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Abstract. We examine some elementary interpretations of the classical theorem of CLAPEYRON

in linear elasticity theory. As we show, a straightforward application of this theorem in the purely
mechanical setting leads to an apparent paradox which can be resolved by referring either to dynam-
ics or to thermodynamics. These richer theories play an essential part in understanding the physical
significance of this theorem.
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1. Introduction

According to Love [11, p. 173], “The potential energy of deformation of a body,
which is in equilibrium under given load, is equal to half the work done by the
external forces, acting through the displacements from the unstressed state to the
state of equilibrium.” This is now commonly known as CLAPEYRON’s theorem
in linear elasticity theory.�� In particular, this theorem, taken literally, implies that
the elastic stored energy accounts for only half of the energy spent to load the
body; the remaining half of the work done to the body by the external forces is
unaccounted for and is lost somewhere in achieving the equilibrium state. It is
particularly striking that this apparent paradox is reached within the framework of

� The National Science Foundation Grant No. DMS-0102841 is gratefully acknowledged for their
support of this research.
�� In 1852, Lamé [9] published his volume, Leçons sur la théorie mathématique de l’élasticité des

corps solides, in which he devoted his seventh lecture to what he termed CLAPEYRON’s Theorem.
(See [13, pp. 565 and 578], for relevant remarks.) Earlier, Lamé and Clapeyron [10] had noted this
result in a joint memoir of 1833. Although Emile Clapeyron [3], himself, first published on this
theorem in 1858, in a résumé of an original memoir that apparently was never published, it is argued
by Todhunter and Pearson [14, p. 419], that the “result of the memoir of 1833 was due entirely to
Clapeyron, for Lamé in his Leçons, of 1852, . . . terms it CLAPEYRON’s Theorem, and CLAPEYRON

here speaks of it as he would do only if it were entirely due to himself.”
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the purely conservative linear theory of elasticity. Alternatively, however, within
elastostatics the common characterization of the work done to reach equilibrium is
conceptually ambiguous and a different interpretation may be required.

To illustrate the above concerns, let us first recall that in the linear theory of
elasticity the total strain energy of a body that occupies the region � ⊂ R

3 and
supports a, generally, dynamical displacement field u = u(x, t) and strain field
e ≡ (∇u + (∇u)T)/2 = e(x, t) relative to its undistorted state at time t = 0 is
defined by

U [e](t) ≡
∫
�

1

2
ρC[e] · e dv. (1.1)

Here, ρ is the mass density of the body and C is the positive definite and completely
symmetric elasticity tensor. Further, the work done during the interval of time (0, t)
due to an applied boundary traction field t∗ = t∗(x, t) and body force field b∗ =
b∗(x, t) over the displacement u(x, t) is given by

W [u](t) =
∫ t

0

(∫
∂�

t∗ · u̇ da +
∫
�

b∗ · u̇ dv

)
dt. (1.2)

The corresponding stress field in � at time t , T = T(x, t), satisfies the generalized
HOOKE’S law T = ρC[e] and is symmetric. Throughout this paper we shall as-
sume, for convenience, that the body is homogeneous, so that ρ and C are constant.
If the loads t∗ and b∗ are ‘dead’, i.e., independent of time, so that t∗ = t̄(x) and
b∗ = b̄(x), then for a body that is undistorted at time t = 0, (1.2) may be integrated
to yield

W [u](t)|(t∗,b∗)=(t̄,b̄) =
∫
∂�

t̄ · u da +
∫
�

b̄ · u dv ≡ W [u](t). (1.3)

This ‘dead load work’ represents the “work done by the external forces” to which
LOVE referred in his quote concerning equilibrium reproduced in the first line of
this introduction, above. Of course, in this case the loads are equilibrated so that∫

∂�

t̄ da +
∫
�

b̄ dv = 0,
∫
∂�

x × t̄ da +
∫
�

x × b̄ dv = 0 (1.4)

and u is an equilibrium displacement field, say ū(x); the corresponding ‘dead load
work’ is then

W [ū] ≡ W [u](t)|u=ū(x). (1.5)

Suppose that the displacement field u = ū(x) corresponds to an equilibrium
state with strain ē(x) and stress T(x) satisfying T = ρC[ē] and

div T + b̄ = 0 in �, Tn = t̄ on ∂�, (1.6)
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where n is the outer unit normal to � on ∂�. Without loss of generality, we may
eliminate the possibility of an added infinitesimal rigid displacement field in ū(x)
and render ū(x) unique by imposing the normalization conditions∫

�

ρū dv = 0,
∫
�

ρx × ū dv = 0, (1.7)

where the mass density ρ is included only for later convenience. Then, according to
the usual derivation of CLAPEYRON’s theorem, we see, starting with (1.3) and (1.5)
and using (1.6), generalized HOOKE’S law, the symmetry of T and the divergence
theorem, that

1

2
W [ū] = 1

2

(∫
∂�

Tn · ū da +
∫
�

b̄ · ū dv

)
= U [ē]. (1.8)

Literally following LOVE’s statement of CLAPEYRON’s theorem, one may infer
that elastostatics alone� accounts for only half of the work that is expended to
reach equilibrium; the coefficient one-half is a result of the linearity of the the-
ory. In the remainder of this paper, we continue within the linear framework and
consider, respectively, in Sections 2, 3 and 4, the richer dynamical theories of elas-
ticity, viscoelasticity and thermoelasticity in order to shed light on this seemingly
paradoxical and incomplete conclusion.

SYNOPSIS

In Section 2, we argue that within ideal elasticity theory the quantity W [ū] of
CLAPEYRON’s theorem does not reasonably represent the work done by the exter-
nal forces to reach an elastostatic equilibrium state u = ū(x). We then investigate
‘fast’ versus ‘slow’ time dependent loading conditions and conclude that within the
assumptions of elastostaticsW [ū]/2 is a better representative of the work expended
to reach equilibrium. In Sections 3 and 4, we amend ideal elasticity theory so as
to include the mechanisms of viscous and thermal dissipation, respectively. Then
dead loading becomes compatible with the notion of achieving equilibrium and,
we conclude that the quantity W [ū] of CLAPEYRON’s theorem does adequately
represent the corresponding work done by the external applied forces. Here we
find that half ofW [ū] becomes stored in the body in the form of equilibrium strain
energy and the remaining half is dissipated either through the action of viscous
dissipation or heat transfer. In Section 5, we offer some conclusions.

