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Unified Landau description of the tetragonal, orthorhombic, and monoclinic phases of zirconia
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We compute an explicit lowest-order polynomial form of the strain-dependent Gibbs potential which pro-
vides a unified description of the tetragonal, orthorhombic, and monoclinic phases of zirconia (ZrO2). The
resulting energy function interpolates well the available experimental data for this material, reproducing its
known elastic moduli, equilibrium strains, and phase diagram to about 1700 K and 8 GPa.
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I. INTRODUCTION

Zirconia (ZrO2), being the most important toughenin
agent for ceramics, is a widely investigated material intere
ing from both the theoretical and experimental points
view.1 In this paper we derive an energy function which d
pends on the temperature and strain tensor,2 and allows for a
unified quantitative description of the mechanical and th
mal properties of zirconia in the range of temperatures
pressures where a tetragonal-orthorhombic-monoclinic~t-
o-m! triple point is observed, see Fig. 1. In order to write
free-energy function suitable for ZrO2, we extend the ap-
proach initiated in Refs. 9 and 10, and that was develope
a recent paper11 where the strain energy of generic thre
phase elastic crystals exhibiting a t-o-m triple point was
vestigated. To match the available experimental data
ZrO2, four new coupling terms were added to the polynom
proposed in Ref. 11. This resulted in a more complex bif
cation diagram, with the appearance of a second orthorh
bic phase, see Fig. 5 below. In spite of its relative simplic
the present model reproduces remarkably well not only
phase diagram of t-o-m ZrO2 and the experimental tetragon
and monoclinic lattice parameters, but also the known ela
moduli of the monoclinic phase and the bulk modulus of
orthorhombic phase. The final strain energy function can
used directly in the studies of zirconia crystals under gen
nonhydrostatic loads, including an improved modeling
transformation toughening.12–14

This paper is organized as follows. In Sec. II we discu
the crystallographic aspects of the model and, based
available data which include the reported orientation re
tionships, establish the transformation mechanism for
t-o-m zirconia polymorphs. In particular, we suggest for t
well-known tetragonal-monoclinic transformation in ZrO2 a
mechanism that is different from the one usually conside
in the literature.3,13,15In Sec. III we develop a unified Landa
description for t-o-m zirconia, and construct the minim
polynomial expansion of the energy allowing for an accur
fitting and reproduction of the experimental data. In Sec.
we compare the results from the model with data on
spontaneous strains, elastic moduli, and phase diagram
zirconia. Concluding remarks are made in Sec. V; a b
description of the fitting procedure for the Landau coe
cients is given in the Appendix.
0163-1829/2002/66~17!/174107~10!/$20.00 66 1741
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II. TRANSFORMATION MECHANISM OF t-o-m
ZIRCONIA

Zirconia exhibits tetragonal~t!, orthorhombic ‘‘orthoI’’
~o!, and monoclinic~m! phases, with a triple point as in
Fig. 1. References 16–23 give detailed crystallographic
scriptions of these and other zirconia polymorphs, a
present the experimental phase diagrams.24

We begin with the observation that the lattice structures
t-o-m ZrO2 can all be described as originating from sm
deformations of a primitive tetragonal Bravais lattice~‘‘skel-
eton’’!, spanned by three mutually orthogonal basis vect
t1 , t2, and t3. The skeleton is constituted by thecorner Zr
atoms of the so-called ‘‘face-centered tetragonal cell’’ of z
conia, which in turn is a slight distortion of the convention
fcc cell of the cubic ZrO2 structure~see Fig. 2!.25 As we
consider only the skeletal deformations and disregard
atoms inside the cell, only the point groups are relevant
the description of the invariance properties of the model. T
point groupT3 of the tetragonal lattice in Fig. 2 is the fol
lowing:

T35$1, Rt1
p ,Rt2

p ,Rt3
p ,Rt11t2

p ,Rt12t2
p ,Rt3

p/2 ,Rt3
3p/2%, ~1!

whereRk
c denotes a rotation of anglec about the axisk. In

Eq. ~1! and hereafter, we only list the elements of po
groups which have a positive determinant.

