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Abstract
In this paper we report, clarify and broaden various recent efforts to complement the 
chemistry-centered models of force generation in (skeletal) muscles by mechanics-centered 
models. The physical mechanisms of interest can be grouped into two classes: passive 
and active. The main passive effect is the fast force recovery which does not require the 
detachment of myosin cross-bridges from actin filaments and can operate without a specialized 
supply of metabolic fuel (ATP). In mechanical terms, it can be viewed as a collective 
folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by 
near equilibrium Langevin dynamics. The active force generation mechanism operates at 
slow time scales, requires detachment and is crucially dependent on ATP hydrolysis. The 
underlying mechanical processes take place far from equilibrium and are represented by 
stochastic models with broken time reversal symmetry implying non-potentiality, correlated 
noise or multiple reservoirs. The modeling approaches reviewed in this paper deal with both 
active and passive processes and support from the mechanical perspective the biological 
point of view that phenomena involved in slow (active) and fast (passive) force generation are 
tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic 
physiological measurements and structural analysis do not provide by themselves all the 
necessary insights into the functioning of the organized contractile system. In particular, the 
reviewed body of work emphasizes the important role of long-range interactions and criticality 
in securing the targeted mechanical response in the physiological regime of isometric 
contractions. The importance of the purely mechanical micro-scale modeling is accentuated at 
the end of the paper where we address the puzzling issue of the stability of muscle response on 
the so called ‘descending limb’ of the isometric tetanus.

Keywords: skeletal muscles, cross-bridge, molecular motor

(Some figures may appear in colour only in the online journal)

1.  Introduction

In recent years considerable attention has been focused 
on the study of the physical behavior of cells and tissues. 
Outside their direct physiological functionality, these bio-
logical systems are viewed as prototypes of new artificially 

produced materials that can actively generate stresses, adjust 
their rheology and accommodate loading through remod-
eling and growth. The intriguing mechanical properties of 
these systems can be linked to hierarchical structures which 
bridge a broad range of scales, and to expressly nonlocal 
interactions, which make these systems reminiscent more 
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of structures and mechanisms than of a homogeneous mat-
ter. In contrast with traditional materials, where microscopic 
dynamics can be enslaved through homogenization and aver-
aging, diverse scales in cells and tissues appear to be linked 
by complex energy cascades. To complicate matters further, 
in addition to external loading, cells and tissues are driven 
internally by endogenous mechanisms supplying energy and 
maintaining non-equilibrium. The multifaceted nature of the 
ensuing mechanical responses makes the task of constitu-
tive modeling of such distributed systems rather challenging 
[1–15].

While general, principles of active bio-mechanical response 
of cells and tissues still remain to be found, physical under-
standing of some specific sub-systems and regimes has been 
considerably improved in recent years. An example of a class 
of distributed biological systems whose functioning has been 
rather thoroughly characterized on both physiological and 
bio-chemical levels is provided by skeletal (striated) mus-
cles [16–24]. The narrow functionality of skeletal muscles is 
behind their relatively simple, almost crystalline geometry 
which makes them a natural first choice for systematic physi-
cal modeling. The main challenge in the representation of the 
underlying microscopic machinery is to strike the right balance 
between chemistry and mechanics.

In this review, we address only a very small portion of the 
huge literature on force generation in muscles and mostly 
focus on recent efforts to complement the chemistry-centered 
models by the mechanics-centered models. Other perspectives 
on muscle contraction can be found in a number of compre-
hensive reviews [25–38].

The physical mechanisms of interest for our study 
can be grouped into two classes: passive and active. The  
passive phenomenon is the fast force recovery which does 
not require the detachment of myosin cross-bridges from 
actin filaments and can operate without a specialized supply 
of ATP. It can be viewed as a collective folding-unfolding 
in the system of interacting bi-stable units and modeled 
by near equilibrium Langevin dynamics. The active force 
generation mechanism operates at much slower time scales, 
requires detachment from actin and is fueled by continu-
ous ATP hydrolysis. The underlying processes take place far 
from equilibrium and are represented by stochastic models 
with broken time reversal symmetry implying non-poten-
tiality, correlated noise, multiple reservoirs and other non-
equilibrium mechanisms.

The physical modeling approaches reviewed in this 
paper support the biochemical perspective that phenomena 
involved in slow (active) and fast (passive) force generation 
are tightly intertwined. They reveal, however, that biochemi-
cal studies of the isolated proteins in solution, macroscopic 
physiological measurements of muscle fiber energetics and 
structural studies using electron microscopy, x-ray diffrac-
tion and spectroscopic methods do not provide by them-
selves all the necessary insights into the functioning of the 
organized contractile system. The importance of the micro-
scopic physical modeling that goes beyond chemical kinetics 
is accentuated by our discussion of the mechanical stability 
of muscle response on the descending limb of the isometric 

tetanus (segment of the tension-elongation curve with nega-
tive stiffness) [17–19, 39].

An important general theme of this review is the coopera-
tive mechanical response of muscle machinery which defies 
thermal fluctuations. To generate substantial force, individ-
ual contractile elements must act collectively and the mech
anism of synchronization has been actively debated in recent 
years. We show that the factor responsible for the coopera-
tivity is the inherent non-locality of the system ensured by a 
network of cross-linked elastic backbones. The cooperation 
is amplified because of the possibility to actively tune the 
internal stiffness of the system towards a critical state where 
correlation length diverges. The reviewed body of work 
clarifies the role of non-locality and criticality in securing 
the targeted mechanical response of muscle type systems in 
various physiological regimes. It also reveals that the ‘unu-
sual’ features of muscle mechanics, that one can associate 
with the idea of allosteric regulation, are generic in biologi-
cal systems [40–43] and several non-muscle examples of 
such behavior are discussed in the concluding section of the 
paper.

1.1.  Background

We start with recalling few minimally necessary anatomical 
and biochemical facts about muscle contraction.

Skeletal muscles are composed of bundles of non rami-
fied parallel fibers. Each fiber is a multi-nuclei cell, from 
100 µm to 30 cm long and 10 µm  to 100 µm wide. It spans 
the whole length of the tissue. The cytoplasm of each mus-
cle cell contains hundreds of 2 µm  wide myofibrils immersed 
in a network of transverse tubules whose role is to deliver 
the molecules that fuel the contraction. When activated by  
the central nervous system the fibers apply tensile stress to the 
constraints. The main goal of muscle mechanics is to under-
stand the working of the force generating mechanism which 
operates at sub-myofibril scale.

The salient feature of the skeletal muscle myofibrils is the 
presence of striations, a succession of dark an light bands vis-
ible under transmission electron microscope [16]. The 2 µm  
regions between two Z-disks, identified as half-sarcomeres 
in figure 1, are the main contractile units. As we see in this 
figure, each half-sarcomere contains smaller structures called 
myofilaments.

The thin filaments, which are 8 nm  wide and 1 µm long, 
are composed of polymerized actin monomers. Their helix 
structure has a periodicity of about 38 nm , with each mon-
omer having a 5 nm  diameter. The thick filaments contain 
about 300 myosin II molecules per half-sarcomere, which 
corresponds to the density of 150 × 103 molecules per µm3. 
Each myosin II is a complex protein with 2 globular heads 
whose tails are assembled in a helix [44]. The tails of differ-
ent myosins are packed together and constitute the backbone 
of the thick filament from which the heads, known as cross-
bridges, project outward toward the surrounding actin fila-
ments. The cross-bridges are organized in a 3 stranded helix 
with a periodicity of 43.5nm  and the axial distance between 
two adjacent double heads of about 14.5nm  [45].
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Another important sarcomere protein, whose role in mus-
cle contraction remains ambigous, is titin. This gigantic mol-
ecule is anchored on the Z-disks, spans the whole sarcomere 
structure and passively controls the overstretching; about its 
potentially active functions see [46–49].

A broadly accepted microscopic picture of muscle con-
traction was proposed by A F Huxley and H E Huxley in the 
1950’s, see a historical review in [50]. The development of 
electron myograph and X ray diffraction techniques at that time 
allowed the researcheres to observe the dynamics of the dark 
and light bands during fiber contraction [51–53]. The physi-
cal mechanism of force generation was first elucidated in [54], 
where contraction was explicitly linked to the relative sliding of 
the myofilaments and explained by a repeated, millisecond long 
attachement-pulling interaction between the thick and thin fila-
ments; some conceptual alternatives are discussed in [55–57]

The sliding-filament hypothesis [53, 58] assumes that dur-
ing contraction actin filaments move past myosin filaments 
while actively interacting with them through the myosin cross-
bridges. Biochemical studies in solution showed that acto-
myosin interaction is powered by the hydrolysis of ATP into 
ADP and phosphate Pi [59]. The motor part of the myosin head 
acts as an enzyme which, on one side, increases the hydroly-
sis reaction rate and on the other side converts the released 
chemical energy into useful work. Each ATP molecule pro-
vides  ∼100 zJ (zepta = 10−21) which is equivalent to  ∼25kbT  
at room temperature, where kb = 1.381 × 10−23 J · K−1 is 
the Boltzmann constant and T is the absolute temperature in 
K. The whole system remains in permanent disequilibrium 
because the chemical potentials of the reactant (ATP) and the 
products of the hydrolysis reaction (ADP and Pi) are kept out 
of balance by a steadily operating exterior metabolic source of 
energy [16, 17, 60].

The stochastic interaction between individual myosin cross 
bridges and the adjacent actin filaments includes, in addition 
to cyclic attachment of myosin heads to actin binding sites, 
concurrent conformational change in the core of the myosin 
catalytic domain (of folding-unfolding type). A lever arm 
amplifies this structural transformation producing the power 
stroke, which is the crucial part of a mechanism allowing 
the attached cross bridges to generate macroscopic forces  
[16, 17].

A basic biochemical model of the myosin ATPase reaction 
in solution, linking together the attachment-detachment and the 

power stroke, is known as the Lymn–Taylor (LT) cycle [59]. It 
incorporates the most important chemical states, known as M-ATP, 
A-M-ADP-Pi, AM-ADP and AM, and associates them with par
ticular mechanical configurations of the acto-myosin complex, see 
figure 2. The LT cycle consists of 4 steps [17, 35, 61, 62]:

	 (i)	1→2 Attachment. The myosin head (M) is initially 
detached from actin in a pre-power stroke configuration. 
ATP is in its hydrolyzed form ADP  +  Pi, which generates 
a high affinity to actin binding sites (A). The attachment 
takes place while the conformational mechanism is in 
pre-power stroke state.

	(ii)	2→3 Power-stroke. Conformational change during which 
the myosin head executes a rotation around the binding 
site accompanied with a displacement increment of a few 
nm and a force generation of a few pN. During the power 
stroke, phosphate (Pi) is released.

	(iii)	3→4 Detachment. Separation from actin filament occurs 
after the power stroke is completed while the myosin 
head remains in its post power stroke state. Detachment 
coincides with the release of the second hydrolysis 
product ADP which considerably destabilize the attached 
state. As the myosin head detaches, a fresh ATP molecule 
is recruited.

	(iv)	4→1 Re-cocking (or repriming). ATP hydrolysis pro-
vides the energy necessary to recharge the power stroke 
mechanism.

While this basic cycle has been complicated progressively to 
match an increasing body of experimental data [63–67], the 
minimal LT description is believed to be irreducible [68]. 
However, its association with microscopic structural details 
and relation to specific micro-mechanical interactions remain 
a subject of debate [69–71]. Another complication is that the 
influence of mechanical loading on the transition rates, that is 
practically impossible to simulate in experiments on isolated 
proteins, remains unconstrained by the purely biochemical 
models.

M line half-sarcomere cross-bridgeZ disk

myosin actintitin

Figure 1.  Schematic representation of a segment of myofibril 
showing the elementary force generating unit: the half-sarcomere. 
Z-disks are passive cross-linkers responsible for the crystalline 
structure of the muscle actin network; M-lines bundle myosin 
molecules into global active cross-linkers. Titin proteins connect the 
Z-disks inside each sarcomere.

Figure 2.  Representation of the Lymn–Taylor cycle, where each 
mechanical state (1 → 4) is associated with a chemical state 
(M-ADP-Pi, A-M-ADP-Pi, A-M-ADP and M-ATP). During one 
cycle, the myosin motor executes one power-stroke (2 → 3) and 
hydrolyses one ATP molecule (4 → 1).
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An important feature of the LT cycle, which appears to 
be loading independent, is the association of vastly different 
time scales to individual biochemical steps, see figure 2. For 
instance, the power stroke, taking place at  ∼1 ms time scale, is 
the fastest step. It is believed to be independent of ATP activ-
ity which takes place at the orders of magnitude slower time 
scale, 30–100 ms [66, 72]. The rate limiting step of the whole 
cycle is the release of ADP with a characteristic time of  ∼100
ms, which matches the rate of tension rise in an isometric 
tetanus.

1.2.  Mechanical response

1.2.1.  Isometric force and isotonic shortening velocity.  Typi-
cal experimental setup for measuring the mechanical response 
of a muscle fibers involves a motor and a force transducer 
between which the muscle fiber is mounted. The fiber is main-
tained in an appropriate physiological solution and is electro 
stimulated. When the distance between the extremities of the 
fibers is kept constant (length clamp or hard device loading), 
the fully activated (tetanized) fiber generates an active force 
called the isometric tension T0 which depends on the sarco-
mere length L [73, 74].

The measured ‘tension-elongation’ curve T0(L), shown in 
figure 3(a), reflects the degree of filament overlap in each half 
sarcomere. At small sarcomere lengths (L ∼ 1.8 µm), the iso-
metric tension level increases linearly as the detrimental over-
lap (frustration) diminishes. Around L = 2.1µm, the tension 
reaches a plateau Tmax, the physiological regime, where all 
available myosin cross-bridges have a possibility to bind actin 
filament. The descending limb corresponds to regimes where 
the optimal filament overlap progressively reduces (see more 
about this regime in section 5).

One of the main experiments addressing the mechanical 
behavior of skeletal muscles under applied force (load clamp or 
soft loading device) was conducted by Hill [76], who introduced 
the notion of ‘force-velocity’ relation. First the muscle fiber was 
stimulated under isometric conditions producing a force T0. 
Then the control device was switched to the load clamp mode 
and a load step was applied to the fiber which shortened (or elon-
gated) in response to the new force level. After a transient [77] 

the system reached a steady state where the shortening velocity 
could be measured. A different protocol producing essentially 
the same result was used in [78] where a ramp shortening (or 
stretch) was applied to a fiber in length clamp mode and the ten-
sion measured at a particular stage of the time response. Note 
that in contrast to the case of passive friction, the active force-
velocity relation for tetanized muscle enters the quadrant where 
the dissipation is negative, see figure 3(b).

1.2.2.  Fast isometric and isotonic transients.  The mechani-
cal responses characterized by the tension-elongation relation 
and the force-velocity relation are associated with timescales 
of the order of 100 ms. To shed light on the processes at the 
millisecond time scale, fast load clamp experiments were 
performed in [82–84]. Length clamp experiments were first 
conducted in [79], where a single fiber was mounted between 
a force transducer and a loudspeaker motor able to deliver 
length steps completed in  ∼100 μs. More specifically, after 
the isometric tension was reached, a length step δL (measured 
in nanometer per half sarcomere, nm hs−1) was applied to the 
fiber, with a feedback from a striation following device that 
allowed to control the step size per sarcomere, see figure 4(a). 
Such experimental protocols have since become standard in 
the field [81, 85–88].

The observed response could be decomposed into 4 phases:
(0 → 1) from 0 to  ∼100 µs (phase 1). The tension (respec-

tively sarcomere length) is altered simultaneously with the 
length step (respectively force step) and reaches a level T1 
(respectively L1) at the end of the step. The values T1 and L1 
depend linearly on the loading (see figure 5, circles), and char-
acterize the instant elastic response of the fiber. Various T1 
and L1 measurements in different conditions allow one to link 
the instantaneous elasticity with different structural elements 
of the sarcomere, in particular to isolate the elasticity of the 
cross bridges from the elasticity of passive structures such as 
the myofilaments, see [89–91].

(1 → 2) from  ∼100 µs to  ∼3 ms (phase 2). In length clamp 
experiments, the tension is quickly recovered up to a plateau 
level T2 close but below the original level T0; see figure 4(a) 
and open squares in figure 5. Such quick recovery is too fast 
to engage the attachment-detachment processes and can be 

Figure 3.  Isometric contraction (a) and isotonic shortening (b) experiments. (a) Isometric force T0 as function of the sarcomere length 
linked to the amount of filament overlap. (b) Force-velocity relation obtained during isotonic shortening. Data in (b) are taken from [75].
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explained by the synchronized power stroke involving the 
attached heads [79]. For small step amplitudes δL, the ten-
sion T2 is practically equal to the original tension T0, see the 
plateau on the T2 vs. elongation relation in figure 5. In load 
clamp experiment, the fiber shortens or elongates towards the 
level L2, see filled squares in figure 5. Note that on figure 5, 
the measured L2 points overlap with the T2 points except that 
the plateau appears to be missing. In load clamp the value of 
L2 at loads close to T0 has been difficult to measure because 
of the presence of oscillations, see [92]. At larger steps, the 
tension T2 start to depend linearly on the length step because 
the power stroke capacity of the attached heads has been 
saturated.

(2 → 3 → 4) In force clamp transients after  ∼3 ms the ten-
sion rises slowly from the plateau to its original value T0, see 
figure 4(a). This phase corresponds to the cyclic attachment 
and detachment of the heads see figure 2, which starts with the 
detachment of the heads that where initially attached in iso-
metric conditions (phase 3). In load clamp transients phase 4 
is clearly identified by a shortening at a constant velocity, see 
figure 4(c), which, being plotted against the force, reproduces 
the Hill’s force-velocity relation, see figure 3(b).

First attempts to rationalize the fast stages of these experi-
ments [79] have led to the insight that we deal here with  
mechanical snap-springs performing a transition between two 
configurations. The role of the external loading reduces to 
biasing mechanically one of the two states. The idea of bista-
bility in the structure of myosin heads has been later fully sup-
ported by crystallographic studies [96–98].

Based on the experimental results shown in figure 5 one 
may come to a conclusion that the transient responses of mus-
cle fibers to fast loading in hard (length clamp) and soft (load 

clamp) devices are identical. However, a careful analysis of 
figure 5 shows that the data for the load clamp protocol are 
missing in the area adjacent to the state of isometric contrac-
tions (around T0). Moreover, the two protocols are clearly 
characterized by different kinetics. 

Recall that the rate of fast force recovery can be inter-
preted as the inverse of the time scale separating the end of 
phase 1 and the end of phase 2. The experimental results 
obtained in soft and hard device can be compared if we pre-
sent the recovery rate as a function of the final elongation of 
the system. In this way, one can compare kinetics in the two 
ensembles using the same initial and final states; see dashed 
lines in figure 5. A detailed quantitative comparison, shown 
in figure  6, reveals considerably slower response when the 
system follows the soft device protocol (filled symbols).  

Figure 4.  Fast transients in mechanical experiments on single muscle fibers in length clamp (hard device, (a) and (b)); and in force clamp 
(soft device, (c) and (d)). Typical experimental responses are shown separately on a slow timescale ((a) and (c)) and on a fast time scale ((b) 
and (d)). In (a) and (c) the numbers indicate the distinctive steps of the transient responses: the elastic response (1), the processes associated 
with passive power stroke (2) and the ATP driven approach to a steady state (3-4). Data are adopted from [79–81].

Figure 5.  Tension elongation relation reflecting the state of the 
system at the end of phase 1 (circles) and phase 2 (squares) in both 
length clamp (open symbols) and force clamp (filled symbols). Data 
are taken from [77, 85, 87, 93–95].
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The dependence of the relaxation rate on the type of loading 
was first noticed in [100] and then confirmed by the direct 
measurements in [101]. These discrepancies will be addressed 
in section 2.

We complement this brief overview of the experimental 
results with an observation that a seemingly natural, purely 
passive interpretation of the power stroke is in apparent disa-
greement with the fact that the power stroke is an active force 
generating step in the Lymn–Taylor cross bridge cycle. The 
challenge of resolving this paradox served as a motivation for 
several theoretical developments reviewed in this paper.

1.3.  Modeling approaches

1.3.1.  Chemomechanical models.  The idea to combine 
mechanics and chemistry in the modeling of muscle contrac-
tion was proposed by Huxley [54]. The original model was 
focused exclusively on the attachment-detachment process 
and the events related to the slow time scale (hundreds of 
milliseconds). The attachment-detachment process was inter-
preted as an out-of-equilibrium reaction biased by a drift with 
a given velocity [66, 72]. The generated force was linked to 
the occupancy of continuously distributed chemical states and 
the attempt was made to justify the observed force-velocity 
relations (see figure 3(b)) using appropriately chosen kinetic 
constants. This approach was brought to full generality by 
Hill and collaborators [102–106]. More recently, the chemo-
mechanical modelling was extended to account for energetics, 
to include the power-stroke activity and to study the influence 
of collective effects [66, 86, 107–115].

In the general chemo-mechanical approach muscle con-
traction is perceived as a set of reactions among a variety of 
chemical states [66, 67, 86, 116, 117]. The mechanical feed-
back is achieved through the dependence of the kinetic con-
stants on the total force exerted by the system on the loading 
device. The chemical states form a network which describes 
on one side, various stages of the enzymatic reaction, and on 
the other side, different mechanical configurations of the sys-
tem. While some of crystallographically identified states have 
been successfully linked with particular sites of the chemi-
cal network (attached and detached [54], strongly and weakly 
attached [66], pre and post power stroke [79], associated 

with the first or second myosin head [94], etc), the chemo-
mechanical models remain largely phenomenological as the 
functions characterizing the dependence of the rate constants 
on the state of the force generating springs are typically cho-
sen to match the observations instead of being derived from a 
microscopic model.

In other words, due to the presence of mechanical elements, 
the standard discrete chemical states are replaced by continu-
ously parameterized configurational ‘manifolds’. Even after 
the local conditions of detailed balance are fulfilled, this leads 
to the functional freedom in assigning the transition rates. This 
freedom originates from the lack of information about the 
actual energy barriers separating individual chemical states 
and the uncertainty was used as a tool to fit experimental data. 
This has led to the development of a comprehensive phenome-
nological description of muscle contraction that is compatible 
with available measurements, see, for instance, [67] and the 
references therein. The use of phenomenological expressions, 
however, gives only limited insight into the micro-mechan-
ical functioning of the force generating mechanism, leaves 
some lagoons in the understanding, as in the case of ensemble 
dependent kinetics, and ultimately has a restricted predictive 
power.