� In elastostatics, there is, of course, no time dependence and formally the work done by the loads
t̄(x) and b̄(x) to reach the equilibrium displacement u = ū(x) from an undistorted state commonly
is calculated by using (1.3) and (1.5), as was done in (1.8). As noted earlier, for purely equilibrium
theory this may not properly represent the ‘work done to reach equilibrium’ because this tacitly
assumes that the loads are ‘dead’ and applied over time and, therefore, impulsive. For an ideal elastic
body this circumstance is not compatible with the notion of reaching equilibrium, as we shall see in
Section 2 and related Appendices A and B.
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In Appendices A and B, we show some example calculations to further illus-
trate the claims of Section 2. It should be noted that throughout the main body of
this paper we assume, for convenience, that the traction field is specified on the
complete boundary of �. However, in the elementary examples of these appen-
dices we prefer to hold one part of the boundary fixed and specify the traction on
the complementary part for all time. While these boundary conditions clearly are
not consistent with (1.4)1 and (2.4)1, nevertheless they are normal and allowable;
moreover, they do not compromise the main purpose of illustrating the difference
between dead and retarded loading.

2. Elastodynamics

Here, we shall first consider the consequences of ‘dead’ loading within elastody-
namics regarding work and energy and then show how equilibrium theory is best
accounted for by introducing a retarded system of loads.

2.1. ‘DEAD’ LOADING

Suppose that for all time t > 0 the body is ‘dead’ loaded with the same loads as in
the static situation described above, so that t∗ = t̄(x) and b∗ = b̄(x) in (1.2). On
the boundary of � we set

Tn = t̄ on ∂�, ∀t > 0, (2.1)

and initially the body is at rest and undistorted so that

u(x, 0) = u̇(x, 0) = 0 in �. (2.2)

The dynamical equation is

div T + b̄ = ρü in �, ∀t > 0, (2.3)

and we recall that t̄ = t̄(x) and b̄ = b̄(x) are supposed to be balanced in the
sense of (1.4). Of course, u, e and T are related through the strain-displacement
and stress–strain equations of Section 1. Under these conditions, it readily follows,
from (2.1), (2.3) and the symmetry of T, that the linear and angular momentum are
conserved. Thus, by integration in time and use of (2.2), it is clear that the resulting
motion naturally satisfies the normalization∫

�

ρu dv = 0,
∫
�

ρx × u dv = 0 ∀t � 0. (2.4)

In addition, by forming the inner product of (2.3) with u̇, integrating over� and us-
ing the symmetry of C together with (2.1) and (1.1), we readily reach the classical
power theorem∫

∂�

t̄ · u̇ da +
∫
�

b̄ · u̇ dv = d

dt
U [e](t)+ d

dt
K[u̇](t), (2.5)
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where

K[u̇](t) ≡
∫
�

1

2
ρ|u̇|2 dv (2.6)

is the kinetic energy of the body. Then, by integrating (2.5) in time and using (2.2)
and (1.3) we obtain the standard balance of mechanical energy

W [u](t) = U [e](t)+K[u̇](t), (2.7)

which is supposed to be valid for all time t � 0.
Now, as a first elementary observation, let us assume that � may, at some time

t = t̄ during the motion, instantaneously support the equilibrium displacement field
in the sense that u(x, t̄ ) = ū(x); it may be that u̇(·, t̄ ) �= 0 so � is not coincidently
at rest. Be that as it may, nevertheless, (2.4) will be met at t = t̄ because of (1.7)
and, in addition, because W [u](t̄ ) = W [ū] and U [e](t̄ ) = U [ē], we see from (2.7)
that

W [ū] = U [ē] +K[u̇](t̄). (2.8)

Then, recalling (1.8), we may conclude that half the work done during the time
interval (0, t̄ ) is stored in the body as strain energy and the remaining half satisfies

1

2
W [ū] = K[u̇](t̄ ); (2.9)

it has been spent to produce the instantaneous kinetic energy of the body. Ac-
cordingly, under the present circumstances, it is this kinetic energy that must be
spontaneously extracted from � if the body is to be arrested in the equilibrium
state u(x, t̄ ) = ū(x). However, there is no mechanism in this conservative ideal
elastic system to do so!�

Let us now consider an alternative description of how the work may be chan-
neled into strain energy and kinetic energy based upon time-averaging of the corre-
sponding energies. The assumption here is that there is a time t = t∗ > 0, perhaps
one among many, at which the body instantaneously is at rest, i.e., u̇(x, t∗) ≡ 0
in �.�� To describe the average motion, we introduce the time-average displace-
ment field as

〈u〉(x) ≡ 1

t∗

∫ t∗

0
u(x, t) dt, (2.10)

� According to [11, p. 123] (see also [13, p. 537, art. 988]), in 1839 Poncelet [12] was the
first to note that “a load suddenly applied may cause a strain twice as great as that produced by
a gradual application of the same load.” While this observation of Poncelet, which also contains
an interesting factor of 2, appeared contemporaneously with the original and later announcements of
CLAPEYRON’s theorem, there appears to have been no recognition of a possible relationship between
the claims of either authors.
�� While, generally, there may not be such a time, in the case of periodic motion there is a countable

set of such times; a specific one-dimensional example is discussed later in Appendix A. Notice,
though, that according to (2.4)1 the average of u̇(x, t) over � is always zero.
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with the time-average strain 〈e〉(x) and stress 〈T〉(x) fields defined analogously.
Then, it readily follows that

〈e〉 = 1

2

(∇〈u〉 + (∇〈u〉)T)
, 〈T〉 = ρC[〈e〉]. (2.11)

Moreover, because of (2.2), by time-averaging (2.3) and (2.1) we find

div〈T〉 + b̄ = 0 in �, 〈T〉n = t̄ on ∂�. (2.12)

Also, note that the time-average displacement field 〈u〉(x) satisfies the normaliza-
tion (2.4) and recall that the loads t̄ = t̄(x) and b̄ = b̄(x) are balanced in the sense
of (1.4). Thus, because of uniqueness and the fact that 〈u〉(x) and ū(x) solve the
same equilibrium boundary-value problem, we may conclude that

〈u〉(x) = ū(x), 〈e〉(x) = ē(x), 〈T〉(x) = T(x) in �. (2.13)

Now, by time-averaging (2.7), using (1.3), recalling the notation established
in (2.10) and applying (2.13), we easily have

〈W [u]〉 = W [〈u〉] = W [ū] = 〈U [e]〉 + 〈K[u̇]〉. (2.14)

In particular, the average of the ‘dead load work’, 〈W [u]〉, is equal to the quantity
W [ū] of CLAPEYRON’s theorem in (1.8), and our immediate aim is to determine
how this average work expended is divided up between the average strain energy
〈U [e]〉 and the average kinetic energy 〈K[u̇]〉 of the body. To do so, we first
introduce the difference displacement field

u′(x, t) ≡ u(x, t)− ū(x), (2.15)

with e′(x, t) and T′(x, t) defined analogously, and observe, using (1.1), the sym-
metry of C and (1.8), that

U [e](t) =
∫
�

1

2
ρC[ē + e′] · (ē + e′) dv

= U [ē] +
∫
�

ρC[ē] · e′ dv + U [e′](t)

= 1

2
W [ū] +

∫
�

ρC[ē] · e′ dv + U [e′](t).

