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Unified Landau description of the tetragonal, orthorhombic, and monoclinic phases of zirconia
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We compute an explicit lowest-order polynomial form of the strain-dependent Gibbs potential which pro-
vides a unified description of the tetragonal, orthorhombic, and monoclinic phases of zirconig.(Zhe
resulting energy function interpolates well the available experimental data for this material, reproducing its
known elastic moduli, equilibrium strains, and phase diagram to about 1700 K and 8 GPa.
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I. INTRODUCTION II. TRANSFORMATION MECHANISM OF t-0-m
ZIRCONIA

Zirconia (ZrG), being the most important toughening
agent for ceramics, is a widely investigated material interest(o)
ing from both the theoretical and experimental points of

Zirconia exhibits tetragonalt), orthorhombic “orthol”

, and monoclinic(m) phases, with a triple point as in
o . . . . Fig. 1. References 16-23 give detailed crystallographic de-
view.” In this paper we derive an energy function which de'scriptions of these and other zirconia polymorphs, and
pends on the temperature and strain teAsord allows for a present the experimental phase diagrfns.

unified quantitative description of the mechanical and ther- "y pegin with the observation that the lattice structures of
mal properties of zirconia in the range of temperatures an‘fi—o-m ZrO, can all be described as originating from small
pressu_rels Wherg abtetraggnal—or't:horhlorlnblc-(;nonocl(mc deformations of a primitive tetragonal Bravais latti¢skel-
o-m) triple point IS observed, see Fig. 1. In order to write 3eton”), spanned by three mutually orthogonal basis vectors
free-engrgy funguon suitable for ZgOwe extend the ap- .11, ty, andt;. The skeleton is constituted by tleerner Zr
proach initiated in Refs. 9 and 10, and that was developed 'ﬁltoms of the so-called “face-centered tetragonal cell’ of zir-

a recent pgpé? where the_ sjrain energy c.)f geneﬂc threg- conia, which in turn is a slight distortion of the conventional
phase elastic crystals exhibiting a t-o-m triple point was in-

foated. T eh th ek i antal dat fcc cell of the cubic Zr@ structure(see Fig. 22° As we
vestigated. 10 matc € avallable experimental dala oRgngjger only the skeletal deformations and disregard the
ZrO,, four new coupling terms were added to the polynomial

. . . .. 'atoms inside the cell, only the point groups are relevant for
proposed in Ref. 11. This resulted in a more complex bifur y P group

! . . ‘the description of the invariance properties of the model. The
cation diagram, with the appearance of a second orthorho P brop

bic phase, see Fig. 5 below. In spite of its relative simpIicit):})oc\),:,ri];ggrOUpT3 of the tetragonal lattice in Fig. 2 is the fol-

the present model reproduces remarkably well not only the
phase diagram of t-o-m Zrland the experimental tetragonal Ti={1,R" ,R” ,R” R, ,R” . R™2 R¥2 (1)
and monoclinic lattice parameters, but also the known elastic 12 s e 2 s 3

moduli of the monoclinic phase and the bulk modulus of thewhereR! denotes a rotation of angl¢ about the axik. In
orthorhombic phase. The final strain energy function can bgq. (1) and hereafter, we only list the elements of point
used directly in the studies of zirconia crystals under generajroups which have a positive determinant.

nonhydrostatic loads, including an improved modeling of  \we must now identify the deformations that produce the

transformation toughening=** skeletal lattices of the orthol and monoclinic phases, when
This paper is organized as follows. In Sec. Il we discuss

the crystallographic aspects of the model and, based on T

available data which include the reported orientation rela- Lig,

tionships, establish the transformation mechanism for the "

ZrOz

t-o-m zirconia polymorphs. In particular, we suggest for the
well-known tetragonal-monoclinic transformation in Zr@
mechanism that is different from the one usually considered
in the literature®*>%In Sec. Il we develop a unified Landau
description for t-o-m zirconia, and construct the minimal
polynomial expansion of the energy allowing for an accurate
fitting and reproduction of the experimental data. In Sec. IV
we compare the results from the model with data on the
spontaneous strains, elastic moduli, and phase diagram of
zirconia. Concluding remarks are made in Sec. V; a brief FIG. 1. Phase diagram of ZgQfrom Ref. 20. The t-o-m triple
description of the fitting procedure for the Landau coeffi-point considered in this paper, marked by a circle in the figure, is
cients is given in the Appendix. near 840 K and 1.8 GPa.
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ZrO, derives from a skeletal deformation that produces a
primitive orthorhombic lattice whose point group is the sub-

group
O125={L. R{,RL.R{} (©)]

of 7;3. See formula(A2) in the Appendix for the explicit
expression of the related strain matrix.