1.3.2.  Power stroke models.  To model fast force recovery 
Huxley and Simmons (HS) [79] proposed to describe it as a 
chemical reaction between the folded and unfolded configura-
tions of the attached cross bridges with the reaction rates linked 
to the structure of the underlying energy landscape. Almost 
identical descriptions of mechanically driven conformational 
changes were proposed, apparently independently, in the stud-
ies of cell adhesion [118, 119], and in the context of hair cell 
gating [120, 121]. For all these systems the HS model can be 
viewed as a fundamental mean-field prototype, see [122].

While the scenario proposed by HS is in agreement with 
the fact that the power stroke is the fastest step in the Lymn–
Taylor (LT) enzymatic cycle, see [16, 59], there remained a 
formal disagreement with the existing biochemical picture, 
see figure 7. Thus, HS assumed that the mechanism of the fast 
force recovery is passive and can be reduced to a mechani-
cally induced conformational change. In contrast, the LT cycle 
for actomyosin complexes is based on the assumption that the 
power stroke can be reversed only actively through the com-
pletion of the biochemical pathway including ADP release, 
myosin unbinding, binding of uncleaved ATP, splitting of ATP 
into ADP and Pi, and then rebinding of myosin to actin [59, 
67], see figure 2. While HS postulated that the power stroke 
can be reversed by mechanical means, most of the biochemi-
cal literature is based on the assumption that the power-stroke 
recocking cannot be accomplished without the presence of 
ATP. In particular, physiological fluctuations involving power 
stroke are alsmost exclusively interpreted in the context of 
active behavior [123–129]. The purely mechanistic approach 
of HS, presuming that the power-stroke-related leg of the 
LT cycle can be decoupled from the rest of the biochemical 
pathway, was pursued, in [117, 130], but did not reach the 
mainstream.

Figure 6.  Drastically different kinetics in phase 2 of the fast 
load recovery in length clamp (circles) and force clamp (squares) 
experiments. Data are from [77, 79, 85–87, 93]. 

Rep. Prog. Phys. 81 (2018) 036602



Review

7

1.3.3.  Brownian ratchet models.  In contrast to chemo-
mechanical models, the early theory of Brownian motors fol-
lowed largely a mechanically explicit path, see [131–139]. In 
this approach, the motion of myosin II was represented by a 
biased diffusion of a particle (on a periodic asymmetric land-
scape) driven by a colored noise. The white component of 
the noise reflects the presence of a heat reservoir while the 
correlated component mimics the non-equilibrium chemi-
cal environment. Later, such purely mechanical approach 
was parallelled by the development of the equivalent chem-
istry-centered discrete models of Brownian ratchets, see for 
instance, [38, 140–143].

First direct applications of the Brownian ratchet mod-
els to muscle contraction can be found in [144–146], where 
the focus was on the attachment-detachment process at the 
expense of the phenomena at the short time scales (power 
stroke). In other words, the early models had a tendency to col-
lapse the four state Lymn–Taylor cycle onto a two states cycle 
by absorbing the configurational changes associated with the 
transitions M-ATP  →  M-ADP-Pi and A-M-ADP-Pi  →  A-M-
ADP into more general transitions M-ATP  →  AM-ADP and 
AM-ADP  →  M-ATP. Following [54], the complexity of the 
structure of the myosin head was reduced to a single degree of 
freedom representing a stretch of a series elastic spring. This 
simplification offered considerable analytical transparency 
and opened the way towards the study of stochastic thermody-
namics and efficiency of motor systems, e.g. [141, 147, 148].

Later, considerable efforts were dedicated to the develop-
ment of synthetic descriptions, containing both ratchet and 
power stroke elements [113, 114, 144, 145, 149–151]. In 
particular, numerous attempts have been made to unify the 
attachement-detachment-centered models with the power 
stroke-centered ones in a generalized chemo-mechanical 
framework [60, 66, 67, 86, 87, 106, 115, 117, 145, 152–155]. 
The ensuing models have reached the level of sophistication 
allowing their authors to deal with collective effects, includ-
ing the analysis of traveling waves and coherent oscillations  
[60, 111, 115, 144, 156–160]. In particular, myosin-myosin 
coupling was studied in models of interacting motors [114, 
153] and emergent phenomena characterized by large scale 
entrainment signatures were identified in [36, 111, 115, 123, 
124, 149].

The importance of these discoveries is corroborated by the 
fact that macroscopic fluctuations in the groups of myosins 
have been also observed experimentally. In particular,  consid-
erable coordination between individual elements was detected 

in close to stall conditions giving rise to synchronized oscilla-
tions which could be measured even at the scale of the whole 
myofibril, see [26, 82, 92, 150, 161–163]. The synchroniza-
tion also revealed itself through macro-scale spatial inhomo-
geneities reported near stall force condition [164–167]. 

In ratchet models the cooperative behavior was explained 
without direct reference to the power stroke by the fact that 
the mechanical state of one motor influences the kinetics of 
other motors. The long-range elastic interactions were linked 
to the presence of filamental backbones which are known to 
be elastically compliant [168, 169].

The fact, that similar cooperative behavior of myosin cross-
bridges has been also detected experimentally at short time 
scales, during fast force recovery [92], suggests that at least 
some level of synchronization should be already within reach 
of the power-stroke-centered models disregarding motor activ-
ity and focusing exclusively on passive mechanical behavior. 
Elucidating the mechanism of such passive synchronization 
will be one of our main goals of section 2.

1.4.  Organization of the paper

In this review, we focus exclusively on models emphasizing 
the mechanical side of the force generation processes. The 
mechanical models affirm that in some situations the micro-
scale stochastic dynamics of the force generating units can 
be adequately represented by chemical reactions. However, 
they also point to cases when one ends up unnecessarily con-
strained by the chemo-mechanical point of view.

The physical theories, emphasized in this review, are in tune 
with the approach pioneered by Huxley and Simmons in their 
study of fast force recovery and with the general approach of 
the theory of molecular motors. The elementary contractile 
mechanisms are modeled by systems of stochastic differential 
equations  describing random walk in complex energy land-
scapes. These landscapes serve as a representation of both the 
structure and the interactions in the system, in particular, they 
embody various local and nonlocal mechanical feedbacks.

In contrast to fully microscopic molecular dynamical 
reconstructions of multi-particle dynamics, the reviewed 
mechano-centered models operate with few collective degrees 
of freedom. The loading is transmitted directly by applied 
forces while different types of noises serve as a representation 
of non-mechanical external driving mechanisms that contain 
both equilibrium and non-equilibrium components. Due to the 
inherent stochasticity of such mesoscopic systems [141], the 
emphasis is shifted from the averaged behavior, favored by 
chemo-mechanical approaches, to the study of the full prob-
ability distributions.

In section 2 we show that even in the absence of metabolic 
fuel, long-range interactions, communicated by passive cross-
linkers, can ensure a highly nontrivial cooperative behavior 
of interacting muscle cross-bridges. This implies ensemble 
dependence, metastability and criticality which all serve to 
warrant efficient collective stroke in the presence of thermal 
fluctuations. We argue that in the near critical regimes the 
barriers are not high enough for the Kramers approximation 
to be valid [170, 171] which challenges chemistry-centered 

Figure 7.  Biochemical versus purely mechanistic description of the 
power stroke in skeletal muscles: (a) The Lymn–Taylor four-state 
cycle, LT(71) and (b) the Huxley-Simmons two-state cycle, HS 
(71). Adapted figure with permission from [122], Copyright (2016) 
by the American Physical Society.
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approaches. Another important contribution of the physi-
cal theory is in the emphasis on fluctuations as an important 
source of structural information. A particularly interesting 
conclusion of this section  is the realization that a particular 
number of cross-bridges in realistic half-sarcomeres may be 
a signature of an (evolutionary) fine tuning of the mechanical 
response to criticality.

In section 3 we address the effects of correlated noise on 
force generation in isometric conditions. We focus on the pos-
sibility of the emergence of new noise-induced energy wells 
and stabilization of the states that are unstable in strictly equi-
librium conditions. The implied transition from negative to 
positive rigidity can be linked to time correlations in the out-
of-equilibrium driving and the reviewed work shows that subtle 
differences in the active noise may compromise the emergence 
of such ‘non-equilibrium’ free energy wells. These results sug-
gest that ATP hydrolysis may be involved in tuning the mus-
cle system to near-criticality, which appears to be a plausible 
description of the physiological state of isometric contraction.

In section  4 we introduce mechanical models bringing 
together the attachment-detachment and the power stroke. To 
make a clear distinction between these models and the con-
ventional models of Brownian ratchets we operate in a frame-
work when the actin track is nonpolar and the bistable element 
is unbiased. The symmetry breaking is achieved exclusively 
through the coupling of the two subsystems. Quite remark-
ably, a simple mechanical model of this type formulated in 
terms of continuous Langevin dynamics can reproduce all four 
discrete states of the minimal LT cycle. In particular, it dem-
onstrates that contraction can be propelled directly through a 
conformational change, which implies that the power stroke 
may serve as the leading mechanism not only at short but also 
at long time scales.

Finally, in section 5 we address the behavior of the con-
tractile system on the descending limb of the isometric teta-
nus, a segment of the force length relation with a negative 
stiffness. Despite potential mechanical instability, the iso-
metric tetanus in these regimes is usually associated with a 
quasi-affine deformation. The mechanics-centered approach 
allows one to interpret these results in terms of energy 
landscape whose ruggedness is responsible for the exper
imentally observed history dependence and hysteresis near 
the descending limb. In this approach both the ground states 
and the marginally stable states emerge as fine mixtures of 

short and long half-sarcomeres and the negative overall slope 
of the tetanus is shown to coexists with a positive instantane-
ous stiffness. A version of the mechanical model, accounting 
for surrounding tissues, produces an intriguing prediction 
that the energetically optimal variation of the degree of non-
uniformity with stretch must exhibits a devil’s staircase-type 
behavior.

The review part ends with section 6 where we go over some 
non-muscle applications of the proposed mechanical models. 
In section 7 we formulate conclusions and discuss directions 
of future research.

2.  Passive force generation

In this section, to understand the phenomenon of fast force 
recovery, we limit ourselves to models of passive force 
generation.

First of all we need to identify an elementary unit whose 
force producing function is irreducible. The second issue 
concerns the structure of the interactions between such units. 
The goal here is to determine whether the consideration of 
an isolated force-producing element is meaningful in view of 
the presence of various feedback loops. The pertinence of this 
question is corroborated by the presence of hierarchies that 
undermine the independence of individual units.

The schematic topological structure of the force generat-
ing network in skeletal muscles is shown in figure 8. Here we 
see that behind the apparent series architecture that one can 
expect to dominate in crystals, there is a system of intricate 
parallel connections accomplished by passive cross-linkers. 
Such elastic elements play the role of backbones linking ele-
ments at smaller scales. The emerging hierarchy is dominated 
by long range interactions which make the ‘muscle crystal’ 
rather different from the conventional inert solids.

The analysis of figure 8 suggests that the simplest nontrivial 
structural element of the network is a half-sarcomere that can 
be represented as a bundle of finite number of cross-bridges. 
The analysis presented below shows that such model can-
not be simplified further because, for instance, the mechani-
cal response of individual cross-bridges is not compatible by 
itself with observations.

The minimal model of this type was proposed by Huxley 
and Simmons (HS) who described myosin cross-bridges 
as hard spin elements connected to linear springs loaded in 

A AB

(a)

A B A

(b)

• •

• •

• •

• •

• •

• •

half-sarcomere • • •

elementary unit

•A •
B

• A

(c)

Figure 8.  Structure of a myofibril. (a) Anatomic organization of half sarcomeres linked by Z disks (A) and M lines (B). (b) Schematic 
representation of the network of half sarcomeres; (c) Topological structure of the same network emphasizing the dominance of long-range 
interactions.
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parallel [79]. In this section, we show that the stochastic ver-
sion of the HS model is capable of reproducing qualitatively 
the mechanical response of a muscle submitted to fast external 
loading in both length clamp (hard device) and force clamp 
(soft device) settings (see figure 6). We also address the ques-
tion whether the simplest series connection of HS elements is 
compatible with the idea of an affine response of the whole 
muscle fiber.

Needless to say that the oversimplified model of HS does 
not address the full topological complexity of the cross-bridge 
organization presented in figure 8. Furthermore, the 3D steric 
effects that appear to be crucially important for the description 
of spontaneous oscillatory contractions [149, 163, 165, 167, 
172–174], and the effects of regulatory proteins responsible 
for steric blocking [175–179], are completely outside the HS 
framework.

2.1.  Hard spin model

Consider now in detail the minimal model [79, 100, 122, 180, 
181] which interprets the pre- and post-power-stroke confor-
mations of the myosin heads as discrete (chemical) states. 
Since these states can be viewed as two configurations of a 
‘digital’ switch, such model belongs to the hard spin category.

The potential energy of an individual spin unit can be writ-
ten in the form

uHS(x) =
{

v0 if x = 0,
0 if x = −a.� (2.1)

where the variable x takes two values, 0 and −a, describing 
the unfolded and the folded conformations, respectively. By a 
we denoted the ‘reference’ size of the conformational change 
interpreted as the distance between the two energy wells. With 
the unfolded state we associate an energy level v0 while the 
folded configuration is considered as a zero energy state, see 
figure  9(a). In addition to a spin unit with energy (2.1) we 
assume that each cross-bridge contains a linear spring with 
stiffness κ0 in series with the bi-stable unit; see figure 9(b).

The attached cross-bridges are connecting myosin and 
actin filaments which play the role of elastic backbones. Their 
function is to provide mechanical feedback and coordinate 
the mechanical state of the individual cross-bridges [168, 
169]. There is evidence [89, 95] that a lump description of the 
combined elasticity of actin and myosin filaments by a sin-
gle spring is adequate, see also [89, 101, 182–184]. Hence we 
represent a generic half sarcomere as a cluster of N  parallel 
HS elements and assume that this parallel bundle is connected 
in series to a linear spring of stiffness κb.

We chose a as the characteristic length of the system, κ0a as 
the characteristic force, and κ0a2as the characteristic energy. 
The resulting dimensionless energy of the whole system (per 
cross bridge) at fixed total elongation z takes the form

v(x; z) =
1
N

N∑
i=1

[
(1 + xi) v0 +

1
2
(y − xi)

2 +
λb

2
(z − y)2

]
,

� (2.2)

where λb = κb/(Nκ0), y represents the elongation of the clus-
ter of parallel cross bridges and xi = {0,−1}, see figure 9(b). 
Here, for simplicity, we did not modify the notations as we 
switched to non-dimensional quantities.

It is important to note that here we intentionally depart 
from the notations introduced in the experimental literature, 
section 1.2. For instance, the length of the half sarcomere was 
there denoted by L, which is now z. Furthermore, the tension 
which was previously T  will be now denoted by σ while we 
keep the notation T  for the ambient temperature.

2.1.1.  Soft and hard devices.  It is instructive to consider first 
the two limit cases, λb = ∞ and λb = 0.

Zero temperature behavior.  If λb = ∞, the backbone is infi-
nitely rigid and the array of cross-bridges is loaded in a hard 
device with y being the control parameter. Due to the permu-
tational invariance of the energy

v(x; y) =
1
N

N∑
i=1

[
(1 + xi) v0 +

1
2
(y − xi)

2
]

,� (2.3)

each equilibrium state is fully characterized by a discrete 
order parameter representing the fraction of cross-bridges in 
the folded (post power stroke) state

p = − 1
N

N∑
i=1

xi.

At zero temperature all equilibrium configurations with a 
given p correspond to local minima of the energy (2.3), see 
[180]. These metastable states can be viewed as simple mix-
tures the two states, one fully folded with p = 1, and the 
energy (1/2)(y + 1)2, and the other one fully unfolded with 
p = 0, and the energy (1/2)y2 + v0. The energy of the mix-
ture reads

v̂( p; y) = p
1
2
(y + 1)2

+ (1 − p)
[

1
2

y2 + v0

]
.� (2.4)

The absence of a mixing energy is a manifestation of the fact 
that the two populations of cross-bridges do not interact.

Figure 9.  Hard spin model of a parallel bundle of bistable 
crossbridges connected to a common elastic backbone. (a) Energy 
landscape of an individual power stroke element (b) N  cross 
bridges connected to an elastic backbone with stiffness κb. Adapted 
figure with permission from [100], Copyright (2013) by the 
American Physical Society.
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The energies of the metastable states parameterized by p are 
shown in figures  10(c)–(e). Introducing the reference elonga-
tion y0 = v0 − 1/2, one can show that the global minimum of 
the energy corresponds either to folded state with p = 1, or to 
unfolded state with p = 0. At the transition point y = y0, all met-
astable states have the same energy, which means that the global 
switching can be performed at zero energy cost, see figure 10(d).

The tension-elongation relations along metastable branches 

parameterized by p can be presented as σ̂( p; z) = ∂
∂z v̂( p; y) =

y + p, where σ denotes the tension (per cross-bridge). At fixed 
p, we obtain equidistant parallel lines, see figures 10(a) and (b). 
At the crossing (folding) point y = y0, the system following the 
global minimum exhibits a singular negative stiffness. Artificial 
metamaterial showing negative stiffness has been recently engi-
neered by drawing on the Braess paradox for decentralized 
globally connected networks [13, 185, 186]. Biological exam-
ples of systems with non-convex energy and negative stiffness 
are provided by RNA and DNA hairpins and hair bundles in 
auditory cells [121, 187–189].

In the other limit λb → 0, the backbone becomes infinitely 
soft (z − y → ∞) and if λb(z − y) → σ the system behaves as 
if it was loaded in a soft device, where now the tension σ is the 
control parameter. The relevant energy can be written in the form

w(x, y;σ) = v(x, y)− σz

=
1
N

N∑
i=1

[
(1 + xi) v0 +

1
2
(y − xi)

2 − σy
]

,

�

(2.5)

The order parameter p parametrizes again the branches of 
local minimizers of the energy (2.5), see [180]. At a given 
value of p, the energy of a metastable state reads

ŵ( p;σ) = −1
2
σ2 + pσ +

1
2

p(1 − p) + (1 − p)v0.� (2.6)

In contrast to the case of a hard device (see equation (2.4)), 
here there is a nontrivial coupling term p(1 − p) describing 

the energy of a regular solution. The presence of this term 
is a signature of a mean-field interaction among individual 
cross-bridges.

The tension-elongation relations describing the set 
of metastable states can be now written in the form 
ẑ( p;σ) = − ∂

∂σ ŵ( p;σ) = σ − p. The global minimum of the 
energy is again attained either at p = 1 or p = 0, with a sharp 
transition at σ = σ0 = v0, which leads to a plateau on the ten-
sion- elongation curve see figure 10(b). Note that even in the 
continuum limit the stable ‘material’ response of this system 
in hard and soft devices differ and this ensemble nonequiva-
lence is a manifestation of the presence of long-range interac-
tions. To illustrate this point further, we consider the energetic 
cost of mixing in the two loading devices at the conditions of 
the switch between pure states, see figures 10(d) and (g). In 
the hard device (see (d)) the energy dependence on p in this 
state is flat suggesting that there is no barrier, while in the soft 
device (see (g)) the energy is concave which means that there 
is a barrier.

To develop intuition about the observed inequivalence, it 
is instructive to take a closer look at the minimal system with 
N = 2, see figure  11. Here for simplicity we assumed that 
v0 = 0 implying σ0 = 0 and y0 = −1/2. The two pure con-
figurations are labeled as A (p = 0) and C (p = 1) at σ = σ0 
and as D (p = 0) and B (p = 1) at y = y0. In a hard device, 
where the two elements do not interact, the transition from 
state D to state B at a given y = y0 goes through the configu-
ration B + D, which has the same energy as configurations 
D and B: the cross-bridges in folded and unfolded states are 
geometrically compatible and their mixing requires no addi-
tional energy. Instead, in a soft device, where individual ele-
ments interact, a transition from state A to state C taking place 
at a given σ = 0 requires passing through the transition state 
A + C  which has a nonzero pre-stress. Pure states in this mix-
ture state have different values of y, and therefore the energy 
of the mixed configuration A + C , which is stressed, is larger 
than the energies of the pure unstressed states A and C. We 

Figure 10.  Behavior of a HS model with N = 10 at zero temperature. ((a) and (b)) Tension-elongation relations corresponding to the 
metastable states (gray) and along the global minimum path (thick lines), in hard (a) and soft (b) devices. ((c)–(e)) (respectively ((f)–(h))) 
Energy levels of the metastable states corresponding to p = 0, 0.1, . . . , 1, at different elongations y (respectively tensions σ). Corresponding 
transitions (E → B, P → Q, ...) are shown in (a) and (b). Adapted from [180], Copyright (2015), with permission from Elsevier.
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also observe that in a soft device the transition between the 
pure states is cooperative requiring essential interaction of 
individual elements while in a hard device it takes place inde-
pendently in each element.

Finite temperature behavior.  We now turn to finite temper
ature to check the robustness of the observations made in the 
previous section.

Consider first the hard device case λb = ∞, consid-
ered chemo-mechanically in the seminal paper of HS [79], 
see [122] for the statistical interpretation. With the vari-
able y serving now as the control parameter, the equilibrium 
probability density for a micro-state x with N  elements 
takes the form ρ(x; y,β) = Z(y,β)−1 exp [−βv(x; y)],  
where β = (κ0a2)/(kbT) with T being the absolute 
temperature and kb the Boltzmann constant. The partition  

function is Z(y,β) =
∑

x∈{0,−1}N exp [−βNv(x; y)] = [Z1(y,β)]N , 
where Z1 represents the partition function of a single element 
given by

Z1(y,β) = exp

[
−β

2
(y + 1)2

]
+ exp

[
−β

(
y2

2
+ v0

)]
.

� (2.7)

Therefore one can write ρ(x; y,β) =
∏N

i=1 ρ1(xi; y,β), where 
we have introduced the equilibrium probability distribution 
for a single element

ρ1(x; y,β) = Z1(y,β)−1 exp [−βv(x; y)] ,� (2.8)

with v(x; y)—the energy of a single element.
The lack of cooperativity in this case is clear if one consid-

ers the marginal probability density at fixed p

ρ(p; y,β) =
(

N
Np

)
[ρ1(−1; y,β)]Np

[ρ1(0; y,β)]N(1−p)

= Z(y,β)−1 exp[−βNf (p; y,β)],

where f ( p; y,β) = v̂(y, p)− (1/β) s( p) is the mar-
ginal free energy, v̂ is given by equation  (2.4) and 

s( p) = 1
N log

(
N
Np

)
, is the ideal entropy, see figure  12. 

