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Nonhydrostatic stabilization of an orthorhombic phase of zirconia
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An explicit polynomial strain-energy function for tetragonal-orthorhombic-monoclinic zirconia)Zr€ali-
brated from the conventional hydrostapeT phase diagram, is used to study the effects of nonhydrostatic
loading on the phase equilibria in this material. Several representative sections of the phase diagragn of ZrO
in temperature and stress space, containing both triple and critical points, are computed. A new orthorhombic
structure of ZrQ is predicted to be the most stable phase for a variety of experimentally accessible shear loads,
in a wide range of temperatures and pressures.
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[. INTRODUCTION variety of nonhydrostatic conditions, demonstrating the
strong effect of the shear stresses on the phase equilibria

The toughness of brittle ceramics can be increased by aobserved under hydrostatic conditions. We also show the
order of magnitude through the introduction of small trans-presence of new triple points in the temperature-stress phase
forming inclusions that undergo irreversible phase changediagrams and of critical points where severely sheared
under severely nonhydrostatic and mostly tensile stressephases, which possess different symmetries under hydro-
near the tip of a propagating cratlone of the most impor-  static loads, become indistinguishabl&he most interesting
tant toughening agents in such transformation-toughened cerediction is that a new orthorhombic zirconia structure, al-
ramics is zirconia (Zr@),%* and the relevant domain of the ready shown in Ref. 10 to have a small metastability range at
p-T phase diagram of this material, which includes the te-high temperatures and low pressures, is the most stable one
tragonal, orthorhombicortho 1), and monoclinic phases, has for a variety of shear loads, also at room conditions; this new
been investigated experimentally in Refs. 4—8. A comprephase may potentially become dominant in the vicinity of a
hensive Landau strain-energy function providing a unifiedcrack tip. The new structure can only be partially character-
thermodynamical description of these Zrghases under hy- ized by our model, and requires the use of suitable crystal-
drostatic conditions has been constructed in Refs. 9 and 1@graphic(see Appendix Bandab initio methods for a com-
The hydrostatic phase diagram, however, is not sufficient foplete study. In addition to ZrQ) our approach and results
the analysis of the behavior of the zirconia inclusions neamay prove useful also for a better understanding of the be-
the tip of a crack, where the stresses exhibit strong shedravior of other oxides, such as hafnia HfO
components. The transformation conditions allowing one to This paper is organized as follows. After giving brief
compute the crack-shielding and toughness-increase effectsystallographic preliminaries and an introduction to our
must instead be formulated as a “transformation criterion” instrain energy function in Sec. Il, we study in Sec. Ill the
stress spack:*?The problem is then to determine the phasebehavior of zirconia crystals under hydrostatic or uniaxial,
equilibria of zirconia under nonhydrostatic loads. The overallcompressive or tensile loads. The calculated phase diagrams
effect of the latter on the temperatures of the relevant phaseonfirm that the nonisotropic loads have a marked effect on
transitions is expected to be much stronger than the influendbe known phase equilibria of ZgQ including the
of hydrostatic pressure since, for instance, the shear effect ¢étragonal-to-monoclinic transformation. We also find that
the well-known tetragonal-to-monoclinic phase transformathe new orthorhombic phase mentioned above gains stablility
tion in ZrO, is about four times larger than the correspond-in hydrostatic tension, or uniaxial compression, over a wide
ing volumetric effect. Experimental measurements inrange of temperatures. In Sec. IV we study the behavior of
uniaxial and bending tests for this system are quite limitedzirconia crystals under shear loads that may distort all the
and are available only for stabilized configurations of tetrag-ZrO, structures considered here, converting the symmetry-
onal Zr0,.*7%It has been observed, however, that the relaTelated variants of the low-symmetry configurations into in-
tively high plasticity limit in this material permits a purely dependent phases. In this case we find that the monoclinic
elastic analysis of its nonhydrostatic phase equilibtia. phase is stabilizedversus the tetragonal onat high tem-

To organize the existing data and focus future experimenperatures for low shears, while for higher shears and tem-
tal research on nonhydrostatic equilibria, in this paper weperatures the new orthorhombic structure again becomes the
employ the phenomenological model of Ref. 10 to study themost stable one. We also calculate a section of the shear-
effects of various shear loads on Zr@rystals. We compute temperature diagram at higher pressure, which exhibits, at
a number of experimentally relevant sections of the fullrelatively small shears, symmetric critical points for the te-
stress-temperature phase diagram and make predictions cdnagonal and ortho | phases. In the Appendixes we provide
cerning the stability domains of the zirconia phases for ssome additional details regarding dutandau energy for
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while (since the fourfold axis of thephase is parallel to the
twofold axis of them phase the m phase has point group