(i) The best-established orientation relationships for the
t-m transformation in Zr@ are?’~%

(100)4[(010),  [010]y||[00];. (4)

This means that,||b,,, i.e., the fourfoldc axis of the t phase

(0) is parallel to the twofoldb axis of the m phase; the point
group of the m phase of ZrQOis therefore the following
subgroup:

Ms={1,R], (5)

of 73. The corresponding strain matrix is given in formula
(A4) of the Appendix. The overall symmetry-breaking
mechanism for t-o-m ZrQis thus the following, represented
in Fig. 2:

(m)
T3— O3~ M3 (6)

(the same t-o-m transformation path is also a consequence of

the discussion in Ref. )1 Consequently the well-known

tetragonal-monoclinic transition in this material %
FIG. 2. Crystallography of the t-o-m phases of Zr@r atoms ~—M3. We remark that in most of the previous analyses

are in gray, O atoms in whiteThe Zr skeletal lattice, whose strain (see, for instance, Refs. 3, 13, and,l&different mechanism

is considered in this theory, is marked in bold; the atoms inside théor the t-m phase change has been assumed, that is,

skeletal cells are disregarded in this model. The orthorhombic o and

monoclinic m skeletal lattices are small deformations of the primi-

tive tetragonal reference skeleton t, spanned by the basis végtors T iMui2 Mook 0

a=1, 2, and 3, with the fourfold axis alortg. The cell of orthol here

ZrO, is constituted by two skeletal Zr cells; one of these is dashe(yv

for clarity.

Mio={L, R}, Mio={LR{_ .} ®
applied to the reference skeleton in Fig. 2. All the kinemati-
cally distinct possibilities for lowering the symmetry of a are two other monoclinic subgroups @. The hypothesis
lattice from tetragonal, to orthorhombic, down to mono-(7) leads to a model where the t-m phase transition in,4s0
clinic, or directly from tetragonal to monoclinic, have been driven by the bifurcation associated with the softening of the
examined in Refs. 11 and 26. By using this systematic aptetragonal modulu€,,.%! One can see, however, that in this
proach, in which no transition path waspriori disregarded, case there is no easy way to account for the presence of any
we analyzed the experimental crystallographic data and therthorhombic structure in the phase diagram of Zr®ur-
orientation relationships reported for the t-o-m zirconia poly-thermore, the best established t-m orientation relationships

morphs. The conclusions are as follows: for zirconia do suggest &— M3 mechanism, as mentioned
(i) Reference 1 reports the following orientation relation-earlier. We stress that, unlike the one in Ed@), the path
ships between the t and o phases: T;— M5 proposed here does ndirectly result from the
softening of any tetragonal modulus. Instead, the t-m phase
[100],/[010],, [010],|[001], (2)  change in ZrQ is viewed as &first-orde) transformation

resulting from the coexistence of “distant” energy wells with
the indices being defined through the cell in Fig. 2. This, and/z and M3z symmetry(see Fig. 5 below and Ref. L1The
the data on the positions of the two families of O atoms7;— O;,5transition in Eq(6), however, is driven by a bifur-
which, in the orthol ZrQ lattice, have coordination 3 and 4 cation originated from the softening of the tetragonal modu-
with the Zr atomg;1"1820-2%ndicate that the orthol phase of lus C;;—Cy, [see Eq(20) below].
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IIl. ORDER PARAMETERS AND ENERGY FUNCTION c. ©
FOR t-0-m ZIRCONIA 12

. o . Cyp C.
The lattice shown in Fig. 2 corresponds to the equilibrium 12 w2

configuration of the t phase of ZgQthe variation of the Ci.=C. = Cu—Cp
lattice parameters witffi is given in Refs. 35 and 36. Forany 7 Y Cus
deformation of this equilibrium configuration, one can assign

a strain-dependent free-energy densityper unit reference

volume, Ces

(;5:(;5(61, P ,eG,T), (9) i
with
where ¢ is a 7z-invariant function of the straing,
I=1,...,6. Thestrain components are defined and indexed _ 1
as usual according to the Voigt convention C11=gl[2(Ca1+ C1p) +4C13+ Cagl,

€1=©€11, €,=€y, €3=Ess, 2
C12=§[C11+C12—C13—C33],
e,=2e,3, es=2e13, €g=2e1,.