Then, by time-averaging we have

〈U [e]〉 = 1

2
W [ū] +

∫
�

ρC[ē] · 〈e′〉 dv + 〈U [e′]〉.

However, because e′(x, t) = e(x, t) − ē(x) we see from (2.13) that 〈e′〉(x) =
〈e〉(x)− ē(x) = 0 and, consequently, we reach

〈U [e]〉 = 1

2
W [ū] + 〈U [e′]〉. (2.16)
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Now, to determine 〈U [e′]〉, it is convenient to observe, using (2.1)–(2.3), (2.15)
and the relationships T′ = ρC[e′] and e′ = (∇u′ + (∇u′)T)/2, that

div T′ = ρü′ in �, ∀t > 0,
(2.17)

T′n = 0 on ∂�, ∀t > 0; u′(x, 0) = −ū(x), u̇′(x, 0) = 0 in �.

Then, with the definition (1.1), the symmetry of C, (2.17) and the aid of the diver-
gence theorem we find that

U [e′](t) = 1

2

∫
�

T′ · ∇u′ dv

= 1

2

∫
∂�

T′n · u′ da − 1

2

∫
�

ρü′ · u′ dv

= −1

2

∫
�

ρü′ · u′ dv

= −1

2

∫
�

( ˙
ρu̇ · u′ − ρ|u̇|2

)
dv,

the last equation of which uses the fact that (2.15) implies u̇′(x, t) = u̇(x, t). Now,
by time-averaging, recalling that u̇(x, 0) = u̇(x, t∗) = 0 and using (2.6), we obtain

〈U [e′]〉 = 〈K[u̇]〉, (2.18)

which is a well known result concerning the equipartition between kinetic and
potential energies. Thus, by substituting (2.18) into (2.16) and then using (2.14)
we conclude that

〈U [e′]〉 = 〈K[u̇]〉 = 1

4
W [ū] (2.19)

and, again using (2.16), we see that

〈U [e]〉 = 1

2
W [ū] + 1

4
W [ū] = 3

4
W [ū]. (2.20)

To show that this result is independent of the assumption of periodicity, let us in-
troduce the complete set of orthonormal eigenfunctions and eigenvalues, {ūi(x), ωi,
i = 1, 2, . . .}, which satisfy (1.7) and

div(C[∇ūi])+ ρω2
i ūi = 0 in �,

(2.21)
(C[∇ūi])n = 0 on ∂�,

and expand the solution u(x, t) of (2.1)–(2.3) in the form

u(x, t) =
∞∑
i=1

ūi(x)gi(t).
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Then, we readily find that gi(t) = Ai(1 − cosωit), i = 1, 2, . . . , and it is possible
to determine the constants Ai as Fourier coefficients so that this series represents
a weak solution of (2.1)–(2.3) in the sense that ∇u(·, t) ∈ L2(�) for all t > 0.
Furthermore, it is straightforward to show that the infinite time-average of the
displacement field,

〈u〉∞(x) ≡ lim
T→∞

1

T

∫ T

0
u(x, t) dt, (2.22)

satisfies 〈u〉∞(x) = ū(x) and that conclusions similar to those highlighted in the
previous paragraph continue to hold for the relationships between the infinite time-
averages of the work, strain energy and kinetic energy, i.e.,

〈W [u]〉∞ = W [〈u〉∞] = W [ū] = 〈U [e]〉∞ + 〈K[u̇]〉∞ (2.23a)

with

〈U [e]〉∞ = 3

4
W [ū], 〈K[u̇]〉∞ = 1

4
W [ū]. (2.23b)

Based upon the above analyses, we conclude that when an elastic body is set in
motion with a ‘dead’ loading system from an initially undistorted rest state, then,
with suitable interpretation, the average work that is supplied to the body by the
‘dead’ loading is equal to the equilibrium work of CLAPEYRON’s theorem. On
the average, three quarters of this work appears as strain energy (half due to the
equilibrium strain energy as predicted from CLAPEYRON’s theorem and a quarter
due to the strain energy of the deformation relative to this equilibrium), and the
remaining quarter is, on the average, transformed into kinetic energy.

To illustrate the general conclusions reached above, we consider, in Appen-
dix A, a specific one-dimensional elastodynamic problem with ‘dead’ loading.

2.2. ‘SLOW’ LOADING

When an ideal elastic body is ‘dead’ loaded from an undistorted, rest state with an
otherwise equilibrium system of loads, the loading is impulsively applied. Conse-
quently, from the dynamical considerations of Section 2.1, the body never reaches
equilibrium but, rather, rings by constantly redistributing kinetic and strain energy
between its elements. Indeed, the work done to the body at any time t > 0 due
to the external loading is given by (1.3), but the body is never coincidently at rest
and in a state of equilibrium. On the other hand, we expect that if an equilibrium
system of loads is achieved sufficiently slowly in time then even an ideal elastic
body should distort through a sequence of near equilibrium states and eventually
reach a nearly static equilibrium configuration. In this case, the work done to the
body at any time t due to the external loading may be calculated using (1.2), but
the calculation is no longer trivial because now t∗ and b∗ are not ‘dead’ but rather
depend on time. For dissipationless, ideal elastic bodies it is intuitively clear that
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the work expended to reach equilibrium should be related to the latter rather than
the former calculation.

To gain some general perspective, suppose that the loading system, t∗ on ∂�
and b∗ in �, is such that

t∗ = t∗(x, t) =


t

t∞
t̄(x), t ∈ (0, t∞),

t̄(x), t � t∞,
(2.24)

and

b∗ = b∗(x, t) =


t

t∞
b̄(x), t ∈ (0, t∞),

b̄(x), t � t∞,
(2.25)

where t∞ is a sufficiently large time constant so that the loads may be considered
to be slowly applied. Then, at least for t ∈ (0, t∞), the displacement field u =
u(x, t) = t ū(x)/t∞ and the corresponding strain and stress fields, e = e(x, t) =
t ē(x)/t∞ and T = T(x, t) = tT(x)/t∞, from the strain-displacement and stress–
strain relations of Section 1, will satisfy the dynamical equation

div T + b∗ = ρü in �, t ∈ (0, t∞),
together with the boundary condition

Tn = t∗ on ∂�, t ∈ (0, t∞)
and initial conditions

u(x, 0) = 0, u̇(x, 0) = 1

t∞
ū(x) in �.