We must now identify the deformations that produce t
skeletal lattices of the orthoI and monoclinic phases, wh

FIG. 1. Phase diagram of ZrO2, from Ref. 20. The t-o-m triple
point considered in this paper, marked by a circle in the figure
near 840 K and 1.8 GPa.
©2002 The American Physical Society07-1
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applied to the reference skeleton in Fig. 2. All the kinema
cally distinct possibilities for lowering the symmetry of
lattice from tetragonal, to orthorhombic, down to mon
clinic, or directly from tetragonal to monoclinic, have be
examined in Refs. 11 and 26. By using this systematic
proach, in which no transition path wasa priori disregarded,
we analyzed the experimental crystallographic data and
orientation relationships reported for the t-o-m zirconia po
morphs. The conclusions are as follows:

~i! Reference 1 reports the following orientation relatio
ships between the t and o phases:

@100#oi@010# t , @010#oi@001# t , ~2!

the indices being defined through the cell in Fig. 2. This, a
the data on the positions of the two families of O ato
which, in the orthoI ZrO2 lattice, have coordination 3 and
with the Zr atoms,4,17,18,20,21indicate that the orthoI phase o

FIG. 2. Crystallography of the t-o-m phases of ZrO2 ~Zr atoms
are in gray, O atoms in white!. The Zr skeletal lattice, whose strai
is considered in this theory, is marked in bold; the atoms inside
skeletal cells are disregarded in this model. The orthorhombic o
monoclinic m skeletal lattices are small deformations of the pri
tive tetragonal reference skeleton t, spanned by the basis vectorta ,
a51, 2, and 3, with the fourfold axis alongt3. The cell of orthoI
ZrO2 is constituted by two skeletal Zr cells; one of these is das
for clarity.
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ZrO2 derives from a skeletal deformation that produces
primitive orthorhombic lattice whose point group is the su
group

O1235$1, Rt1
p ,Rt2

p ,Rt3
p % ~3!

of T3. See formula~A2! in the Appendix for the explicit
expression of the related strain matrix.

~ii ! The best-established orientation relationships for
t-m transformation in ZrO2 are:27–30

~100!muu~010! t , @010#muu@001# t . ~4!

This means thatctibm , i.e., the fourfoldc axis of the t phase
is parallel to the twofoldb axis of the m phase; the poin
group of the m phase of ZrO2 is therefore the following
subgroup:

M35$1, Rt3
p % ~5!

of T3. The corresponding strain matrix is given in formu
~A4! of the Appendix. The overall symmetry-breakin
mechanism for t-o-m ZrO2 is thus the following, represente
in Fig. 2:

T3→O123→M3 ~6!

~the same t-o-m transformation path is also a consequenc
the discussion in Ref. 1!. Consequently the well-known
tetragonal-monoclinic transition in this material isT3
→M3. We remark that in most of the previous analys
~see, for instance, Refs. 3, 13, and 15!, a different mechanism
for the t-m phase change has been assumed, that is,

T3→$M112 ,M122%, ~7!

where

M1125$1, Rt11t2
p %, M1225$1, Rt12t2

p % ~8!

are two other monoclinic subgroups ofT3. The hypothesis
~7! leads to a model where the t-m phase transition in ZrO2 is
driven by the bifurcation associated with the softening of
tetragonal modulusC44.31 One can see, however, that in th
case there is no easy way to account for the presence of
orthorhombic structure in the phase diagram of ZrO2. Fur-
thermore, the best established t-m orientation relationsh
for zirconia do suggest aT3→M3 mechanism, as mentione
earlier. We stress that, unlike the one in Eq.~7!, the path
T3→M3 proposed here does notdirectly result from the
softening of any tetragonal modulus. Instead, the t-m ph
change in ZrO2 is viewed as a~first-order! transformation
resulting from the coexistence of ‘‘distant’’ energy wells wi
T3 and M3 symmetry~see Fig. 5 below and Ref. 11!. The
T3→O123 transition in Eq.~6!, however, is driven by a bifur-
cation originated from the softening of the tetragonal mod
lus C112C12 @see Eq.~20! below#.
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III. ORDER PARAMETERS AND ENERGY FUNCTION
FOR t-o-m ZIRCONIA

The lattice shown in Fig. 2 corresponds to the equilibriu
configuration of the t phase of ZrO2; the variation of the
lattice parameters withT is given in Refs. 35 and 36. For an
deformation of this equilibrium configuration, one can ass
a strain-dependent free-energy densityf per unit reference
volume,

f5f~e1 , . . . ,e6 ,T!, ~9!

where f is a T3-invariant function of the strainseI ,
I 51, . . . ,6. Thestrain components are defined and index
as usual according to the Voigt convention

e15e11, e25e22, e35e33,

e452e23, e552e13, e652e12.