In order to write explicitly the expansion fap it is conve- C2=2[C11+Cyp—4C 15+ 2C53). (13
nient to consider new strain coordinatgs, 1=1,...,6,
originating from the eigenspaces of the tetragonal elastic te

sor[see Eq(12) below] Mh these formulas,C,;,Cq5, . .. ,Cgs are the six elastic

moduli appearing in the standard tetragonal elastic téhgdr
C,; in Eqg. (11). Notice that the eigenvalues associated with
yi=e,+e,+e;, 6y,=e +e,—2e;, the eigenspaces spannedyhyandyg areC,,— C45andCeg,
respectively.

In general, the cubic patbc of the energyg is written

V2ys=ei—e;, yi=es, ys=6s, Ye=6€. (10)
1 1_—

The strain component; characterizes the homogeneous di- ¢C=€C|JKe,eJeK= 5 CiikY1YaYk » (14
lations; when a hydrostatic logmlis applied to the crystal, its
potential energy is approximated bypy;. The parameter
Y, is a volume-preserving strain: togethgy,andy, describe  where the coefficient€,;¢, for 1,J,K=1,...,6, are the
the symmetry-preserving thermal expansion of the tetragonaltandard third-order elastic constants of the parent tetragonal
lattice. The activation oy (i.e., y; becoming different from  phase. Their properties can be found in Refs. 40 and 41.
zerg breaks the equality for the lengths of the basis vectorssmong all the possible third-order terms compatible with
t, andt, (see Fig. 2while maintaining them orthogonal and tetragonal symmetry, we keep only the essential ones. First,
thereby producing a skeletal lattice with symmefhy,sasin - \ye need to include€€ s, Cass, Cigg, andCogs, Which are
Eq. (3). The activation ofyg, on the other hand, breaks the ha coefficients Of1Y2, YaY3, Yaye, andy,y2, respectively.
orthogonality conditiqn fotl_andtz while maintaining_ them  These coupling terms allow the loads conjugate to the
of the same length; if applied to afiypzorthorhombic lat- gy mmetry-preserving tetragonal straipg or v, to activate
tice, yg_produces aMz-monoclinic lattice, as required by q symmetry-breaking strailys andy,, and to produce the
Eq. (6).3? The order parameters for th_e t-0-m transformationbifurcations required by the t-o-m phase diagrésee also
mechanism(6) are, therefore, the straing andys: Ys=Ys  Ref. 11). Furthermore, we must include the third-order terms

=0 give theT, phaseygio_andys—o give the@lz?.’ phase; with coefficientsC,,, andC,sg, Which are necessary to com-
y3 andyg, both nonzero, give thé1; phase(see Fig. 3. lete th trix of th linic elasti dquli. No furth
The quadratic partbq, of the free energyb is plete the matrix of the monoclinic elastic moduli. No further
third-order terms are considered in our model, as this does
not bring obvious advantages while drastically increasing the
1 1__ computational difficulties of the fitting procedure.
bo=5Cuee=5 Cuyry,, 1, J=1,....,6, (11 As is shown in Ref. 11, the only terms of order higher
than three necessary to generate the t-o-m triple point are the
B following: y3, y3y2, ye. Y5, andy?. The final expression for
where in the coordinateg the elastic tensoC,; of the te-  the Gibbs free-energy densityg of t-o-m ZrG, can then be
tragonal phase has the almost diagonal form written in the form
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where

(19

The Landau potentiap, of the system is obtained by mini-
mizing out all the strain components other than the order

parameters. We obtain
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FIG. 3. Phase diagram of t-o-m zirconia in the
(p,T) plane, calculated using the energy8)
with coefficients as in Eq(19) and Tables | and
Il. The equilibrium phase boundariédaxwell
lineg) are the thick solid lines numbered 1, 4, and
5, which meet at the t-o-m triple poirimarked
by the larger circlg Indicated also are thear-
tially overlapping stability domains for each of
the three t-o-m phase®ounded by the dashed
lines numbered 2,3)6The circles, triangles, and
squares refer to experimental observation of
stable or fully transformed samples containing
the m, o, and t phases, respectively. The hollow
symbols at nonzero pressure refer to experiments
in Ref. 16, filled symbols to data from Ref. 19,
and hollow symbols at zero pressure to data from
Ref. 36. The lower figure shows the level sets of
the Landau potentiall8) at p-T conditions near
the triple point. Notice the variety of energy wells
(seven in the three-phase coexistence region.