Clearly, for sufficiently large time constant t∞ not only is the applied loading
‘slow’, but the initial state of � is undistorted and ‘nearly’ at rest. Further, at time
t = t∞ the body achieves the equilibrium displacement field ū(x) with, again,
‘nearly’ zero velocity. Moreover, according to (1.2), the work done to� up to time
t = t∞ is

W [u](t∞) =
∫ t∞

0

(∫
∂�

t

t∞
t̄ · 1

t∞
ū da +

∫
�

t

t∞
b̄ · 1

t∞
ū dv

)
dt

= 1

2

(∫
∂�

t̄ · ū da +
∫
�

b̄ · ū dv

)
,

so that with (1.8)1 we have

W [u](t∞) = 1

2
W [ū].
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In addition, according to (2.6), the kinetic energy of � at any time t ∈ [0, t∞) is
‘nearly’ zero and equal to its initial value because

K[u̇](t) = 1

2t2∞

∫
�

ρ|ū|2 dv, ∀t ∈ [0, t∞).

Finally, according to (1.1), the strain energy of � at time t = t∞ is given by

U [e](t∞) = U [ē],
and so with (1.8)2 we may conclude that

W [u](t∞) = U [e](t∞).
Thus, for sufficiently large time constant t∞, the body is ‘nearly’ at rest in equilib-
rium at time t = t∞ and the work done to � to achieve this ‘near’ equilibrium state
is half that which is supplied, according to LOVE’s interpretation of CLAPEYRON’s
theorem; in fact, this reasoning shows that the work done is equal to the strain
energy at time t = t∞ and, to within a certain degree of approximation the paradox
of CLAPEYRON’s theorem may be considered resolved. Of course, the body is not
exactly at rest in equilibrium at time t = t∞ and while it was initially undistorted,
it was not initially at rest. For large time constant t∞, according to the given initial
conditions there is a small kinetic energy imparted to� at time t = 0 and this same
kinetic energy must be extracted from � at time t = t∞ in order for � to strictly
remain in equilibrium for all time t > t∞.

In general, for the loading conditions of (2.24) and (2.25) it readily follows from
an application of the power theorem that for all time t > t∞ we must have

K[u̇](t)+ U [e − ē](t) = K[u̇](t∞) = 1

2t2∞

∫
�

ρ|ū|2 dv,

where, of course, the right-hand side also represents the kinetic energy that is added
to the system at t = 0 due to the ‘nearly’ stationary initial condition. Thus, given
an ε > 0, for sufficiently large time constant t∞, both the kinetic energy of � and
the strain energy of� for the difference strain e(x, t)− ē(x)must remain within an
ε-neighborhood of zero for all t � t∞.

To illustrate these ideas, we consider, in Appendix B, a one-parameter family
of one-dimensional elastodynamic problems for a bar of finite length, wherein the
applied loading depends on a slowness parameter α. Our aim in this appendix is
to exhibit how the retarded nature of the applied loading effects the dynamical
behavior and its relationship to the notion of equilibrium.

3. Viscoelasticity

As earlier, we again suppose that the body is initially at rest and undistorted and
that it is ‘dead’ loaded as in the static situation of Section 1. Now, to introduce an
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elementary form of mechanical dissipation, we consider a viscoelastic body whose
constitutive relation is of the KELVIN–VOIGT form

T = ρC[e] + D[ė], (3.1)

where D is a positive definite, completely symmetric (constant) viscosity tensor.
The dynamical equation and the boundary and initial conditions are the same as
those in (2.1)–(2.3), i.e.,

div T + b̄ = ρü in �, ∀t > 0,
(3.2)

Tn = t̄ on ∂�, ∀t > 0, u(x, 0) = u̇(x, 0) = 0 in �.

In the usual way, it follows from (3.2) and (2.6) that the classical power theorem
holds, i.e.,∫

∂�

t̄ · u̇ da +
∫
�

b̄ · u̇ dv =
∫
�

T · ė dv + d

dt
K[u̇](t), (3.3)

which, with the use of (3.1), (3.2)3, (1.1), (1.3) and integration in time, results in

W [u](t) = U [e](t)+K[u̇](t)+ D(t), (3.4)

where D(t) denotes the dissipation function

D(t) ≡
∫ t

0

(∫
�

D[ė] · ė dv

)
dt � 0, (3.5)

for all t � 0.
Because of the dissipative character of viscosity and the special nature of the

loading, in that t̄(x) and b̄(x) are balanced and correspond with the equilibium
displacement field ū(x) of Section 1, it is natural to expect that the solution of
the problem outlined above will have the ‘asymptotic property’ u(x, t) → ū(x) as
t → ∞.� Supposing this is the case, we find from (3.4), (1.1) and (2.6) that in the
limit as t → ∞

W [ū] = U [ē] + D∞,

where

D∞ ≡ D(∞) =
∫ ∞

0

(∫
�

D[ė] · ė dv

)
dt � 0. (3.6)

� Dafermos [5] and Andrews and Ball [1] have studied the questions of existence and asymptotic
stability for general one-dimensional KELVIN-VOIGT viscoelasticity theory. With certain smooth-
ness hypotheses, the conclusions in [1, 5] guarantee that the solution to the problem with ‘dead’
loading and zero initial data asymptotically and strongly approaches the equilibrium state which
corresponds to the same ‘dead’ loads.
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Moreover, by using CLAPEYRON’s theorem (1.8) we may then conclude that half
the work done to reach equilibrium is stored as strain energy and the remaining
half is given by

1

2
W [ū] = D∞,

which is consumed during the dynamical process through viscous dissipation. To
summarize, when viscous dissipation is present and the ‘asymptotic property’ holds
then ‘dead’ loading and equilibrium are, indeed, compatible. Moreover, in practi-
cal terms the paradox reached within elasticity theory from LOVE’s interpretation
of CLAPEYRON’s theorem may be resolved by appropriately accounting for the
dissipative action of viscoelastic behavior.