In the thermodynamic limit N → ∞ we obtain explicit 
expression f∞( p; y,β) = v̂( p; y)− (1/β) s∞( p), where  
s∞( p) = − [ p log( p) + (1 − p) log(1 − p)] . The function  

f∞( p) is always convex since ∂2

∂p2 f∞( p; y,β) =[
β p(1 − p)

]−1
> 0, and therefore the marginal free energy 

always has a single minimum p∗(y,β) corresponding to 
a microscopic mixture of de-synchronized elements, see 
figure 12(b).

These results show that the equilibrium (average) proper-
ties of a cluster of HS elements in a hard device can be fully 
recovered if we know the properties of a single element—the 
problem studied in [79]. In particular, the equilibrium free 
energy f̃ (z,β) = f ( p∗;σ,β), where p∗ is the minimum of the 
marginal free energy f  (see figure 12(c)) can be written in the 
HS form

f̃ (y,β) = − 1
βN

log [Z(y,β)] =
1
2

y2 + v0 +
y − y0

2

− 1
β
ln

{
2 cosh

[
β

2
(y − y0)

]}
,

�

(2.9)

which is also an expression of the free energy in the simplest 
paramagnetic Ising model [190]. Its dependence on elonga-
tion is illustrated in figure 13(a). We observe that for β � 4 
(super-critical temperatures), the free energy is convex while 
for β > 4 (sub-critical temperatures), it is non-convex. The 
emergence of an unusual ‘pseudo-critical’ temperature 
β = βc = 4 in this paramagnetic system is a result of the 
presence of the quadratic energy associated with the ‘applied 
field’ y, see equation (2.9).

The ensuing equilibrium tension-elongation relation (per 
cross-bridge) is identical to the expression obtained in [79],

〈σ〉 (y,β) =
∂f
∂y

= σ0 + y − y0 −
1
2
tanh

[
β

2
(y − y0)

]
.�
(2.10)

As a result of the nonconvexity of the free energy, the depend
ence of the tension 〈σ〉 on y can be non-monotone, see fig-
ure 13(b). Indeed, the equilibrium stiffness

κ(y,β) = ∂ 〈σ〉 (y,β)/∂y

= 1 − (β/4) {sech [β (y − y0) /2]}2 ,
�

(2.11)

is a sign-indefinite sum of two terms: κB = 1, representing the 
Born elastic susceptibility associated with affine deformation 
and the fluctuation part κF = (β/4) {sech [β (y − y0) /2]}2 
describing fluctuation induced non-affine contributions  
[176, 191].

In connection with these results we observe that the differ-
ence between the quasi-static stiffness of myosin II measured 
by single molecule techniques, and its instantaneous stiffness 
obtained from mechanical tests on myofibrils, may be due to 
the fluctuational term κF, see [91, 192, 193]. Note also that the 
fluctuation-related term does not disappear in the zero temper
ature limit (producing a delta function type contribution to the 

−1 1

−1

1

B

D
AC

y − y0

σ
C + C A + A

B + DA + C

B + B

D + D

Figure 11.  Behavior of two cross bridges connected in parallel. 
Thick line: global minimum path in a soft device (σ0 = 0). Dashed 
lines, metastable states p = 0, and p = 1. The intermediate 
stress-free configuration is obtained either by mixing the two 
geometrically compatible states B and D in a hard device, which 
results in a B + D structure without additional internal stress, or by 
mixing the two geometrically incompatible states A and C in a soft 
device, which results in a A + C  structure with internal residual 
stress. Adapted from [180], Copyright (2015), with permission from 
Elsevier.
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Figure 14.  Marginal free energy g at σ = σ0 in the thermodynamic 
limit N → ∞ for β = 2 (a) and β = 6 (b). The inserts show the 
energy profile of g after elimination of y. Contours associated to 
energy higher than 0.08 are not shown. Here v0 = 1.

affine response at y = y0), which is a manifestation of a (sin-
gular) glassy behavior [194, 195].

It is interesting that while fitting their experimental data HS 
used exactly the critical value β = 4, corresponding to zero 
stiffness in the state of isometric contraction. Negative stiff-
ness, resulting from non-additivity of the system, prevails at 
subcritical temperatures; in this range a shortening of an ele-
ment leads to tension increase which can be interpreted as a 
meta-material behavior [13, 100, 196].

In the soft device case λb = 0, the probabil-
ity density associated with a microstate x is given by 
ρ(x, y;σ,β) = Z(σ,β)−1 exp [−βNw(x, y;σ)] where the  

partition function is now Z(σ,β) =
∫

dy
∑

x∈{0,1}N

exp {−βN [v(x; y)− σy]} .
By integrating out the internal variable xi, we obtain the 

marginal probability density depending on the two order 
parameters, y and p,

ρ( p, y;σ,β) = Z(σ,β)−1 exp [−βNg( p; y;σ,β)] .� (2.12)

Here we introduced the marginal free energy

g(p, y;σ,β) = f (p, y,β)− σy

= v̂(p, y)− σy − (1/β)s(p),
�

(2.13)

which is convex at large temperatures and non-convex (with 
two metastable wells) at low temperatures, see figure 14, sig-
naling the presence of a genuine critical point.

By integrating the distribution (2.12) over p we obtain the 
marginal distribution ρ(y;σ,β) = Z−1 exp [−βNg(y;σ,β)] 

Figure 12.  Hill-type energy landscapes in a hard device, for N = 1 (a) and N = 4 (b). (c) Equilibrium free-energy profile f̃  (solid line), 
which is independent of N  together with the metastable states for N = 4 (dotted lines). Here v0 = 1/2 and β = 10. Adapted figure with 
permission from [122], Copyright (2016) by the American Physical Society.

Figure 13.  Equilibrium properties of the HS model in a hard device for different values of temperature. (a) Helmholtz free energy;  
(b) tension-elongation relations; (c) stiffness. For y ∈ (y−, y+), the stiffness is negative. In the limit β → ∞ (dot-dashed line), 
corresponding to zero temperature, the stiffness κ diverges at y = y0. Adapted figure with permission from [122], Copyright (2016) by the 
American Physical Society.
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where g(y;σ,β) = f̃ (y;β)− σy, with f̃  being the equilibrium 
free energy of the system in a hard device, see equation (2.9). 
This free energy has more than one stable state as long as the 
equation  f̃ ′(y)− σ = 0 has more than one solution. Since f̃ ′ 
is precisely the average tension elongation-relation in the hard 
device case, we find that the critical temperature is exactly 
βc = 4. The same result could be also obtained directly as a 
condition of the positive definiteness of the Hessian for the 
free energy (2.13) (in the thermodynamic limit).

The physical origin of the predicted second order phase 
transition becomes clear if instead of p we now eliminate y 
and introduce the marginal free energy at fixed p. In the (more 
transparent) thermodynamic limit we can write

g∞( p;σ,β) = ŵ( p,σ)− β−1s∞( p),� (2.14)

where ŵ = −(1/2)σ2 + p(σ − σ0) + (1/2) p(1 − p) + v0, is 
the zero temperature energy of the metastable states parame-
trized by p, see equation (2.6) and figure 10. Since the entropy 
s∞( p) is convex with a maximum at p = 1/2, the convexity 
of the free energy depends on the competition between the 
term p(1 − p) reflecting purely mechanical interaction and the 
term s∞( p)/β, with the the later dominating at low β.

The Gibbs free energy g∞(σ,β) and the corresponding 
force-elongation relations are illustrated in figure 15. In (a), 
the energies of the critical points of the free energy (2.14) are 
represented as function of the loading and the temperature, 
with several isothermal sections  of the energy landscape 
are shown in (b). For each critical point p̂, the elongation 
ŷ = σ − p̂ is shown in figure 15(c).

At σ = σ0 = v0, the free energy g∞ becomes sym-
metric with respect to p = 1/2 and therefore we have 
〈p〉 (σ0,β) = 1/2, independently of the value of β. The struc-
ture of the second order phase transition is further illustrated 
in figure 16(a).

Both mechanical and thermal properties of the system 
can be obtained from the probability density (2.12). By 
eliminating y and taking the thermodynamic limit N → ∞ 
we obtain ρ∞( p;σ,β) = Z−1 exp [−βNg∞( p;σ,β)] with 
Z(σ,β) =

∑
p exp[−βNg∞( p;σ,β)]. The average mechani-

cal behavior of the system is now controlled by the global min-
imizer p∗(σ,β) of the marginal free energy g∞, for instance, 
g̃(σ,β) = g∞( p∗,σ,β) and 〈p〉 (σ,β) = p∗(σ,β), The 
average elongation 〈y〉 (σ,β) = σ − p∗(σ,β) is illustrated 
in figure  16(c), for the case β = 5. The jump at σ = σ0 

Figure 15.  Mechanical behavior along metastable branches. (a) Free energy of the metastable states. For β > 4 (see dotted line), three 
energy levels coexist at the same tension. (b) Free energy at three different temperatures. (c) Tension-elongation relations.

Figure 16.  Phase transition at σ = σ0, and its effect on the stochastic dynamics. (a) Bifurcation diagram at σ = σ0. Lines show minima of 
the Gibbs free energy g∞. ((b) and (c)) Tension-elongation relations corresponding to the metastable states (gray) and in the global minimum 
path (black). ((d)–(e)) Collective dynamics with N = 100 in a soft device under constant force at different temperatures. Here the loading is 
such that 〈p〉 = 1/2 for all values of β. Adapted figure with permission from [100], Copyright (2013) by the American Physical Society.
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corresponds to the switch of the global minimum from C to A, 
see figures 16(a) and (c).

In figures  16(d)–(f) we also illustrate typical stochastic 
behavior of the order parameter p at fixed tension σ = σ0 
(ensuring that 〈p〉 = 1/2). Observe that in the ordered (low 
temperature, ferromagnetic) phase (see (f)), the thermal 
equilibrium is realized through the formation of temporal 
microstructure, a domain structure in time, which implies 
intermittent jumps between ordered metastable (long liv-
ing) configurations. Such transitions are observed during the 
unzipping of biomolecules, see, for instance, [197].

In figure  17 we show the equilibrium susceptibility 

χ(σ,β) = − ∂
∂σ 〈p〉 (σ,β) = Nβ

〈
[ p − 〈p〉 (σ,β)]2

〉
� 0, which  

diverges at β = βc  and σ = σ0. We can also compute 
the equilibrium stiffness κ(σ,β)−1 = 1

N
∂
∂σ 〈y〉 (σ,β) =

β 〈[y − 〈y〉 (σ,β)]2〉 � 0, where 〈y〉 (σ,β) = σ − 〈p〉 (σ,β), 

and see that it is always positive in the soft device. This is 
another manifestation of the fact that the soft and hard device 
ensembles are not equivalent.

At the critical point (β = 4, σ = σ0), the marginal 
energy of the system has a degenerate minimum corre
sponding to the configuration with p = 1/2; see figure 15((c) 
dashed line). Near the critical point, we have the asymp-
totics p ∼ 1/2 ± (

√
3/4)[β − 4]1/2, for σ = σ0, and 

p ∼ 1/2 − sign[σ − σ0] [(3/4) |σ − σ0|]1/3 , for β = 4, show-
ing that the critical exponents take the classical mean field val-

ues [190]. Similarly we obtain 〈y〉 − y0 = ±(
√

3/4) [β − 4]1/2, 
for σ = σ0, and 〈y〉 − y0 = sign[σ − σ0] [(3/4) |σ − σ0|]1/3, 
for β = 4. In critical conditions, where the stiffness is equal 
to 0, the system becomes anomalously reactive for instance 
being exposed to small positive (negative) force increment it 
instantaneously unfolds (folds).

In figure 18 we summarize the mechanical behavior of the 
system in hard ((a) and (b)) and soft devices ((c) and (d)). In 
a hard device, the system develops negative stiffness below 
the critical temperature while remaining de-synchronized and 
fluctuating at fast time scale. Instead, in the soft device the 
stiffness is always non-negative. However, below the critical 
temperature the tension elongation relation develops a plateau 
which corresponds to cooperative (macroscopic) fluctuations 
between two highly synchronized metastable states. In the 
soft device ensemble, the pseudo-critical point of the hard 

device ensemble becomes a real critical point with diverging 
susceptibility and classical mean field critical exponents. For 
the detailed study of the thermal properties in soft and hard 
devices, see [122, 181].

2.1.2.  Mixed device.  Consider now the general case when λb 
is finite. In the muscle context this parameter can be inter-
preted as the lump description of myofilaments elasticity [89, 
91, 95], in cell adhesion it can be identified either with the 
stiffness of the extracellular medium or with the stiffness of 
the intracellular stress fiber [119, 198, 199], and for protein 
folding in optical tweezers, it can be viewed as the elasticity 
of the optical trap or the DNA handles [187, 189, 200–205].

The presence of an additional series spring introduces a 
new macroscopic degree of freedom because the elongation 
of the bundle of parallel cross-bridges y can be now differ-
ent from the total elongation of the system z, see figure 9. At 
zero temperature, the metastable states are again fully char-
acterized by the order parameter p, representing the fraction 
of cross-bridges in the folded (post-power-stroke) configura-
tion. At equilibrium, the elongation of the bundle is given by 
ŷ = (λbz − p) /(1 + λb), so that the energy of a metastable 
state is now v̂b( p; z) = v̂( p; ŷ) + (λb/2)(z − ŷ)2, which can 
be rewritten as

v̂b(p; z) =
λb

2(1 + λb)

[
p(z + 1)2 + (1 − p)z2]

+ (1 − p)v0 +
p(1 − p)
2(1 + λb)

.

�

(2.15)

Notice the presence of the coupling term  ∼p(1 − p), charac-
terizing the mean field interaction between cross-bridges. One 
can see that this term vanishes in the limit λb → ∞. Again, 
when λb → 0 and z − y → ∞, while λb(z − y) → σ , we 
recover the soft device potential modulo an irrelevant constant.

The global minimum of the energy (2.15) corresponds to 
one of the fully synchronized configurations (p = 0 or p = 1). 

Figure 17.  Susceptibility χ(σ,β) shown as a function of the 
loading parameter (a) and of the temperature (b).

Figure 18.  Different regimes for the HS model in the two limit 
cases of hard ((a) and (b)) and soft devices ((c) and (d)). In a hard 
device, the pseudo critical temperature β−1

c = 1/4 separates a 
regime where the tension elongation is monotone (a) from the 
region where the system develops negative stiffness (b). In soft 
device, this pseudo critical point becomes a real critical point above 
which (β > βc) the system becomes bistable (d).
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These two configurations are separated at the transition point 
z = z0 = (1 + λb)v0/λb − 1/2, by an energy barrier whose 
height now depends on the value of λb, see [180] for more detail.

At finite temperature, the marginal free energy at fixed p 
and y can be written in the form

fm( p, y; z,β) = f ( p; y,β) +
λb

2
(z − y)2,� (2.16)

where f  is the marginal free energy for the system in a hard 
device (at fixed y). Averaging over y brings about the inter-
action among cross-bridges exactly as in the case of a soft 
device. The only difference with the soft device case is that 
the interaction strength now depends on the new dimension-
less parameter λb.

The convexity properties of the energy (2.16) can be stud-
ied by computing the Hessian,

H( p, y; z,β) =

(
1 + λb 1

1 [βp (1 − p)]−1

)
� (2.17)

which is positive definite if β < βc  where the critical temper
ature is now β∗

c = 4(1 + λb). The latter relation also defines 
the critical line λb = λc(β) = β/4 − 1, separating disordered 
phase (λb > λc), where the marginal free energy has a single 
minimum, from the ordered phase (λb < λc), where the sys-
tem can be bi-stable.

As in the soft device case, elimination of the internal vari-
able p allows one to write the partition function in a mixed 
device as Z =

∫
exp {−βN [ fm(y; z,β)]} dy. Here fm  denotes 

the marginal free energy at fixed y and z

fm(y; z,β) = f̃ (y;β) + (λb/2)(z − y)2� (2.18)

and f̃  is the equilibrium free energy at fixed y, given by equa-
tion  (2.9). We can now obtain the equilibrium free energy 
f̃m = −(1/β) log [Z(z,β)] and compute its successive deriva-
tives. In particular the tension-elongation relation 〈σ〉 (〈y〉) 
and the equilibrium stiffness κm  can be written the form

〈σ〉 = λb [z − 〈y〉] ,

κm = λb

[
1 − βNλb

(〈
y2〉− 〈y〉2

)]
.

As in the soft device case, we have in the thermodynamic 
limit, 〈y〉 (z,β) = y∗(z,β), where y∗ is the global mini-
mum of the marginal free energy (2.18). We can also write 

κm = κ(y∗,β)λb
κ(y∗,β)+λb

, where κ is the thermal equilibrium stiffness 

of the system at fixed y, see equation (2.11). Since λb > 0, we 
find that the stiffness of the system becomes negative when 
κ becomes negative, which takes place at low temperatures 
when β > 4.

Our results in the mixed device case are summarized in 
figure 19(a) where we show the phase diagram of the system 
in the (λb,β−1) plane. The hard and soft device limits, which 
we have already analyzed, correspond to points (a)–(d). At 
finite λb there are three ‘phases’: (i) In phase I, corresponding 
to β < 4, the marginal free energy (2.18) is convex and the 
equilibrium tension elongation relation is monotone; (ii) In 
phase II (4 < β < 4(1 + λb), see (e)) the free energy is still 
convex but the tension-elongation becomes non monotone; 
(iii) In phase III [β > 4(1 + λb)], the marginal free energy 
(2.18) is non convex and the equilibrium response contains a 
jump, see (f) in the right panel of figure 19.

2.1.3.  Kinetics.  Consider bi-stable elements described by 
microscopic variables xi whose dynamics can be represented 
as a of series of jumps between the two states. The probabili-
ties of the direct and reverse transitions in the time interval dt 
can be written as

P(xi(t + dt) = −1|xi(t) = 0) = k+(y,β)dt,
P(xi(t + dt) = 0|xi(t) = −1) = k−(y,β)dt.�

(2.19)

Here k+(y,β) (resp. k−(y,β)) is the transition rate for the 
jump from the unfolded state (resp. folded state) to the folded 
state (resp. unfolded state). The presence of the jumps is a 

Figure 19.  Phase diagram in the mixed device. The hard and soft device cases, already presented in figure 18, correspond to the limits  
(a)–(d). In the mixed device, the system exhibits three phases, labeled I, II and III in the left panel. The right panels show typical 
dependence of the energy and the force on the loading parameter z and on the average internal elongation 〈y〉 in the subcritical (phase 
II, (e)) and in the supercritical (phase III, (f)) regimes. In phase I, the response of the system is monotone; it is analogous to the behavior 
obtained in a hard device for β < 4, see figure 18(b). In phase II, the system exhibits negative stiffness but no collective switching 
except for the soft device limit λb → 0, see figure 18(d). In phase III (supercritical regime), the system shows an interval of macroscopic 
bistability (see dotted lines) leading to abrupt transitions in the equilibrium response (solid line).
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Figure 21.  (a) Generalization of the Huxley and Simmons model 
of the energy barriers based on the idea of the transition state v∗ 
corresponding to the conformation �. (b) Equilibration rate between 
the states as function of the loading parameter at different values 
of �. The original HS model corresponds to the case � = −1. In 
(b) v0 = 1, v∗ = 1.2 and β = 2. Dotted lines in (b) is a schematic 
representation of diffusion (versus reaction) dominated processes. 
Adapted from [181].

shortcoming of the hard spin model of Huxley and Simmons 
[79] and in the model with non-degenerate elastic bi-sta-
ble elements (soft spins) they are replaced by a continuous 
Langevin dynamics [100, 206], see section 2.2.4.

To compute the transition rates k±(y,β) without know-
ing the energy landscape separating the two spin states, we 
first follow [79] who simply combined the elastic energy of 
the linear spring with the idea of the flat microscopic energy 
landscape between the wells, see figures  20(a) and (b) for 
the notations. Assuming further that the resulting barriers E0 
and E1 = E0 + v0 are large comparing to kbT , we can use the 
Kramers approximation and write the transition rates in the 
form

k+(y,β) = k− exp [−β (y − y0)] ,
k−(y,β) = exp [−β E1] = const,� (2.20)

where k− determines the timescale of the dynamic response: 
τ = 1/k− = exp [β E1] . The latter is fully controlled by a 
single parameter E1 whose value was chosen by HS to match 
the observations.

Note that equation  (2.20) is only valid if y > −1/2 (see 
figure  20(a)), which ensures that the energy barrier for the 
transition from pre- to post- power stroke is actually affected 
by the load. In the range y < −1/2, omitted by HS, the for-
ward rate becomes constant, see figure 20(a).

The fact that only one transition rate in the HS approach 
depends on the load makes the kinetic model non-symmet-
ric: the overall equilibration rate between the two states 
r = k+ + k− monotonously decreases with stretching. For a 
long time this seemed to be in accordance with experiments 
[79, 85, 87, 207], however, a recent reinterpretation of the 
experimental results in [99] suggested that the recovery rate 
may eventually increase with the amplitude of stretching. 
This finding can be made compatible with the HS frame-
work if we assume that both energy barriers, for the power 
stroke and for the reverse power stroke, are load dependent, 
see figure 21, and [181] for more details. This turns out to 
be a built-in property of the soft spin model considered in 
section 2.2.

In the hard spin model with N elements, a single stochastic 
trajectory can be viewed as a random walk characterized by 
the transition probabilities

P
[
pt+dt = pt + 1/N

]
= φ+(pt, t)dt,

P
[
pt+dt = pt − 1/N

]
= φ−(pt, t)dt,

P
[
pt+dt = pt] = 1 − [φ+(pt, t) + φ−(pt, t)] dt

�

(2.21)
where the rate φ+ (resp. φ−) describes the probability for one 
of the unfolded (resp. folded) elements to fold (resp. unfold) 
within the time-window dt. While in the case of a hard device 
we could simply write φ+(t) = N(1 − pt)k+(y,β), and 
φ−(t) = Nptk−, in both soft and mixed devices, y becomes 
an internal variable whose evolution become dependent on p, 
making the corresponding dynamics non-linear.