1l =1 2 2
Y1=7x| ~CaaP~ 5 (Hays+HeYe) |,

1~ ‘ 1,2 1v,2
Y2= 75| C12P— 5 (Hays+Heys) |,

Ya=Y5= (16)

A= 611622_ E%z )
Hs= 6226133_ 6126233,

He= 6226166_ 61262661
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H§= C11C233— C1LC133,

He= C11C266— C1:Cues. (17)

The elimination ofy,, y», Y4, andys leads to the following
simple form of the Landau energy:

1 1 ~ ~
$L=>(Gay3+Geys) + 7 (Days+2Ly3ye+Deys)

1
+ 5 (Kay3+Key), (18

where the renormalized coefficients are given by

Ha He
G3=(C11—Cy1o)— Xp’ Gg=Ce6— Xp’

D3=D3 6226533_ 261261336233+ E116333) )

1
_ﬂ(

~ 1 - - - - - — — —
L=L- ﬁ[CZZCKBClGG_ ClZ( ClS3C266+ C1660233)

+C11CoaCosdl,
~ 1 — - _
Dg=Dg— ﬁ(czzéiee_ 2C1,C166C 2661 Cllggee)-

(19
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TABLE |. Numerical values of the coefficients in Eqgd.5)—
(18), giving the strain energy of t-o-m ZgOAll quantities are in
GPa, except foA; andAg (in GPaK™1), andT, (in K).

Ag 3.88<10°1 A; 282x10°% B  1l.a8xict
To 8.32x10* H; —59x10° He —1.94x10°
Cis  —3X10°  C,, 81710° C,,, —6.13X10°
Coss 5.91 Ca 561X10° . 842¢10'
D, -9.66x10" [  —1.08<10' P, —2.45<10°
Ks 6.66x10° Ky  7.29x10%

the results are given in Tables | and Il. In this section we
compare the computational predictions of the model with the
available experimental data on ZrO

A. Phase diagram

The phase diagram of t-o-m zirconia, calculated from the
function ¢, with the coefficients taken from Tables | and II,
is shown in Fig. 3. In it, we indicate the equilibrium phase
boundariesMaxwell lines, as well as the boundaries of the
stability domains for the three t-o-m polymorphs. The latter
are not usually indicated in the thermodynamical phase dia-
grams(see, for instance, Fig.)1

The t-o-m triple point in Fig. 3 is at about 840 K and 1.8
GPa as in Ref. 16, and the three Maxwell lines, numbered 1
(t-0), 4 (0o-m), and 5 (t-m), have slopes and positions in
agreement with the experimental diagrath®®*® For the

As is usual in Landau theory, we assume that the only tetrag?™™ ransformation, the equilibrium pressure at room tem-

onal moduli that depend on temperature &g—C,, and
Ces, 1.€., those related to the order parameterandyg. As
it is the softening ofC,;—C;, that triggers theZz— 0455
transformation in Eq(6), we set
C11— C1o=A3(T—To),

066: A6T+ BB . (20)

perature is around 3 GRatersection of the o-m Maxwell
line 4 with thep axis in Fig. 3, again in agreement with the
values reported in the literatuté®?® In Fig. 3 we also
present various experimental observations on the transforma-
tions in different zirconia polymorphs. We notice that the
monoclinic samples transform to orthorhombic symmetry in
a wide area of the phase diagram, noticeably away from the

Here A;>0 andAs=0, so that at low pressures the tetrag- o.m Maxwell line 4. This hysteresis effect almost disappears

onal phase is stable at high temperatures; in Q) T, is

as the transformation is protracted over a number of cyéles.

the temperature at which the t phase loses stability at zero The rgom-pressure value of the t-m equilibrium tempera-

pressure. We notice that tledependence of¢g is needed

ture is about 1450 Kintersection of the t-m Maxwell line 5

in order to obtain af§,T) dependence of the o-m transfor- jith the temperature axisin agreement with Refs. 1 and 44.

mation, as required by the phase diagram in Fig. 1.