In order to write explicitly the expansion forf it is conve-
nient to consider new strain coordinatesyI , I 51, . . . ,6,
originating from the eigenspaces of the tetragonal elastic
sor @see Eq.~12! below#:

y15e11e21e3 , 6y25e11e222e3 ,

A2y35e12e2 , y45e4 , y55e5 , y65e6 . ~10!

The strain componenty1 characterizes the homogeneous
lations; when a hydrostatic loadp is applied to the crystal, its
potential energy is approximated by2py1. The parameter
y2 is a volume-preserving strain: together,y1 andy2 describe
the symmetry-preserving thermal expansion of the tetrago
lattice. The activation ofy3 ~i.e., y3 becoming different from
zero! breaks the equality for the lengths of the basis vect
t1 andt2 ~see Fig. 2! while maintaining them orthogonal an
thereby producing a skeletal lattice with symmetryO123 as in
Eq. ~3!. The activation ofy6, on the other hand, breaks th
orthogonality condition fort1 andt2 while maintaining them
of the same length; if applied to anO123-orthorhombic lat-
tice, y6 produces aM3-monoclinic lattice, as required b
Eq. ~6!.37 The order parameters for the t-o-m transformat
mechanism~6! are, therefore, the strainsy3 andy6 : y35y6
50 give theT3 phase;y3Þ0 andy650 give theO123 phase;
y3 andy6, both nonzero, give theM3 phase~see Fig. 3!.

The quadratic partfQ of the free energyf is

fQ5
1

2
CIJeIeJ5

1

2
C̄IJyIyJ , I , J51, . . . ,6, ~11!

where in the coordinatesyI the elastic tensorC̄IJ of the te-
tragonal phase has the almost diagonal form
17410
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C̄IJ5C̄JI5S C̄11 C̄12

C̄12 C̄22

C112C12

C44

C44

C66

D .

~12!

with

C̄115
1

9
@2~C111C12!14C131C33#,

C̄125
2

3
@C111C122C132C33#,

C̄2252@C111C1224C1312C33#. ~13!

In these formulas,C11,C12, . . . ,C66 are the six elastic
moduli appearing in the standard tetragonal elastic tensor38,39

CIJ in Eq. ~11!. Notice that the eigenvalues associated w
the eigenspaces spanned byy3 andy6 areC112C12 andC66,
respectively.

In general, the cubic partfC of the energyf is written

fC5
1

6
CIJKeIeJeK5

1

6
C̄IJKyIyJyK , ~14!

where the coefficientsCIJK , for I , J, K51, . . . ,6, are the
standard third-order elastic constants of the parent tetrag
phase. Their properties can be found in Refs. 40 and
Among all the possible third-order terms compatible w
tetragonal symmetry, we keep only the essential ones. F
we need to includeC̄133, C̄233, C̄166, andC̄266, which are
the coefficients ofy1y3

2, y2y3
2, y1y6

2, andy2y6
2, respectively.

These coupling terms allow the loads conjugate to
symmetry-preserving tetragonal strainsy1 or y2 to activate
the symmetry-breaking strainsy3 andy6, and to produce the
bifurcations required by the t-o-m phase diagram~see also
Ref. 11!. Furthermore, we must include the third-order term
with coefficientsC̄344 andC̄456, which are necessary to com
plete the matrix of the monoclinic elastic moduli. No furth
third-order terms are considered in our model, as this d
not bring obvious advantages while drastically increasing
computational difficulties of the fitting procedure.

As is shown in Ref. 11, the only terms of order high
than three necessary to generate the t-o-m triple point are
following: y3

4, y3
2y6

2, y6
4, y3

6, andy6
6. The final expression for

the Gibbs free-energy densityfG of t-o-m ZrO2 can then be
written in the form
7-3
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FADDA, TRUSKINOVSKY, AND ZANZOTTO PHYSICAL REVIEW B 66, 174107 ~2002!
FIG. 3. Phase diagram of t-o-m zirconia in th
(p,T) plane, calculated using the energy~18!
with coefficients as in Eq.~19! and Tables I and
II. The equilibrium phase boundaries~Maxwell
lines! are the thick solid lines numbered 1, 4, an
5, which meet at the t-o-m triple point~marked
by the larger circle!. Indicated also are the~par-
tially overlapping! stability domains for each of
the three t-o-m phases~bounded by the dashe
lines numbered 2,3,6!. The circles, triangles, and
squares refer to experimental observation
stable or fully transformed samples containin
the m, o, and t phases, respectively. The hollo
symbols at nonzero pressure refer to experime
in Ref. 16, filled symbols to data from Ref. 19
and hollow symbols at zero pressure to data fro
Ref. 36. The lower figure shows the level sets
the Landau potential~18! at p-T conditions near
the triple point. Notice the variety of energy well
~seven! in the three-phase coexistence region.
i-
de
fG5
1