Ms={1R7}. @3)

The orientation relationships given by Edq%)—(3) are also
confirmed by Ref. 3. Thésubgroups in Egs(2) and (3)
determine the form of the strains that produce, from the te-
tragonal skeletal lattice in Fig. 1, thed andm lattices with
point groups as above; see Refs. 9, 10, and 26 for detalils.
For each temperatufg we consider as the reference state
the tetragonal equilibrium configuration at that temperature
(thermal-expansion data for th@hase can be found in Refs.
27 and 28 Correspondingly, we denote by, |
=1,...,6, thecomponents of the finite strain tensor, in-
dexed as usual according to the Voigt conveniisee Refs.
26, 29, and 3P Due to the tetragonal symmetry of the parent
FIG. 1. The primitive-tetragonal reference cell wih=4 (Z  |attice, another set of strain coordinatgs, 1=1,...,6,
being the number of chemical unitsised to describe the deforma- proves more convenient in the ensuing anal;g/éps:
tions of the ZrQ structures; Zr atoms are in gray, O atoms in white.
This cell is spanned by the basis vectogs a=1,2,3, with the
fourfold axis alongts; the dashed atoms of the zirconia crystal are
disregarded in this model. The order parameygrandyg break the
equality of the lengths of the vectots andt, and their orthogo- \/Eygzel_eZ, Yi=€,, VYs=€s5, VYs=6€5. (4)
nality condition, respectivelysee Appendix A

yi=e;+e,te;, 6y,=e;te,—2e;,

The strain componentg, and ys are not involved in the

ZrO,, and briefly discuss some possibilities for the crystal-transformation mechanism of the zirconia polymorphs dis-
lographic structure of the new orthorhombic phase that isussed here, and will be considered as completely decoupled.
stable under nonhydrostatic loads. The componentg, andy, describe the symmetry-preserving
stress-free thermal expansion of the tetragonal lattice in Fig.
1 and do not affect the symmetries of the phases under con-
sideration. The remaining straing and yg are the order
parameters in our modé¢see Fig. 1 conditionsy;=yg=0

In the area of thep-T phase diagram not too far from select thet phase(with point group7;); conditionsy;+#0
room conditions, zirconia exhibits the following three andyg=0 give theol phasewith point groupO;,3); finally,
phases: tetragonalt), orthorhombic “ortho I” (01), and for y; andyg both nonzero we obtain tha phasgwith point
monoclinic (m), with a triple point located at about 840 K group.Ms3). The configurations witlyg#0 andy;=0 iden-
and 1.8 GPa. References 4-8 and 18-21 give the spatidy a second orthorhombic phaseZ) with point group
groups and detailed crystallographic descriptions of these
and other zirconia polymorphs, and present the experimental O1425={1R" ,RT ., ,RT_,}. (5)
phase diagram@ee also Ref. 10 for some detaili certain ' st 2
atoms are disregarde{_dee Fig. J’. thet_—ol-m structur_es Of_ The theory of Ref. 10 indicates that such @ phase, al-
Zr0, can all be described as originating from the distortiony, g not reported in the experimental literature, has a
of a primitive tetragonal “skeletal” Bravais lattice, spanned g o] metastability range for high temperatures and low

by three mutually orthogonal basis vectoyst,, andts. pressures. As we show below, under suitable nonhydrostatic

In our simplified setting which only considers the Skeletalloadings this range is extended, makiog the most stable
atoms, the symmetry of a phase is dictated by the poingy,.qre for zrQ in a wide domain of pressures and
group of the corresponding structure. The point gr@gmf temperatured!

thet phase is We attribute to any homogeneous deformation of the ref-
2 32 erence configuration in Figl a tetragonally invariant free

-, RGORGH (D) energy densityp per unit reference volume, which depends
onyq, ...,y andT. A suitable polynomial expansion faf

whereR! denotes a rotation of anglg about the axik and  has been derived in Ref. 10 and is recalled in Appendix A. To

only the elements with positive determinant are listed. Fronobtain the Gibbs free energy densi$s we add to¢ the

an analysis of the literature’'®=>>we conclud&!that the  potential of a general nonhydrostatic load:

0l phase has point group

II. TRANSFORMATION MECHANISM, ORDER
PARAMETERS, AND ENERGY FUNCTION

T,={1R7 RT.RT RT, .RT

6

Owe={LRT RT RT}, 2 $e(y1,01, D=y, 1)~ 2, a3¥s 6)
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(I=1,...,6),where the stress components, referred to 7=—(201+ 0,/3)=03+p, 9
the same basis as the strains are related as follows to the

usual stress coordinates conjugate to the strains : o _ o _ N
which is negative for uniaxial compression and positive for

o1=—p=—(0,+0,+03)/3, uniaxial tensior(in excess of the isotropic loga). As is the

case fom, the application ofr may affect thec/a ratio of the

To= 01+ 0,203, 03=(01—02)\2, (77  tphase and eventually activate the order paramgteend
Ve, Which produce the symmetry-breaking transformation.

Ta=0, for A=4,56. However, as the strain variables conjugateptor = are or-

thogonal toy; andyg [see Eqgs(4), (7), and(9)], p and 7

The Landau potentiatp, is then derived from Eq(7) may activate the order parameters only through the higher-
through the adiabatic elimination of all deformational vari- order coupling terms involving; andys in Eg. (6); there-
ables other than the order parametggsandyg, and since fore these two types of loading do not change the symmetry
the dependence ap onyy, Y,, Y4, andys in Eq. (6) is  groups considered in Sec. Il, as the equilibrium equations
assumed to be conveguadratig, there is a unique solution and the corresponding solutions maintain their original in-
of the equilibrium equationg¢g/dyr=0 for R=1,2,4,5. variance for allp and 7 (also the variant structures for the

In this paper we limit our attention to loads with,=0, low-symmetry configurations are preseryed/e notice that
05=0.%2 Under these conditions, we obtain the function  for this reason the corresponding phase diagrams are not

- symmetric in tension or compression, i.e., under a change of
#.(Y3,Y6,01,02,03,06,T) sign forp or 7. In each diagram we use the strain ene(@y
_ — — — — to obtain quantitative information on the corresponding
=¥(Y2Y6,01,02,T) = 03Y3=0eYe, () phase relationésee Appendix A for the explicit energy func-

whose explicit form can be found in EA6) of Appendix A.  tion). In addition to the standard equilibrium phase bound-
We notice that, ag/ is an even function of/; andys, the  aries(*“Maxwell lines,” indicated by thick lines in the fig-
energy ¢, is invariant under the simultaneous reflection of ures, in the computed phase diagrams hereafter we present
y3 and oy, or of yg and;6.33 The critical points of¢p, are  also the boundaries of the stability domains of the different
obtained by solving the equilibrium equationg, /dyr=0  phases, which indicate the combinations of parameters where
for R=3,6. The global phase diagram in the five-the corresponding matrix of elastic moduli softeidashed
dimensional spaces(;, o,, o3, gg, T) will then distinguish  lines).

the domains with different structures of the global minima of  The role of compressive hydrostatic presspre0 is de-

¢, as well as the metastability domains for each minimizerscribed by the conventional thermodynangeT diagram,
Sincep=— o3, one obtains the standard Gibbs free energywhich in Ref. 10 was calibrated from experimental data.
density g(p,T) for a given phase by setting,=o3=0s  Here we extend our previous analysis by covering also the
=0 in Eq. (8), and minimizing the resulting function with domain of hydrostatic tensiop<0 (see Fig. 2 which is
respect to y; and ye. The sets of minimizers relevant for the description of phase transformations near the
(y3(p.T).ye(p,T)) obtained in this way represent the differ- tip of a crack. The most interesting feature of this extended
ent stable.phases under conS|.derat|on, and give distinct €@iagram is the appearance, at high temperatures and high
ergy functionsg(p, T) for the different phases. In the con- iangile loads(important for transformation tougheningof

ventional approach such functions are obtained separately.o now orthorhombic phase® with symmetry of0;. , 5.3
through direct modeling, rather than through the elimination. . p=—0.16 GPa,T=1560 K, we obtain a nevlt/:oz’zstm
of internal parameters; this obscures the fact that each phas ) ' ’