The (p,T)-dependent values g andyg giving the criti-
cal points of the t-o-m Landau energ¥y8) are obtained by
solving the equations

y3(Gs+Lyg+Day3+Kayd) =0,

Y6(Ge+Ly5+Deys+Keys) =0. (21)

A simple geometric interpretation of this system and some

TABLE Il. Elastic constants and bulk modulésof the tetrag-
onal phasg(in GP3. (a) Present model, 1500 Kb) Estimate at
1480 K made in Ref. 52(c) Reference 49(d) Reference 46(e)
Reference 50(f) Reference 4(g) Reference 48(h) Reference 47.
The experimental values fdf found in Ref. 22 are 198 and 172
GPa.

Modulus (@ () (© (@ @& & (@ b

discussion of the associated bifurcations can be foun&i 307 340 416 465 327 366 395 263
in Ref. 11. Cas 320 325 234 326 264 286 326 262
Cus 100 66 39 101 59 78 105 55.9

IV. PHASE DIAGRAM, EQUILIBRIUM STRAINS, Ces 16 9 73 156 64 8 56 44
AND ELASTIC MODULI OF t-0-m ZIRCONIA Crz 48 33 30 8 100 180 26 15

Cis 209 160 68 49 62 80 42 72
The method for fitting the coefficients appearing in thek 165 183 148 173 149 180 148 122

energies(15) and(18) is briefly explained in the Appendix;
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The monoclinic equilibria in Fig. 3 are stable in the region 27— ' ' '
below curve 6 (and are metastable—local energy o6t o P e g X X ox
minimizers—in the domain limited by curves 4)-&his sta- - olal 4
bility range agrees well with available data on the m phase.2
For instance, room-pressure experiméhté show that es-

sentially all traces of monoclinic inclusions disappear above %F— 2 e XX XX X0
1700 K (see the intersection of line 6 with tiAeaxis). Also 0 . . : . A
. .. . 250 500 750 1000 1250 1500 1750
for nonzero pressure, no experimental monoclinic points are Temperature (K)
on the right of line 6(except for a single point coming from (a)
a powdered sample .
. . . . . T T T T T
The t-o Maxwell line number 1 is almost horizontal, with 06 |- . i
. . . . . n +
a slightly negative slope, as reported in Ref. 16; its intersec- oos - R T R x ]
tion with theT axis, marking the t-o transformation tempera- § %1 T
A

ture, is at about 840 K, in agreement with experimental data® *®[ xx x x X x ]

In the vicinity of the t-o Maxwell line 1, line 2 marks the o[ w . e 1
low-temperature stability boundary for the t phase, and line3 ! ! ! . .
the high-temperature existence limit for the o phase. Lines 2~ *° 50 0 1000 1290 fisool 1730
. . . Temperature (K)

and 3, which are spaced about 10-K apart, give the maxi- b)
mum hysteresis for the t-o transformation; this is within the
experimental error given in Ref. 16. Regarding the t-o trans-  F|G. 4. The strainys,ys (a), andy;,y, (b), for the monoclinic
formation, we notice that the data in Fig. 3 coming from Ref.phase as functions of temperature at room pressure. Experimental
19 (black squares and triangles, which refer to powderegoints are also shown, obtained from t and m lattice-parameter data
sampleg would suggest a t-o Maxwell line at about 950 K, reported in Refs. 35 and 36+(), and in Refs. 29 and 32X). The
that is, more than 100-K higher than the t-o transformatiorcomputed equilibrium temperatures for the t-m transition and the
temperature reported by Ref. 16. This might be due to stabistability limit of the monoclinic phase are marked by the vertical
lizing effects of surface layers in the microparticles used inarrows; see also Fig. 3.
Ref. 19.