The isothermal stochastic dynamics of the system specified 
by the transition rates (2.20) is most naturally described in 
terms of the probability density ρ( p, t). It satisfies the master 
equation,

∂

∂t
ρ( p, t) =φ+ (1 − p + 1/N, t) ρ ( p − 1/N, t)

+ φ− ( p + 1/N; t) ρ ( p + 1/N, t)

− [φ+(1 − p; t) + φ−( p; t)] ρ ( p, t) ,

�

(2.22)

where φ+ and φ− are the transition rates introduced in equa-
tion  (2.21). This equation  generalizes the HS mean-field 
kinetic equation dealing with the evolution of the first moment 
〈p〉 (t) =

∑
p ρ( p, t), namely

∂

∂t
〈p〉 (t) = 〈φ+(1 − p, t)〉 − 〈φ−( p, t)〉 .� (2.23)

In the case of a hard device, studied by HS, the linear depend
ence of φ± on p allows one to compute the averages on the 
right hand side of (2.23) explicitly. The result is the first order 
reaction equation of HS

∂

∂t
〈p〉 = k+(y) (1 − 〈p〉)− k−(y) 〈p〉 .� (2.24)

Figure 20.  Energy barriers in the HS model. (a) and (b) Two 
main regimes. The regime (b) was not considered by Huxley and 
Simmons. (c) Relaxation rate as function of the total elongation y. 
The characteristic timescale is τ = exp[βE1]. Adapted figure with 
permission from [122], Copyright (2016) by the American Physical 
Society.
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In (2.24) the transition probabilities (2.19) depend only 
on the control parameter y and the trajectories of individual 
elements are independent. Hence, at a given y each macro-
configuration can be viewed as a realization of N  equiva-
lent Bernoulli processes with the probability of success 
ρ1(t) = ρ1(−1; y(t),β) = 〈p(y(t),β)〉 represented by a solu-
tion of the HS reaction equation (2.24). Therefore the prob-
ability density ρ( p, t) = P( pt = p) is a binomial distribution 
with parameters N  and 〈p(t)〉:

ρ(p, t) =
(

N
Np

)
[〈p(t)〉]Np

[1 − 〈p(t)〉]N−Np .� (2.25)

The entire distribution is then enslaved to the dynamics of the 
order parameter 〈p〉 (t) captured by the original HS model. It is 
then straightforward to show that in the long time limit the dis-
tribution (2.25) converges to the Boltzmann distribution (2.8).

In the soft and mixed devices the cross-bridges interact and 
the kinetic picture is more complex. To simplify the setting, 
we assume that the relaxation time associated with the internal 
variable y is negligible comparing to other time scales. This 
implies that the variable y can be considered as equilibrated, 
meaning in turn that y = ŷ( p,σ) = σ − p in a soft device 
and y = ŷ( p, z) = (1 + λb)

−1(λbz − p), in a mixed device. 
Below, we briefly discuss the soft device case, which already 
captures the effect of the mechanical coupling in the kinetics 
of the system. Details of this analysis can be found in [181].

To characterize the transition rates in a cluster of N > 1 
elements under fixed external force, we introduce the energy 
w̃( p, p∗) corresponding to a configuration where p elements 
are folded (xi = −1) and p∗ elements are at the transition 
state (xi = �), see figure  21. The energy landscape separat-
ing two configurations p and q can be represented in terms 
of the ‘reaction coordinate’ ξ = p − x(q − p), see figure 22. 
The transition rates between neighboring metastable states 
can be computed explicitly using our generalized HS model 
(see figure 21),

τφ+(p;σ,β) = N(1 − p) exp [−β∆w̃+(p;σ)] ,
τφ−(p;σ,β) = Np exp [−β∆w̃−(p;σ)] ,

�
(2.26)

where (∆w̃±) are the energy barriers separating neighboring  
states,

∆w̃+(p;σ) = −�(σ − p)− σ0 + (1 +
3
N
)
�2

2

∆w̃−(p;σ) = −(�+ 1)(σ − p) + (1 +
3
N
)
�2

2
− 1 + N + 2�

2N
.

�

In (2.26) 1/τ = α exp[−β v∗], with α = const, determining 
the overall timescale of the response. The mechanical cou-
pling appearing in the exponent of (2.26) makes the dynamics 
non-linear.

To understand the peculiarities of the time dependent 
response of the parallel bundle of N cross-bridges brought 
about by the above nonlinearity, it is instructive to first exam-
ine the expression for the mean first passage time τ( p → p′) 
characterizing transitions between two metastable states with 
Np and Np′ (p < p′) folded elements.

Following [208] (and omitting the dependence on σ and 
β), we can write

τ( p → p′) =
Np′∑

Nk=Np

[ρ(k) φ+(k)]
−1

Nk∑
Ni=0

ρ(i),� (2.27)

where ρ  is the marginal equilibrium distribution at fixed p 
and φ+ is the forward rate. In the case β > βc  for the interval 
of loading [σ−,σ+], the marginal free energy g∞ (see (2.14)) 
has two minima which we denote p = p1 and p = p0, with 
p0 < p1. The minima are separated by a maximum located at 
p = p̂. We can distinguish two process: (i) The intra-bassin 
relaxation, which corresponds to reaching the metastable 
states (p = 0 or p = 1) starting from the top of the energy 
barrier p̂ and (ii) The inter-basin relaxation, which deals with 
transitions between the macro-states.

For the intra-basin relaxation, the first passage time can be 
computed using equation (2.27), see [181]. The resulting rates 
φ̃(p̂ → p0,1) ≡ 1/[τ(p̂ → p0,1)] are essentially independent of 
the load and scale with 1/N , see figure 23(a).

Regarding the transition between the two macrostates, we 
note that equation (2.27) can be simplified if N  is sufficiently 
large. In this case, the sums in equation (2.27) can be trans-
formed into integrals

τ(p0 → p1) = N2
∫ p1

p0

[ρ∞(u)φ+(u)]
−1

[∫ u

0
ρ∞(v)dv

]
du,

� (2.28)
where ρ∞ ∼ exp[−βNg∞] is the marginal distribution in the 
thermodynamic limit. The inner integral in equation  (2.28) 
can be computed using Laplace method. Noticing that the 
function g∞ has a single minimum in the interval [0, u > p0] 
located at p0, we can write

τ(p0→p1)=

[
2πN

β |g′′
∞(p0)|

]1
2
∫ p1

p0

[ρ∞(u)φ+(u)]
−1
ρ∞(p0)du.

In the remaining integral, the inverse density (1/ρ∞) is sharply 
peaked at p = p̂ so again using Laplace method we obtain

Figure 22.  Energy landscape characterizing the sequential folding 
process of N = 10 bistable elements in a soft device with σ = σ0. 
Parameters are v0 = 1, v∗ = 1.2, and � = −0.5. Adapted from 
[181].
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τ( p0 → p1) = 2π (N/β)φ+(p̂)−1 | g′′∞( p0) g′′∞(p̂) |−
1
2

exp {β N [g∞(p̂)− g∞( p0)]} .
�

(2.29)

We see that the first passage time is of the order of exp[N∆g∞], 
see equation (2.29), where ∆g∞ is the height of the energy 
barrier separating the two metastable states. In the thermody-
namic limit, this energy barrier grows exponentially with N , 
which freezes collective inter-basin dynamics and generates 
metastability, see figures 23(b) and (c) and [181]. The above 
analysis can be generalized for the case of a mixed device by 
replacing the soft device marginal free energy g by its mixed 
device analog.

The kinetic behavior of the system in the general case is 
illustrated in figure 24. The individual trajectories generated 
by the stochastic equation  (2.21) are shown for N = 100. 
The system is subjected to a slow stretching in hard ((a) and 
(b)), soft ((c) and (d)) and mixed ((e) and (f)) devices. These 
numerical experiments mimic various loading protocols used 
for unzipping tests in biological macro-molecules [187, 200, 
204, 209].

Observe that individual trajectories at finite N  show a suc-
cession of jumps corresponding to collective folding-unfold-
ing events. At large temperatures, see figures 24(a), (c) and 
(e), the transition between the folded and the unfolded state is 
smooth and is associated with a continuous drift of a unimodal 
density distribution, see inserts in figure 24. In the hard device 
such behavior persists even at low temperatures, see (b), 
which correlates with the fact that the marginal free energy 
in this case is always convex. Below the critical temperature 
((d) and (f)), the mechanical response becomes hysteretic. 
The hysteresis is due to the presence of the macroscopic wells 
in the marginal free energy which is also evident from the 
bimodal distribution of the cross-bridges shown in the inserts. 
A study of the influence of the loading rate on the mechanical 
response of the system can be found in [181].

To illustrate the fast force recovery phenomenon, con-
sider the response of the system to an instantaneous load 
increment. We compare the behaviors predicted by the mas-
ter equation  (2.22) and by the mean-field chemical kinetic 
equation of HS. In figure 25 we see the anticipated slowing 

down induced by the collective effects at high loads and low 
temperatures (see (b) and (c), solid lines). The corresponding 
probability distributions at different times are illustrated in 
figures 25(e) and (f). The chemical kinetics approximation is 
accurate at large temperatures (see thin lines in figure 25(a)) 
but fails to reproduce the exact two scale dynamics at low 
temperatures, event though the final equilibrium states are 
captured correctly.

The difference between the chemo-mechanical descrip-
tion of HS and the stochastic simulation targeting the full 
probability distribution, is due to the fact that in the equa-
tion  describing the mean-field kinetics the transition rates 
are computed based on the average values of the order 
parameter. At large temperatures, where the distribution is 
uni-modal, the average values faithfully describe the most 
probable states and therefore the mean-field kinetic theory 
captures the timescale of the response adequately; see fig-
ure  25(a). Instead, at low temperatures, when the distri-
bution is bi-modal, the averaged values correspond to the 
states that are poorly populated; see figure  25(b) where 
〈p〉in = 1/2. The value of the order parameter, which actu-
ally makes kinetics slow, describes a particular metastable 
configuration rather than the average state and therefore 
the mean-field kinetic equation  fails to reproduce the real 
dynamics; see figures 25(b) and (c).

2.2.  Soft spin model

The hard spin model states that the slope of the T1 curve, 
describing instantaneous stiffness of the fiber, and the slope 
of the T2 curve are equal, which differs from what is observed 
experimentally, see figure 5. The soft spin model [100, 206] 
was developed to overcome this problem and to provide a 
purely mechanical continuous description of the phenomenon 
of fast force recovery. To this end, the discrete degrees of free-
dom were replaced by the continuous variables (xi); the latter 
can be interpreted as projected angles formed by the segment 
S1 of the myosin head with the actin finalament. Most impor-
tantly, the introduction of continuous variables has eliminated 
the necessity of using multiple intermediate configurations for 
the head domain [66, 67, 86].

Figure 23.  Intra- and inter-bassin relaxation rates in a soft device. (a) Relaxation towards the metastable state in the case of a reflecting 
barrier at p = p̂ (intra-bassin relaxation). ((b) and (c)) Transition between the two macroscopic configurations p0(σ) and p1(σ) (interbassin 
relaxation). (b) Forward [φ̃( p0 → p1)] and reverse [φ̃( p1 → p0)] rates. (c) Equilibration rate φ̃( p0 ↔ p1) = φ̃( p0 → p1) + φ̃( p1 → p0). 
Solid line, exact computation based on equation (2.27); dot-dashed line, thermodynamic limit approximation, see equation (2.29). The 
parameters are N = 200, β = 5 and � = −0.5. Reprinted from [181], Copyright (2015), with permission from Elsevier.

Rep. Prog. Phys. 81 (2018) 036602



Review

19

The simplest way to account for the bistability in the 
configuration of the myosin head is to associate a bi-
quadratic double-well energy uSS(xi) with each variable 
xi , see figure  26(a); interestingly, a comparison with the 
reconstructed potentials for unfolding biological macro-
molecules shows that a bi-quaqdratic approximation may 
be quantitavely adequate [187]. A nondegenerate spinodal 
region can be easily incorporated into this model, however, 
in this case we lose the desirable analytical transparency. 
It is sufficient for our purposes to keep the other ingredi-
ents of the hard spin model intact; the original variant of 
the soft spin model model [210] corresponded to the limit 
κb/(Nκ0) → ∞.

In the soft spin model the total energy of the cross bridge 
can be written in the form

v(x, y) = uSS(x) + (κ0/2)(y − x)2,� (2.30)

where

uSS(x) =
{ 1

2κ1(x)2 + v0 if x > �,
1
2κ2(x + a)2 if x � �.

� (2.31)

The parameter � describes the point of intersection of 
the 2 parabolas in the interval [−a, 0], and therefore 
v0 = (κ2/2)(�+ a)2 − (κ1/2) �2, is the energy difference 
between the pre-power-stroke and the post-power-stroke con-
figurations. It will be convenient to use normalized param
eters to characterize the asymmetry of the energy wells: 
λ2 = κ2/(1 + κ2) and λ1 = κ1/(1 + κ1).

The dimensionless total internal energy per element of a 
cluster now reads

v(x, y; z) =
1
N

N∑
i=1

[
uSS(xi) +

1
2
(y − xi)

2 +
λb

2
(z − y)2

]
,

� (2.32)

Figure 24.  Quasi-static response to ramp loading in different points of the phase diagram. ((a) and (b)) Hard device, see [122]; ((c) and 
(d)) soft device, see [181] and ((e) and (f)), mixed device. In each point, stochastic trajectories obtained from equation (2.21) (solid lines) 
are superimposed on the thermal equilibrium response (dashed lines). The inserts show selected snapshots of the probability distribution 
solving of the master equation (2.22). Reprinted from [180], Copyright (2015), with permission from Elsevier.

Figure 25.  Relaxation of the average conformation in response to fast force drops at different temperatures and initial conditions 〈p〉in . 
Thick lines, solutions of the master equation (2.22); thin lines, solutions of the mean-field HS equation. In (b), the initial condition 
corresponds to thermal equilibrium: bimodal distribution and 〈p〉in = 1/2. In (c), the initial condition corresponds to the unfolded 
metastable state: unimodal distribution and 〈p〉in ≈ 0.06. Snapshots at different times show the probability density profiles. Reprinted from 
[181], Copyright (2015), with permission from Elsevier.
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where λb = κb/(Nκ0). Here z is the control parameter. In a 
soft device case, the energy takes the form

w(x, y;σ) =
1
N

N∑
i=1

[
uSS(xi) +

1
2
(y − xi)

2 − σy
]

.� (2.33)

where σ is the applied tension per cross-bridge, (see [180] for 
the details).

2.2.1.  Zero temperature behavior.  By minimizing out the 
internal variable y and introducing again the fraction of cross 
cross bridges in the post power stroke state, p = 1

N

∑
αi, 

where αi = 1 if xi > � and 0 otherwise, we find that the global 
minimum of the energy again corresponds to one of the homo-
geneous states p = 0, 1 with a sharp transition at z = z0. We 
can also take advantage of the fact the soft spin model deals 
with continuous variables xi and define a continuous reaction 
path connecting metastable states with different number of 
folded units. Each folding event is characterized by a micro 
energy barrier that can be computed explicitly. The typical 
structure of the resulting energy landscape is illustrated in 
figure 27 as a function of a continuous ‘reaction coordinate’ 
ξ interpolating between the different values of p, for different 
values of the coupling parameter λb, see [180] for the details. 
In figure 28 we illustrate the zero temperature behavior of the 
soft-spin model with a realistic set of parameters, see table 1.

2.2.2.  Finite temperature behavior.  When z is the con-
trol parameter (mixed device), the equilibrium prob-
ability distribution for the remaining mechanical degrees 
of freedom can be written in the form ρ(x, y; z,β) =
Z−1(z,β) exp [−βNv (x, y; z)] , where β =(κ0a2)/(kbT) and 
Z(z,β) =

∫
exp [−βNv (x, y; z)] dxdy. In the soft device 

ensemble, z becomes a variable and the equilibrium distribu-
tion takes the form,

ρ(x, y, z;σ,β) = Z−1(σ,β) exp [−βNw (x, y, z;σ)] ,� (2.34)

with Z(σ,β) =
∫
exp [−βNw (x, y, z,σ)] dxdydz.

When z is fixed, the internal state of the system can be 
again characterized by the two mesoscopic parameters y and 
p. By integrating (2.34) over x and y we can define the mar-
ginal density ρ( p; z,β) = Z−1 exp [−βNf ( p; z,β)]. Here f  is 

the marginal free energy at fixed ( p, z) which is illustrated in 
figure 29.

As we see, the system undergoes an order-disorder phase 
transition which is controlled by the temperature and by the 
elasticity of the backbone. If the double well potential is sym-
metric (λ1 = λ2), this transition is of second order as in the 
hard spin model. A typical bifurcation diagrams for the case of 
slightly nonsymmetric energy wells are shown in figure 30. The 
main feature of the model without symmetry is that the second 
order phase transition becomes the first order phase transition.

A phase diagram obtained with realistic parameters (jus-
tified later in the paper) is shown in figures  31(a) and (b). 
Recalling that λb = κb/(Nκ0), we use (T ,λb) (see figure 31(a)) 
and (T , N) (see figure  31(b)) planes to represent the same 
configuration of phases. In Phases I and II, the marginal free 
energy f  has a single minimum while in Phase III it may have 
three critical points, two corresponding to metastable states 
and one to an unstable state. The equilibrium response can be 
obtained by computing the partition function Z  numerically. 
In the thermodynamic limit, we can employ the same meth-
ods as in the previous section  and identify the equilibrium 
mechanical properties of the system with the global minimum 
of the marginal free energy f . In figures 31(c)–(e), we illus-
trate the equilibrium mechanical response of the system: simi-
lar phase diagrams have been also obtained for other systems 
with long-range interactions [211].

While the soft spin model is analytically much less trans-
parent than the hard spin model, we can still show analytically 
that the system develops negative stiffness at sufficiently low 
temperatures. Indeed, we can write

f̃ ′′ = 〈σ〉′ = λb

[
1 − βNλb

〈
(y − 〈y〉)2

〉]
,

where f̃  is the equilibrium free energy of the system in a 
mixed device. This expression is sign indefinite and by the 
same reasoning as in the hard spin case, one can show that 
the critical line separating Phase I and Phase II is represented 
in figure 31 by a vertical line T = Tc. In phase I (T > Tc) the 
equilibrium free energy is convex and the resulting tension-
elongation is monotone. In Phase II (T < Tc) the equilibrium 

Figure 26.  Soft spin (snap-spring) model of a parallel cluster of 
cross-bridges. (a) Dimensional energy landscape of a bistable cross-
bridge. (b) Structure of a parallel bundle containing N   
cross-bridges. Adapted figure with permission from [100], 
Copyright (2013) by the American Physical Society. Figure 27.  Energy landscape along the global minimum path 

for the soft-spin model in a hard device at different values of 
the coupling parameter λb with N = 20. Adapted from [180], 
Copyright (2015), with permission from Elsevier. The asymmetry 
in the potential is the results of choosing λ2 �= λ1. Parameters are, 
λ2 = 0.4, λ1 = 0.7, � = −0.3.
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free energy is non-convex and the tension-elongation relation 
exhibits an interval with negative stiffness. In phase III the 
energy is non-convex within a finite interval around z = z0 
(see dotted line in figure 31(e)). As a result the system has to 
oscillate between two metastable states to remain in the global 
minimum of the free energy (solid line in figure 31(e)). The 
ensuing equilibrium tension-elongation curve is characterized 
by a jump located at z = z0.

Observe that the critical line separating Phase II and Phase 
III in figure 31(b) represents the minimum number of cross-
bridges necessary to have a cooperative behavior at a given 
value of the temperature. We see that for temperatures around 
300K, the critical value of N  is about 100 which corresponds 
approximately to the number of cross-bridges involved in iso-
metric contraction in each half-sarcomere, see section 2.2.3. 
This observation suggests that muscle fibers may be tuned to 
work close to the critical state, see [100]. A definitive statement 
of this type, however, cannot be made at this point in view of 
the considerable error bars in the data presented in table 1.

In a soft device, a similar analysis can be performed in 
terms of the marginal Gibbs free energy g( p;σ,β). A com-
parison of the free energies of a symmetric system in the hard 
and the soft device ensembles is presented in figure 32, where 
the parameters are such that the system in the hard device is in 
phase III, see figure 31.

We observe that both free energies are bi-stable in this range 
of parameters, however the energy barrier separating the two 
wells in the hard device case is about three times smaller than in 
the case of a soft device. Since the macroscopic energy barrier 
separating the two state is proportional to N , the characteristic 
time of a transition increases exponentially with N  as in the hard 
spin model, see section 2.1.3. Therefore the kinetics of the power-
stroke in will be exponentially slower in the soft device than in 
the hard device as it is observed in experiment, see more about 
this in the next section. Note also that the macroscopic oscilla-
tions are more coherent in a soft device than in a hard device.

By differentiating the equilibrium Gibbs free energy 
g̃(σ,β) = −1/(βN) log [Z(σ,β)] with respect to σ, we obtain 
the tension-elongation relation, which in a soft device is 
always monotone since

g̃′′ = −
[
1 + βN

〈
(z − 〈z〉)2

〉]
< 0.

This shows once again that soft and hard device ensembles are 
non-equivalent, in particular, that only the system in a hard 
device can exhibit negative susceptibility.

Figure 28.  Soft spin model at zero temperature with parameters adjusted to fit experimental data, see table 1. (a) Tension-elongation 
relations in the metastable states (gray area) and along the global minimum path (solid lines). ((b) and (c)) Energy landscape corresponding 
to successive transitions between the homogeneous states (A→B and C→F), respectively. ((d) and (e)) Size of the energy barriers 
corresponding to the individual folding (B→) and (B←) transitions at finite N  (open symbols) and in the thermodynamic limit (solid lines). 
Adapted from [180], Copyright (2015), with permission from Elsevier.

Figure 29.  Non equilibrium free energy at fixed (p, z) for the case 
of a symmetric power-stroke element with different sets (β,λb).  
Other parameters are λ1 = λ2 = 0.5, � = −0.5 and z0 = −1/2, 
which here ensures that 〈p〉 (z0) = 1/2.
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In figure 33, we illustrate the behavior of the equilibrium 
free energies f̃  and g̃ in thermodynamic limit (see (a) and 
(b)) together with the corresponding tension-elongation rela-
tions (see (b) and (d)), see [212] for the details. The tension 
and elongation are normalized by their values at the transition 
point where 〈p〉 = 1/2 while the value of β is taken from 
experiment (solid line). The bi-stability (metastability) takes 
place in the gray region and we see that this region is much 
wider in the soft device than in the hard device, which cor-
roborates that the energy barrier is higher in a soft device.

