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Nonhydrostatic stabilization of an orthorhombic phase of zirconia
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An explicit polynomial strain-energy function for tetragonal-orthorhombic-monoclinic zirconia (ZrO2), cali-
brated from the conventional hydrostaticp-T phase diagram, is used to study the effects of nonhydrostatic
loading on the phase equilibria in this material. Several representative sections of the phase diagram of ZrO2

in temperature and stress space, containing both triple and critical points, are computed. A new orthorhombic
structure of ZrO2 is predicted to be the most stable phase for a variety of experimentally accessible shear loads,
in a wide range of temperatures and pressures.
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I. INTRODUCTION

The toughness of brittle ceramics can be increased b
order of magnitude through the introduction of small tran
forming inclusions that undergo irreversible phase chan
under severely nonhydrostatic and mostly tensile stres
near the tip of a propagating crack.1 One of the most impor-
tant toughening agents in such transformation-toughened
ramics is zirconia (ZrO2),2,3 and the relevant domain of th
p-T phase diagram of this material, which includes the
tragonal, orthorhombic~ortho I!, and monoclinic phases, ha
been investigated experimentally in Refs. 4–8. A comp
hensive Landau strain-energy function providing a unifi
thermodynamical description of these ZrO2 phases under hy
drostatic conditions has been constructed in Refs. 9 and
The hydrostatic phase diagram, however, is not sufficient
the analysis of the behavior of the zirconia inclusions n
the tip of a crack, where the stresses exhibit strong sh
components. The transformation conditions allowing one
compute the crack-shielding and toughness-increase ef
must instead be formulated as a ‘‘transformation criterion’
stress space.11,12 The problem is then to determine the pha
equilibria of zirconia under nonhydrostatic loads. The ove
effect of the latter on the temperatures of the relevant ph
transitions is expected to be much stronger than the influe
of hydrostatic pressure since, for instance, the shear effe
the well-known tetragonal-to-monoclinic phase transform
tion in ZrO2 is about four times larger than the correspon
ing volumetric effect. Experimental measurements
uniaxial and bending tests for this system are quite limi
and are available only for stabilized configurations of tetr
onal ZrO2.13–15 It has been observed, however, that the re
tively high plasticity limit in this material permits a purel
elastic analysis of its nonhydrostatic phase equilibria.16

To organize the existing data and focus future experim
tal research on nonhydrostatic equilibria, in this paper
employ the phenomenological model of Ref. 10 to study
effects of various shear loads on ZrO2 crystals. We compute
a number of experimentally relevant sections of the f
stress-temperature phase diagram and make predictions
cerning the stability domains of the zirconia phases fo
0163-1829/2003/68~13!/134106~10!/$20.00 68 1341
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variety of nonhydrostatic conditions, demonstrating t
strong effect of the shear stresses on the phase equil
observed under hydrostatic conditions. We also show
presence of new triple points in the temperature-stress p
diagrams and of critical points where severely shea
phases, which possess different symmetries under hy
static loads, become indistinguishable.17 The most interesting
prediction is that a new orthorhombic zirconia structure,
ready shown in Ref. 10 to have a small metastability rang
high temperatures and low pressures, is the most stable
for a variety of shear loads, also at room conditions; this n
phase may potentially become dominant in the vicinity o
crack tip. The new structure can only be partially charac
ized by our model, and requires the use of suitable crys
lographic~see Appendix B! andab initio methods for a com-
plete study. In addition to ZrO2, our approach and result
may prove useful also for a better understanding of the
havior of other oxides, such as hafnia HfO2.

This paper is organized as follows. After giving brie
crystallographic preliminaries and an introduction to o
strain energy function in Sec. II, we study in Sec. III th
behavior of zirconia crystals under hydrostatic or uniaxi
compressive or tensile loads. The calculated phase diagr
confirm that the nonisotropic loads have a marked effect
the known phase equilibria of ZrO2, including the
tetragonal-to-monoclinic transformation. We also find th
the new orthorhombic phase mentioned above gains stab
in hydrostatic tension, or uniaxial compression, over a w
range of temperatures. In Sec. IV we study the behavio
zirconia crystals under shear loads that may distort all
ZrO2 structures considered here, converting the symme
related variants of the low-symmetry configurations into
dependent phases. In this case we find that the monoc
phase is stabilized~versus the tetragonal one! at high tem-
peratures for low shears, while for higher shears and te
peratures the new orthorhombic structure again becomes
most stable one. We also calculate a section of the sh
temperature diagram at higher pressure, which exhibits
relatively small shears, symmetric critical points for the
tragonal and ortho I phases. In the Appendixes we prov
some additional details regarding our10 Landau energy for
©2003 The American Physical Society06-1
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FADDA, TRUSKINOVSKY, AND ZANZOTTO PHYSICAL REVIEW B 68, 134106 ~2003!
ZrO2, and briefly discuss some possibilities for the cryst
lographic structure of the new orthorhombic phase tha
stable under nonhydrostatic loads.