We notice that a line marking the instability limit of the

orthorhombic phase at low temperatures is absent in the calyy) Experimental data on these coefficients at temperatures
culated phase diagram, which means that, in this modeho, o ahove the t-m transformation and at room pressure
(metastabl}eolryhorhomb|_c energy wells are always present e not available. Theoretical computations of the tetragonal
the p-T conditions considered. moduli at various temperatures can be found in Refs. 4 and
46-49; one set of experimental values at room temperature
) ) .. is reported in Ref. 50 for a sample of stabilized 12 mol %
Ir_l Fig. 4 we compare the behavior of the equmbr_lum Ce-doped twin-free tetragonal zircor(isee Table ).

strainsyy, Y, ¥s, andys computed from the model with  he glastic moduli of the m phase can be computed from
available experimental data on the m ph#se analogous  yha model once the solutions of the equilibrium equations are

Sﬁﬁsegorarg]eobotgizzld F:‘?(?rietf?éemivn%?ﬁ:ih:olﬁfoor:se tI(():fa ItheknOWn (we choose the solution Withl;>0, SO thatan> Cr,
N . . in the monoclinic ce)l. They are given by the second deriva-
equilibrium equationg21) at room pressure and varying

The experimental points indicated in Fig. 4 are derived fromt'veS of the energy15) with respect to the variable (up to

lattice-parameter measurements through forngdi) in the th.e .relabelin.g of i_ndicéé described in. Tablg Il The mono-
Appendix (the parent-phase tetragonal data have been e)(:_Ilmc_ moduli of zirconia have been investigated experimen-
trapolated into the range of temperatures where the mon&ally in some detall._ Thellr room-pressure values a_t various
clinic phase is stable, see Ref. 45 for an analogous procdémperatures are given in Ref. $although, according to
dure. As can be seen, the model reproduces well thdref. 20, “these measurements could have been perturbed by
observations, with average relative errors of 6%, 5%, 16%twinning, as largghomogeneoyscrystals of the monoclinic
and 6%, fory;, V», Vs, andyg, respectively, if compared Phase are extremely difficult to makp'Other data on these
with the strain data obtained from Refs. 35 and 36. In Fig. 4noduli come from the theoretical computations reported in
we have also indicated the experimental points coming fronRefs. 46 and 49—see Table IV.

Refs. 29 and 32. We notice a discrepancy between the two As no experimental values are available for the moduli of
sets of datdespecially fory,), as well as for the temperature pure tetragonal zirconia, both the tetragonal and monoclinic
of complete disappearance of the m phase. The t-m transfosets of moduli were best fitted, as described in the Appendix.
mation hysteresis is indeed known to be very sensitive to th&he results are given in the first columns of Tables Il and 1V,

B. Equilibrium strains

presence of impurities in the samples. respectively; in the same tables we also report the values of
_ ) the bulk modulu (the inverse of the coefficient of isother-
C. Elastic moduli mal compressibility. We see that our model reproduces well

The elastic moduli of the t phase enter the expression othe known mechanical properties of the t and m zirconia
the Gibbs potentiall5) explicitly through the quadratic part phases, except for the two monoclinic modaffy and C,
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which are too high. The computed value Kfin Table Il is Os, 142
also in line with the other available estimates, and with the
two experimental value€l98 and 172 GPBafound, through
different methods, in Ref. 22. The calculated bulk modulus
for the m phase is lower than the other estimates reported it
Table 1V, but compares well with the value 95 GPa obtained
in Ref. 20 through a Birch-Murnaghan extrapolation iof
situ measurements.

Finally, the elastic moduli of the» phase can also be
evaluated from the model; however, no direct experimental
data are available for a check. The bulk modulus of ¢he
phase computed from our energy is 165 GPa, which com-
pares satisfactorily with the estimate of 205 GPa obtained in
Ref. 20, through a Birch-Murnaghan interpolation of experi-
mental data.