4. Thermoelasticity

Within the linear theory of thermoelasticity, when a body is subject to a displace-
ment field u = u(x, t) relative to its undistorted, rest state and coincidently the
absolute temperature is changed from its constant reference (room) temperature θ0

to the field θ = θ(x, t), the HELMHOLTZ free energy per unit mass ψ = ψ(x, t) is
determined by the constitutive equation�

ψ = ψ̂(θ, e) = 1

2
C[e] · e − (θ − θ0)M · e − cθ ln

θ

θ0
, (4.1)

normalized so that ψ̂(θ0, 0) = 0. Here, M is the positive definite, symmetric ther-
mal expansion tensor and c > 0 is the specific heat at constant deformation, both
representing prescribed thermomechanical material properties and herein assumed
to be constant. The symmetric stress tensor field T = T(x, t) and the entropy field
per unit mass η = η(x, t) are then determined by the GIBBS relations

T = T̂(θ, e) = ρ ∂ψ̂(θ, e)
∂e

= ρ(C[e] − (θ − θ0)M) (4.2)

and

η = η̂(θ, e) = −∂ψ̂(θ, e)
∂θ

= M · e + c
(

ln
θ

θ0
+ 1

)
, (4.3)

respectively. The total HELMHOLTZ free energy of the body is given by

�[θ, e](t) ≡
∫
�

ρψ̂(θ(x, t), e(x, t)) dv. (4.4)

If we now assume, analogous to Sections 1–3, that the ‘dead’ loads t̄(x) on ∂� and
b̄(x) in � are balanced in the sense of (1.4) and that u = ū(x) is a corresponding
� In [4] or [8, p. 99], for example, a non-essential quadratic approximation for θ near θ0 is used

in place of the last term in (4.1).
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equilibrium displacement field at the uniform temperature θ = θ0 then, as in Sec-
tion 1, we readily see, from an argument totally analogous to that given in (1.8) for
CLAPEYRON’s theorem and (1.1), that

�[θ0, ē] = 1

2
W [ū]; (4.5)

i.e., half of the work done to reach equilibrium is stored in the body as HELMHOLTZ

free energy. Here, we have used the normalization (1.7) which guarantees unique-
ness and eliminates any possible additive infinitesimal rigid field.

Before proceeding with a more detailed continuum thermodynamic analysis for
non-isothermal processes, we first give an elementary thermodynamic explanation
for the isothermal case θ(x, t) = θ0. Thus, for a finite material body the first law
and the second law, in the form of the CLAUSIUS–PLANCK inequality, may be
written as

Ė(t)+ K̇(t) = P (t)+ Q(t), Ḣ(t) � Q(t)

θ0
∀t > 0, (A)

where E , K , P , Q and H denote the internal energy, kinetic energy, mechanical
power supply (positive for influx and negative for efflux), heat supply rate (positive
for absorbtion and negative for emission) and entropy for the body, respectively.
Now, introducing the HELMHOLTZ free energy of the body, F (t) ≡ E(t)−θ0H(t),
we may write (A)1 in the form

P (t) = Ḟ (t)+ θ0Ḣ(t)+ K̇(t)− Q(t). (B)

Then, supposing the body reaches an equilibrium state at some time t0 ∈ (0,∞],
we see from (B) that the total work done to the body over the time interval (0, t0)
is given by

W ≡
∫ t0

0
P (t) dt = �F + D, (C)

where

D ≡ θ0�H −
∫ t0

0
Q(t) dt � 0 (D)

represents the total energy dissipated by the body during the (isothermal) process
of reaching equilibrium. We are assured that this dissipated energy is non-negative
because of (A)2 and the isothermal condition. Now, by naturally interpreting W
as the work W [ū] to reach equilibrium and �F as the equilibrium free energy
�[θ0, ē], both noted in (4.5), we see from (4.5), (C) and (D) that

1

2
W = �F and

1

2
W = D . (E)
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Clearly, half of the work that is supplied to reach equilibrium is dissipated and the
paradox of CLAPEYRON’s theorem is resolved.

Now, rather than assume that the temperature field of the body is spatially
uniform and constant in time, let us suppose that the body is initially at rest in
its undistorted state at the constant temperature θ0 and that for all time t > 0 it
is subject to a balanced ‘dead’ loading system, as is presumed in the equilibrium
situation which lead to (4.5) above. In addition, for convenience we suppose that
the body is subject to null heat radiation to or from the external environment and
that the boundary temperature is fixed at θ0 for all time t > 0. Explicitly, the
boundary and initial conditions that we consider are

Tn = t̄, θ = θ0 on ∂�, ∀t > 0, (4.6)

and

u(x, 0) = u̇(x, 0) = 0, θ(x, 0) = θ0 in �, (4.7)

respectively. The dynamical governing equations have the form

div T + b̄ = ρü in �, ∀t > 0, (4.8)

and

−div q + T · ė = ρε̇ in �, ∀t > 0. (4.9)

Here, ε = ε(x, t) is the internal energy field per unit mass, which is related to
the HELMHOLTZ free energy, temperature and entropy through ε = ψ + θη, and
q = q(x, t) is the heat flux vector field. Also, we note for later reference that with
(4.1)–(4.3), we may write (4.9) in the alternative form

−div q = ρθη̇ in �, ∀t > 0. (4.10)

Now, with the aid of (4.8), (4.6) and (2.6) we again have the power theo-
rem (3.3). Moreover, following a standard line of reasoning which uses (3.3) with
(4.9) and an application of the divergence theorem, we recover the global form of
the balance of energy:∫

∂�

t̄ · u̇ da +
∫
�

b̄ · u̇ dv = d

dt
E[θ, e](t) + d

dt
K[u̇](t)−Q(t). (4.11)

Here, E[θ, e](t), the total internal energy of the body at time t , may be written
conveniently as

E[θ, e](t) ≡
∫
�

ρε̂(θ(x, t), e(x, t)) dv

= �θ0[θ, e](t) + θ0

∫
�

ρη̂(θ(x, t), e(x, t)) dv, (4.12)
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where

�θ0[θ, e](t) ≡
∫
�

ρ(ε̂(θ, e)− θ0η̂(θ, e))dv (4.13)

is the total HELMHOLTZ semi-free energy� of the body based upon the boundary
temperature θ0 and Q(t) is the total heat rate of the body at time t , which, here, is
determined solely by boundary conduction, i.e.,

Q(t) ≡
∫
∂�

−q · n da. (4.14)

Because n denotes the outer unit normal to ∂�, we note that Q(t) > 0 (< 0)
corresponds to a rate of heat supply to (loss from) �. Thus, by integration of (4.11)
in time and use of the initial conditions (4.7), and formulae (4.1), (4.4), (1.2) and
(1.3), we arrive at

W [u](t) = �θ0[θ, e](t) +K[u̇](t)+ D(t), (4.15)

where D(t) denotes the dissipation function

D(t) ≡ θ0

∫
�

ρ(η̂(θ, e)− η̂(θ0, 0))dv −
∫ t

0
Q(τ) dτ

=
∫ t

0

(
θ0

d

dt
H [θ, e](t)−Q(t)

)
dt � 0, (4.16)

for all t � 0 and where H [θ, e](t), the total entropy of the body in the state of
temperature θ(x, t) and strain e(x, t), is defined by

H [θ, e](t) ≡
∫
�

ρη̂(θ(x, t), e(x, t)) dv. (4.17)

Observe that the right-hand side of D(t) in (4.16) contains an expression as in-
tegrand which, in the absence of radiation and when the body is emersed in an
environment of constant temperature θ0, is non-negative due to the second law of
thermodynamics in the form of the CLAUSIUS–PLANCK inequality. Of course, in
this circumstance the CLAUSIUS–PLANCK inequality is implied by the CLAUSIUS–
DUHEM inequality.