II. TRANSFORMATION MECHANISM, ORDER
PARAMETERS, AND ENERGY FUNCTION

In the area of thep-T phase diagram not too far from
room conditions, zirconia exhibits the following thre
phases: tetragonal (t), orthorhombic ‘‘ortho I’’ (o1), and
monoclinic (m), with a triple point located at about 840 K
and 1.8 GPa. References 4–8 and 18–21 give the s
groups and detailed crystallographic descriptions of th
and other zirconia polymorphs, and present the experime
phase diagrams~see also Ref. 10 for some details!. If certain
atoms are disregarded~see Fig. 1!, the t-o1-m structures of
ZrO2 can all be described as originating from the distorti
of a primitive tetragonal ‘‘skeletal’’ Bravais lattice, spanne
by three mutually orthogonal basis vectorst1 ,t2, andt3.

In our simplified setting which only considers the skele
atoms, the symmetry of a phase is dictated by the p
group of the corresponding structure. The point groupT3 of
the t phase is

T35$1,Rt1
p ,Rt2

p ,Rt3
p ,Rt11t2

p ,Rt12t2
p ,Rt3

p/2 ,Rt3
3p/2%, ~1!

whereRk
c denotes a rotation of anglec about the axisk, and

only the elements with positive determinant are listed. Fr
an analysis of the literature,2,6,18–25we conclude9,10 that the
o1 phase has point group

O1235$1,Rt1
p ,Rt2

p ,Rt3
p %, ~2!

FIG. 1. The primitive-tetragonal reference cell withZ54 (Z
being the number of chemical units!, used to describe the deforma
tions of the ZrO2 structures; Zr atoms are in gray, O atoms in whi
This cell is spanned by the basis vectorsta , a51,2,3, with the
fourfold axis alongt3; the dashed atoms of the zirconia crystal a
disregarded in this model. The order parametersy3 andy6 break the
equality of the lengths of the vectorst1 and t2 and their orthogo-
nality condition, respectively~see Appendix A!.
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while ~since the fourfold axis of thet phase is parallel to the
twofold axis of them phase! the m phase has point group

M35$1,Rt3
p %. ~3!

The orientation relationships given by Eqs.~1!–~3! are also
confirmed by Ref. 3. The~sub!groups in Eqs.~2! and ~3!
determine the form of the strains that produce, from the
tragonal skeletal lattice in Fig. 1, theo1 andm lattices with
point groups as above; see Refs. 9, 10, and 26 for detail

For each temperatureT, we consider as the reference sta
the tetragonal equilibrium configuration at that temperat
~thermal-expansion data for thet phase can be found in Refs
27 and 28!. Correspondingly, we denote byeI , I
51, . . . ,6, thecomponents of the finite strain tensor, in
dexed as usual according to the Voigt convention~see Refs.
26, 29, and 30!. Due to the tetragonal symmetry of the pare
lattice, another set of strain coordinatesyI , I 51, . . . ,6,
proves more convenient in the ensuing analysis:9,10

y15e11e21e3 , 6y25e11e222e3 ,

A2y35e12e2 , y45e4 , y55e5 , y65e6 . ~4!

The strain componentsy4 and y5 are not involved in the
transformation mechanism of the zirconia polymorphs d
cussed here, and will be considered as completely decoup
The componentsy1 andy2 describe the symmetry-preservin
stress-free thermal expansion of the tetragonal lattice in
1 and do not affect the symmetries of the phases under
sideration. The remaining strainsy3 and y6 are the order
parameters in our model~see Fig. 1!: conditionsy35y650
select thet phase~with point groupT3); conditionsy35” 0
andy650 give theo1 phase~with point groupO123); finally,
for y3 andy6 both nonzero we obtain them phase~with point
groupM3). The configurations withy65” 0 andy350 iden-
tify a second orthorhombic phase (o2) with point group

O162,35$1,Rt3
p ,Rt11t2

p ,Rt12t2
p %. ~5!

The theory of Ref. 10 indicates that such ano2 phase, al-
though not reported in the experimental literature, ha
small metastability range for high temperatures and l
pressures. As we show below, under suitable nonhydros
loadings this range is extended, makingo2 the most stable
structure for ZrO2 in a wide domain of pressures an
temperatures.31

We attribute to any homogeneous deformation of the r
erence configuration in Fig. 1 a tetragonally invariant free
energy densityf per unit reference volume, which depen
on y1 , . . . ,y6 andT. A suitable polynomial expansion forf
has been derived in Ref. 10 and is recalled in Appendix A.
obtain the Gibbs free energy densityfG we add tof the
potential of a general nonhydrostatic load:

fG~yI ,s̄ I ,T!5f~yI ,T!2 (
J51

6

s̄JyJ ~6!