. ) ; r?ple point, where the three Maxwell lines, numbered 1
is represented by a set of symmetry-related variants. Consi i 3 (t-02 d 4 m-02 ¢ This triol int ¢
eration of such individual “twins,” however, is important m?, . ( 0 ), an (n-02) meet. IS triple point mus
when the original symmetry relations among the variants arge, distinguished from the Well-known triple point with coex-
destroyed by shear stresses, and the twins become indepdpind & 01, andm phases, studied in Ref. bwe observe _
dent phases. The present approach, which unfolds the corfflat around each triple point there is an extended domain
plete energy landscape in the original strain variables, allow¥/here three metastable phases coexist. Since such domains

one to take these effects into consideration and trace th@0 not overlap, the possibility of four coexisting metastable
connections among all the energy wells. phases, although theoretically allowed for a one-component

system, is ruled out by the numerical values of the Landau
coefficients suitable for ZrQ(see Table)l
Notice that the equilibrium phase boundaries in Fig. 2
In this section we study how phase equilibria in zirconiaseparating the domain of absolute stability of the pha®e
are affected by the loads= — o, representing hydrostatic have negative slopes. This is a result of the negative volu-
pressure or tension, arck, which is responsible for uniaxial metric effect of the transitions1-02 (AV/V=—0.19% from
tension or compression along the highest-symmetrytaiis  m to 02) ando2-t (AV/V=-4.67% fromo2 tot). We
Fig. 1. A more natural variable for this non-hydrostatic loadremark that the conventional orthorhombic phadehas al-
is most the same density as thphase, withAV/V = —1.5% ?

Ill. LOADS CONJUGATE TO NON-ORDER-PARAMETERS
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FIG. 2. Calculated phase diagram of zirconia in thel) plane.
Thet-m, t-01, t-02, m-02, andm-o1l Maxwell lines(boundaries
of absolute phase stabiljtare the thick solid lines numbered 1 to 5,
respectively. The limits of stability for the m, 01, ando2 phases,
marked by dashed lines, are, respectively, within lines 6, below line

7, within lines 8, and within lines 9. Theol-m andt-02-m triple 2

=

points are marked by circlg®nly the former lies in the half-plane
p>0 that is usually considergd

Such a low volumetric effect, which makes the correspond-
ing phase boundary almost parallel to the pressure axis
probably contributed to the early confusion, in the experi-
mental literature, between theandol zirconia phases.

In Fig. 3 we show ther-T section forp=0 of the global

three-dimensionat-p-T phase diagram. Here thigo2, and

0.1

1750
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FIG. 3. Calculated phase diagram of zirconia at room pressure
in the (r, T) plane with7= o3+ p. The Maxwell lines(thick solid

m phases are the absolute minimizers in their respective ddines numbered 1, 3, and 4 meet at-@2-m triple point, marked
mains, with the standardl configuration present only as a by a circle. Indicated are also the partially overlapping stability

metastable phasérelative minimizey, below line 8. The
three equilibrium Maxwell lines, numbered 1-ifn), 3
(t-02), and 4 (-02), meet at d-02-m triple point, located
at about 1400 K and-85 MPa. The fact that the nonisotro-

pic load 7 preserves the structure of the symmetry-related
phase variants, which all maintain equal energy, is illustrated

domains for each of the m, 01, ando2 phasegmarked by dashed
lines), which are above line 6, below line 7, below line 8, and above
line 9, respectively. The level sets and minimizers of the Landau
energy surface at conditions near the triple point are also shown.

by the energy profile in the lower part of Fig. 3. We observe For uniaxial compression<<0, on the other hand, the
that the effect of uniaxial tensiornr0) is to raise thé-m  stability domain of thet phase is at first enlarged, but at
transformation temperature, enlarging the stability domain ohigher compressions the ney2 structure becomes the most

the m phase; we obtain for the derivativEl/d+ along the
t-m phase boundary an average value of 1010 K GPa

stable one. This gives in principle a way to detect experimen-
tally such ano2 phase, as uniaxial compression at room

TABLE I. Numerical values of the coefficients in Eq#1)—(A6), calibrated from experimental data in
Ref. 10. All quantities are in GPa, except a5 andAg (in GPaK 1), andT, (in K).

A; 3.88x10*? As  2.82x10°8 B  l1l.18x10

T,  8.32X10° Hy  —5.9x1C° He  —1.94x10°
Cpaz  —3X10° Cps  8.17x10° Cies  —6.13x10°
Chs 591 Caus  5.61x10 Cus  8.42¢<10
D, —9.66x10° L -1.08x10 Dg  —2.45x10°
Ky  6.66x10° Kg  7.29x10*

Cu 307 Cas 320 Cus 100
Ces 16 Cis 48 Cis 209
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8 : : T flexibility, the issue of finding a unifying ansatz for the Max-
I S well surfaces of ZrQ, representing them in an approximate
Toragonatt Orthorhombic o1 but simple way in global stress space, remains an interesting

challenge.