Because of the dissipative nature of heat conduction and the fact that the me-
chanical loading t̄(x) and b̄(x) and the thermal loading conditions (4.6)2 and (4.7)3,
� See the work on the stability of material phases by Dunn and Fosdick [7, p. 41]. Duhem [6]

introduced a similar quantity denoted by him “l’énergie balistique” in his studies on the stability
of equilibrium states. Truesdell [15], in his Historical Introit on pp. 39–40, gives a brief account
of Duhem’s ballistic energy and its first appearances in the more modern researches of the 1960s.
Today, the term “ballistic free energy” often is used to denote the sum of the total kinetic energy, the
HELMHOLTZ semi-free energy and the total potential energy of the applied forces for the body, for
certain special processes as, for example, in [2, Section 3.3]. Its main feature is that it is non-negative
on these processes and this fact emphasizes its importance in stability analyses.
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are associated with the equilibrium state u = ū(x) and θ = θ0, it is natural to ex-
pect, based on physical considerations, that any possible thermodynamic process,
generated according to (4.6)–(4.9), will stabilize in the sense that u(x, t) → ū(x)
and θ(x, t) → θ0 as t → ∞.� Provided this asymptotic behavior�� is, indeed, the
case, we may conclude, from (4.13), (4.15), (4.16) and the fact that �θ0[θ, e](t) →
�[θ0, ē], that

W [ū] = �[θ0, ē] + D∞ (4.18)

in the limit t → ∞, where

D∞ ≡ D(∞) = θ0(H [θ0, ē] −H [θ0, 0])−
∫ ∞

0
Q(τ) dτ

=
∫ ∞

0

(
θ0

d

dt
H [θ, e](t)−Q(t)

)
dt � 0. (4.19)

Thus, with (4.5) and (4.18) we see that half the work done to reach equilibrium
is stored as HELMHOLTZ free energy and the remaining half is given by

� Of course, from an analytical point of view this will depend upon the constitutive structure for
the law of heat conduction which, for classical linear theory, may be taken as Fourier’s law (4.22).
�� In the present context, this problem has yet to be studied. While Dafermos [4] has provided an

analysis of the issues of existence and asymptotic stability for the completely linear theory of ther-
moelasticity, the initial-boundary value problem under consideration here is weakly nonlinear, due
to thermal expansion, and slightly different. In its one-dimensional form the fields u(x, t) and θ(x, t)
are sought for x ∈ (0, L) and for all t > 0 such that the dynamical and constitutive equations (4.2),
(4.3), (4.8), (4.9) and (4.22) hold subject to null body force and appropriate boundary and initial
conditions. Specifically, the governing equations are

σx(x, t) = ρü(x, t) ∀x ∈ (0, L), ∀t > 0,

with σ(x, t) = Eux(x, t)− ρm(θ(x, t)− θ0),
and

kθxx(x, t) = ρ(mθ(x, t)u̇x(x, t)+ cθ̇ (x, t)) ∀x ∈ (0, L), ∀t > 0,

subject to the following boundary and initial conditions:

u(0, t) = 0, σ (L, t) = σ̄ = const, θ(0, t) = θ(L, t) = θ0 ∀t > 0,

u(x, 0) = u̇(x, 0) = 0, θ(x, 0) = θ0 ∀x ∈ (0, L).
The material constants ρ, k, m, c and E are positive.

In the completely linear theory, the nonlinear term θu̇x in the third equation above is linearized and
replaced by θ0u̇x . For the system so linearized and within the more general three-dimensional setting,
DAFERMOS has shown that the solution asymptotically and strongly approaches the equilibrium state
of uniform temperature in the sense that

(u, e ≡ ux, σ )(x, t)→ (ū, ē, σ̄ )(x) =
( σ̄
E
x,
σ̄

E
, σ̄

)
, θ(x, t)→ θ0

as t → ∞.
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1

2
W [ū] = D∞. (4.20)

Following classical considerations, we may interpret the first term in the definition
(4.19)1 of D∞, i.e., the term that involves the total entropy difference, as that part
of the change of the total internal energy that is stored in the distorted equilibrium
state of the body in the ‘primative form of heat’ and that is unavailable to do
mechanical work at the temperature θ = θ0. This is historically referred to as
the ‘bound’ part. Of course, the total HELMHOLTZ free energy �[θ0, ē] represents
the remaining part of the total internal energy, and it is available. According to
the definition (4.14), the second term in D∞, in (4.19)1, represents the total heat
exchange for the body due to the process of conduction (i.e., ‘transfer’) through its
boundary during the thermodynamic process.

Finally, to clearly identify (4.19) as an expression for the dissipated energy due
to the internal heat transfer, we first note that with (4.14), (4.17), the divergence
theorem, (4.10) and (4.6)2 we may re-write D∞ as

D∞ =
∫ ∞

0

(∫
�

(ρθ0η̇ + div q) dv

)
dt

=
∫ ∞

0

(∫
�

(
1 − θ0

θ

)
div q dv

)
dt

=
∫ ∞

0

(
θ0

∫
�

−q · ∇θ
θ2

dv

)
dt. (4.21)

Then, as is standard within the linear theory of thermoelasticity, if we assume
FOURIER’S law of heat conduction, i.e.,

q = −K∇θ, (4.22)

where K is the positive definite, symmetric heat conductivity tensor, we see that

D∞ = θ0

∫ ∞

0

(∫
�

(K∇θ) · ∇θ
θ2

dv

)
dt � 0. (4.23)

Accordingly, in the case of continuum thermoelasticity the expression (4.23) gives
an explicit representation for the total dissipated energy that was identified as D
in our previous more elementary discussion (see (D)). Through (4.20), it accounts
for the remaining half of the work that is done to reach equilibrium and provides a
thermodynamics based response to the paradox posed in Section 1.