.
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NONHYDROSTATIC STABILIZATION OF AN . . . PHYSICAL REVIEW B68, 134106 ~2003!
(I 51, . . . ,6), where the stress componentss̄ I , referred to
the same basis as the strainsyI , are related as follows to th
usual stress coordinatess I conjugate to the strainseI :

s̄152p52~s11s21s3!/3,

s̄25s11s222s3 , s̄35~s12s2!/A2, ~7!

s̄A5sA for A54,5,6.

The Landau potentialfL is then derived from Eq.~7!
through the adiabatic elimination of all deformational va
ables other than the order parametersy3 and y6, and since
the dependence off on y1 , y2 , y4, and y5 in Eq. ~6! is
assumed to be convex~quadratic!, there is a unique solution
of the equilibrium equations]fG /]yR50 for R51,2,4,5.

In this paper we limit our attention to loads withs̄450,
s̄550.32 Under these conditions, we obtain the function

fL~y3 ,y6 ,s̄1 ,s̄2 ,s̄3 ,s̄6 ,T!

5c~y3 ,y6 ,s̄1 ,s̄2 ,T!2s̄3y32s̄6y6 , ~8!

whose explicit form can be found in Eq.~A6! of Appendix A.
We notice that, asc is an even function ofy3 and y6, the
energyfL is invariant under the simultaneous reflection
y3 and s̄3, or of y6 and s̄6.33 The critical points offL are
obtained by solving the equilibrium equations]fL /]yR50
for R53,6. The global phase diagram in the fiv
dimensional space (s̄1 , s̄2 , s̄3 , s̄6 , T) will then distinguish
the domains with different structures of the global minima
fL , as well as the metastability domains for each minimiz
Sincep52s̄1, one obtains the standard Gibbs free ene
density g(p,T) for a given phase by settings̄25s̄35s̄6
50 in Eq. ~8!, and minimizing the resulting function with
respect to y3 and y6. The sets of minimizers
„y3(p,T),y6(p,T)… obtained in this way represent the diffe
ent stable phases under consideration, and give distinct
ergy functionsg(p,T) for the different phases. In the con
ventional approach such functions are obtained separa
through direct modeling, rather than through the eliminat
of internal parameters; this obscures the fact that each p
is represented by a set of symmetry-related variants. Con
eration of such individual ‘‘twins,’’ however, is importan
when the original symmetry relations among the variants
destroyed by shear stresses, and the twins become inde
dent phases. The present approach, which unfolds the c
plete energy landscape in the original strain variables, allo
one to take these effects into consideration and trace
connections among all the energy wells.

III. LOADS CONJUGATE TO NON-ORDER-PARAMETERS

In this section we study how phase equilibria in zircon
are affected by the loadsp52s̄1, representing hydrostati
pressure or tension, ands3, which is responsible for uniaxia
tension or compression along the highest-symmetry axist3 in
Fig. 1. A more natural variable for this non-hydrostatic lo
is
13410
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t52~2s̄11s̄2/3!5s31p, ~9!

which is negative for uniaxial compression and positive
uniaxial tension~in excess of the isotropic loadp). As is the
case forp, the application oft may affect thec/a ratio of the
t phase and eventually activate the order parametersy3 and
y6, which produce the symmetry-breaking transformatio
However, as the strain variables conjugate top or t are or-
thogonal toy3 and y6 @see Eqs.~4!, ~7!, and ~9!#, p and t
may activate the order parameters only through the high
order coupling terms involvingy3 and y6 in Eq. ~6!; there-
fore these two types of loading do not change the symm
groups considered in Sec. II, as the equilibrium equati
and the corresponding solutions maintain their original
variance for allp and t ~also the variant structures for th
low-symmetry configurations are preserved!. We notice that
for this reason the corresponding phase diagrams are
symmetric in tension or compression, i.e., under a chang
sign forp or t. In each diagram we use the strain energy~8!
to obtain quantitative information on the correspondi
phase relations~see Appendix A for the explicit energy func
tion!. In addition to the standard equilibrium phase boun
aries ~‘‘Maxwell lines,’’ indicated by thick lines in the fig-
ures!, in the computed phase diagrams hereafter we pre
also the boundaries of the stability domains of the differ
phases, which indicate the combinations of parameters w
the corresponding matrix of elastic moduli softens~dashed
lines!.

