so we can write

Ṡ → lim
(ε,m)→(0,0)

[ 〈ge(v)2〉s

γ T

]
+ (2γ v∗

a + f ) f

γ T
, (62)

where the double limit is taken along the path ε =
−v∗

a

√
πm/2T . Completing the square in the second frac-

tion in (62), and noting that Ṡo = Q̇o/T = (γ T )−1( f + γ v∗
a )2

[52], we obtain the expression for the “hidden” entropy pro-
duction

Ṡh = lim
(ε,m)→(0,0)

[ 〈ge(v)2〉s

γ T

]
− γ (v∗

a )2

T
. (63)

To compute the remaining limit we use the explicit
form ge(v) = −γ ε sgn(v)v ≡ −γ ε|v| to rewrite 〈ge(v)2〉s =
γ 2ε2〈v2〉s. In view of

γ 2ε2〈v2〉s ≡ γ 2(v∗
a )2πm

2T
v2

s + γ 3(v∗
a )2π

2

dvs

df
(64)

and the fact that vs → v∗
a + f /γ and ∂ f vs → 1/γ , we can

write

〈ge(v)2〉s → γ 2(v∗
a )2π

2
. (65)

Finally, substituting (65) into (63), we get the result

Ṡh =
(

π

2
− 1

)
γ (v∗

a )2

T
. (66)

We can now identify the active contribution to the entropy
production rate. If we recall that in the overdamped limit

FIG. 4. Electric circuit imitating the behavior of the system (12)
with f = 0 when Tr 
 Tf .

Ṡa
o = 0, we obtain that the whole active contribution

Ṡa ≡ Ṡa
h = Q̇h

T
− Ṡh = πγ (v∗

a )2

4T
+ v∗

a

T
(67)

is “hidden.”
To summarize, (52) can at most yield a lower bound of

the actual entropy production Ṡ and is even misleading in
predicting the active work U̇ a. The latter is an important
observation in view of a recent discovery of a link between
the fluctuations of the active work and the transition between
phases of different motility in active matter [53,54].

VII. ELECTRIC ANALOGY

To show that the proposed mechanism is not an abstraction
and that it can be implemented experimentally, we briefly dis-
cuss a simple realization of the system (12) in the form of an
electric circuit; see Fig. 4. The “noisy element” of the circuit
contains an electric resistance R f and an ideal inductance L, in
thermal contact with a bath at temperature Tf . The “rectifier”
is made of two parallel branches, each containing a resistor Ri

and an ideal diode Di in series (i = 1, 2), and is in thermal
contact with another bath with temperature Tr 
 Tf . This
inequality is necessary to ensure that electrical fluctuations
are essential only in resistor R f . The “rectifier” plays the role
of the guiding mechanism alternating the effective resistance
depending on the direction of the current generated by the
noisy element.

From Kirchoff second law, the sum of all voltage drops in
the main circuit add to zero:

VL + Vf + Vn + Vr = 0, (68)

where VL = L(dI/dt ) is the inductive voltage, Vf = IR f is
the voltage drop in R f , Vn is the noise voltage induced by
thermal fluctuations (which, given the condition Tr 
 Tf can
be associated with R f only), and Vr is the total voltage drop in
the rectifier. We can then write

L
dI

dt
= −R f I − Vr + √

2R f Tf ξ . (69)

To account for the voltage drop in the rectifier, we adopt
a sign convention for the electric current: it is positive when
it circulates clockwise, and negative when the circulation is
counterclockwise. Given that the diodes are considered ideal,
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we have

Vr = �(I )R2I + [1 − �(I )]R1I, (70)

where �(•) denotes the Heaviside step function with �(0) =
1/2. Then we can write �(I ) = [1 + sgn(I )]/2, which leads
to the equivalent result:

Vr =
[

R2 + R1

2
+ R2 − R1

2
sgn(I )

]
I. (71)

We then obtain

L
dI

dt
= −

[
R f + R2 + R1

2
+ R2 − R1

2
sgn(I )

]
I + √

2R f Tf ξ,

(72)
which can be now rewritten as

Lİ = −Re[1 + εsgn(I )]I +
√

2ReTeξ . (73)

The effective parameters are Re = R f + (R1 +
R2)/2, Te = 2R f Tf /(2R f + R1 + R2) and ε = (R2 −
R1)/(2R f + R1 + R2) (note that R f Tf = ReTe). As the
analogy between (12) in the absence of load and (73) is
complete, the circuit in Fig. 4 should be able to generate a
directed current by rectifying thermal fluctuations; the guiding
is then ensured by the device maintaining the temperature
difference between the “fluctuator” and the “rectifier.”

VIII. CONCLUSIONS

We presented an explicitly solvable model of an externally
guided active particle which exploits a “strong” mechanism
of DB breaking to achieve directional drift. This model
appears naturally if one makes the simplest assumptions about

a coupling between mechanical degrees of freedom and a
chemical reaction, involving a vectorial guiding and scalar
fueling. Our model is simple enough as to be treated mostly
analytically. We rigorously analyzed the overdamped limit
of our model, finding an emergent slow dynamics that has
been phenomenologically postulated in previous studies of
Brownian motors. We also computed the hidden contributions
to all the relevant thermodynamic observables in that limit.
One of the most important results of our study is the definition
of efficiency extending the idea of Stokes efficiency to stall
conditions.

There are many interesting directions along which this
work can be extended. The first natural step is to allow the
guiding vector m to fluctuate in space and time. Such a
situation may be relevant to study chemotaxis from a micro-
scopic perspective. Then studying in detail the full chemical
dynamics (i.e., relaxing the assumption of fast chemistry)
in the presence of imperfect sensing may help to build
bridges between the stochastic thermodynamics of feedback-
controlled systems and chemotaxis. Further developments
should include the study of collective dynamics involving
many interacting guided active particles and the development
of the corresponding continuum theory.
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