®)

IV. LOADS CONJUGATE TO ORDER PARAMETERS

© J In this section we consider nonhydrostatic loads conjugate

to the order parametess; andyg. These shear loads, with

Mosodlinic m componentso; and og= 0y, disrupt the structure of the
B symmetry-related variants because their potential produces a

P SS—— © . i “tilt” of the original energy surface and the equilibrium

foTTT e equations no longer have parity y or yg. This turns the
i variants of the orthorhombic and monoclinic structures into
1 o s Py o independent phases, which are no longer grouped into orbits
Efective unisxial load 7 (GPa) of equienergetic wells.

Consider first therg loading. In this case parity igg is
lost, so that the foum solutions with monoclinic point group
M3 (which for ag=0 only differ by the four possible per-
temperature and pressure should produsea? transforma- Mmutations of signs of3 andys, but are otherwise equiva-
tion in ZrO, at aboutr=—0.7 GPa. lent) are now split into two independent pairs of variams:

In Fig. 4 we present another important section of thefor ye>0, andm™ for ys<<0 (their point group is always
7-p-T phase diagram, representing thep plane at room Ms), and analogously for the twa2 ™ ando2™ orthorhom-
temperatureT =293 K. This is a natural choice from the bic wells(which both have point grouf; .., 3. We remark
experimental point of view, and some of thep phase rela- that while theo2 andm energy minimizers preserve their
tions for zirconia have indeed been reported in Refs. 13 angymmetry under the loadg, thet minimizer does not main-
14 for CeQ-stabilized sintered powder samples. Again, alsotain its 73 point group, and immediately becomes a “dis-
on this plane, we find that all the four structute®1, 02,  torted tetragonal” phaséstill called t) with point group
andm can be absolute minimizers, with both thel-mand ~ O1+23-
the t-02-m triple points. Most of the slopes of the equilib- ~ The computedos-T phase diagram at room pressure,
rium phase boundaries here are positive, from which we dewhich is necessarily symmetric with respect to the reflection
duce, for instance, that the transition framto t leads not ~about theT axis, is shown in Fig. 5. The two new monoclinic
only to the reduction of volume but also to the contraction‘Phases,” represented by the two pairs of wettg", main-
along the tetragonal axis. The corresponding experimentdRin the same energy along line 10 in the diagras., for
observation on stabilized powd&tshows that the-m trans- ~ 06=0), which may therefore be viewed as an equilibrium
formation pressure indeed increases with uniaxial tensioniMaxwell) boundary; the same is true for the other two new
the slope of the equilibrium phase boundary was experimerP2~ phasegsee the energy plot in the lower part of Fig. 5
tally found to be(in our variabley d7/dp=1.31. Our com- We observe that the overall effect of thg shear loading
putations give an average slope of 0.43, which, while correcen thet-m phase change at room pressure is to raise fairly
in order of magnitude, is in disagreement with the experi-steeply the transformation temperature for small loads, with
mental value possibly due to the random orientations of th@ stabilization of the low-symmetiy phasevariantsm™) to
grains in the experiments on powders, which make the apabove 1550 K. Itis instructive to compare this effect with the
plied uniaxial load not aligned with any particular axis in the corresponding effect of hydrostatic pressure, studied in the
crystal. preceding section. Our computation here givé$/dog

We remark that a common approach of phenomenologicat 1660, which should be compared tb/dp=—370 (all
continuum mechanics, which often treats phase transitions digures in KGPa'); the large numerical value of the slope
a form of “plastic” deformation>** would be to use the of thet-m phase boundary in thes-T plane and the associ-
result of a uniaxial test to fit parameters within a standarcated drastic promotion of the phase achieved through the
hypothesis for the transformation “yield surface,” satisfying application of thesg shear load can be attributed to the large
general conditions of material symmetry. For instance, théransformation shear stra{a7%), compared to the volumet-
“flow” surface of the Mohr-Coulomb type was constructed ric effect (5%), in this phase change. Notice also that, con-
in Ref. 13 based on a tensile test, and applied subsequentliary to the case of classical plasticity, the “yield stress” for
for the interpretation of a bending test. In contrast, in ourtransformation plasticity in tetragonal zirconia increases with
approach we are not constrained by anpriori structure of temperature, rather than decreases. In Fig. 5 we further no-
the transformation surface or “flow rule”; moreover, we can tice that at higher shear stresses and temperatureanthe
distinguish between the equilibriuMaxwell) phase bound- phase, initially promoted by theg load, again gives way to
aries and the stability boundaries, indicating the limits ofthe new orthorhombic phasg2 (varianto2™). The phase
ultimate strength of the corresponding phases. Despite thidiagram in Fig. 5 thus exhibits three triple points:

o

Orthorhombic 02

Pressure p (GPa)