The role of compressive hydrostatic pressurep.0 is de-
scribed by the conventional thermodynamicp-T diagram,
which in Ref. 10 was calibrated from experimental da
Here we extend our previous analysis by covering also
domain of hydrostatic tensionp,0 ~see Fig. 2!, which is
relevant for the description of phase transformations near
tip of a crack. The most interesting feature of this extend
diagram is the appearance, at high temperatures and
tensile loads~important for transformation toughening!, of
the new orthorhombic phaseo2 with symmetry ofO162,3.34

For p520.16 GPa,T51560 K, we obtain a newt-o2-m
triple point, where the three Maxwell lines, numbered
(t-m), 3 (t-o2), and 4 (m-o2) meet. This triple point mus
be distinguished from the well-known triple point with coe
isting t, o1, andm phases, studied in Ref. 10.35 We observe
that around each triple point there is an extended dom
where three metastable phases coexist. Since such dom
do not overlap, the possibility of four coexisting metastab
phases, although theoretically allowed for a one-compon
system, is ruled out by the numerical values of the Land
coefficients suitable for ZrO2 ~see Table I!.

Notice that the equilibrium phase boundaries in Fig.
separating the domain of absolute stability of the phaseo2
have negative slopes. This is a result of the negative vo
metric effect of the transitionsm-o2 (DV/V520.19% from
m to o2) and o2-t (DV/V524.67% from o2 to t). We
remark that the conventional orthorhombic phaseo1 has al-
most the same density as thet phase, withDV/V521.5%.2
6-3
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FADDA, TRUSKINOVSKY, AND ZANZOTTO PHYSICAL REVIEW B 68, 134106 ~2003!
Such a low volumetric effect, which makes the correspo
ing phase boundary almost parallel to the pressure a
probably contributed to the early confusion, in the expe
mental literature, between thet ando1 zirconia phases.

In Fig. 3 we show thet-T section forp50 of the global
three-dimensionalt-p-T phase diagram. Here thet, o2, and
m phases are the absolute minimizers in their respective
mains, with the standardo1 configuration present only as
metastable phase~relative minimizer!, below line 8. The
three equilibrium Maxwell lines, numbered 1 (t-m), 3
(t-o2), and 4 (m-o2), meet at at-o2-m triple point, located
at about 1400 K and285 MPa. The fact that the nonisotro
pic load t preserves the structure of the symmetry-rela
phase variants, which all maintain equal energy, is illustra
by the energy profile in the lower part of Fig. 3. We obser
that the effect of uniaxial tension (t.0) is to raise thet-m
transformation temperature, enlarging the stability domain
the m phase; we obtain for the derivativedT/dt along the
t-m phase boundary an average value of 1010 K GPa21.

FIG. 2. Calculated phase diagram of zirconia in the (p,T) plane.
The t-m, t-o1, t-o2, m-o2, andm-o1 Maxwell lines~boundaries
of absolute phase stability! are the thick solid lines numbered 1 to
respectively. The limits of stability for thet, m, o1, ando2 phases,
marked by dashed lines, are, respectively, within lines 6, below
7, within lines 8, and within lines 9. Thet-o1-m andt-o2-m triple
points are marked by circles~only the former lies in the half-plane
p.0 that is usually considered!.
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For uniaxial compressiont,0, on the other hand, the
stability domain of thet phase is at first enlarged, but a
higher compressions the newo2 structure becomes the mo
stable one. This gives in principle a way to detect experim
tally such ano2 phase, as uniaxial compression at roo

e

FIG. 3. Calculated phase diagram of zirconia at room press
in the (t, T) plane witht5s31p. The Maxwell lines~thick solid
lines! numbered 1, 3, and 4 meet at at-o2-m triple point, marked
by a circle. Indicated are also the partially overlapping stabi
domains for each of thet, m, o1, ando2 phases~marked by dashed
lines!, which are above line 6, below line 7, below line 8, and abo
line 9, respectively. The level sets and minimizers of the Land
energy surface at conditions near the triple point are also show
n
TABLE I. Numerical values of the coefficients in Eqs.~A1!–~A6!, calibrated from experimental data i
Ref. 10. All quantities are in GPa, except forA3 andA6 ~in GPa K21), andT0 ~in K!.

A3 3.8831021 A6 2.8231023 B6 1.183101

T0 8.323102 H3 25.93103 H6 21.943105

C̄133 233103 C̄233 8.173103 C̄166 26.133102

C̄266 5.91 C̄344 5.613101 C̄456 8.423101

D̃3 29.663104 L̃ 21.083104 D̃6 22.453103

K3 6.663108 K6 7.293104

C11 307 C33 320 C44 100
C66 16 C12 48 C13 209
6-4
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NONHYDROSTATIC STABILIZATION OF AN . . . PHYSICAL REVIEW B68, 134106 ~2003!
temperature and pressure should produce am-o2 transforma-
tion in ZrO2 at aboutt520.7 GPa.