2.2.3.  Matching experiments.  The next step is to match the 
model with experimental data. The difficulty of the parameter 
identification lies in the fact that the experimental results vary 
depending on the species, and here we limit our analysis to 
the data obtained from rana temporaria [72, 77, 87, 89]. Typi-
cal values of the parameters of the non-dimensional model 
obtained from these data are listed in table 1.

The first parameter a is obtained from structural analysis 
of myosin II [72, 96–98]. It has been shown that that its ter-
tiary structure can be found in two conformations forming an 
angle of  ∼70◦. This corresponds to an axial displacement of 
the lever arm end of  ∼10 nm. We therefore fix the characteris-
tic length in our model at a = 10 ± 1 nm.

The absolute temperature T is set to 277.15 K which cor-
respond to 4 °C. This is the temperature at which most experi-
ments on frog muscles are performed [207].

Several experimental studies aimed at measuring the stiff-
ness of the myosin head and of the myofilaments (our back-
bone). One technique consists in applying rapid (100 µs)  
length steps to a tetanized fiber to obtain its overall stiff-
ness κtot , which corresponds to the elastic backbone in 
series with N  cross-bridges: κtot = (Nκ0 κb)/(Nκ0 + κb). 
The stiffness associated with the double well potential 
(κ1,2) is not included into this formula because the time of 
the purely elastic response is shorter than the time of the 
conformational change. This implies an assumption that  
the conformational degree of freedom is ‘frozen’ during the 
purely elastic response. Such assumption is supported by 
experiments reported in [213], where shortening steps were 
applied at different stages of the fast force recovery, which 
means during the power-stroke. The results show that the 
overall stiffness is the same in the recovery process and in 
the isometric conditions.

Figure 31.  Phase diagram of the soft spin model. ((a) and (b)) 
Boundaries between the phases I, II and III in the (T ,λb) space and 
in the (T , N) space, respectively. ((c)–(e)) Typical free energy f̃ , the 
tension-elongation relation 〈σ〉 (z) and the marginal free energy in 
each phase. The parameters are listed in table 1.

Table 1.  Realistic values (with estimated error bars) for 
the parameters of the snap-spring model (1 zJ = 10−21 J). 
Experimental values can be found in [91].

Dimensional Non-dimensional

a 10 ± 1 nm
κ0 2.7 ± 0.9 pN · nm−1 N 106 ± 11
T 277.15 K β 71 ± 26
κb 154 ± 8 pN · nm−1 λb 0.54 ± 0.19
κ1 3 ± 1 pN · nm−1 λ1 0.5 ± 0.1
κ2 1.05 ± 0.75 pN · nm−1 λ2 0.25 ± 0.15
v0 50 ± 10 zJ v0 0.15 ± 0.3

Figure 30.  Bifurcation diagram with non-symmetric wells. 
Solid (dashed) lines, local minima (maxima) of the free energy. 
Parameters are, λ2 = 0.47, λ1 = 0.53, � = −0.5, λb = 0.5 and 
β = 20. Here z is such that 〈p〉 = 1/2 for β = 20 and λb = 0.5.
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If we change the chemical environment inside the fiber 
by removing the cell membrane (‘skinning’) it is possible to 
perform the length steps under different calcium concentra-
tions. We recall that calcium ions bind to the tropomyosin 
complex to allow the attachment of myosin heads to actin. 
Therefore, by changing the calcium environment, one can 
change the number of attached motors (N ) and thus their 
contribution to the total stiffness while the contribution of the 
filaments remains the same, see [87, 89, 214]. Another solu-
tion is to apply rapid oscillations during the activation phase 
when force rises [101, 215]. These different techniques give 
κb ≈ 150 ± 10 pN · nm−1, a value which is compatible with 
independent x-ray measurements [81, 91, 93, 101, 168, 169, 
182, 216].

To determine the stiffness of a single element, elastic 
measurements have been performed on fibers in rigor mor-
tis where all the 294 cross-bridges of a half-sarcomere are 
attached, see [89]. Under the assumption that the filament 
elasticity is the same in rigor and in the state of tetanus, one 
can deduce the stiffness of a single cross-bridge. The value 
extracted from experiment is κ0 = 2.7 ± 0.9, pN · nm−1 
[77, 91, 101]. Given that we know the values of κ and 
a, we can estimate the non-dimensional inverse temperature, 
β = (κ0a2)/(kbT) = 71 ± 26.

Once κb and κ0 are known, the number of cross-bridges 
attached in the state of isometric contraction can be obtained 
directly from the formula κtot = (Nκ0 κb)/(Nκ0 + κb). 
Experimental data indicate that N ≈ 106 ± 11 [77, 87, 101]. 
We can then deduce the value of our coupling parameter, 
λb = κb/(Nκ0) ≈ 0.54 ± 0.19.

As we have seen, the phase diagram shown in figure 31(b), 
suggests a way to understand why N ≈ 100. Larger values of 
N are beneficial from the perspective of the total force devel-
oped by the system. However, reaching deep inside phase III 
means highly coherent response, which gets progressively 
more sluggish as N increases. In this sense being around the 
critical line would be a compromise between a high force and a 
high responsiveness. It follows from the developed theory that 
for the normal temperature the corresponding value of N would 
be exactly around 100; for an attempt of a similar evolution-
ary justification for the size of titin molecule, see [217]. There 

are, of course, other functional advantages of a near-criticality 
associated, for instance, with diverging correlation length and 
the possibility of fast coherent response.

At the end of the second phase of the fast force recovery (see 
section 1.2.2), the system reaches an equilibrium state charac-
terized by the tension T2 in a hard device or by the shortening 
L2 in a soft device. The values of these parameters are naturally 
linked with the equilibrium tension 〈σ〉 in a hard device and 
equilibrium length 〈z〉 in a soft device. In particular, the theory 
predicts that in the large deformation (shortening or stretch-
ing) regimes, the tension-elongation relation must be linear, 
see figure 33. The linear stiffness in these regimes corresponds 
to the series arrangement of N  elastic elements, each one with 
stiffness equal to either κ1 or κ2 and with a series spring char-
acterized by the stiffness κb. Using the classical dimensional 
notations ((T , L) instead of the non dimensional (σ, z)), the ten-
sion elongation relation at large shortening takes the form

T2(L) =
κ0κ2
κ0+κ2

κb
κ0κ2
κ0+κ2

+ κb
(L + a).

In experiment, the tension T2 drops to zero when a step 
L2 ≈ −14 nm hs−1 (nanometer per half-sarcomere) is applied 
to the initial configuration L0 therefore L0 = −a − L2. Since 
a = 11 nm, we obtain L0 = 3.2 nm. Using a linear fit of the 
experimental curve shown in figure 5 (shortening) we finally 
obtain κ2 ≈ 1 pN · nm−1.

The value of κ1 is more difficult to determine since there 
are only few experimental studies of stretching [94, 218]. 
Based on the available measurements, we conclude that the 
stiffness in stretching is 1.5 larger than in shortening which 
gives κ1 ≈ 3.6 pN · nm−1. The recent analysis of the fast 
force recovery [99] confirms this estimate.

The last parameter to determine is the intrinsic bias of the 
double well potential, v0, which controls the active tension 
in the isometric state. The tetanus of a single sarcomere in 
physiological conditions is of the oder of 500 pN [77, 101]. 
If we adjust v0 to ensure that the equilibrium tension matches 
this value, we obtain v0 ≈ 50 zJ. This energetic bias can also 
be interpreted as the maximum amount of mechanical work 
that the cross-bridge can produce during one stroke. Since the 
amount of metabolic energy resulting from the hydrolysis of 
one ATP molecule is of the order of 100 zJ we obtain a maxi-
mum efficiency around 50% which agrees with the value cur
rently favoured in the literature [18, 219].

2.2.4.  Kinetics.  After the values of the nondimensional 
parameters are identified, one can simulate numerically the 
kinetics of fast force recovery by exposing the mechani-
cal system to a Langevin thermostat. For simplicity, we 
assume that the macroscopic variables y and z are fast and 
are always mechanically equilibrated. Such quasi-adiabatic 
approximation is not essential but it will allow us to oper-
ate with a single relaxation time-scale associated with the 
microscopic variables xi. Denoting by η the corresponding 
drag coefficient we construct the characteristic timescale 
τ = η/κ0 , which will be adjusted to fit the overall rate of 
fast force recovery.

Figure 32.  Non-equilibrium energy landscapes f  (solid lines) and 
g (dashed lines) at z = z0 and σ = σ0. Trajectories on the right are 
obtained from stochastic simulations. Minima are arbitrarily set 
to 0. Parameters are: β = 10, λ1 = λ2 = 1/2, v0 = 0, λb = 0.1 
(symmetric system).
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The response of the internal variables xi is governed by the 
non-dimensional system

dxi = b(xi)dt +
√

2β−1dBi

where the drift is

b(x, z) = −u′SS(xi) + (1 + λb)
−1(λbz + 1

N

∑
xi)− xi,

b(x,σ) = −u′SS(xi) + σ + N−1
∑

xi − xi

in a hard and a soft device, respectively.

In both cases the diffusion term dBi represents a standard 
Wiener processes.

In figure 34, we illustrate the results of stochastic simula-
tions imitating fast force recovery, using the same notations as 
in actual experiments. The system, initially in thermal equi-
librium at fixed L0 (or T0), was perturbed by applying fast 
(∼100 µs) length (load) steps with different amplitudes.

Typical ensemble-averaged trajectories are shown in (a) 
and (b) in the cases of hard and soft device, respectively. In 
a soft device (b) the system was not able to reach equilib-
rium within the realistic time scale when the applied load 
was sufficiently close to T0, see, for instance, the curve 
T = 0.9 T0 in figure 34(b), where the expected equilibrium 
value is L2 = −5  nm hs−1. Instead, it remained trapped in 
a quasi-stationary (glassy) state because of the high energy 
barrier required to be crossed in the process of the collec-
tive power-stroke. The implied kinetic trapping, which fits 
the pattern of two-stage dynamics exhibited by systems with 
long-range interactions [211, 220, 221], may explain the 
failure to reach equilibrium in experiments reported in [92, 
162, 222]. In the hard device case, the cooperation among 
the cross-bridges is much weaker and therefore the kinetics 
is much faster, which allows the system to reach equilibrium 
at experimental time scale.

A quantitative comparison of the obtained tension-elonga-
tion curves with experimental data (see figure 34(c)) shows 
that for large load steps the equilibrium tension fits the linear 
behavior observed in experiment as it can be expected from 
our calibration procedure. For near isometric tension in a soft 
device the model also predicts the correct interval of kinetic 
trapping, see the gray region in figure 34(c).

While the model suggests that negative stiffness should be a 
characteristic feature of the realistic response in a hard device 
for a single half-sarcomere (see figure  31), such behavior  
has not been observed in experiments on whole myofibrils. 
Note, however, that in the model all cross bridges are consid-
ered to be identical and, in particular, it is assumed that they 
are attached with the same initial pre-strain. If there exists a 
considerable quenched disorder resulting from the random-
ness of the attachment/detachment positions, the effective 
force elongation curve will be flatter [152]. Another reason for 
the disappearence of the negative susceptibility may be that 
the actual spring stiffness inside a cross-bridge is smaller due 
to nonlinear elasticity [223]. One can also expect the unstable 
half-sarcomeres to be stabilized actively through processes 
involving ATP, see [159, 224] and our section 3. The softening 

Figure 33.  Soft spin model in hard [(a) and (b)] and soft [(c) 
and (d)] devices. [(a) and (c)] Free energies; [(b) and (d)] tension 
elongation relations. The solid lines correspond to the parameters 
listed in table 1 and the gray regions indicate the corresponding 
domains of bistability. The tension and elongation are normalized to 
their value at the transition point where 〈p〉 = 1/2.
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can be also explained by the collective dynamics of many half 
sarcomeres organized in series, see our section 2.3.

The comparison of the rates of fast recovery obtained in our 
simulations with experimental data (see figure 34) shows that 
the soft-spin model reproduces the kinetic data in both hard 
and soft ensembles rather well. Note, in particular, that the 
rate of recovery in both shortening and stretching protocols 
increases with load. This is a direct consequence of the fact 
that the energy barriers for forward and the reverse transitions 
depend on the mechanical load. Instead, in the original form
ulation of the HS, and in most subsequent chemomechanical 
models, the reverse rate was kept constant and this effect was 
missing. In [99], the authors proposed to refine the HS model 
by introducing a load dependent barrier also for the reversed 
stroke, see the results of their modeling in figure 34.

2.3.  Interacting half-sarcomeres

So far, attention has been focused on (passive) behavior of a 
single force generating unit, a half-sarcomere. We dealt with a 
zero dimensional, mean field model without spatial complexity. 
However, as we saw in figure 8(a), such elementary force gen-
erating units are arranged into a complex, spatially extended 

structure. Various types of cross-links in this structure can be 
roughly categorized as parallel or series connections.

A prevalent perspective in physiological literature is that 
interaction among force generating units is so strong that 
the mean field model of a single unit provides an adequate 
description of the whole myofibril. The underlying assump-
tion is that the deformation, associated with muscle contrac-
tions, is globally affine.

To challenge this hypothesis, we consider in this sec-
tion  the simplest arrangement of force generating units. We 
assume that the whole section of a muscle myofibril between 
the neighboring Z disk and M-line deforms in an affine way 
and treat such transversely extended unit as a (macro) half- 
sarcomere. The neighboring (macro) half-sarcomeres, how-
ever, will be allowed to deform in an non-affine way. The 
resulting model describes a chain of (macro) half-sarcomeres 
arranged in series and the question is whether the fast force 
recovery in such a chain takes place in an affine way [316].

Chain models of a muscle myofibril were considered in 
[2, 115, 225] where the nonaffinity of the deformation was 
established based on the numerical simulations of kinetics. 
Analytical studies of athermal chain models with bi-stable 
elements were conducted in [226–229] where the non-affinity 

Figure 34.  Soft-spin model compared with experimental data from figures 5 and 6. ((a) and (b)) Average trajectories were obtained from 
stochastic simulations, after the system was exposed to various load steps in hard (a) and soft (b) devices. (b’) Schematic representation 
of the regime shown in (b) for large times illustrating eventual equilibration. (c) Tension-elongation relation obtained from the numerical 
simulations (sim.) compared with experimental data (symbols, exp.); dotted line, thermal equilibrium in a soft device. (d) Comparison of 
the rates of recovery: crosses show the result of the chemomechanical model from [99]; asterisks show the ‘fast component’ of the recovery 
rate (see explanations of such fast-slow decomposition in [99]). Adapted figure with permission from [100], Copyright (2013) by the 
American Physical Society. Here parameters are: κ2 = 0.41 pN nm−1, κ1 = 1.21 pN nm−1, λb = 0.72, � = −0.08nm, N = 112, β = 52 
(κ0 = 2 pN nm−1, a = 10 nm, T = 277.13K), z0 = 4.2 nm hs−1.
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of the deformation (a non-Cauchy-Born behavior) was linked 
to phase coexistence. Studies of the finite temperature behav-
ior can be found in [197, 230–233].

Here we present a simple analytical study of the equilib-
rium properties of a chain of half-sarcomeres which draws on 
[230] and allows one to understand the outcome of the numer
ical experiments conducted in [115].

2.3.1. Two half-sarcomeres.  Consider first the most elemen-
tary series connection of two half-sarcomeres, each of them 
represented as a parallel bundle of N cross-bridges. This system 
can be viewed as a schematic description of a single sarcomere, 
see figure 35(b). To understand the mechanics of this system, 
we begin with the case where the temperature is equal to zero. 
The total (nondimensional) energy per cross bridge reads

v =
1
2

{
1
N

N∑
i=1

[
uSS(x1i) +

1
2
(y1 − x1i)

2 +
λb

2
(z1 − y1)

2
]

+
1
N

N∑
i=1

[
uSS(x2i) +

1
2
(y2 − x2i)

2 +
λb

2
(z2 − y2)

2
]}

.

�
(2.35)

In a hard device case, when we impose the average elonga-
tion z = (1/2)(z1 + z2), none of the half-sarcomeres is loaded 
individually in either soft or hard device. In a soft device case, 
the applied tension σ, which we normalized by the number 
of cross bridges in a half-sarcomere, is the same in each 
half-sarcomere when the whole system is in equilibrium. 
The corresponding dimensionless energy per cross bridge is 
w = v − σz .

The equilibrium equations  for the continuous variables 
xi are the same in hard and soft devices, and have up to 3 
solutions,




x̂k1(yk) = (1 − λ1) ŷk, if xki � �,
x̂k2(yk) = (1 − λ2) ŷk − λ1, if xki < �,
x̂k∗ = �,

� (2.36)

where again λ1,2 = κ1,2/(1 + κ1,2) and ŷk denotes the equi-
librium elongation of the half-sarcomere with index k = 1, 2.

We denote by ξ = {ξ1, ξ2}, the micro-configuration 
of a sarcomere where the triplets ξk = ( pk, rk, qk), with 
pk + qk + rk = 1, characterize the fractions of cross bridges 
in half-sarcomere k that occupy position x̂k1, x̂k∗ (spinodal 
state) and x̂k2, respectively. For a given configuration ξk, the 
equilibrium value of yk is given by

ŷk(ξk, zk) =
λbẑk + rk�− pkλ2

λb + λxb(ξk)
,

where λxb(ξk) = pkλ2 + qkλ1 + rk, is the stiffness of each 
array of cross-bridges. The elongation of a half-sarcomere in 
equilibrium is ẑk = ŷk + σ/λb, where σ is a function of z and 
ξ in the hard device case and a parameter in the soft device 
case.

To close the system of equations we need to add the equi-
librium relation between the tension σ and the total elon-
gation z = (1/2)(ŷ1 + ŷ2) + σ/λb. After simplifications, we 
obtain

σ̂(z, ξ) = λ(ξ)

[
z +

1
2

(
p1λ2 − r1�

λxb(ξ2)
+

p2λ2 − r2�

λxb(ξ2)

)]
,� (2.37)

ẑ(σ, ξ) =
σ

λ(ξ)
− 1

2

(
p1λ2 − r1�

λxb(ξ1)
+

p2λ2 − r2�

λxb(ξ2)

)
� (2.38)

in a hard and a soft devices, respectively, where 
λ(ξ)−1 = λ−1

b + (1/2)[λxb(ξ1)
−1 + λxb(ξ2)

−1] is compli-
ance of the whole sarcomere. The stability of a configuration 
(ξ1, ξ2) can be checked by computing the Hessian of the total 
energy and one can show that configurations containing cross-
bridges in the spinodal state are unstable, see [212, 226] for 
detail.

We illustrate the metastable configurations in figure  36 
(hard device) and figure  37 (soft device) for a system with 
N  =  2. For simplicity, we used a symmetric double well 
potential (λ1 = λ2 = 0.5, � = −0.5). Each metastable con-
figuration is labeled by a number representing a micro-con-
figuration in the form {(p1, q1), (p2, q2)} where pk = 0, 1/2, 1 
(resp. qk = 0, 1/2, 1) denotes the fraction of cross bridges in 
the post-power-stroke state (resp. pre-power-stroke) in half-
sarcomere k. The correspondence between labels and con-
figurations goes as follows: 1: {(1, 0), (1, 0)}—2 and 2’: 
{(1, 0), ( 1

2 , 1
2 )} and {( 1

2 , 1
2 ), (1, 0)}; 3: {( 1

2 , 1
2 ), (

1
2 , 1

2 )}; 4 and 
4’: {(1, 0), (0, 1)} and {(0, 1), (1, 0)}; 5 and 5’: {( 1

2 , 1
2 ), (0, 1)}  

and {(0, 1), ( 1
2 , 1

2 )}; 6: {(0, 1), (0, 1)}. For instance the label 
2’: {( 1

2 , 1
2 ), (1, 0)} corresponds to a configuration where in 

the first half-sarcomere, half of the cross bridges are in post-
power-stroke and another half are in pre-power-stroke; in the 
second half-sarcomere, all the cross bridges are in post-power-
stroke. In the hard device case (see figure 36) the system, fol-
lowing the global minimum path (bold line), evolves through 
non affine states 4 {(1, 0), (0, 1)} and 4’ {(0, 1), (1, 0)}, where 
one half-sarcomere is fully in pre-power-stroke, and the other 
one is fully in post-power-stroke. This path is marked by two 
transitions located at z∗1 and z∗2 see figure 36(a).

The inserted sketches in figure 36 (b) show a single sar-
comere in the 3 configurations encountered along the global 
minimum path. Note that along the two affine branches, 
where the sarcomere is in affine state (1 and 6), the M-line 
(see the middle vertical dashed line) is in the middle of the 
structure. Instead, in the non-affine state (branch 4), the two 
half-sarcomeres are not equally stretched, and the M-line 
is not positioned in the center of the sarcomere. As a result 
of the (spontaneous) symmetry breaking, the M-line can be 

Figure 35.  Model of a single sarcomere. A single sarcomere is 
located between two Z-disks (A). The M-line (B) separates the 
two half-sarcomeres. A single sarcomere contains two arrays of N  
parallel cross-bridges connected by two linear springs.
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shifted in any of the two possible directions to form either 
configuration 4 or 4’, see also [316]. In the soft device case 
(see figure  37), the system following the global minimum 
path never explores non-affine states. Instead both half-
sarcomeres undergo a full unfolding transition at the same 
threshold tension σ∗.

If the temperature is different from zero we need to com-
pute the partition functions

Z2(z,β) =
∫

exp [−2βNv(z, x)] δ(z1 + z2 − 2z) dx� (2.39)

Z2(σ,β) =
∫

exp [−2βNw(σ, x)] dx,� (2.40)

in a hard and a soft device, respectively, where again 
β = (κa2)/(kbT). The corresponding free energies are  
f̃2(z,β) = −(1/β) log[Z2(z)] and g̃2(σ,β) = −(1/β) log[Z2(σ)].

The explicit expressions of these free energies can be 
obtained in the thermodynamic limit N → ∞, but they are 
too long to be presented here, see [212, 230] for more detail. 
We illustrate the results in figure 38 where we show both, the 
energies and the tension-elongation isotherms.

We see that a sarcomere exhibits different behavior in the 
two loading conditions. In particular, the Gibbs free energy 
remains concave in the soft device case for all temperatures 
while the Helmholtz free energy becomes non-convex at low 

temperatures in the hard device case. Non-convexity of the 
Helmholtz free energy results in non-monotone tension-elon-
gation relations with the developments of negative stiffness.