2
@C̄11y1

212C̄12y1y21C̄22y2
21~C112C12!y3

2

1C44~y4
21y5

2!1C66y6
2#1

1

2
@~C̄133y11C̄233y2!y3

2

1~C̄166y11C̄266y2!y6
21C̄344y3~y4

22y5
2!#

1C̄456y4y5y61
1

4
~D3y3

412Ly3
2y6

21D6y6
4!1

1

6
~K3y3

6

1K6y6
6!1py1 . ~15!

The Landau potentialfL of the system is obtained by min
mizing out all the strain components other than the or
parameters. We obtain
17410
r

y15
1

D F2C̄22p2
1

2
~H3y3

21H6y6
2!G ,

y25
1

D F C̄12p2
1

2
~H38y3

21H68y6
2!G ,

y45y550, ~16!

where

D5C̄11C̄222C̄12
2 ,

H35C̄22C̄1332C̄12C̄233,

H65C̄22C̄1662C̄12C̄266,
7-4
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UNIFIED LANDAU DESCRIPTION OF THE . . . PHYSICAL REVIEW B 66, 174107 ~2002!
H385C̄11C̄2332C̄12C̄133,

H685C̄11C̄2662C̄12C̄166. ~17!

The elimination ofy1 , y2 , y4, andy5 leads to the following
simple form of the Landau energy:

fL5
1

2
~G3y3

21G6y6
2!1

1

4
~D̃3y3

412L̃y3
2y6

21D̃6y6
4!

1
1

6
~K3y3

61K6y6
6!, ~18!

where the renormalized coefficients are given by

G35~C112C12!2
H3

D
p, G65C662

H6

D
p,

D̃35D32
1

2D
~C̄22C̄133

2 22C̄12C̄133C̄2331C̄11C̄233
2 !,

L̃5L2
1

2D
@C̄22C̄133C̄1662C̄12~C̄133C̄2661C̄166C̄233!

1C̄11C̄233C̄266#,

D̃65D62
1

2D
~C̄22C̄166

2 22C̄12C̄166C̄2661C̄11C̄266
2 !.

~19!

As is usual in Landau theory, we assume that the only tet
onal moduli that depend on temperature areC112C12 and
C66, i.e., those related to the order parametersy3 andy6. As
it is the softening ofC112C12 that triggers theT3→O123
transformation in Eq.~6!, we set

C112C125A3~T2T0!, C665A6T1B6 . ~20!

HereA3.0 andA6>0, so that at low pressures the tetra
onal phase is stable at high temperatures; in Eq.~20! T0 is
the temperature at which the t phase loses stability at z
pressure. We notice that theT dependence ofC66 is needed
in order to obtain a (p,T) dependence of the o-m transfo
mation, as required by the phase diagram in Fig. 1.

The (p,T)-dependent values ofy3 andy6 giving the criti-
cal points of the t-o-m Landau energy~18! are obtained by
solving the equations

y3~G31L̃y6
21D̃3y3

21K3y3
4!50,

y6~G61L̃y3
21D̃6y6

21K6y6
4!50. ~21!

A simple geometric interpretation of this system and so
discussion of the associated bifurcations can be fo
in Ref. 11.

IV. PHASE DIAGRAM, EQUILIBRIUM STRAINS,
AND ELASTIC MODULI OF t-o-m ZIRCONIA

The method for fitting the coefficients appearing in t
energies~15! and ~18! is briefly explained in the Appendix
17410
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the results are given in Tables I and II. In this section
compare the computational predictions of the model with
available experimental data on ZrO2.

A. Phase diagram

The phase diagram of t-o-m zirconia, calculated from
functionfL with the coefficients taken from Tables I and I
is shown in Fig. 3. In it, we indicate the equilibrium pha
boundaries~Maxwell lines!, as well as the boundaries of th
stability domains for the three t-o-m polymorphs. The lat
are not usually indicated in the thermodynamical phase
grams~see, for instance, Fig. 1!.