In Fig. 4 we present another important section of t
t-p-T phase diagram, representing thet-p plane at room
temperatureT5293 K. This is a natural choice from th
experimental point of view, and some of thet-p phase rela-
tions for zirconia have indeed been reported in Refs. 13
14 for CeO2-stabilized sintered powder samples. Again, a
on this plane, we find that all the four structurest, o1, o2,
andm can be absolute minimizers, with both thet-o1-m and
the t-o2-m triple points. Most of the slopes of the equilib
rium phase boundaries here are positive, from which we
duce, for instance, that the transition fromm to t leads not
only to the reduction of volume but also to the contracti
along the tetragonal axis. The corresponding experime
observation on stabilized powders14 shows that thet-m trans-
formation pressure indeed increases with uniaxial tens
the slope of the equilibrium phase boundary was experim
tally found to be~in our variables! dt/dp51.31. Our com-
putations give an average slope of 0.43, which, while corr
in order of magnitude, is in disagreement with the expe
mental value possibly due to the random orientations of
grains in the experiments on powders, which make the
plied uniaxial load not aligned with any particular axis in t
crystal.

We remark that a common approach of phenomenolog
continuum mechanics, which often treats phase transition
a form of ‘‘plastic’’ deformation,13,14 would be to use the
result of a uniaxial test to fit parameters within a stand
hypothesis for the transformation ‘‘yield surface,’’ satisfyin
general conditions of material symmetry. For instance,
‘‘flow’’ surface of the Mohr-Coulomb type was constructe
in Ref. 13 based on a tensile test, and applied subsequ
for the interpretation of a bending test. In contrast, in o
approach we are not constrained by anya priori structure of
the transformation surface or ‘‘flow rule’’; moreover, we ca
distinguish between the equilibrium~Maxwell! phase bound-
aries and the stability boundaries, indicating the limits
ultimate strength of the corresponding phases. Despite

FIG. 4. Calculated phase diagram of zirconia in the (t,p) plane
at room temperature. Same legend as in Fig. 2.
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flexibility, the issue of finding a unifying ansatz for the Max
well surfaces of ZrO2, representing them in an approxima
but simple way in global stress space, remains an interes
challenge.

IV. LOADS CONJUGATE TO ORDER PARAMETERS

In this section we consider nonhydrostatic loads conjug
to the order parametersy3 and y6. These shear loads, wit
componentss̄3 and s̄65s6, disrupt the structure of the
symmetry-related variants because their potential produc
‘‘tilt’’ of the original energy surface and the equilibrium
equations no longer have parity iny3 or y6. This turns the
variants of the orthorhombic and monoclinic structures in
independent phases, which are no longer grouped into o
of equienergetic wells.

Consider first thes6 loading. In this case parity iny6 is
lost, so that the fourm solutions with monoclinic point group
M3 ~which for s650 only differ by the four possible per
mutations of signs ofy3 and y6, but are otherwise equiva
lent! are now split into two independent pairs of variants:m1

for y6.0, andm2 for y6,0 ~their point group is always
M3), and analogously for the twoo21 ando22 orthorhom-
bic wells ~which both have point groupO162,3). We remark
that while theo2 and m energy minimizers preserve the
symmetry under the loads6, the t minimizer does not main-
tain its T3 point group, and immediately becomes a ‘‘di
torted tetragonal’’ phase~still called t) with point group
O162,3.

The computeds6-T phase diagram at room pressur
which is necessarily symmetric with respect to the reflect
about theT axis, is shown in Fig. 5. The two new monoclin
‘‘phases,’’ represented by the two pairs of wellsm6, main-
tain the same energy along line 10 in the diagram~i.e., for
s650), which may therefore be viewed as an equilibriu
~Maxwell! boundary; the same is true for the other two ne
o26 phases~see the energy plot in the lower part of Fig. 5!.