5. Discussion

In this communication we have revisited a well known classical theorem in linear
elastostatics due to Emile Clapeyron and offered several interpretations of an appar-
ent paradox associated with the ‘mysterious’ unaccountability of part of the work
done by the loading device to reach equilibrium. Our considerations reveal that this
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theorem may be viewed in a purely statical framework as a mechanical statement
concerning work and elastic strain energy as did Love [11], and that is where
the paradox appears, or it can be viewed more generally as a thermodynamical
statement concerning the work and the HELMHOLTZ free energy, in which case
no paradox emerges. We consider the ‘thermodynamic’ version of CLAPEYRON’s
theorem, as noted in (4.5), to be the most reasonable one; the issue does not appear
to have been addressed previously in the literature.

Within elastostatics, the purely mechanical statement of CLAPEYRON’s the-
orem is ambiguous because only equilibrium ideas are used to deduce it and,
therefore, the definition of ‘work’ is somewhat subjective. In practice, an elastic
body adjusts to the application of a loading gradually and part of the associated
work is transformed during this process into an energy of ‘ringing’ relative to some
average configuration. This ‘ringing’ may be sizable or negligible depending upon
the rate at which the ultimate load is attained. Coincidently, this energy is being
removed from the system by the unavoidable action of dissipation and the body
tends to an equilibrium state. If, in a particular setting, the process of reaching
equilibrium is considered instantaneous relative to the time-scale defined by the
physical problem, then the classical theorem applies and the unaccounted work
should be considered lost through dissipation. In this case, one can suppose that
there is a fast time-scale in the problem and that the associated generation of high
frequency vibrations can be considered, from the slower time-scale point of view,
to be an effective dissipative action.

We note that circumstances in which some energy may be either ‘lost’ or ‘ac-
quired’ are not unknown within the setting of a purely conservative elastic sys-
tem. For example, when considering steady state solutions of linear elastodynamic
problems, one characteristically neglects short transient periods in determining the
corresponding steady states from prescribed initial conditions. One of the energetic
consequences of such a neglect of the transient phase of the process is the necessity
to apply so-called radiation conditions in order to determine a unique steady state
configuration. Another example originates in nonlinear elastodynamics where the
energy is not conserved due to the unavoidable generation of the ‘invisible’ high
frequency vibrations inside the transition layer of shock waves.

If the HELMHOLTZ free energy is used instead of the elastic strain energy and
the problem is viewed as thermodynamical from the very beginning, the paradox
does not surface. The reason is that in this case the system no longer is consid-
ered to be energetically closed and the ‘macro-mechanical’ degrees of freedom
are not the only ones present in the system. More specifically, in this case, the
adjustment of the body to the applied dead loads involves the activation of the
‘micro-mechanical’ degrees of freedom not accounted for by the purely mechanical
macro-description. The channeling of the macroscopic energy towards these mi-
croscopic degrees of freedom is then viewed at the macro-level as the dissipation.
The beauty of a continuum thermodynamical description is that these degrees of
freedom need not be described explicitly.
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Appendix A. 1D Example: ‘Dead’ Loading

To exemplify the general conclusions reached in Section 2.1 concerning the dy-
namical implications of ‘dead’ loading, consider the specific one-dimensional elas-
todynamic problem of determining the displacement field u(x, t) for x ∈ (0, L)
and for all time t > 0 such that

Euxx(x, t) = ρü(x, t) ∀x ∈ (0, L), ∀t > 0, (A.1)

subject to the following boundary and initial conditions:

u(0, t) = 0, σ (L, t) = σ̄ = const ∀t > 0, (A.2)

u(x, 0) = u̇(x, 0) = 0 ∀x ∈ (0, L). (A.3)

Here, E > 0 is the (constant) Young’s modulus and σ (x, t) ≡ Eux(x, t) denotes
the stress.

It is straightforward to show that the solution of (A.1)–(A.3) is periodic in time
with period T = 4L/c, where c ≡ √

E/ρ is the characteristic wave speed, and that
in the (x, t)-plane the strain and velocity fields, e(x, t) ≡ ux(x, t) and v(x, t) ≡
u̇(x, t), are piecewise constant and of the form shown in Figure 1. Moreover, in
this one-dimensional setting (2.7) again holds, i.e.,

W [u](t) = U [e](t)+K[v](t) ∀t � 0, (A.4)

where

W [u](t) ≡ σ̄ u(L, t), U [e](t) ≡
∫ L

0

1

2
Ee2 dx,

(A.5)
K[v](t) ≡

∫ t

0

1

2
ρv2 dx.

Thus, from the solution shown in Figure 1 we may readily construct the periodic
forms ofW [u](t), U [e](t) and K[v](t) and they are illustrated in Figure 2.

Now, to analyze these results it is helpful to first note that the unique equilib-
rium displacement ū(x), strain ē(x) and stress σ̄ (x) fields which correspond to the
boundary conditions

ū(0) = 0, σ̄ (L) = σ̄
are given by ū(x) = (σ̄ /E)x, ē(x) = σ̄ /E and σ̄ (x) = σ̄ for x ∈ (0, L). In this
case, CLAPEYRON’s theorem implies that

1

2
W [ū] = U [ē] (A.6)
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Figure 1. Summary of the solution of (A.1)–(A.3) in the (x, t)-plane.

Figure 2. The total work W [u](t), strain energy U [e](t) and kinetic energy K[v](t) during
one period of motion.
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and we easily calculate, using (A.5), that

W [ū] = σ̄ 2

E
L, U [ē] = 1

2

σ̄ 2

E
L. (A.7)

Notice from Figure 1 that at the discrete times t = t̄ ∈ {L/c, 3L/c, . . .}
the displacement and strain fields coincide with those of the equilibrium state,
u(x, t̄ ) = ū(x) and e(x, t̄ ) = ē(x). Thus, from (A.7)1 and Figure 2 we see that

W [u](t̄ ) = W [ū], U [e](t̄) = K[v](t̄ ) = 1

2
W [ū]. (A.8)

This verifies (2.9) and explicitly shows that at those times when the dynamical
displacement field coincides with the equilibrium displacement field, half the work
done is stored as strain energy and the remaining half appears as kinetic energy. In
passing, we note from Figure 1 that at time t = 2L/c (and periodically thereafter)
the body is at rest and it is distorted with a strain field that is double what it is in
equilibrium. Moreover, from Figure 2 we see that at this time there is a total ‘work-
energy balance’ in the sense that W [u](2L/c) = U [e](2L/c). This is a reflection
of Poncelet’s observation noted earlier in the first footnote of Section 2.1.