The t-o-m triple point in Fig. 3 is at about 840 K and 1
GPa as in Ref. 16, and the three Maxwell lines, numbere
~t-o!, 4 ~o-m!, and 5 ~t-m!, have slopes and positions i
agreement with the experimental diagrams.16,42,43 For the
o-m transformation, the equilibrium pressure at room te
perature is around 3 GPa~intersection of the o-m Maxwel
line 4 with thep axis in Fig. 3!, again in agreement with the
values reported in the literature.1,20,23 In Fig. 3 we also
present various experimental observations on the transfor
tions in different zirconia polymorphs. We notice that th
monoclinic samples transform to orthorhombic symmetry
a wide area of the phase diagram, noticeably away from
o-m Maxwell line 4. This hysteresis effect almost disappe
as the transformation is protracted over a number of cycle16

The room-pressure value of the t-m equilibrium tempe
ture is about 1450 K~intersection of the t-m Maxwell line 5
with the temperature axis!, in agreement with Refs. 1 and 44

TABLE I. Numerical values of the coefficients in Eqs.~15!–
~18!, giving the strain energy of t-o-m ZrO2. All quantities are in
GPa, except forA3 andA6 ~in GPa K21), andT0 ~in K!.

A3 3.8831021 A6 2.8231023 B6 1.183101

T0 8.323102 H3 25.93103 H6 21.943105

C̄133
233103

C̄233
8.173103

C̄166
26.133102

C̄266
5.91 C̄344

5.613101
C̄456

8.423101

D̃3
29.663104

L̃ 21.083104
D̃6

22.453103

K3 6.663108 K6 7.293104

TABLE II. Elastic constants and bulk modulusK of the tetrag-
onal phase~in GPa!. ~a! Present model, 1500 K.~b! Estimate at
1480 K made in Ref. 52.~c! Reference 49.~d! Reference 46.~e!
Reference 50.~f! Reference 4.~g! Reference 48.~h! Reference 47.
The experimental values forK found in Ref. 22 are 198 and 17
GPa.

Modulus ~a! ~b! ~c! ~d! ~e! ~f! ~g! ~h!

C11 307 340 416 465 327 366 395 263
C33 320 325 234 326 264 286 326 262
C44 100 66 39 101 59 78 105 55.9
C66 16 95 73 156 64 88 56 44
C12 48 33 30 83 100 180 26 15
C13 209 160 68 49 62 80 42 72
K 165 183 148 173 149 180 148 122
7-5
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The monoclinic equilibria in Fig. 3 are stable in the regi
below curve 6 ~and are metastable—local energ
minimizers—in the domain limited by curves 4–6!. This sta-
bility range agrees well with available data on the m pha
For instance, room-pressure experiments29,32 show that es-
sentially all traces of monoclinic inclusions disappear abo
1700 K ~see the intersection of line 6 with theT axis!. Also
for nonzero pressure, no experimental monoclinic points
on the right of line 6~except for a single point coming from
a powdered sample!.

The t-o Maxwell line number 1 is almost horizontal, wi
a slightly negative slope, as reported in Ref. 16; its inters
tion with theT axis, marking the t-o transformation temper
ture, is at about 840 K, in agreement with experimental d
In the vicinity of the t-o Maxwell line 1, line 2 marks th
low-temperature stability boundary for the t phase, and lin
the high-temperature existence limit for the o phase. Line
and 3, which are spaced about 10-K apart, give the m
mum hysteresis for the t-o transformation; this is within t
experimental error given in Ref. 16. Regarding the t-o tra
formation, we notice that the data in Fig. 3 coming from R
19 ~black squares and triangles, which refer to powde
samples!, would suggest a t-o Maxwell line at about 950
that is, more than 100-K higher than the t-o transformat
temperature reported by Ref. 16. This might be due to st
lizing effects of surface layers in the microparticles used
Ref. 19.

We notice that a line marking the instability limit of th
orthorhombic phase at low temperatures is absent in the
culated phase diagram, which means that, in this mo
~metastable! orthorhombic energy wells are always presen
the p-T conditions considered.