We observe that the overall effect of thes6 shear loading
on the t-m phase change at room pressure is to raise fa
steeply the transformation temperature for small loads, w
a stabilization of the low-symmetrym phase~variantsm1) to
above 1550 K. It is instructive to compare this effect with t
corresponding effect of hydrostatic pressure, studied in
preceding section. Our computation here givesdT/ds6
51660, which should be compared todT/dp52370 ~all
figures in K GPa21); the large numerical value of the slop
of the t-m phase boundary in thes6-T plane and the associ
ated drastic promotion of them phase achieved through th
application of thes6 shear load can be attributed to the lar
transformation shear strain~17%!, compared to the volumet
ric effect ~5%!, in this phase change. Notice also that, co
trary to the case of classical plasticity, the ‘‘yield stress’’ f
transformation plasticity in tetragonal zirconia increases w
temperature, rather than decreases. In Fig. 5 we further
tice that at higher shear stresses and temperatures, thm
phase, initially promoted by thes6 load, again gives way to
the new orthorhombic phaseo2 ~variant o21). The phase
diagram in Fig. 5 thus exhibits three triple point
6-5
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FADDA, TRUSKINOVSKY, AND ZANZOTTO PHYSICAL REVIEW B 68, 134106 ~2003!
t-o11-m1, t-o12-m2, and t-m1-m2. Two of these triple
points correspond to conventionalt-o2-m three-phase equi
libria, while the third one corresponds to the coexistence
the t andm structures, them phase being represented by tw
sets ofm2 andm1 twins. The latter are crystallographicall
and energetically equivalent ats650, but become distinct a
the energy landscape gets tilted for any nonzero value ofs6.

One can speculate that for higherT and higher~positive or
negative! s6 the t-o11 and t-o12 phase boundaries ma
terminate at critical points where the difference between
corresponding phases disappears. We did not extend to
conditions the computations reported in Fig. 5, because

FIG. 5. Calculated phase diagram of zirconia in the (s6 , T)
plane at room pressure. For clarity only the portion forT
.1400 K is shown. The Maxwell lines are the thick solid lin
numbered 16 (t-m6), 36 (t-o26), 46 (o26-m6), and 10
(m1-m2); the latter is the equilibrium line between the two pairs
monoclinic variantsm6. The partially overlapping stability do
mains for m6 are, respectively, below dashed lines 76, and, for
o26, they are above dashed lines 96. The triple points are marked
by circles; the two upper triple points refer to the equal value of
Landau potential of the distorted-tetragonalt, theo26, and the two
m6 energy wells~all taken with the same1 or 2 sign!. The lower
triple point refers to the equal depth of thet, m1, andm2 wells for
s650. The level sets and minimizers of the ‘‘tilted’’ Landau pote
tial for conditions near thet-o21-m1 triple point are shown below
the phase diagram; notice the absence of the variantsm2, which at
these conditions~above line 72) are unstable.
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presence of the cubic energy well of ZrO2, not taken into
account in our model, would considerably affect the hig
temperature part of thes6-T diagram.

To illustrate nonetheless the notion of such shear-indu
critical points~see also Refs. 11 and 36! we consider the load
s̄3, which is conjugate to the strainy3, related to thet-o1
phase transition. Figure 6 presents a portion of the compu
s̄3-T phase diagram forp54 GPa. Here the only stabl
phases aret and o1, whose two variants, according to th
sign of y3, are denotedo11 ando12; the latter are equiva-
lent symmetry-related twins fors̄350, and become inde
pendent phases under nonzeros̄3 loads. The triple point in
Fig. 6 refers to the conditions producing the equal depth
such t, o11, ando12 energy wells. The application of th
shear load again significantly extends the stability domain
the low-symmetry phaseo1, as it strongly affects the tem
perature of thet-o1 phase change: the slope of the cor
sponding phase boundary isdT/ds̄35420 K GPa21. The
diagram in Fig. 6 also indicates that the application of t
shear load produces a significant reduction of the otherw
larget-o1 transformation hysteresis. This leads eventually
the appearance of the critical points where thet-o11 and
t-o12 equilibrium~Maxwell! lines terminate, as the width o
the hysteresis becomes equal to zero. In the area of the
gram adjacent to such critical points thet ando11, and the
t and o12 phases, respectively, can no longer be dist
guished.

e

FIG. 6. Calculated phase diagram of zirconia in the (s̄3 ,T)
space, forp54 GPa. The Maxwell lines are the thick solid line
numbered 26 (t-o16), and 11 (o11-o12), where the two indepen-
dent variants of theo1 phase~with orthorhombicO123 symmetry!
are denoted byo11 and o12 according to the sign ofy3 ~the
undistortedt phase with symmetryT3 only exists fors̄350, while
for s̄3Þ0 it hasO123 symmetry!. The stability domain is above the
dashed lines number 6 for the~distorted! t phase, and below the
dashed lines 86 for o16 phases. The triple point marked by th
larger circle refers to the equal depth of thet-o11-o12 energy
wells. The critical points are marked by smaller circles. The sy
bols t/o16 indicate that only one distorted structure is stable in
domain outside the ‘‘spikes’’ ending at the two critical points.
6-6
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The critical points encountered here are similar to
classical thermodynamic singularities known for the g
liquid systems, except that in the present case one encou
a ‘‘merging’’ of crystal structures that originally~i.e., for
s̄350) had distinctT3 andO123 symmetries. The shear load
play the same role as imperfections in the theory of buckl
for structures~or for any bifurcating system!: if sufficiently
large, they may completely smooth the transition. In
present case, atp54 GPa and up tos̄350.025 GPa, one
should still observe thet-o1 transformation by cyclingT in a
range between 800 and 900 K; for highers̄3 this transfor-
mation should no longer take place, as only one stable ph
exists in this region of the diagram~indicated, respectively
by the symbolst/o16 in Fig. 6!.37