V. CONCLUSIONS

The sixth-order polynomial energy presented here pro- FIG.5. Bifurcation diagram for the critical points of the Landau
vides a coherent description for the tetragonal, orthol, an@nergy(18), at room pressure and varying temperaflir¢ghick and
monoclinic phases of zirconia and the associated transformain lines indicate stable and unstable equilibria, respectivélye
tions below 1700 K and 8 GPa, and in the strain range indjbifurcations are all su_bcrltlcal. In ordt_ar to show the connections
cated in the lower part of Fig. 3. The equilibrium strains,betweenthe branchegs mad_e to vary in an unphysical range. For
elastic moduli, ancp-T phase diagranfincluding quantita-  ©/%: only the branches witly;=0 andys=0 are shown; the
tive estimates of the stability domains for each phasdcu- pattern is extended by symmetry to the entyyg.§c) plane.
lated from the model are in good agreement with the avail-
able experimental data. Further data on these ,ZrO O31:2={1, RT.RT o, RO 1 (22
polymorphs, in particular for the orthol phase, can be esti- ) )
mated from, or fitted into, the present framework. Importanthich should be compared with E¢B). The existence of
information that may be assessed by means of our energjHCh an extra phase appears as a necessary consequence of
includes, for instance, the reaction of the material to sheafur unified Landau description of t-0-m zirconia. One can
loads; in particular, various phase diagrams involving nonhycheck that neap=0 the O3 ;.., wells exist only in a small
drostatic loading variables can be established. This shoultgnge of temperature@bove 1520 K and that these equi-
lead to a better understanding of the behavior of the zirconi4ibria are unstable fop above 1.35 GPa. Furthermore, the
inclusions within a ceramic matrix new orthorhombic minimizers always have relatively high

Figure 5 shows the bifurcations for the equilibria in our €nergy, and are surrounded by lower barriers than the other
model, at room pressure and varying temperattive energy
coefficients are taken from Tablg In this diagram we ob- TABLE IV. Elastic constants and bulk modul#sof the mono-
serve the complex topology of the connections among th&linic phasein GPa. (a) Present model, 1500 Kb) Reference 52,
branches of stable and unstable equilibria; in particular, w273 K.(c) Reference 46d) Reference 49. The experimental value
notice that in addition to the three branches corresponding tff" K obtained in Ref. 20 is 95 GPa.

the t-o-m phases observed around the triple point of Figs.
and 3, there is also an “extra” branch of stable orthorhombic*/'odUIus @ ® © @
solutions withy;=0 andyg#0. These orthorhombic equi- cn 356 350 353 347
libria have the following point group: cn 320 341 434 364
ch 274 312 272 274
TABLE Ill. Correspondence between the conventional indexingCy), 99 81.6 156 88
of the monoclinic moduli(based on a twofold axis along the CcL 145 66.3 123 108
direction and the second derivatives of the Gibbs potential in Eascm, 101 101 192 122
(10~(15). cn 281 171 233 164
cT 40 35.2 138 102
m 2 m 2 m 2 13
Cyy d°¢pgldegdes C|j d°¢pgldegdes C|j 9°¢pglierdes cn 56 43 61 o8
11 22 12 23 13 12 C% 137 155 191 156
15 26 22 33 23 13 Ch 102 9.4 —44 -17
25 36 33 11 35 16 C3 146 3.2 59 11
44 55 46 45 55 66 Cht —14 —-13.9 -35 —44
66 44 K 84 180 182 194
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t-o-m wells. However, one may speculate that thewith a; as above. The lattice parameters for the orthorhombic
O3 1:ophase might gain more stability and physical rel-phase argin nanometens

evance at nonhydrostatic loading conditions.
a,=1.01371+2.72x10 ®T)(1—1.24x 10 3p),
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APPENDIX Eo 11 2a,cnco8n, an 2_ L 0
The computation of the coefficients of the Gibbs energy atz 2
was done in two steps. First, we estimated the values of the b\ 2
coefficients through the procedure outlined below. Then, an 0 0 (C—m -1
t

extensive search was performed in the neighborhood of such Ad
values in order to achieve an overall best fit of the moduli, (A4)

transition temperatures and pressures, and equilibriurBy Eq. (10) the strainsy, of the monoclinic phase are then
strains.

We start by evaluating the equilibrium strains, which are 1 [[cy\? [an)?
necessary in many of the ensuing computations. These are y3,m:ﬁ 2 “\2al I
found through lattice-parameter interpolations. For the t ! !
phase we use the experimental data from Ref. 35 and the
compressibilities reported in Ref. 22. This gives the follow- _ y,Cy COSB A5
ing values of the lattice parameters in nanometeith T in Yom= at2 ' (AS)

K andp in GPa:
with the following monoclinic lattice parametef®m nanom-

a,=0.50561+ 1.254x 10" °T)(1—1.41x 10 3p), eters and rads

_ —6 _ -3
¢(=0.51671+ 1.459% 1075T)(1—2.24x 10 3p). 8n=0.512481+9.7172<10 °T)(1-2.92<10"p),