FIG. 4. Calculated phase diagram of zirconia in thep] plane
at room temperature. Same legend as in Fig. 2.
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FIG. 5. Calculated phase diagram of zirconia in the,( T)
plane at room pressure. For clarity only the portion for
>1400 K is shown. The Maxwell lines are the thick solid lines
numbered * (t-m*), 3* (t-02¥), 4 (02*-m*), and 10

(m*-m™); the latter is the equilibrium line between the two pairs of

monoclinic variantsm®. The partially overlapping stability do-
mains form™ are, respectively, below dashed line$,7and, for
027, they are above dashed line$.9The triple points are marked
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FIG. 6. Calculated phase diagram of zirconia in the; (T)
space, forp=4 GPa. The Maxwell lines are the thick solid lines
numbered 2 (t-017), and 11 1*-017), where the two indepen-
dent variants of th@1 phase(with orthorhombic®;,; symmetry
are denoted byl* and 01~ according to the sign of/; (the
undistortedt phase with symmetr{; only exists foro;=0, while
for o3#0 it has®,,; symmetry. The stability domain is above the
dashed lines number 6 for thdistorted t phase, and below the
dashed lines 8 for 01* phases. The triple point marked by the
larger circle refers to the equal depth of th®@1"-01~ energy
wells. The critical points are marked by smaller circles. The sym-
bolst/o1* indicate that only one distorted structure is stable in the
domain outside the “spikes” ending at the two critical points.

presence of the cubic energy well of ZOnot taken into
account in our model, would considerably affect the high-
temperature part of theg-T diagram.

To illustrate nonetheless the notion of such shear-induced
critical points(see also Refs. 11 and B&e consider the load
o3, Which is conjugate to the straiyy, related to thet-o1
phase transition. Figure 6 presents a portion of the computed

by circles; the two upper triple points refer to the equal value of theo3-T phase diagram fop=4 GPa. Here the only stable

Landau potential of the distorted-tetragohaheo02*, and the two
m* energy wellgall taken with the same- or — sign). The lower
triple point refers to the equal depth of then*, andm™ wells for
o6=0. The level sets and minimizers of the “tilted” Landau poten-
tial for conditions near the-02*-m™ triple point are shown below
the phase diagram; notice the absence of the varmantswhich at
these conditiongabove line 7') are unstable.

t-o1*-m*, t-o17-m~, andt-m*-m~. Two of these triple
points correspond to conventionab2-m three-phase equi-

phases ar¢ and 01, whose two variants, according to the
sign ofy,, are denoted1® andol™; the latter are equiva-
lent symmetry-related twins foor;=0, and become inde-
pendent phases under nonzerg loads. The triple point in
Fig. 6 refers to the conditions producing the equal depth of
sucht, 01", andol™ energy wells. The application of the
shear load again significantly extends the stability domain of
the low-symmetry phasel, as it strongly affects the tem-
perature of thet-01 phase change: the slope of the corre-

libria, while the third one corresponds to the coexistence osponding phase boundary &T/do;=420 KGPa'. The

thet andm structures, then phase being represented by two
sets ofm™ andm™ twins. The latter are crystallographically
and energetically equivalent a=0, but become distinct as
the energy landscape gets tilted for any nonzero valuesof
One can speculate that for highieand higherpositive or
negative o4 the t-0o1* andt-ol~ phase boundaries may

diagram in Fig. 6 also indicates that the application of this
shear load produces a significant reduction of the otherwise
larget-o1 transformation hysteresis. This leads eventually to
the appearance of the critical points where thel™ and
t-o1~ equilibrium (Maxwell) lines terminate, as the width of
the hysteresis becomes equal to zero. In the area of the dia-