It is instructive to compare the obtained non-affine ten-
sion-elongation relations with the ones computed under the 
assumption that each half-sarcomere is an elementary con-
stitutive element with a prescribed tension-elongation rela-
tion. We suppose that such a relation can be extracted from 
the response of a half-sarcomere in either soft or hard device 
which allows us to use expressions obtained earlier, see 
figure 33.

The hard device case is presented in figure 39. With thick 
lines we show the equilibrium tension-elongation relation 
obtained from (2.39) and (2.40), while thin lines correspond 
to the behavior of the two phenomenologically modeled half-
sarcomeres in series exhibiting each either soft or hard device 
constitutive behavior. Note that if the chosen constitutive rela-
tion corresponds to the hard device protocol (illustrated in fig-
ure  33(b)), we obtain several equilibrium states for a given 
total elongation which is a result of the imposed constitutive 
constraints, see figure 39(a). The global minimum path pre-
dicted by the ‘constitutive model’ shows discontinuous trans
itions between stable branches which resemble continuous 
transitions along the actual equilibrium path. If instead we 
use the soft device constitutive law for the description of indi-
vidual half-sarcomeres (illustrated in figure  33(d)), the ten-
sion-elongation response becomes monotone and is therefore 

Figure 36.  Mechanical equilibrium in a half-sarcomere chain with N = 2 and symmetric double well potential in a hard device. (a) 
Energy levels; (b) Tension-elongation relation. Solid lines, metastable states; dashed lines, unstable states; bold lines:, global minimum. 
Parameters: λ1 = λ2 = 0.5, u0 = 0, � = −0.5, λb = 1.

Figure 37.  Mechanical equilibrium with N = 2 and symmetric double well potential in a soft device. (a) Energy levels; (b) Tension-
elongation relation. Solid lines, metastable states; dashed lines, unstable states; bold lines, global minimum. Parameters are as in figure 36.
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completely unrealistic, see figure 39(b). We reiterate that in 
both comparisons, the misfit is due to the fact that in a fully 
equlibrated sarcomere none of the half-sarcomeres is loaded 
in either soft or hard device. It would be interesting to show 
that a less schematic system of this type can reproduce non-
affinities observed experimentally [234].

In figure 40 we present the result of a similar analysis for 
a sarcomere loaded in a soft device. In this case, if the ‘con-
stitutive model’ is based on the hard device tension-elongation 
relations (from figure 33(b)), we obtain the same (constrained) 
metastable states as in the previous case, see figure 39(a), thin 
lines. This means, in particular, that the response contains 
jumps while the actual equilibrium response is monotone, see 
figure 40(a). Instead, if we take the soft device tension-elon-
gation relation as a ‘constitutive model’, we obtain the correct 
overall behavior, see figure 40(b). This is expected since in the 
(global) soft device case both half-sarcomeres are effectively 
loaded in the same soft device and the overall response is affine.

The fact  that the model generates different constitutive 
relations in soft and hard device, and that another, for instance 
mixed, loading conditions may be associated with yet  other 
constitutive relations,  makes the task of building  a macro-
scopic continuum theory of skeletal muscles rather challeng-
ing. One conclusion may be that  the  approach  based on  
local constitutive relation may not be adequate for such a 
medium, dominated by long range interactions,  and one may 
have to search instead  a nonlocal constitutive closure for  the 
system of balance laws. Such closure would then involve int
egral equations  involving the kernels  which depend on both  
the size and the shape of the domain.

2.3.2.  A chain of half-sarcomeres.  Next, consider the behav-
ior of a chain of M half-sarcomeres connected in series. As 
before, each half-sarcomere is modeled as a parallel bundle of 
N  cross bridges.

We first study the mechanical response of this system at 
zero temperature. Introduce xki—the continuous degrees of 
freedom characterizing the state of the cross bridges in half-
sarcomere k, yk—the position of the backbone that connects 
all the cross bridges of the half-sarcomere k and zk—the total 

Figure 39.  Tension-elongation relations for a sarcomere in a hard 
device. Thick lines: equilibrium tension-elongation relations based 
on the computation of the partition function (2.39). Thin lines: 
response of two half-sarcomere in series, each one endowed with 
the constitutive relation illustrated in figure 33(b). (a) Hard device 
constitutive law. (b) Soft device constitutive law, see [212] for more 
detail. Parameters are: λ1 = 0.7, λ2 = 0.4, � = −0.3, N = 10, 
β = 20 and λb = 1.

Figure 38.  Equilibrium response of a single sarcomere in the 
thermodynamic limit. ((a) and (b)) Hard device; ((c) and (d)) soft 
device. ((a) and (c)) Gibbs and Helmholtz free energy; ((b) and 
(d)) corresponding tension-elongation. Parameters are, λ1 = 0.7, 
λ2 = 0.4, � = −0.3, λb = 1.
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elongation of the half-sarcomere k. The total energy (per cross 
bridge) of the chain takes the form

v(x, y, z) =
1

MN

M∑
k=1

{
N∑

i=1

[
uSS(xki) +

1
2
(yk − xki)

2

+λb
1
2
(zk − yk)

2
]}

,

�

(2.41)

where x = {xki}, y = {yk} and z = {zk}. In the hard device, 
the total elongation of the chain is prescribed: Mz =

∑M
k=1 zk,  

where z is the average imposed elongation (per half-sarco-
mere). In the soft device case, the tension σ  is imposed and 
the energy of the system also includes the energy of the load-
ing device w = v − σ

∑M
k=1 zk.

We again characterize the microscopic configuration of 
each half-sarcomere k by the triplet ξk = ( pk, qk, rk), denoting 
as before the fraction of cross bridges in each of the wells and 
in the spinodal point, with pk + qk + rk = 1 for all 1 � k � M. 
The vector ξ = (ξ1, . . . , ξM) then characterizes the configura-
tion of the whole chain.

In view of the complexity of the ensuing energy landscape, 
here we characterize only a subclass of metastable configu-
rations describing homogeneous (affine) states of individual 
half-sarcomeres. More precisely, we limit our attention to 
configurations with qk = 0, pk = 1, 0 and rk = 1, 0 for all 
1 � k � M. In this case, a single half-sarcomere can be char-
acterized by a spin variable mk = 1, 0.

The resulting equilibrium tension-elongation relations in 
hard and soft devices take the form

σ̂(z, m) =

[
1
λb

+
1
M

M∑
k=1

1
mkλ2 + (1 − mk)λ1

]−1

×

[
z +

1
M

M∑
k=1

mkλ1

mkλ2 + (1 − mk)λ1

]

� (2.42)

ẑ(σ, m) =

[
1
λb

+
1
M

M∑
k=1

1
mkλ2 + (1 − mk)λ1

]
σ

− 1
M

M∑
k=1

mkλ2

mkλ2 + (1 − mk)λ1
,

�

(2.43)

where m = (m1, . . ., mM).
In figure 41 we show the energy and the tension-elongation 

relation for the system following the global minimum path 
in a hard device. Observe that the tension-elongation rela-
tion contains a series of discontinuous transitions as the order 
parameter M−1 ∑mk  increases monotonously from 0 to 1 
and their number increases with M while their size decreases. 
In the limit M → ∞, the relaxed (minimum) energy is con-
vex but not strictly convex, see the interval where the energy 
depends linearly on the elongation for the case M = 20 in 
figure 41(a), see also [226, 235]. The corresponding tension-
elongation curves (see figure 41(b)) exhibit a series of trans
itions. In contrast to the case of a single half sarcomere, the 
limiting behavior of a chain is the same in the soft and hard 
devices (see the thick line). The obtained analytical results are 
in full agreement with the numerical simulations reported in 
[115, 165, 234, 236].

Figure 42 illustrates the distribution of elongations of 
individual half-sarcomere in a hard device case as the sys-
tem evolves along the global minimum path. One can see 
that when deformation becomes non-affine the population of 
half-sarcomere splits into 2 groups: one group is stretched 
at the level above average (top trace above diagonal) and 
the other one at the level below average (bottom trace below 
diagonal). The numbers beside the curves indicates the 
amount of half-sarcomeres in each group. In the soft device 
case, the system always remains in the affine state: all half-
sarcomeres change conformation at the same moment and 
therefore the system stays on the diagonal, see the dashed 
lines in figure 42.

Assume now that the temperature is different from zero. 
The partition function for the chain in a soft device can be 
obtained as the product of individual partition functions:

Figure 40.  Tension-elongations for a sarcomere in a soft device. 
Thick lines: equilibrium tension-elongation relations based on the 
computation of the partition function (2.39). Thin lines: response 
of two half-sarcomere in series, each one endowed with the 
constitutive relation illustrated in figure 33(d). (a) Hard device 
constitutive law. (b) Soft device constitutive law, see [212] for more 
detail. Parameters are: λ1 = 0.7, λ2 = 0.4, � = −0.3, N = 10, 
β = 20 and λb = 1.

Figure 41.  Global minimum of the (hard device) energy in the zero 
temperature limit (β → ∞) for a sarcomere chain with different M: 
(a)—energies; (b)—tension-elongation relations. In (b) the solid 
line represents the tension-elongation relation in a soft device. 
Parameters are: λ1 = 0.7, λ2 = 4, � = −0.3.
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Figure 43.  Influence of the parameter N on the equilibrium 
response of an infinitely long chain (M → ∞) in a hard device: (a) 
free energy; (b) tension-elongation relation. The asymmetry of the 
tension curve is a consequence of the asymmetry of the double well 
potential. Parameters are: λ1 = 0.7, λ2 = 0.4, � = −0.3, λb = 1, 
and β = 10.

ZM(σ,β) = [Zs(σ,β)]M =

[√
2π

Nβλb

∫
exp [−βNg(σ, x,β)] dx

]M

,

�
(2.44)

which reflects he fact that the half-sarcomeres in this set-
ting are independent. In the hard device, the analysis is more 
involved because of the total length constraint. In this case we 
need to compute

ZM(z,β) =
∫
exp [−βNMv(z, x)] δ

[
1
M

∑
zk − z

]
dx.�

(2.45)

A semi-explicit asymptotic solution can be obtained for the 
hard device case in the limit β → ∞ and M → ∞. Note first, 
that the partition function depends only on the ‘average mag-
netization’ m—the fraction of half-sarcomeres in post-power-
stroke conformation. At MN → ∞ we obtain asymptotically 
(see [212, 230] for details)

ZM(z,β) ≈ C
φ(m∗) exp [−βMNΨ(m∗; z,β)]
[
βMN ∂2

mΨ(m; z,β)|m=m∗

] 1
2

,

�

(2.46)

where C = ( 2π
β )

(N+2)M−1
2 N

1
2 −M .

Using the notations µ1,2 = (λ1,2λb)/(λ1,2 + λb), we can now 
write the expression for the marginal free energy at fixed m  
in the form

Ψ(m; z,β) =
1
2

[
m
µ2

+
1 − m
µ1

]−1

(z + m)
2
+ (1 − m) v0

− 1
2β

[m log (1 − λ2) + (1 − m) log (1 − λ1)]

+
1
βN

[m log (m) + (1 − m) log (1 − m)

+
m
2
log (λ2λb) +

1 − m
2

log (λ1λb)

]
,

�

(2.47)

where φ(m) = {[m/µ2 + (1 − m)/µ1] [m (1 − m)]}−
1
2 . Here 

m∗ is the minimum of Ψ in the interval ]0, 1[. A direct com-
putation of the second derivative of (2.47) with respect to m  
shows that Ψ is always convex. In other words, our assump-
tion that individual half-sarcomeres respond in an affine way, 
implies that the system does not undergo a phase transition in 
agreement with what is expected for a 1D system with short 
range interactions.

Now we can compute the Helmholtz free energy and the 
equilibrium tension-elongation relation for a chain in a hard 
device

f̃∞(z,β) = Ψ(m∗; z,β),� (2.48)

σ̃∞(z,β) =
(

m∗

µ2
+

1 − m∗

µ1

)−1

(z + m∗) .� (2.49)

In the case of a soft device, the Gibbs free energy and the 
corresponding tension-elongation relation are simply the re-
scaled versions of the results obtained for a single half-sarco-
mere, see section 2.2.

In figure 43 we illustrate a typical equilibrium behavior of 
a chain in a hard device. The increase of temperature enhances 
the convexity of the energy, as in the case of a single half-
sarcomere, however, when the temperature decreases we no 
longer see the negative stiffness. Instead, when N is sufficiently 
large, we see a tension-elongation plateau similar to what is 
observed in experiments on myofibrils, see figure 43(b).

The obtained results can be directly compared with exper
imental data. Consider, for instance, the response of a chain 
with M = 20 half-sarcomeres submitted to a rapid length step. 
The equilibrium model with realistic parameters predicts in 
this case a tension-elongation plateau close to the observed T2 
curve, see dashed line in 44(a). Our numerical experiments, 
however, could not reproduce the part of this plateau in the 
immediate vicinity of the state of isometric contractions. This 
may mean that even in the chain placed in a hard device, 
individual half-sarcomeres end up being loaded in a mixed 
device and can still experience kinetic trapping. Our stochastic 

Figure 42.  Elongation of half-sarcomeres along global minimum 
path for M = 2 (a) and M = 20 (b) in a hard device. Upper branch, 
pre-power-stroke half-sarcomeres; lower branch, post-power-stroke 
half-sarcomeres. Numbers indicate how many half-sarcomere are 
in each branch at a given z. Dashed lines, Soft device response. 
Parameters are: λ1 = 0.7, λ2 = 0.4, � = −0.3.
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simulations for a chain in a soft device reproduce the whole 
trapping domain around the state of isometric contractions, see 
figure 44(a).

The computed rate of the quick recovery for the chain is 
shown in figure 44(b). We see that the model is able to capture 
quantitatively the difference between the two loading proto
cols. However, the hard device response of the chain (see 
squares) is more sluggish than in the case of a single half-
sarcomere. Once again, we see an interval around the state of 
isometric contractions where our system cannot reach its equi-
librium state at the experimental time scale. Note, however, 
that the rate of relaxation to equilibrium increases with both 
stretching and shortening, saturating for large applied steps as 
it was experimentally observed in [99].

3.  Active rigidity

As we have seen in section 2.2.3, individual half-sarcomeres 
with attached cross-bridges operate in an unstable (spinodal) 
or near critical regime [100, 160]. The analysis in section 2.3 
shows that it warrants strain inhomogeneities at the level of 
a myofibril, see also [226, 237]. However, the implied non-
affinity has not been observed in experiment. Purely entropic 
stabilization is excluded in this case because the temperature 
alone is not sufficiently high to ensure positive stiffness of 
individual half-sarcomeres [115].

Here we discuss a possibility that the homogeneity of the 
myofibril configuration is due to active stabilization of indi-
vidual half-sarcomeres [224]. We conjecture that metabolic 
resources are used to modify the mechanical susceptibility of 
the system and to stabilize configurations that would not have 
existed in the absence of ATP hydrolysis [238–240].

We present the simplest model showing that active rigidity 
can emerge through resonant non-thermal excitation of molec-
ular degrees of freedom. The idea is to immitate the inverted 
Kapitza pendulum [241], aside from the fact that in biologi-
cal systems the inertial stabilization has to be replaced by its 
overdamped analog. The goal is to show that a macroscopic 
mechanical stiffness can be controlled at the microscopic 

scale by a time correlated noise which in biological setting 
may serve as a mechanical representation of a nonequilibrium 
chemical reaction [242].

3.1.  Mean field model

To justify the prototypical model with one degree of free-
dom, we motivate it using the modeling framework developed 
above.

Suppose that we model a half-sarcomere by a parallel array 
of N cross-bridges attached to a single actin filament follow-
ing section 2.2. We represent again attached cross bridges as 
bistable elements in series with linear springs but now assume 
additionally that there is a nonequilibrium driving provided 
through stochastic rocking of the bi-stable elements. More 
specifically, we replace the potential uSS(x) for individual 
cross-bridges by uSS(x)− xf (t), where f (t) is a correlated 
noise with zero average simulating out of equilibrium environ
ment, see [243] for more details.

If such a half-sarcomere is subjected to a time dependent 
deterministic force fext(t), the dynamics can be described by 
the following system of nondimensional Langevin equations

ẋi = −∂xi W +
√

2Dξ(t),
νẏ = −∂yW,

� (3.1)

where ξ(t) a white noise with the properties 〈ξ(t)〉 = 0, and 
〈ξ(t1)ξ(t2)〉 = δ(t2 − t1). Here D is a temperature-like param
eter, the analog of the parameter β−1 used in previous sec-
tions. The (backbone) variable y, coupled to N fast soft-spin 
type variables xi through identical springs with stiffness κ0,  
is assumed to be macroscopic, deterministic and slow due to 
the large value of the relative viscosity ν. We write the poten-
tial energy in the form W =

∑N
i=1 v(xi, y, t)− fexty, where 

v(x, y, t) is the energy (2.30) with a time dependent tilt in x 
and the function fext(t) is assumed to be slowly varying. The 
goal now is to average out fast degrees of freedom xi and to 
formulate the effective dynamics in terms of a single slow 
variable y.

Note, that the equation for y can be re-written as

Figure 44.  Quick recovery response of a chain with M = 20 half-sarcomeres. (a) Tension elongation relation obtained with M = 20 in a 
hard device (circles) and in a soft device (squares) compared with the same experiments as in figure 5 (triangles). (b) Corresponding rates in 
hard (circles) and soft (squares) devices compared with experimental data from figure 6 (triangles).
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ν

N
ẏ = κ0

(
1
N

N∑
i=1

xi − y

)
+

fext

N
,� (3.2)

which reveals the mean field nature of the interaction between 
y and xi. If N is large, we can replace 1

N

∑N
i=1 xi by 〈x〉 using 

the fact that the variables xi are identically distributed and 
exchangeable [244]. Denoting ν0 = ν/N and gext = fext/(κ0N) 
and assuming that these variables remain finite in the limit 
N → ∞, we can rewrite the equation for y in the form

ν0ẏ = κ0[(〈x〉 − y) + gext(t)].

Assume now for determinacy that the function fext(t) 
is periodic and choose its period τ0 in such a way that 
Γ = ν0/κ0 � τ0. We then split the force κ0(〈x〉 − y) act-
ing on y into a slow component κ0ψ(y) = κ0(〈x〉 − y) 
and a slow-fast component κ0φ(y, t) = κ0(〈x〉 − 〈x〉) 
where 〈x〉 = lim

t→∞
(1/t)

∫ t
0

∫∞
−∞ xp(x, t)dxdt, and p(x, t) is 

the probability distribution for the variable x. We obtain 
Γẏ = ψ(y) + φ(y, t) + gext and the next step is to average this 
equation over τ.

To this end we introduce a decomposition y(t) = z(t) + ζ(t), 
where z is the averaged (slow) motion and ζ is a perturbation 
with time scale τ0. Expanding our dynamic equation in ζ, we 
obtain,

Γ(ż + ζ̇) = ψ(z) + ∂zψ(z)ζ + φ(z, t)

+ ∂zφ(z, t)ζ + gext.
�

(3.3)

Since gext(t) � τ−1
0

∫ t+τ0

t gext(u)du, we obtain at fast time  
scale Γζ̇ = φ(z, t), see [245] for the general theory 
of these type of expansions. Integrating this equa-
tion  between t0 and t � t0 + τ0 at fixed z we obtain 
ζ(t)− ζ(t0) = Γ−1

∫ t
t0
φ(z(t0), u)du and since φ is τ0 peri-

odic with zero average, we can conclude that ζ(t) is also τ0 
periodic with zero average. If we now formally average (3.3) 
over the fast time scale τ0, we obtain Γż = ψ(z) + r + gext, 
where r = (Γτ0)

−1
∫ τ

0

∫ t
0 ∂zφ(z, t)φ(z, u)dudt. Given that  

both φ(z, t) and ∂zφ(z, t) are bounded, we can write 
|r| � (τ0/Γ)c � 1, where the ‘constant’ c depends on z but 
not on τ0 and Γ. Therefore, if N � 1 and ν/(κ0N) � τ0, the 
equation for the coarse grained variable

z(t) = τ−1
0

∫ t+τ0

t
y(u)du

can be written in terms of an effective potential

(ν/N)ż = −∂zF + fext/N.

To find the effective potential we need to compute the 
primitive of the averaged tension F(z) =

∫ z
σ(s)ds, where 

σ(y) = κ0[y − 〈x〉]. The problem reduces to the study of the 
stochastic dynamics of a variable x(t) described by a dimen-
sionless Langevin equation

ẋ = −∂xw(x, y, t) +
√

2Dξ(t).� (3.4)

The potential w(x, y, t) = wp(x, t) + ve(x, y) is the sum of two 
components: wp(x, t) = uSS(x)− xf (t), mimicking an out 
of equilibrium environment and ve(x, y) = (κ0/2)(x − y)2, 
describing the linear elastic coupling of the ‘probe’ with a 
‘measuring device’ characterized by stiffness κ0. We assume 
that the energy is supplied to the system through a time-
correlateded rocking force f (t) which is characterized by an 
amplitude A and a time scale τ. To have analytical results, 
we further assume that the potential uSS(x) is bi-quadratic, 
uSS(x) = (1/2) (|x| − 1/2) 2. Similar framework has been 
used before in the studies of directional motion of molecular 
motors [246].

The effective potential F(z) can be viewed as a non-equi-
librium analog of the free energy, see [247–250]. While in our 
case, the mean-field nature of the model ensures the potenti-
ality of the averaged tension, in a more general setting, the 
averaged stochastic forces may lose their gradient structure 
and even the effective ‘equations of state’ relating the aver-
aged forces with the corresponding generalized coordinates 
may not be well defined [251–256].

3.2.  Phase diagrams

Suppose first that the non-equilibrium driving is represented 
by a periodic (P), square shaped external force

f (t) = A(−1)n(t) with n(t) = �2t/τ�,� (3.5)

where the brackets denote the integer part. The Fokker–Planck 
equation for the time dependent probability distribution ρ(x, t) 
reads

∂tρ = ∂x [ρ ∂xw(x, t) + D∂xρ] .� (3.6)

Explicit solution of (3.6) can be found in the adiabatic limit 
when the correlation time τ is much larger than the escape 
time for the bi-stable potential uSS [133, 257]. The idea is that 
the time average of the steady state probability can be com-
puted from the mean of the stationary probabilities with con-
stant driving force (either f (t) = A or f (t) = −A).

The adiabatic approximation becomes exact in the special 
case of an equilibrium system with A = 0, when the station-
ary probability distribution can be written explicitly

ρ0(x) = Z−1 exp [−ṽ(x)/D] .