B. Equilibrium strains

In Fig. 4 we compare the behavior of the equilibriu
strainsy1 , y2 , y3, and y6 computed from the model with
available experimental data on the m phase~no analogous
data for the orthoI phase are available!. The theoretical
curves are obtained from the monoclinic solutions of
equilibrium equations~21! at room pressure and varyingT.
The experimental points indicated in Fig. 4 are derived fr
lattice-parameter measurements through formula~A5! in the
Appendix ~the parent-phase tetragonal data have been
trapolated into the range of temperatures where the mo
clinic phase is stable, see Ref. 45 for an analogous pr
dure!. As can be seen, the model reproduces well
observations, with average relative errors of 6%, 5%, 16
and 6%, fory1 , y2 , y3, and y6, respectively, if compared
with the strain data obtained from Refs. 35 and 36. In Fig
we have also indicated the experimental points coming fr
Refs. 29 and 32. We notice a discrepancy between the
sets of data~especially fory2), as well as for the temperatur
of complete disappearance of the m phase. The t-m tran
mation hysteresis is indeed known to be very sensitive to
presence of impurities in the samples.

C. Elastic moduli

The elastic moduli of the t phase enter the expression
the Gibbs potential~15! explicitly through the quadratic par
17410
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~11!. Experimental data on these coefficients at temperatu
near or above the t-m transformation and at room press
are not available. Theoretical computations of the tetrago
moduli at various temperatures can be found in Refs. 4
46–49; one set of experimental values at room tempera
is reported in Ref. 50 for a sample of stabilized 12 mol
Ce-doped twin-free tetragonal zirconia~see Table II!.

The elastic moduli of the m phase can be computed fr
the model once the solutions of the equilibrium equations
known ~we choose the solution withy3.0, so thatam.cm

in the monoclinic cell!. They are given by the second deriv
tives of the energy~15! with respect to the variableseI ~up to
the relabeling of indices51 described in Table III!. The mono-
clinic moduli of zirconia have been investigated experime
tally in some detail. Their room-pressure values at vario
temperatures are given in Ref. 52@although, according to
Ref. 20, ‘‘these measurements could have been perturbe
twinning, as large~homogeneous! crystals of the monoclinic
phase are extremely difficult to make’’#. Other data on these
moduli come from the theoretical computations reported
Refs. 46 and 49—see Table IV.

As no experimental values are available for the moduli
pure tetragonal zirconia, both the tetragonal and monocl
sets of moduli were best fitted, as described in the Appen
The results are given in the first columns of Tables II and
respectively; in the same tables we also report the value
the bulk modulusK ~the inverse of the coefficient of isothe
mal compressibility!. We see that our model reproduces w
the known mechanical properties of the t and m zirco
phases, except for the two monoclinic moduliC25

m andC35
m ,

FIG. 4. The strainsy3 ,y6 ~a!, andy1 ,y2 ~b!, for the monoclinic
phase as functions of temperature at room pressure. Experim
points are also shown, obtained from t and m lattice-parameter
reported in Refs. 35 and 36 (1), and in Refs. 29 and 32 (3). The
computed equilibrium temperatures for the t-m transition and
stability limit of the monoclinic phase are marked by the vertic
arrows; see also Fig. 3.
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which are too high. The computed value ofK in Table II is
also in line with the other available estimates, and with
two experimental values~198 and 172 GPa! found, through
different methods, in Ref. 22. The calculated bulk modu
for the m phase is lower than the other estimates reporte
Table IV, but compares well with the value 95 GPa obtain
in Ref. 20 through a Birch-Murnaghan extrapolation ofin
situ measurements.

Finally, the elastic moduli of theo phase can also b
evaluated from the model; however, no direct experimen
data are available for a check. The bulk modulus of tho
phase computed from our energy is 165 GPa, which co
pares satisfactorily with the estimate of 205 GPa obtaine
Ref. 20, through a Birch-Murnaghan interpolation of expe
mental data.