V. CONCLUSIONS

While all nonhydrostatic phase equilibria for crystals
finite temperature are fundamentally unstable due to
eventual development of plastic deformation or thermally
tivated creep, crystalline configurations loaded by sh
stresses exist in practice for long times. In these case
suppressed or strongly delayed relaxation the method
equilibrium thermodynamics are appropriate, and one
introduce the shear loads as control parameters beside
usual pressure and temperature. This enlargement of the
rameter space strongly affects the conventional phase
grams of materials, and generates a variety of interes
effects, notably the uncoupling of symmetry-related ‘‘twin
phases, and the smoothing of symmetry discontinui
around critical points.

In this paper we have studied some of these effects in
case of zirconia, by using the energetic model in Ref. 10.
have explicitly computed several sections of the global n
hydrostatic phase diagram, in which we show both the eq
librium phase boundaries and the coexistence domains
metastable structures. New features emerging as a co
quence of the introduction of the shear loads are a numbe
triple points in the diagrams and critical points, indicati
the limits where crystal phases with different symmetries
come indistinguishable. Our main result is the prediction t
a new orthorhombic phase of ZrO2 ~see Appendix B! should
be the most stable one for experimentally accessible non
drostatic loads in a wide range of temperatures and press
The experimental study of zirconia crystals in the sugges
domains of shear loads and the parallelab initio modeling of
the new phase should provide proof of the consistency of
approach.38
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APPENDIX A

As explained in detail in Ref. 10, the ‘‘minimal’’ polyno
mial expansion suitable for the free-energy densityf in Eq.
~6! is

f5
1

2
@C̄11y1

212C̄12y1y21C̄22y2
21~C112C12!y3

2

1C44~y4
21y5

2!1C66y6
2#1

1

2
@~C̄133y11C̄233y2!y3

2

1~C̄166y11C̄266y2!y6
21C̄344y3~y4

22y5
2!#1C̄456y4y5y6

1
1

4
~D3y3

412Ly3
2y6

21D6y6
4!1

1

6
~K3y3

61K6y6
6!. ~A1!

In Eq. ~A1!, ~i! C11,C12, . . . ,C66, denote the six elastic
moduli appearing in the standard tetragonal elas
tensor,29,30 and

C̄115
1

9
@2~C111C12!14C131C33#,

C̄125
2

3
@C111C122C132C33#, ~A2!

C̄2252@C111C1224C1312C33#.

~ii ! C̄IJK , for I ,J,K51, . . . ,6,give, in the strain coordinate
yI , the third-order tetragonal elastic constants39,40considered
in the energy function~A1!; see Ref. 10 for details.~iii ! the
moduli C112C12 and C66 ~which are related to the orde
parametersy3 andy6) depend on the temperature as follow

C112C125A3~T2T0!, C665A6T1B6 , ~A3!

with A3.0 andA6>0, so that at low pressures the tetrag
nal phase is stable at high temperatures.

As a result of minimizing the Gibbs free energy functio
fG in Eq. ~6! with respect to the non-order-parameter strai
we obtainy45y550 and~recall that2p5s̄1)

y15
1

D F2C̄22p2C̄12s̄22
1

2
~H3y3

21H6y6
2!G ,

y25
1

D F C̄11s̄21C̄12p2
1

2
~H38y3

21H68y6
2!G , ~A4!

where

D5C̄11C̄222C̄12
2 ,

H35C̄22C̄1332C̄12C̄233, H65C̄22C̄1662C̄12C̄266,
~A5!

H385C̄11C̄2332C̄12C̄133, H685C̄11C̄2662C̄12C̄166.

This gives the Landau energyfL5c(y3 ,y6 ,s̄1 ,s̄2 ,T)
2s̄3y32s̄6y6 as in Eq.~8!, with
6-7
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c5
1

2
~G3y3

21G6y6
2!1

1

4
~D̃3y3

412L̃y3
2y6

21D̃6y6
4!

1
1

6
~K3y3

61K6y6
6!. ~A6!