terminate at critical points where the difference between thgram adjacent to such critical points thandol1™, and the
corresponding phases disappears. We did not extend to suttand o1~ phases, respectively, can no longer be distin-
conditions the computations reported in Fig. 5, because thguished.
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The critical points encountered here are similar to the APPENDIX A
classical thermodynamic singularities known for the gas/ . . - e
liquid systems, except that in the present case one encounters'AI‘S explamed 'n.td(ibtl"’mf'n !?hef'flo’ the mlrgmal't.pollé/no—
a “merging” of crystal structures that originallyi.e., for nga_ expansion suitable for the free-energy dengitin Eq.
o3=0) had distinctZ; and 0, ,3 symmetries. The shear loads 6)is
play the same role as imperfections in the theory of buckling o L .
for structures(or for any bifurcating systemif sufficiently  ¢= =[C,y2+2C,y1Y2+ Coy2+(Ci1— C1)Y2
large, they may completely smooth the transition. In the 2
present case, gi=4 GPa and up tar;=0.025 GPa, one 1 _ .
should still observe theol transformation by cycling in a +Caayi+y2)+ Coay2] + S[(Craa+ Cosd/2)Y3
range between 800 and 900 K; for highes this transfor-
mation should no longer take place, as only one stable phase
exists in this region of the diagrafindicated, respectively,
by the symbolg/01~ in Fig. 6).>’

+(Ciey1+ Cose/2) Yo+ Caaaya(yi— Y2 1+ CaseyaysYe
1 1
+ Z(Dsyg+ 2Ly3ys+Deyg) + E(Kayg+ Keyd). (A1)

V. CONCLUSIONS In Eg. (Al), (i) C11,Cq2, ...,Ces, denote the six elastic

) ) o moduli appearing in the standard tetragonal elastic
While all nonhydrostatic phase equilibria for crystals atiangoR230 and

finite temperature are fundamentally unstable due to the

eventual development of plastic deformation or thermally ac- _ 1

tivated creep, crystalline configurations loaded by shear C11=g[2(Cyat+C1p) +4C 15+ Cagl,

stresses exist in practice for long times. In these cases of

suppressed or strongly delayed relaxation the methods of 2

equilibrium thermodynamics are appropriate, and one can C1,==[C1+Cqp— C13— Csgl, (A2)
introduce the shear loads as control parameters besides the 3

usual pressure and temperature. This enlargement of the pa- _

rameter space strongly affects the conventional phase dia- C2o=2[C13+C1p—4C 13+ 2Cs3].

grams of materials, and generates a variety of interestin

effects, notably the uncoupling of symmetry-related “twin” ?'i) Ciyk, forl,J,K=1,...,6,give, in the strain coordinates
phases, and the smoothing of symmetry discontinuitied/i - the third-order tetragonal elastic constdftSconsidered

around critical points. in the energy functiorfAl); see Ref. 10 for detailgiii) the

In this paper we have studied some of these effects in thE10duli C1;—Cy, and Ceg (Which are related to the order
case of zirconia, by using the energetic model in Ref. 10. wdarametery; andye) depend on the temperature as follows:
have explicitly computed several sections of the global non-
hydrostatic phase diagram, in which we show both the equi- C11=C1o=As(T—To), Ces=AsT+ B, (A3)
librium phase boundaries and the coexistence domains f%ith As>0 andAg=0, so that at low pressures the tetrago-
metastable structures. New features emerging as a consgy phase is stable at high temperatures.
quence of the introduction of the shear loads are a number of aq 5 result of minimizing the Gibbs free energy function
triple points in the diagrams and critical points, indicating b in Eq. (6) with respect to the non-order-parameter strains,
the limits where crystal phases with different symmetries bey, o obtainy,=ys=0 and(recall that— p= o)
come indistinguishable. Our main result is the prediction that
a new orthorhombic phase of Zy@see Appendix Bshould 17 _ 1
be the most stable one for experimentally accessible nonhy- y1=K{ —Coop—Cr0— E(H3y§+ Hsyg)},
drostatic loads in a wide range of temperatures and pressures.

The experimental study of zirconia crystals in the suggested

domains of shear loads and the paradielinitio modeling of Y2=£ Cy10a+Crop— E(H§y§+ Héyé)}, (A4)
the new phase should provide proof of the consistency of our A 2
approach?® where
L~ A~ 2
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TABLE Il. Candidate structures for the orthorhombic phage
of zirconia, satisfying criteridi)—(iv) in the text.Z gives the num-
ber of chemical formulas ZrOper unit cell. IR is the irreducible
representation of thé-phase space group4,/nmc, giving the
transformation mechanisrii;; corresponds to the zero wave vector
(Fig. 7 shows the structure arising in this wayhile Z; correspond

to the wave vector (O,é) (Refs. 42 and 46 Origin choice number

2 (i.e., at the inversion center, see Ref) Was selected foPmmn
The last two columns give the Wyckoff positiofRef. 47 for the

Zr and O atoms; for instance,c§x2) means that two sets of
Wyckoff positions 4 are occupied. The structure with space group
Pnmaarises from both th&; andZ, IRs.