V. CONCLUSIONS

The sixth-order polynomial energy presented here p
vides a coherent description for the tetragonal, orthoI,
monoclinic phases of zirconia and the associated transfor
tions below 1700 K and 8 GPa, and in the strain range in
cated in the lower part of Fig. 3. The equilibrium strain
elastic moduli, andp-T phase diagram~including quantita-
tive estimates of the stability domains for each phase! calcu-
lated from the model are in good agreement with the av
able experimental data. Further data on these Z2
polymorphs, in particular for the orthoI phase, can be e
mated from, or fitted into, the present framework. Importa
information that may be assessed by means of our en
includes, for instance, the reaction of the material to sh
loads; in particular, various phase diagrams involving non
drostatic loading variables can be established. This sho
lead to a better understanding of the behavior of the zirco
inclusions within a ceramic matrix.14

Figure 5 shows the bifurcations for the equilibria in o
model, at room pressure and varying temperature~the energy
coefficients are taken from Table I!. In this diagram we ob-
serve the complex topology of the connections among
branches of stable and unstable equilibria; in particular,
notice that in addition to the three branches correspondin
the t-o-m phases observed around the triple point of Fig
and 3, there is also an ‘‘extra’’ branch of stable orthorhom
solutions withy350 andy6Þ0. These orthorhombic equi
libria have the following point group:

TABLE III. Correspondence between the conventional index
of the monoclinic moduli~based on a twofold axis along theb
direction! and the second derivatives of the Gibbs potential in E
~10!–~15!.

CIJ
m ]2fG /]eR]eS CIJ

m ]2fG /]eR]eS CIJ
m ]2fG /]eR]eS

11 22 12 23 13 12
15 26 22 33 23 13
25 36 33 11 35 16
44 55 46 45 55 66
66 44
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O3,1625$1, Rt3
p ,Rt11t2

p ,Rt12t2
p %, ~22!

which should be compared with Eq.~3!. The existence of
such an extra phase appears as a necessary conseque
our unified Landau description of t-o-m zirconia. One c
check that nearp50 theO3,162 wells exist only in a small
range of temperatures~above 1520 K!, and that these equi
libria are unstable forp above 1.35 GPa. Furthermore, th
new orthorhombic minimizers always have relatively hi
energy, and are surrounded by lower barriers than the o

FIG. 5. Bifurcation diagram for the critical points of the Landa
energy~18!, at room pressure and varying temperatureT ~thick and
thin lines indicate stable and unstable equilibria, respectively!. The
bifurcations are all subcritical. In order to show the connectio
between the branches,T is made to vary in an unphysical range. F
clarity, only the branches withy3>0 and y6>0 are shown; the
pattern is extended by symmetry to the entire (y3 ,y6) plane.

TABLE IV. Elastic constants and bulk modulusK of the mono-
clinic phase~in GPa!. ~a! Present model, 1500 K.~b! Reference 52,
1273 K.~c! Reference 46.~d! Reference 49. The experimental valu
for K obtained in Ref. 20 is 95 GPa.

Modulus ~a! ~b! ~c! ~d!

C11
m 356 350 353 347

C22
m 320 341 434 364

C33
m 274 312 272 274

C44
m 99 81.6 156 88

C55
m 145 66.3 123 108

C66
m 101 101 192 122

C12
m 281 171 233 164

C13
m 40 35.2 138 102

C15
m 56 4.3 61 28

C23
m 137 155 191 156

C25
m 102 9.4 244 217

C35
m 146 3.2 59 11

C46
m 214 213.9 235 244

K 84 180 182 194

.
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t-o-m wells. However, one may speculate that t
O3,162phase might gain more stability and physical r
evance at nonhydrostatic loading conditions.
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APPENDIX

The computation of the coefficients of the Gibbs ene
was done in two steps. First, we estimated the values of
coefficients through the procedure outlined below. Then,
extensive search was performed in the neighborhood of s
values in order to achieve an overall best fit of the mod
transition temperatures and pressures, and equilibr
strains.

We start by evaluating the equilibrium strains, which a
necessary in many of the ensuing computations. These
found through lattice-parameter interpolations. For the
phase we use the experimental data from Ref. 35 and
compressibilities reported in Ref. 22. This gives the follo
ing values of the lattice parameters in nanometers~with T in
K and p in GPa!:

at50.5056~111.25431025T!~121.4131023p!,

ct50.5167~111.45931025T!~122.2431023p!.
~A1!

The above expressions are also used to extrapolateat into the
range of temperatures where the other phases are stable@see
Eqs. ~A3! and ~A5! below#. To compute the strains of th
orthorhombic equilibria, we take the t-o orientation relatio
ship ~2! given by Ref. 1, and account for the cell doublin
occurring along@100#o . The strain tensor is then

E5
1

2S S co

at
D 2

21 0 0

0 S ao

2at
D 2

21 0

0 0 S bo

ct
D 2

21

D , ~A2!

so that

y3,o5
1

2A2
F S co

at
D 2

2S ao

2at
D 2G , ~A3!
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with at as above. The lattice parameters for the orthorhom
phase are~in nanometers!

ao51.0137~112.7231026T!~121.2431023p!,

bo50.5308~111.1831026T!~121.6031023p!,

co50.5141~116.0431026T!~122.4931023p!.