The renormalized coefficients can be written:

G35~C112C12!2
1

D
~2H3p1H38s̄2!,

G65C662
1

D
~2H6p1H68s̄2!,

D̃35D32
1

2D
~C̄22C̄133

2 22C̄12C̄133C̄2331C̄11C̄233
2 !,

L̃5L2
1

2D
~C̄22C̄133C̄166

2C̄12~C̄133C̄2661C̄166C̄233!1C̄11C̄233C̄266!,

D̃65D62
1

2D
~C̄22C̄166

2 22C̄12C̄166C̄2661C̄11C̄266
2 !,

~A7!

with s̄3 and s̄6 given in Eq. ~7!. The numerical values
of the coefficients, taken from Ref. 10, are reported
Table I.

APPENDIX B

Details about the atomic positions within thet, o1, and
m zirconia cells are given in the literature mention
at the beginning of Sec. II~see Ref. 10 for an illustration!.
Our approximate model, in which a number of atoms
the zirconia crystal are disregarded~see Fig. 1!, can
only indicate, for the newo2 phase, the point group~5! and
the corresponding skeletal deformation. The configurat
of the atoms inside theo2 skeletal cell may then be
estimated by some natural criteria that help to identify like
candidate structures:41 ~i! The space group~SG! of the

TABLE II. Candidate structures for the orthorhombic phaseo2
of zirconia, satisfying criteria~i!–~iv! in the text.Z gives the num-
ber of chemical formulas ZrO2 per unit cell. IR is the irreducible
representation of thet-phase space groupP42 /nmc, giving the
transformation mechanism;G2

1 corresponds to the zero wave vect
~Fig. 7 shows the structure arising in this way!, while Zi correspond

to the wave vector (0,0,1
2 ) ~Refs. 42 and 46!. Origin choice number

2 ~i.e., at the inversion center, see Ref. 47! was selected forPmmn.
The last two columns give the Wyckoff positions~Ref. 47! for the
Zr and O atoms; for instance, 4c(32) means that two sets o
Wyckoff positions 4c are occupied. The structure with space gro
Pnmaarises from both theZ3 andZ4 IRs.

Space Group Z ir Zr O

Pmmn 2 G2
1 2a 2b(32)

Pmmn 4 Z1 2a(32) 2b(34)
Pnma 4 Z3 ,Z4 4c 4c(32)
13410
f
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o2 structure should be a subgroup of the SGP42 /nmc
of the t structure, and a supergroup of the SGP21 /c
of the m structure~this forces theo2 SG to have the ortho
rhombic holohedrymmm as point group!. ~ii ! There are
at most 8 ZrO2 chemical units within theo2 skeletal cell,
i.e., we takeZ52, 4, or 8, for theo2 structure.~iii ! The
o2 structure is obtained from thet structure through a
single normal mode originating from a wave vector
the boundary of the Brillouin zone. Finally,~iv! the strain
in the skeletal cell must produce the point groupO162,3,
i.e., it must be such that two of the orthorhombic ax
be along diagonals of the basal square of the skel
lattice in Fig. 1 ~the third one being along the tetragon
axis!.

By using the standard methods,42–44 and the program
ISOTROPY,45 we obtain from criteria~i!–~iv! above the three
structures listed in Table II~none of which hasZ58). The
simplest such candidate, which originates from modeG2

1 , is
illustrated in Fig. 7; it hasZ52 and its unit basisva coin-
cides with the basis

v15
1

2
~ t12t2!, v25

1

2
~ t11t2!, v35t3 , ~B1!

of the unit cell of the primitive tetragonal structure of ZrO2,
which also hasZ52 ~we recall that our skeletal tetragon
cell in Fig. 1 hasZ54, i.e., twice the volume of such un
cell!.

We notice that some possible orthorhombic structures
zirconia have been investigated for instance in Refs. 20
48 using density-functional theory, with the aim of assess

FIG. 7. Representation of a possible candidate structure for
orthorhombico2 phase of zirconia~originating from modeG2

1 ; see
Table II!. A skeletal cell as in Fig. 1, withZ54, is shown; Zr atoms
are marked in gray, O atoms in white~the skeletal Zr atoms are
highlighted!. The actual unit cell hasZ52; the coordination num-
ber for the Zr atoms is 8. In the basal planeABCDE of this o2
configuration, the polygonABCD is a rhombus centered inE. The
vectorsEB, EC, and FE are the three mutually orthogonal ortho
rhombic axes of this lattice.
6-8
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their relative stability against other tetragonal or cubic co
figurations adopted by ZrO2 or other oxides or halides. Non
of these structures, however, are in the list of Table II; est
lishing the actual nature of theo2 zirconia phase and con
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†Electronic address: trusk@lms.polytechnique.fr
‡Electronic address: zanzotto@dmsa.unipd.it
1B. Budiansky, J. Hutchinson, and J. Lambropoulos, J. Me

Phys. Solids19, 337 ~1983!.
2Zirconia Engineering Ceramics, edited by E. H. Kisi~Trans Tech
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