Space Group Z ir Zr 0]

Pmmn 2 r; 2a 2b(Xx2)
Pmmn 4 Z, 2a(x2) 2b(x4)
Pnma 4 Z3,2, 4c 4c(X2)

FIG. 7. Representation of a possible candidate structure for the
orthorhombico2 phase of zirconigoriginating from modd'; ; see
Table I). A skeletal cell as in Fig. 1, witd=4, is shown; Zr atoms
are marked in gray, O atoms in whiféhe skeletal Zr atoms are
highlighted. The actual unit cell ha&=2; the coordination num-
ber for the Zr atoms is 8. In the basal plaABCDE of this 02
configuration, the polygoBCD is a rhombus centered . The
The renormalized coefficients can be written: vectorsEB, EC, and FE are the three mutually orthogonal ortho-

rhombic axes of this lattice.

1 1 - ~
U= E(Gangr GeYs)+ Z(Dgy‘3‘+2Ly§y§+ Deye)

1
+ 5 (Kayg+Keyg). (A6)

1 _
Gsz(Cll_Clz)_K(_H3P+H§(72),
02 structure should be a subgroup of the $&,/nmc
1 . of the t structure, and a supergroup of the Se2,/c
Gg=Ce6— K(_ Hep+Hgo), of the m structure(this forces theo2 SG to have the ortho-
rhombic holohedrymmm as point groujp (ii) There are
at most 8 Zr@Q chemical units within theo2 skeletal cell,
i.e., we takeZ=2, 4, or 8, for theo2 structure.(iii) The
02 structure is obtained from the structure through a
E=L—i(6 C. 36 single normal mode originating from a wave vector on
2A " 227133166 the boundary of the Brillouin zone. Finallyiv) the strain
in the skeletal cell must produce the point gro@g- , s,

D3;=D, 6226533_ 2C1,C13Const 6116533) ;

1
_ﬂ(

~C1C13LC266™ C166C239) + C11C3:Cas0), i.e., it must be such that two of the orthorhombic axes
5 1 _ L be along diagonals of the basal square of the skeletal
DezDe—ﬂ(szaee— 2C1,C16Co66T C11C20)» Iat_tice in Fig. 1(the third one being along the tetragonal
(A7) axis).

By using the standard methotfs;** and the program
with o3 and o given in Eq. (7). The numerical values ISOTROPY,*® we obtain from criterigi)—(iv) above the three
of the coefficients, taken from Ref. 10, are reported instructures listed in Table lnone of which ha=8). The

Table 1. simplest such candidate, which originates from mbde is
illustrated in Fig. 7; it haZz=2 and its unit basi®, coin-
APPENDIX B cides with the basis
Details about the atomic positions within theol, and 1 1
m zirconia cells are given in the literature mentioned v1=5(ti=t), v=5(titty), vs=ts, (Bl

at the beginning of Sec. llsee Ref. 10 for an illustration

Our approximate model, in which a number of atoms ofof the unit cell of the primitive tetragonal structure of Z5O
the zirconia crystal are disregarde@ee Fig. 1, can  which also hasz=2 (we recall that our skeletal tetragonal
only indicate, for the nevo2 phase, the point groui®) and  cell in Fig. 1 hasZ=4, i.e., twice the volume of such unit
the corresponding skeletal deformation. The configuratiorcell).

of the atoms inside theo2 skeletal cell may then be We notice that some possible orthorhombic structures for
estimated by some natural criteria that help to identify likelyzirconia have been investigated for instance in Refs. 20 and
candidate structurés: (i) The space groupgSG of the 48 using density-functional theory, with the aim of assessing
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their relative stability against other tetragonal or cubic confirming its stability at higher pressures, temperatures, and
figurations adopted by ZrQor other oxides or halides. None possibly nonhydrostatic loads, needs further careful first-
of these structures, however, are in the list of Table Il; estabprinciples investigation that is beyond the scope of the

lishing the actual nature of th@2 zirconia phase and con- present study.
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