These are linear interpolations of thein situ measurements
reported in Refs. 20 and 53 for the compressibilities, and
Ref. 18 for the thermal expansion. The t-m orientation re
tionships are assumed to be as in Eq.~4!, which give the
following strain tensor for the monoclinic equilibria:

E5
1

2S S cm

at
D 2

21
2amcm cosbm

at
2

0

2amcmcosbm

at
2 S am

at
D 2

21 0

0 0 S bm

ct
D 2

21

D .

~A4!

By Eq. ~10! the strainsyI of the monoclinic phase are then

y3,m5
1

2A2
F S cm

at
D 2

2S am

2at
D 2G ,

y6,m5
amcm cosbm

at
2

, ~A5!

with the following monoclinic lattice parameters~in nanom-
eters and rads!:

am50.51248~119.717231026T!~122.9231023p!,

bm50.52019~111.680031026T!~122.9731024p!,

cm50.52883~111.413831025T!~122.2031023p!,

bm51.73677~125.990531026T!~122.7231024p!.
~A6!

These interpolations are found by fitting the experimen
data from Ref. 36, with compressibilities as in Refs. 1, 2
22, and 54.

By using Eqs.~19! and~20! and the fact that the tetrago
nal solutions lose stability forG350, we can computeA3
and T0, using the elastic moduli of the t phase~taken here
from Ref. 47!. By interpreting the experiments reported
Ref. 16 as indicating the temperature at which the t ph
loses stability, we obtain the virtual t-o transformation te
perature at room pressure to beT05832624 K;55 Eq. ~20!
gives thenA350.388 GPa K21.

The latent heat of the transformation between the t and
phases, occurring atTtrs51478 K, ptrs50, has been
measured44,56 to be Q5DH trs525.941kJ mol21 ~from t to
m!. Then the entropy jumpDStrs can be estimated from
7-8
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DStrs5
DH trs

Ttrs
52

1

2
~A3y3

21A6y6
2!; ~A7!

the values of the strainsy3 and y6 needed in Eq.~A7! are
taken from Eq. ~A5!. We obtain DStrs
524.02 J mol21 K21; by using the molar volume of the
reference tetragonal state at the same temperature, we
vert the entropy into J m23 K21, which gives forA6 andB6
the values 2.8231023 GPa K21 and 11.8 GPa, respectively
Notice thatA6 is very small, meaning that the temperatu
dependence ofC66 is practically negligible.

In our model the three lines characterizing the transit
between the o and t phases~lines 1, 2, and 3, in Fig. 3! have
the same slope, and their equations are, respectively,

G35
3D̃3

2

16A3K3
, G350, G35

D̃3
2

4K3
,

or, in (p,T) coordinates@see Eqs.~19! and ~20!#,

T5T01
3D̃3

2

16A3K3
1

H3

A3D
p, T5T01

H3

A3D
p,

T5T01
D̃3

2

4A3K3
1

H3

A3D
p.

According to Ref. 16 the slope of the o-t equilibrium pha
boundary is20.29 K GPa21, with a large standard deviatio
of 2.7 K GPa21 due to reported experimental difficultie
This gives H3 /D520.112, andH3525.93103 GPa. To
obtainH6, we use Eq.~16! at zero pressure; by Eq.~10!, the
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monoclinic strainy1 is calculated as the trace of the stra
matrix in Eq.~A4!. Given the above value ofH3, we obtain
H6521.943105 GPa.

The remaining coefficients of the Landau energy are
termined from the set of equations defining the triple poi
For the m phase and the t-m Maxwell line one has th
conditions: two are the equilibrium equations~21!, yielding
the values of the order parametersy3 and y6, and the third
one is the equality of the Landau energies for the t and
phases. Similar conditions hold for the o equilibria and t
t-o Maxwell line. The triple point is fixed at aboutp
51.8 GPa andT5840 K, which roughly corresponds to th
average of the two values given in Ref. 16~obtained in the
conditions of increasing and decreasing temperatures
pressures!. The numerical solution of the corresponding sy
tem of equations is
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C̄266; C̄344 and C̄456 are in turn obtained by adjusting th
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