Observe, from Figure 1, that v(x, t∗) = 0 ∀x ∈ (0, L) and for every t∗ ∈
{2L/c, 4L/c, . . .}. Thus, by time-averaging (A.4) over any interval (0, t∗) and
using a notation analogous to (2.10) it is clear that

〈W [u]〉 = W [〈u〉] = 〈U [e]〉 + 〈K[v]〉, (A.9)

where, according to Figure 2 and (A.7)1, we easily calculate

〈W [u]〉 = W [ū], 〈U [e]〉 = 3

4
W [ū], 〈K[v]〉 = 1

4
W [ū], (A.10)

in agreement with results more generally obtained in Section 2.1. In addition, from
the periodic extension of Figure 2 and the value of W [ū] in (A.7), we readily
see that the infinite time-average, constructed analogous to (2.22) for this one-
dimensional example, satisfies the general conditions recorded in (2.23), i.e.,

〈W [u]〉∞ = 〈U [e]〉∞ + 〈K[v]〉∞,
where

〈W [u]〉∞ = W [ū], 〈U [e]〉∞ = 3

4
W [ū], 〈K[v]〉∞ = 1

4
W [ū].

Appendix B. 1D Example: Retarded Loading

In order to exhibit more precisely how the solution of an elastodynamics problem
may depend on the slowness of the applied loading, we consider another one-
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dimensional elastodynamic problem of determining u(x, t) for x ∈ (0, L) and for
all time t > 0 such that

Euxx(x, t) = ρü(x, t) ∀x ∈ (0, L), ∀t > 0, (B.1)

subject to the following boundary and initial conditions:

u(0, t) = 0, σ (L, t) = (1 − e−αt )σ̄ ∀t > 0, (B.2)

u(x, 0) = u̇(x, 0) = 0 ∀x ∈ (0, L). (B.3)

Here, α > 0 represents a ‘slowness’ load parameter which governs the length
of time it takes the applied end load to essentially reach the constant value σ̄ .
For sufficiently large α, the loading in (B.2) is nearly impulsive and this problem
then reduces to that of Appendix A. As α is reduced the loading becomes more
retarded and the solution is expected to show less of a dynamic structure. Of course,
analogous to (2.7) the mechanical energy balance again holds, so that

W [u](t) = U [e](t)+K[v](t), ∀t � 0, (B.4)

where the work done on the body up to time t is now determined by

W [u](t) =
∫ t

0
σ (L, τ)u̇(L, τ) dτ, (B.5)

and where the corresponding strain energy, U [e](t), and corresponding kinetic
energy, K[v](t), are as defined in (A.5).

One of the major questions concerning the solution of the dynamical problem
stated above is how the work, strain energy and kinetic energy vary with time rela-
tive to the strain energy that would be stored in the same elastic bar in equilibrium
under the constant end load σ̄ , i.e., U [ē] of (A.7)2. In Figures 3–5 we show the
normalized work,W [u](t)/U [ē], normalized strain energy, U [e](t)/U [ē], and nor-
malized kinetic energy, K[v](t)/U [ē], as functions of time computed numerically
for this problem for a range of slowness load parameters α between α = 104 sec−1

and α = 106 sec−1. These figures are based on material constants for an alu-
minum alloy with E = 76.1 × 109 Pa and ρ = 2710 kg/m3, for a bar of length
L = 5×10−3 m, and for a load constant σ̄ = 107 Pa. The time axis of these figures
is measured in ‘time steps’ with the final time step of 129760 corresponding to
1200 × 10−6 sec.

One can see that the impulsive-like nature of the loading for large α results
in wildly irregular behavior which is sustained over an infinite time. On the con-
trary, for relatively small α equilibrium appears to be achieved quickly in time
with nearly constant limiting values W [u](t)/U [ē] ≈ 1, U [e](t)/U [ē] ≈ 1 and
K[v](t)/U [ē] ≈ 0. We conclude that the quantity W [ū] in (A.7)1, while it has
units of work and shows up in CLAPEYRON’s theorem as exhibited in (A.6), does
not represent the work done to reach equilibrium; reasoning based on the computed
limiting behavior leads to the conclusion that only half of this value is expended to
reach equilibrium and, then, it is manifested totally in the form of strain energy.
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Figure 3. Normalized work W [u](t)/U [ē] as a function of time for various slowness load
values α.

Figure 4. Normalized strain energy U [e](t)/U [ē] as a function of time for various slowness
load values α.
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Figure 5. Normalized kinetic energy K[v](t)/U [ē] as a function of time for various slowness
load values α.

Because there are three decades of variation of the slowness load parameter α
shown in Figures 3–5, there is much highly oscillatory, rapid time-behavior that is
not resolved in these figures. Therefore, in Figures 6–10, we take α = 105 sec−1

and show a more detailed solution of (B.1)–(B.3). The material constants E and ρ,
bar length L and load constant σ̄ are the same as noted above, but the time steps
for the time-axis is now such that the final time step of 12800 corresponds to 120×
10−6 sec. In Figure 6, we see that the strain field e(x, t) is highly irregular in
time at the fixed end x = 0 where information from the time-dependent loading
at the end x = L is reflected back into the bar. The length-axis of this figure is
measured in ‘length steps’ with the final length step of 100 corresponding to 5 ×
10−3 m which is the length of the bar. In Figures 7 and 8, we show the normalized
total work done W [u](t)/U [ē] and the normalized kinetic energy K[v](t)/U [ē]
as functions of time. These correspond to the α = 105 sec−1 cross sections of
Figures 3 and 5, respectively, for the initial time interval (0, 12800) as noted in
these figures. The normalized strain energy U [e](t)/U [ē] is not shown, but behaves
similar to Figure 7. Notice the orders of magnitude reduction of the energy scale
used in exhibiting the kinetic energy in Figure 8. In Figures 9 and 10, we show
the ratios U [e](t)/W [u](t) and K[v](t)/W [u](t) as functions of time in order to
illustrate that it takes only a few ‘rings’ to almost completely eliminate the total
kinetic energy in the bar. Of course, a small motion remains in the bar for all time
no matter how small the slowness parameter α > 0.
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Figure 6. Strain e(x, t) as a function of axial position and time for α = 105 sec−1.

Figure 7. W [u](t)/U [ē] vs. t : α = 105 sec−1.
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Figure 8. K[v](t)/U [ē] vs. t : α = 105 sec−1.

Figure 9. U [e](t)/W [u](t) vs. t : α = 105 sec−1.
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Figure 10. K[v](t)/W [u](t) vs. t : α = 105 sec−1.
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