Here Z =
∫∞
−∞ exp(−ṽ(x)/D)dx, and ṽ(x, z) = (1/2) (|x| − 1/2) 2+

+(κ0/2)(x − z)2. The tension elongation curve σ(z) 
can then be computed analytically, since we know 

〈x〉 = 〈x〉 =
∫∞
−∞ xρ0(x)dx. The resulting curve and the corre

sponding potential F(z) are shown in figure  45(a). At zero 
temperature the equilibrium system with A = 0 exhibits 
negative stiffness at z = 0 where the effective potential F(z) 
has a maximum (spinodal state). As temperature increases we 
observe a standard entropic stabilization of the configuration 
z = 0, see figure 45(a).

By solving equation  ∂zσ|z=0 = 0, we find an explicit 
expression for the critical temperature De = r/[8(1 + κ0)] 
where r is a root of a transcendental equa-
tion 1 +

√
r/πe−1/r/[1 + erf(1/

√
r)] = r/(2κ0). The behavior 
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of the roots of the equation σ(z) = −κ0(〈x〉 − z) = 0 at A = 0 
is shown in figure 46(b) which illustrates a second order phase 
transition at D = De.

In the case of constant force f ≡ A the stationary probabil-
ity distribution is also known [258]

ρA(x) = Z−1 exp [− (ṽ(x)− Ax) /D] ,

where again Z =
∫∞
−∞ exp(−ṽ(x)/D)dx. In adiabatic approx

imation we can write the time averaged stationary distribu-
tion in the form, ρAd(x) = 1

2 [ρA(x) + ρ−A(x)], which gives 
〈x〉 = 1

2 [〈x〉(A) + 〈x〉(−A)] .
The force-elongation curves σ(z) and the corresponding 

potentials F(z) are shown in figure  45(b). We see the main 
effect: as the degree of non-equilibrium, characterized by A, 
increases, not only the stiffness in the state z = 0, where the 
original double well potential uSS had a maximum, changes 
from negative to positive, as in the case of entropic stabiliza-
tion, but we also see that the effective potential F(z) develops 
around this point a new energy well.

We interpret this phenomenon as the emergence of active 
rigidity because the new equilibrium state becomes possible 
only at a finite value of the driving parameter A, while the 

temperature D can be arbitrarily small. The behavior of the 
roots of the equation σ(z) = −κ0(〈x〉 − z) = 0 at A �= 0 is 
shown in figure 46(a) which now illustrates a first order phase 
transition.

The full steady state regime map (dynamic phase diagram) 
summarizing the results obtained in adiabatic approximation 
is presented in figure 47(a). There, the ‘paramagnetic’ phase 
I describes the regimes where the effective potential F(z) is 
convex, the ‘ferromagnetic’ phase II is a bi-stability domain 
where the potential F(z) has a double well structure and, 
finally, the ‘Kapitza’ phase III is where the function F(z) has 
three convex sections  separated by two concave (spinodal) 
regions. We interpret the boundary CA − De separating phases 
I and II as a line of (zero force) second order phase transitions 
and the dashed line CA − MA as a Maxwell line for the (zero 
force) first order phase transition, see figure 46. Then CA can 
be interpreted as a tri-critical point.

The adiabatic approximation fails at low temperatures 
(small D) where the escape time diverges and for these 
regimes the phase diagram has to be corrected numerically, 
see figure 47(b). Direct numerical simulation based on equa-
tion (3.4) shows that the main features of the resulting diagram 
(tri-critical point, point De and the vertical asymptote of the 
boundary separating phases I and III at large values of A) have 
been captured adequately by the adiabatic approximation. The 
new features of the non-adiabatic phase diagram is a dip of the 
boundary separating Phases II and III at some D < De leading 
to an interesting re-entrant behavior (see [259, 260]). This is 
an effect of stochastic resonance which is beyond reach of the 
adiabatic approximation.

Force-elongation relations characterizing the mechanical 
response of the system at different points on the (A, D) plane 
(see figure 47(b)) are shown in figure 48 where the upper insets 
illustrate the typical stochastic trajectories and the associated 
cycles in {〈x(t)〉, f (t)} coordinates. We observe that while in 
phase I thermal fluctuations dominate periodic driving and 
undermine the two well structure of the potential, in phase 
III the jumps between the two energy wells are fully synchro-
nized with the rocking force. In phase II the system shows 

Figure 45.  Tension elongation curves σ(z) in the case of periodic 
driving (adiabatic limit). The equilibrium system (A = 0) is shown 
in (a) and and out-of-equilibrium system (A �= 0)—in (b). The 
insets show the effective potential F(z). Here κ0 = 0.6. Reprinted 
figure with permission from [224], Copyright (2016) by the 
American Physical Society.

Figure 46.  The parameter dependence of  the roots of the equation 
σ(z) = 0 in the adiabatic limit: (a) fixed D = 0.04 and varying A, 
first order phase transition (line CA − MA in figure 3(a)); (b) fixed 
A = 0 and varying D, second order phase transition (line De − CA 
in figure 3(a)). The dashed lines correspond to unstable branches. 
Here k = 0.6. Reprinted figure with permission from [224], 
Copyright (2016) by the American Physical Society.

Figure 47.  Phase diagram in (A, D) plane showing phases I,II 
and III: (a)—adiabatic limit, (b)—numerical solution at τ = 100 
(b). CA is the tri-critical point, De is the point of a second order 
phase transion in the passive system. The ‘Maxwell line’ for a first 
order phase transition in the active system is shown by dots. Here 
κ0 = 0.6. Reprinted figure with permission from [224], Copyright 
(2016) by the American Physical Society.
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intermediate behavior with uncorrelated jumps between the 
wells.

In figure 48(d) we illustrate the active component of the 
force σa(z) = σ(z; A)− σ(z; 0) in phases I, II and III. A sali-
ent feature of figure  48(d) is that active force generation is 
significant only in the resonant (Kapitza) phase III. A bio-
logically beneficial plateau (tetanus) is a manifestation of 
the triangular nature of a pseudo-well in the active landscape 
Fa(z) =

∫ z
σa(s)ds; note also that only slightly bigger ( f , 〈x〉) 

hysteresis cycle in phase III, reflecting a moderate increase of 
the extracted work, results in considerably larger active force. 
It is also of interest that the largest active rigidity is generated 
in the state z = 0 where the active force is equal to zero.

If we now estimate the non-dimensional parameters of 
the model by using the data on skeletal muscles, we obtain 
A = 0.5, D = 0.01, τ = 100 [224]. This means that muscle 
myosins in stall conditions (physiological regime of isometric 
contractions), may be functioning in resonant phase III. The 
model can therefore provide an explanation of the observed sta-
bility of skeletal muscles in the negative stiffness regime [100]; 
similar stabilization mechanism may be also assisting the titin-
based force generation at long sarcomere lengths [261].

The results presented in this section for the case of peri-
odic driving were shown in [224] to be qualitatively valid also 
for the case of dichotomous noise. However, the Ornstein-
Uhlenbeck noise was unable to generate a nontrivial Kapitza 
phase.

To conclude, the prototypical model presented in this sec-
tion shows that by controlling the degree of non-equilibrium 
in the system, one can stabilize apparently unstable or mar-
ginally stable mechanical configurations and in this way 
modify the structure of the effective energy landscape (when 
it can be defined). The associated pseudo-energy wells with 
resonant nature may be crucially involved not only in muscle 
contraction but also in hair cell gating [120], integrin bind-
ing [262], folding/unfolding of proteins subjected to peri-
odic forces [263] and other driven biological phenomena 
[264–267].

4.  Active force generation

In this section we address the slow time scale phase of force 
recovery which relies on attachment-detachment processes 
[76]. We review two types of models. In models of the first 
type the active driving comes from the interaction of the myo-
sin head with actin filament, while the power stroke mech
anism remains passive [268]. In models of the second type, 
the active driving resides in the power stroke machinery [243]. 
The latter model is fully compatible with the biochemical 
Lynm-Taylor cycle of muscle contractions.

4.1.  Contractions driven by the attachment-detachment

A physiological perspective that the power-stroke is the 
driving force of active contraction was challenged by the 
discovery that myosin catalytic domain can operate as a 
Brownian ratchet, which means that it can move and pro-
duce contraction without any assistance from the power-
stroke mechanism [137, 138, 143]. It is then conceivable 
that contraction is driven directly by the attachment-detach-
ment machinery which can rectify the correlated noise and 
select a directionality following the polarity of actin fila-
ments [60, 144].

To represent the minimal set of variables characterizing 
skeletal Myosin II in both attached and detached states—posi-
tion of the motor domain, configuration of the lever domain 
and the stretch state of the series elastic element—we use 
three continuous coordinates [268]. To be maximally transpar-
ent we adopt the simplest representation of the attachement-
detachment process provided by the rocking Brownian ratchet 
model [133, 246, 269, 270].

We interpret again a half-sarcomere as a HS type paral-
lel bundle of N cross bridges. We assume, however, that now 
each cross-bridge is a three-element chain containing a linear 
elastic spring, a bi-stable contractile element, and a molecular 
motor representing the ATP-regulated attachment-detachment 
process, see figure 49. The system is loaded either by a force 
fext  representing a cargo or is constrained by the prescribed 
displacement of the backbone.

The elastic energy of the linear spring can be written as 
ve(x) = 1

2κ0(z − y − �)2, where κ0 is the elastic modulus and 
� is the reference length. The energy uSS of the bi-stable mech
anism is taken to be three-parabolic

Figure 48.  ((a)–(c)) Typical tension-length relations in phases I, 
II and III. Points α, β and γ are the same as in figure 47(b); (d) 
shows the active component of the force. Inserts show the behavior 
of stochastic trajectories in each of the phases at z � 0 (gray 
lines) superimposed on their ensemble averages (black lines); the 
stationary hysteretic cycles, the structure of the effective potentials 
F(z) and the active potential Fa(z) defined as a primitive of the 
active force σa(z). The parameters: κ0 = 0.6, τ = 100. Reprinted 
figure with permission from [224], Copyright (2016) by the 
American Physical Society.
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uSS(y − x) =





1
2κ1(y − x)2 y − x � b1

− 1
2κ3 (y − x − b)2

+ c b2 � y − x < b1
1
2κ2(y − x − a)2 + v0 y − x < b2

� (4.1)

where κ1,2 are the curvatures of the energy wells represent-
ing pre-power stroke and post-power stroke configurations, 
respectively and a < 0 is the characteristic size of the power 
stroke. The bias v0 is again chosen to ensure that the two wells 
have the same energy in the state of isometric contraction. The 
energy barrier is characterized by its position b, its height c 
and its curvature κ3. The values of parameters b1 and b2 are 
chosen to ensure the continuity of the energy function.

We model the myosin catalytic domain as the Brownian 
ratchet of Magnasco type [133]. More specifically, we view it 
as a particle moving in an asymmetric periodic potential while 
being subjected to a correlated noise. The periodic potential is 
assumed to be piece-wise linear in each period

Φ(x) =

{
Q
λ1L (x − nL), 0 < x − nL < λ1L
Q
λ2

− Q
λ2L (x − nL), λ1L < x − nL < L

� (4.2)

where Q is the amplitude, L is the the period, λ1 − λ2 is the 
measure of the asymmetry; λ1 + λ2 = 1. The variable x marks 
the location of a particle in the periodic energy landscape: the 
head is attached if x is close to one of the minima of Φ(x) and 
detached if it is close to one of the maxima.

The system of N cross-bridges of this type connected in 
parallel is modeled by the system of Langevin equations [268]



νxẋi = −Φ′(xi) + u′
SS(yi − xi)+ f (t + ti) +

√
2Dxξx(t)

νyẏi = −u′SS(yi − xi)− κ0(yi − z − �i) +
√

2Dyξy(t)

νzż =
N∑

i=1
κ0(yi − z − �i) + fext +

√
2Dzξz(t)

� (4.3)
with (Dx,y,z = νx,y,zkbT), where (νx,y,z) denote the relative vis-
cosities associated with the macroscopic variables, and ξ is a 
standard white noise. The correlated component of the noise 
f (t), imitating the activity of the ATP, is assumed to be peri-
odic and piece-wise constant, see equation (3.5).

Since our focus here is on active force generation rather 
than on active oscillations, we de-synchronize the dynam-
ics by introducing phase shifts ti, assumed to be independent 
random variables uniformly distributed in the interval [0, T]; 

we also allow the pre-strains �i  to be random and distribute 
them in the intervals [iL − a/2, iL + a/2]. Quenched disorder 
disfavors coherent oscillations observed under some special 
conditions (e.g. [167]). While we leave such collective effects 
outside our review, several comprehensive expositions are 
availbale in the literature [12, 36, 38, 113, 115, 144, 158, 159, 
166, 167, 172, 174, 271–281].

To illustrate the behavior of individual mechanical units we 
first fix the parameter z = 0, and write the total energy of a 
cross-bridge as a function of two remaining mechanical vari-
ables y and x:

v(x, y) = Φ(x) + uSS(y − x) + ve(−y).� (4.4)

The associated energy landscape is shown in figure 50, where 
the upper two local minima A and B indicate the pre-power 
stroke and the post-power stroke configurations of a motor 
attached in one position on actin potential, while the two 
lower local minima A′ and B′ correspond to the pre-power 
stroke and the post-power stroke configurations of a motor 
shifted to a neighboring attached position. We associate the 
detached state with an unstable position around the maxi-
mum separating the minima (A, B) and (A′,B′), see [268] for 
more detail.

In figure 51 we show the results of numerical simulations 
of isotonic contractions at fext = 0.5 T0, where T0 is the stall 
tension. One can see that the catalytic domain of an individual 
head, described by the variable x, evolves through three dif-
ferent attachment sites (see figure 51(a)). In figure 51(b) we 
show the time history of the variable x − y characterizing the 
conformational state of a single myosin head during the cycle. 
The first vertical line shows the moment in which the power 
stroke A → B takes place. The second vertical line shows 
the motion from the active site i on the actin filament to the 
next site i′ = i + 1, corresponding to the transition B → A′. 
This motion induces a change of state in the bi-stable element 
which brings the lever arm into the pre-power stroke posi-
tion. Due to the advance of the variable z during such iso-
tonic contractions, see figure 51(d), the elastic element whose 
configuration can be read on figure  51(c), relaxes and the 

Figure 49.  Schematic representation of a parallel bundle of cross-
bridges that can attach and detach. Each cross bridge is modeled as 
a series connection of a ratchet Φ, a bi-stable snap-spring uSS, and 
linear elastic element ve.

Figure 50.  Contour plot of the effective energy v(x, y; z0) at z0 = 0. 
Inserts illustrate the states of various mechanical subunits.
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post-power stroke minimum B′ becomes preferable. The third 
vertical line shows the moment in which the new power stroke 
A′ → B′ takes place.

Observe that the position of the backbone can be considered 
stationary during the recharging of the power stroke. In this 
situation, the key-factor for the possibility of recharging (after 
the variable x has overcome the barrier in the periodic poten-
tial) is that the total energy v(x, y) has a minimum when the 
snap-spring is in the pre-power stroke state. The corresponding 
analytical condition is (Q/v0) > (λ1L)/a which places an 
important constraint on the choice of parameters [268].

A direct comparison of the simulated mechanical cycle 
with the Lymn–Taylor cycle (see figure 2) shows that while 
the two attached configurations are represented in this model 
adequately, the detached configurations appear only as tran-
sients. In fact, one can see that the (slow) transition B → A′ 
represents a combined description of the detachment, of the 
power stroke recharge and then of another attachment. Since 
in the actual biochemical cycle such a transition are described 
by at least two distinct chemical states, the ratchet driven 
model is only in partial agreement with biochemical data.

4.2.  Contractions driven by the power stroke

We now consider a possibility that acto-myosin contractions 
are propelled directly through a conformational change. The 
model where the power-stroke is the only active mechanism 
driving muscle contraction was developed in [243].

To justify such change of the modeling perspective, we 
recall that in physiological literature active force generation 
is largely attributed to the power-stroke which is perceived 
as a part of active rather than passive machinery [154]. This 
opinion is supported by observations that both the power-
stroke and the reverse-power-stroke can be induced by ATP 
even in the absence of actin filaments [70], that contractions 
can be significantly inhibited by antibodies which impair lever 
arm activity [282], that sliding velocity in mutational myo-
sin forms depends on the lever arm length [193] and that the 
directionality can be reversed as a result of modifications in 
the lever arm domain [283, 284].

Although the simplest models of Brownian ratchets neglect 
the conformational change in the head domain, some phases 
of the attachment-detachment cycle have been interpreted as 
a power-stroke viewed as a part of the horizontal shift of the 
myosin head [145, 285]. In addition, ratchet models were con-
sidered with the periodic spatial landscape supplemented by 
a reaction coordinate, representing the conformational change 
[286, 287]. In all these models, however, the power stroke 
was viewed as a secondary element and contractions could 
be generated even with the disabled power stroke. The main 
functionality of the power-stroke mechanism was attributed 
to fast force recovery which could be activated by loading but 
was not directly ATP-driven [79, 100, 288].

The apparently conflicting viewpoint that the power-stroke 
mechanism consumes metabolic energy remains, however, 
the underpinning of the phenomenological chemo-mechanical 
models that assign active roles to both the attachment-detach-
ment and the power-stroke [86, 103]. These models pay great 
attention to structural details and in their most comprehensive 
versions faithfully reproduce the main experimental observa-
tions [67, 116, 289].

In an attempt to reach a synthetic description, several 
hybrid models, allowing chemical states to coexist with 
springs and forces, have been also proposed [113, 153, 274]. 
These models, however, still combine continuous dynamics 
with jump transitions which makes the precise identification 
of structural analogs of the chemical steps and the underlying 
micro-mechanical interactions challenging [155].

4.2.1. The model.  Here, following [243], we sketch a mecha-
nistic model of muscle contractions where power stroke is the 
only active agent. To de-emphasize the ratchet mechanism 
discussed in the previous section, we simplify the real picture 
and represent actin filaments as passive, non-polar tracks. The 
power-stroke mechanism is represented again by a symmetric 
bi-stable potential and the ATP activity is modeled as a center-
symmetric correlated force with zero average acting on the 
corresponding configurational variable.

A schematic representation of the model for a single cross-
bridge is given in figure  52(b), where x is the observable 
position of a myosin catalytic domain, y − x  is the internal 
variable characterizing the phase configuration of the power 
stroke element and d is the distance between the myosin head 
and the actin filament. Through the variable d we can take 
into account that when the lever arm swings, the interaction of 

Figure 51.  The numerical simulation of the time histories for 
different mechanical units in a load clamp simulation at zero external 
force: (a) the behavior of the myosin catalytic domain; (b) the 
behavior of the power stroke element (snap-spring); (c) the behavior 
of the elastic element; (d) the total displacement of the backbone.
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the head with the binding site weakens, see figure 52(a). The 
implied steric rotation-translation coupling in ratchet models 
has been previously discussed in [155, 290, 291].

We write the energy of a single cross-bridge in the form

Ĝ(x, y, d) = d Φ(x) + uSS(y − x),� (4.5)

where Φ(x) is a non-polar periodic potential representing 
the binding strength of the actin filament and uSS(y − x) is a 
symmetric double-well potential describing the power-stroke 
element, see figure 49. The coupling between the state of the 
power-stroke element y − x  and the spatial position of the 
motor x is implemented through the variable d. In the simplest 
version of the model d is assumed to be a function of the state 
of the power-stroke element

d(x, y) = Ψ(y − x).� (4.6)

To mimic the underlying steric interaction, see figure 52(b), 
we assume that when a myosin head executes the power-
stroke, it moves away from the actin filament and therefore 
the control function Ψ(y − x) progressively switches off the 
actin potential. Similarly, as the power-stroke is recharging, 
the myosin head moves progressively closer to the actin fila-
ment and therefore the function Ψ(y − x) should be bringing 
the actin potential back into the bound configuration.

In view of (4.6), we can eliminate the variable d and intro-
duce the redressed potential G(x, y) = Ĝ(x, y,Ψ(y − x)). Then 
the overdamped stochastic dynamics can be described by the 
system of dimensionless Langevin equations

ẋ =− ∂xG(x, y)− f (t) +
√

2Dξx(t)

ẏ =− ∂yG(x, y) + f (t) +
√

2Dξy(t).
� (4.7)

Here ξ(t) is the standard white noise with 〈ξi(t)〉 = 0, and 
〈ξi(t)ξj(s)〉 = δijδ(t − s) and D is a dimensionless mea-
sure of temperature; for simplicity the viscosity coefficients 
are assumed to be the same for variables x and y. The time 
dependent force couple f (t) with zero average represents a 
correlated component of the noise. In the computational 
experiments a periodic extension of the symmetric triangular 
potential Φ(x) with amplitude Q and period L was used, see 
figure  53(a). The symmetric potential uSS(y − x) was taken 
to be bi-quadratic with the same stiffness k in both phases 
and the distance between the bottoms of the wells denoted 
by a, see figure 53(b). The correlated component of the noise 
f (t) was described by a periodic extension of a rectangular 
shaped function with amplitude A and period τ, figure 53(c). 

Finally, the steric control ensuring the gradual switch of the 
actin potential is described by a step function

Ψ(s) = (1/2) [1 − tanh (s/ε)] ,� (4.8)

where ε is a small parameter, see figure 53(d).
The first goal of any mechanical model of muscle con-

traction is to generate a systematic drift v = limt→∞〈x(t)〉/t  
without applying a biasing force. The dependence of the 
average velocity v on the parameters of the model is sum-
marized in figure 54. It is clear that the drift in this model 
is due to A �= 0. When A is small, the drift velocity shows a 
maximum at finite temperatures which implies that the sys-
tem exhibits stochastic resonance [292]. At high amplitudes 
of the ac driving, the motor works as a purely mechanical 
ratchet and the increase of temperature only worsens the per-
formance [137, 138, 144].

One can say that the system (4.7) describes a power-stroke-
driven ratchet because the correlated noise f (t) acts on the 
relative displacement y − x . It effectively ‘rocks’ the bi-sta-
ble potential and the control function Ψ(y − x) converts such 
‘rocking’ into the ‘flashing’ of the periodic potential Φ(x). It 
is also clear that the symmetry breaking in this problem is 
imposed exclusively by the asymetry of the coupling function 
Ψ(y − x). Various other types of rocked-pulsated ratchet mod-
els have been studied in [293, 294].