(A1) by,=0.520191+ 1.6800< 10~ 6T)(1—2.97x 10~ *p),

The above expressions are also used to extrapaja¢o the e .
range of temperatures where the other phases are §tgle ~ Cm=0.528881+1.4138<10 °T)(1-2.20<10 °p),
Egs. (A3) and (A5) below]. To compute the strains of the

orthorhombic equilibria, we take the t-o orientation relation- ~ Bm=1.7367711—5.9905< 10" °T)(1-2.72<10" *p).

ship (2) given by Ref. 1, and account for the cell doubling (AB)
occurring alond 100],. The strain tensor is then These interpolations are found by fitting the experimental
data from Ref. 36, with compressibilities as in Refs. 1, 20,
Co\? L 0 0 22, and 54.
Et By using Eqgs(19) and(20) and the fact that the tetrago-
1 a2 nal solutions lose stability foG;=0, we can computé\g
E=_ | -1 0 , (A2) andT,, using the elastic moduli of the t phagtaken here
2 23 from Ref. 47. By interpreting the experiments reported in
b,\? Ref. 16 as indicating the temperature at which the t phase
0 0 (C_t) -1 loses stability, we obtain the virtual t-o transformation tem-

perature at room pressure to Bg=832+24 K;>® Eq. (20)
so that gives thenA;=0.388 GPaK®.
The latent heat of the transformation between the t and m
phases, occurring aflT,=1478 K, py;s=0, has been
' (A3)  measuretf*®to be Q=AH,=—5.941kJmol* (from t to
m). Then the entropy jump@ S, can be estimated from
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AHyq monoclinic strainy, is calculated as the trace of the strain

ASys=— =~ §(A3y§+Aeyé): (A7) matrix in Eq.(A4). Given the above value ¢, we obtain
s Hg=—1.94x 10° GPa.
the values of the straing; andyg needed in Eq(A7) are The remaining coefficients of the Landau energy are de-

taken  from Eq. (A5). We obtain AS;s termined from the set of equations defining the triple point.
=—4.02 Jmol* K%, by using the molar volume of the For the m phase and the t-m Maxwell line one has three
reference tetragonal state at the same temperature, we cagenditions: two are the equilibrium equatio(l), yielding
vert the entropy into J P K%, which gives forAs andBs  the values of the order parametersandys, and the third
the values 2.82 10 3 GPaK ! and 11.8 GPa, respectively. one is the equality of the Landau energies for the t and m
Notice thatAg is very small, meaning that the temperature phases. Similar conditions hold for the o equilibria and the
dependence dfgg is practically negligible. t-o Maxwell line. The triple point is fixed at aboyp
In our model the three lines characterizing the transition=1.8 GPa and =840 K, which roughly corresponds to the

between the o and t phas@imes 1, 2, and 3, in Fig.)3have  average of the two values given in Ref. (dbtained in the

the same slope, and their equations are, respectively, conditions of increasing and decreasing temperatures and
-, -, pressures The numerical solution of the corresponding sys-
3D3 D3 tem of equations is

Gszm, G3:0, 63:4_K3,

D3;=—1.16x10° GPa, Dg=—6.41x 10° GPa,
or, in (p,T) coordinate§see Eqs(19) and(20)],

L=-1.29x10" GPa,

D  Hs Hs
T=To+m+gp, T=To+ AgA P K3=7.93<10° GPa, Kg=1.84x10° GPa.
~5 Finally, four of the third-order moduli appearing g
T=Tot D3 Hs come from Eq(17), in which the values ofl; andHg are as
=lo

4A5K 4 * AzA P above, whileH; andH{ are determined from Eq16) with
According to Ref. 16 the slope of the o-t equilibrium phasethe use of tW? ex.perlmental value_s fos at dlffgent tem-
boundary is—0.29 K GPa!, with a large standard deviation Peratures. This gives the values Gfz3, C233, Cies, and
of 2.7 KGPa! due to reported experimental difficulties. C,gs; Cazas and Cus6 are in turn obtained by adjusting the
This givesH3z/A=—-0.112, andH;=—5.9x10° GPa. To values of the monoclinic elastic modulij, and Cg (see
obtainHg, we use Eq(16) at zero pressure; by E¢LO), the  Table IV).
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