The idea that the source of non-equilibrium in Brownian 
ratchets is resting in internal degrees of freedom [295, 296] origi-
nated in the theory of processive motors [297–300]. For instance, 
in the description of dimeric motors it is usually assumed that 
ATP hydrolysis induces a conformational transformation which 
then affects the position of the motor legs [301]. Here the same 
idea is used to describe a non-processive motor with a single leg 
that remains on track due to the presence of a thick filament. By 
placing emphasis on active role of the conformational change in 
non-processive motors the model brings closer the descriptions 
of porters and rowers as it was originally envisaged in [302].

4.2.2.  Hysteretic coupling.  The analysis presented in [243] 
has shown that in order to reproduce the whole Lymn–Taylor 
cycle, the switchings in the actin potential must take place at 
different values of the variable y − x  depending on the direc-
tion of the conformational change. In other words, we need to 
replace the holonomic coupling (4.6) by the memory operator

d{x, y} = Ψ̂{y(t)− x(t)}� (4.9)

whose output depends on whether the system is on the ‘striking’ 
or on the ‘recharging’ branch of the trajectory, see figure 55. Such 
memory structure can be also described by a rate independent 
differential relation of the form ḋ = Q(x, y, z)ẋ + R(x, y, d)ẏ, 
which makes the model non-holonomic.

Using (4.9) we can rewrite the energy of the system as a 
functional of its history y(t) and x(t)

G{x, y} = Ψ̂{y(t)− x(t)}Φ(x) + uSS(y − x).� (4.10)

In the Langevin setting (4.7), the history dependence may 
mean that the underlying microscopic stochastic process is 

Figure 52.  (a) An illustration of the steric effect associated with the 
power-stroke; (b) sketch of the mechanical model. Adapted figure 
with permission from [243], Copyright (2014) by the American 
Physical Society.
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non-Markovian (due to, say, configurational pinning [303]), 
or that there are additional non-thermalized degrees of free-
dom that are not represented explicitly [304]. In general, it 
is well known that the realistic feedback implementations 
always involve delays [305].

To simulate our hysteretic ratchet numerically we used two 
versions of the coupling function (4.8) shifted by δ with the 
branches Ψ(y − x ± δ) blended sufficiently far away from the 
hysteresis domain, see figure 55. Our numerical experiments 
show that the performance of the model is not sensitive to the 
shape of the hysteresis loop and depends mostly on its width 
characterized by the small parameter δ.

In figure 56 we illustrate the ‘gait’ of the ensuing motor. The 
center of mass advances in steps and during each step the power-
stroke mechanism gets released and then recharged again, 
which takes place concurrently with attachment-detachment. 

By coupling the attached state with either pre- or post-power-
stroke state, we can vary the directionality of the motion. The 
average velocity increases with the width of the hysteresis loop 
which shows that the motor can extract more energy from the 
coupling mechanism with longer delays.

The results of the parametric study of the model are 
summarized in figure  57. The motor can move even in 
the absence of the correlated noise, at A = 0 , because the 

Figure 56.  Stationary particle trajectories in the model with the 
hysteretic coupling (4.9). Parameters are: D = 0.02 and A = 1.5. 
Adapted figure with permission from [243], Copyright (2014) by 
the American Physical Society.

Figure 57.  The dependence of the average velocity v on 
temperature D in the hysteretic model with δ = 0.5. Adapted figure 
with permission from [243], Copyright (2014) by the American 
Physical Society.

Figure 53.  The functions Φ, uSS, f and the coupling function Φ used in numerical experiments. Analytic expressions for (a)–(c) are given 
by equations (4.1), (4.2) and (4.8), respectively. Adapted figure with permission from [243], Copyright (2014) by the American Physical 
Society.

Figure 54.  The dependence of the average velocity v on 
temperature D and the amplitude of the ac signal A. The pre- and 
post-power-stroke states are labeled in such a way that the purely 
mechanical ratchet would move to the left. Adapted figure with 
permission from [243], Copyright (2014) by the American Physical 
Society.

Figure 55.  The hysteresis operator Ψ̂{y(t)− x(t)} linking the 
degree of attachment d with the previous history of the power-stroke 
configuration y(t)− x(t). Adapted figure with permission from 
[243], Copyright (2014) by the American Physical Society.
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non-holonomic coupling (4.10) breaks the detailed bal-
ance by itself. At finite A the system can use both sources 
of energy (hysteretic loop and ac noise) and the resulting 
behavior is much richer than in the non-hysteretic model, 
see [243] for more detail.

4.2.3.  Lymn–Taylor cycle.  The mechanical ‘stroke’ in the 
space of internal variables (d, y − x) can be now compared 
with the Lymn–Taylor acto-myosin cycle [59] shown in fig-
ure 2 and in the notations of this section in figure 58(a).

We recall that the chemical states constituting the 
Lymn–Taylor cycle have been linked to the structural con-
figurations (obtained from crystallographic reconstruc-
tions): A(attached, pre-power-stroke  →  AM-ADP-Pi), 
B(attached, post-power-stroke  →  AM-ADP), C (detached, 
post-power-stroke  →  M-ATP), D(detached, pre-power-
stroke  →  M-ADP-Pi). In the discussed model the jump events 
are replaced by continuous transitions and the association of 
chemical states with particular regimes of stochastic dynam-
ics is not straightforward.

In figure  58(b), we show a fragment of the averaged 
trajectory of a steadily advancing motor projected on the 
(x, y − x, 0) plane. In figure 58(c) the same trajectory is shown 
in the (x, y − x, d) space with fast advances in the d direction 
intentionally schematized as jumps. By using the same let-
ters A, B, C, D as in figure 58(a) we can visualize a connec-
tion between the chemical/structural states and the transient 
mechanical configurations of the advancing motor.

Suppose, for instance, that we start at point A corresponding 
to the end of the negative cycle of the ac driving f (t). The 
system is in the attached, pre-power-stroke state and d = 1. 
As the sign of the force f (t) changes, the motor undergoes 
a power-stroke and reaches point B while remaining in the 
attached state. When the configurational variable y − x  passes 
the detachment threshold, the myosin head detaches which 
leads to a transition from point B to B′ on the plane d = 0. 
Since the positive cycle of the force f (t) continues, the motor 
completes the power-stroke by moving from B′ to point C. 

At this moment, the rocking force changes sign again which 
leads to recharging of the power-stroke mechanism in the 
detached state, described in figure 58(a) as a transition from 
C to D. In point D, the variable y − x  reaches the attachment 
threshold. The myosin head reattaches and the system moves 
to point D′ where d = 1 again. The recharging continues in 
the attached state as the motor evolves from D′ to a new state 
A, shifted by one period.

One can see that the chemical states constituting the mini-
mal enzyme cycle can be linked to the mechanical configu-
rations traversed by this stochastic dynamical system. The 
detailed mechanical picture, however, is more complicated 
than in the prototypical Lymn–Taylor scheme. In some stages 
of the cycle one can try to use the Kramers approximation to 
build a description in terms of a discrete set of chemical reac-
tions, however, the number of such reactions should be larger 
than in the minimal Lymn–Taylor model.

In conclusion, we mention that the identification of the 
chemical states, known from the studies of the prototypical 
catalytic cycle in solution, with mechanical states, is a precon-
dition for the bio-engineering reproduction of a wide range 
of cellular processes. In this sense, the discussed schematiza-
tion of the contraction phenomenon can be viewed as a step 
towards building engineering devices imitating acto-myosin 
enzymatic activity.

4.2.4.  Force-velocity relations.  The next question is how fast 
such motor can move against an external cargo. To answer this 
question we assume that the force fext acts on the variable y which 
amounts to tilting of the potential (4.10) along the y direction

G{x, y} = Ψ̂{y(t)− x(t)}Φ(x) + uSS(y − x)− y fext.� (4.11)

A stochastic system with energy (4.11) was studied numer
ically in [243] and in figure 59 we illustrate the obtained force-
velocity relations. The quadrants in the (fext, v) plane where 
R = fextv > 0 describe dissipative behavior. In the other the 
other two quadrants, where R = fextv < 0, the system shows 
anti-dissipative behavior.

Figure 58.  (a) Schematic illustration of the four-step Lymn–Taylor cycle in the notations of this section. (b) A steady-state cycle in the 
hysteretic model projected on the (x, y − x) plane; Gray tones indicate the sign of the rocking force f (t): black if f (t) > 0 and gray 
if f (t) < 0; (c) Representation of the same cycle in the (d, x, y − x) space with identification of the four chemical states A, B, C, D 
constituting the Lymn–Taylor cycle shown in (a). The level sets represent the energy landscape G at d = 0 (detached state) and d = 1 
(attached state). The parameters are: D = 0.02, A = 1.5, and δ = 0.75. Adapted figure with permission from [243], Copyright (2014) by 
the American Physical Society.
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Figure 60.  Schematic isometric tetanus with a descending limb. 
Adapted figure with permission from [237]. Copyright (2015) Sage 
Journals.

Observe that at low temperatures the convexity properties 
of the force-velocity relations in active pushing and active 
pulling regimes are different. In the case of pulling the typi-
cal force-velocity relation is reminiscent of the Hill’s curve 
describing isotonic contractions [76]. In the case of pushing, 
the force-velocity relation can be characterized as convex-
concave and such behavior has been also recorded in muscles 
[162, 306, 307]. The asymmetry is due to the dominance of 
different mechanisms in different regimes. For instance, in the 
pushing regimes, the motor activity fully depends on ac driv-
ing and at large amplitudes of the driving the system performs 
as a mechanical ratchet. Instead, in the pulling regimes, asso-
ciated with small amplitudes of external driving, the motor 
advances because of the delayed feedback. Interestingly, the 
dissimilarity of convexity properties of the force-velocity rela-
tions in pushing and pulling regimes has been also noticed in 
the context of cell motility where acto-myosin contractility is 
one of the two main driving forces [308].

5.  Descending limb

In this section, following [237], we briefly address one of the 
most intriguing issues in mesoscopic muscle mechanics: an 
apparently stable behavior on the ‘descending limb’ which is 
a section of the force-length curve describing isometrically 
tetanized muscle [17–19, 39].

As we have seen in the previous sections, the active force 
f generated by a muscle in a hard (isometric) device depends 
on the number of pulling cross-bridge heads. The latter is con-
trolled by the filament overlap which may be changed by the 
(pre-activation) passive stretch ∆�. A large number of exper
imental studies have been devoted to the measurement of the 
isometric tetanus curve f (∆�), see figures 60 and 3.

Since the stretch beyond a certain limit would necessar-
ily decrease the filament overlap, the active component of 
f (∆�) must contain a segment with a negative slope known 
as the ‘descending limb’ [74, 309–313]. The negative stiffness 

associated with active response is usually corrected by the 
positive stiffness provided by passive crosslinkers that connect 
actin and myosin filaments. However, for some types of mus-
cles the total force-length relation f (∆�) describing active and 
passive elements connected in parallel, still has a range where 
force decreases with elongation. It is this overall negative stiff-
ness that will be the focus of the following discussion.

If the curve f (∆�) is interpreted as a description of the 
response of the ‘muscle material’ shown in figure  61, the 
softening behavior associated with negative overall stiffness 
should lead to localization instability and the development of 
strain inhomogeneities [226, 314]. In terms of the observed 
quantities, the instability would mean that any initial imper-
fection would cause a single myosin filament to be pulled 
away from the center of the activated half-sarcomeres.

Some experiments seem to be indeed consistent with non-
uniformity of the Z-lines spacing, and with random displace-
ments of the thick filaments away from the centers of the 
sarcomeres [310, 312, 315–317]. The nontrivial half-sarcom-
eres length distribution can be also blamed for the observed 
disorder and skewing [318, 319]. The link between non-affine 
deformation and the negative stiffness is also consistent with 
the fact that the progressive increase of the range of dispersion 
in half-sarcomere lengths, associated with a slow rise of force 
during tetanus (creep phase), was observed mostly around the 
descending limb [320–322], even though the expected ulti-
mate strain localization leading to failure was not recorded.

A related feature of the muscle response on the descending 
limb is the non-uniqueness of the isometric tension, which was 
shown to depend on the pathway through which the elonga-
tion is reached. Experiments demonstrate that when a muscle 
fiber is activated at a fixed length and then suddenly stretched 
while active, the tension first rises and then falls without 
reaching the value that the muscle generates when stimulated 
isometrically, see [319, 323–329]. The difference between 
tetani subjected to such post-stretch and the corresponding 
isometric tetani reveals a positive instantaneous stiffness on 
the descending limb. Similar phenomena have been observed 
during sudden shortening of the active muscle fibers: if a mus-
cle is allowed to shorten to the prescribed length it develops 
less tension than during direct tetanization at the final length.

Figure 59.  The force-velocity relation in the model with hysteretic 
coupling at different amplitudes of the ac driving A and different 
temperatures D. The hysteresis width is δ = 0.5. Adapted figure 
with permission from [243], Copyright (2014) by the American 
Physical Society.
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All these puzzling observations have been discussed exten-
sively in the literature interpreting half-sarcomeres as soften-
ing elastic springs [54, 74, 330–333]. The fact of instability on 
the descending limb for such spring chain was realized already 
by Hill [330] and various aspects of this instability were later 
studied in [331, 334]. It is broadly believed that a catastrophic 
failure in this system is warranted but is not observed because 
of the anomalously slow dynamics [311, 319, 335–337]. In 
a dynamical version of the model of a chain with softening 
springs, each contractile component is additionally bundled 
with a dashpot characterized by a realistic (Hill-Katz) force-
velocity relation [225, 311, 319, 335–338]. A variety of numer
ical tests in such dynamic setting demonstrated that around a 
descending limb the half-sarcomeres configuration can become 
non uniform but at the time scale which is unrealistically long. 
Such over-damped dynamic model was shown to be also com-
patible with the residual force after stretch on the descending 
limb, and the associated deficit of tension after shortening.

These simulations, however, left unanswered the question 
about the fundamental origin of the multi-valudness of the 
muscle response around the descending limb. For instance, 
it is still debated whether such non-uniqueness is a prop-
erty of individual half-sarcomeres or a collective property of 
the whole chain. It is also apparently unclear how the local 
(microscopic) inhomogeneity of a muscle myofibril can coex-
ist with the commonly accepted idea of a largely homogenous 
response at the macro-level.

To address these questions we revisit here the one-dimen-
sional chain model with softening springs reinforced by par-
allel (linear) elastic springs, see figure 61 and 62. A formal 
analysis [237], following a similar development in the theory 
of shape memory alloys [226], shows that this mechanical 
system has an exponentially large (in N) number of configura-
tions with equilibrated forces, see an illustration for small N 
in figure 63 and our goal will be to explore the consequences 
of the complexity of the properly defined energy landscape.

5.1.  Pseudo-elastic energy

The physical meaning of the energy associated with the paral-
lel passive elements is clear but the challenge is to associate an 
energy function with active elements. In order to generate active 
force, motors inside the active element receive and dissipate 
energy, however, this not the energy we need to account for.

As we have already seen, active elements posses their own 
passive mechanical machinery which is loaded endogenously 
by molecular motors. Therefore some energy is stored in these 
passive structures. For instance, we can account for the elas-
tic energy of attached springs and also consider the energy of 
de-bonding. A transition from one tetanized state to another 
tetanized state, leads to the change in the stored energy of 
these passive structures. Suppose that to make an elongation 
d� along the tetanus, the external force f (�) must perform 
the work f d� = dW  where W(�) is the energy of the passive 
structures that accounts not only for elastic stretching but also 
for inelastic effect associated with the changes in the number 
of attached cross-bridges.

Figure 61.  The model of a muscle myofibril. Adapted figure with permission from [237], Copyright (2014) by the American Physical 
Society.

Figure 62.  Non-dimensional tension-elongation relations for the active element (a), for the passive elastic component (b) and for the bundle 
(c). Adapted figure with permission from [237]. Copyright (2015) Sage Journals.

Figure 63.  The structure of the set of metastable branches of the 
tension-elongation relation for N = 10. Here f is the total tension 
(a) and fa is the active tension (b). The thick gray line represents the 
anticipated tetanized response. Adapted figure with permission from 
[237]. Copyright (2015) Sage Journals.
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By using the fact that the isometric tetanus curve f (�) has 
a up-down-up structure we can conclude that the effective 
energy function W(�) must have a double-well structure. If 
we subtract the contribution due to parallel elasticity Wp(�), 
we are left with the active energy Wa(�), which will then have 
the form of a Lennard-Jones potential. Shortening below the 
inflection point of this potential would lead to partial ‘neu-
tralization’ of cross-bridges, and as a result the elastic energy 
of contributing pullers progressively diminishes. Instead, 
we can assume that when the length increases beyond the 
inflection point (point of optimal overlap), the system devel-
ops damage (debonding) and therefore the energy increases. 
After all bonds are broken, the energy of the active element 
does not change any more and the generated force becomes 
equal to zero.

5.2.  Local model

Consider now a chain of half sarcomeres with nearest neigh-
bor interactions and controlled total length, see figure  61. 
Suppose that the system selects mechanical configurations 
where the energy invested by pullers in loading the passive 
sub-structures is minimized. The energy minimizing configu-
rations will then deliver an optimal trade-off between elastic-
ity and damage in the whole ensemble of contractile units. 
This assumption is in agreement with the conventional inter-
pretation of how living cells interact with an elastic environ
ment. For instance, it is usually assumed that active contractile 
machinery inside a cell rearranges itself in such a way that 
the generated elastic field in the environment minimizes the 
elastic energy [339, 340].

The analysis of the zero temperature chain model for a 
myofibril whose series elements are shown in figure 62 con-
firms that the ensuing energy landscape is rugged, see [237]. 
The possibility of a variety of evolutionary paths in such 
a landscape creates a propensity for history dependence, 
which, in turn, can be used as an explaination of both the 
‘permanent extra tension’ and the ‘permanent deficit of ten-
sion’ observed in the areas adjacent to the descending limb. 
The domain of metastability on the force-length plane, see 
figure  63, is represented by a dense set of stable branches 
with a fixed degree of inhomogeneity. Note that in this sys-
tem the negative overall slope of the force-length relation 
along the global minimum path can be viewed as a combina-
tion of a large number of micro-steps with positive slopes. 
Such ‘coexistence’ of the negative averaged stiffness with the 
positive instantaneous stiffness, first discussed in [331], can 
be responsible for the stable performance of the muscle fiber 
on the descending limb.

Observe, however, that the strategy of global energy 
minimization contradicts observations because the reported 
negative overall stiffness is incompatible with the implied 
convexification of the total energy. Moreover, the global mini-
mization scenario predicts considerable amount of vastly over-
stretched (popped) half-sarcomeres that have not been seen 
in experiments. We are then left with a conclusion that along 
the isometric tetanus at least some of the active, non-affine 

configurations correspond to local rather than global minima 
of the stored energy.

A possible representation of the experimentally observed 
tetanus curve as a combination of local and global minimiza-
tion segments is presented by a solid thick line in figure 63. 
In view of the quasi-elastic nature of the corresponding 
response, it is natural to associate the ascending limb of the 
tetanus curve at small levels of stretch with the homogene-
ous (affine) branch of the global minimum path (segment 
AB in figure 63). Assume that around the point where the 
global minimum configuration becomes non-affine (point B 
in figure 63), the system remains close to the global mini-
mum path. Then, the isometric tetanus curve forms a pla-
teau separating ascending and descending limbs (segment 
between points B and C in figure 63). Such plateau is indeed 
observed in experiments on myofibrils and is known to play 
an important physiological role ensuring robustness of the 
active response. We can speculate that a limited mixing of 
‘strong’ and ‘weak’ (popped) half-sarcomeres responsi-
ble for this plateau can be confined close to the ends of a 
myofibril while remaining almost invisible in the bulk of the 
sample.

To account for the descending limb, we must assume that as 
the length of the average half-sarcomere increases beyond the 
end of the plateau (point C in figure 63), the tetanized myofi-
bril can no longer reach the global minimum of the stored 
energy. To match observations we assume that beyond point 
C in figure  63 the attainable metastable configurations are 
characterized by the value of the active force, which deviates 
from the Maxwell value and becomes progressively closer to 
the value generated by the homogeneous configurations as 
we approach the state of no overlap (point D). The numer
ical simulations show [237] that the corresponding non-affine 
configurations can be reached dynamically as a result of the 
instability of a homogeneous state. One may argue that such, 
almost affine metastable configurations, may be also favored 
due to the presence of some additional mechanical signaling, 
which takes a form of inter-sarcomere stiffness or next to near-
est neighbor (NNN) interaction. As the point D in figure 63 is 
reached, all cross-bridges are detached and beyond this point 
the myofibril is supported exclusively by the passive parallel 
elastic elements (segment DE).

Since all the metastable non-affine states involved in this 
construction have an extended range of stability, the applica-
tion of a sudden deformation will take the system away from 
the isometric tetanus curve BCD in figure 63. It is then dif-
ficult to imagine that the isometric relaxation, following such 
an eccentric loading, will allow the system to stabilize again 
exactly on the curve BCD. Such ‘metastable’ response would 
be consistent with residual force enhancement observed not 
only around the descending limb but also above the optimal 
(physiological) plateau and even around the upper end of the 
ascending limb. It is also consistent with the observations 
showing that the residual force enhancement after stretch is 
independent of the velocity of the stretch, that it increases with 
the amplitude of the stretch and that it is most pronounced 
along the descending limb.
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5.3.  Nonlocal model

While the price of stability in this system appear to be the 
emergence of the limited microscopic non-uniformity in the 
distribution of half sarcomere lengths, we now argue that it 
may be still compatible with the macroscopic (averaged) uni-
formity of the whole myofibril [318]. To support this statement 
we briefly discuss here a model of a myofibril which involves 
long range mechanical signaling between half-sarcomeres via 
the surrounding elastic medium [237].

The model is illustrated in figure 64. It includes two parallel 
elastically coupled chains. One of the chains, containing dou-
ble well springs, is the same as in the local model. The other 
chain contains elements mimicking additional elastic interac-
tions in the myofibril of possibly non-one-dimensional nature; 
it is assumed that the corresponding shear (leaf) springs are 
linearly elastic.

The ensuing model is nonlocal and involves competing inter-
actions: the double-well potential of the snap-springs favors 
sharp boundaries between the ‘phases’, while the elastic foun-
dation term favors strain uniformity. As a result of this compe-
tition the energy minimizing state can be expected to deliver 
an optimal trade off between the uniformity at the macro-scale 
and the non-uniformity (non-affinity) at the micro-scale.

The nonlocal extension of the chain model lacks the per-
mutation degeneracy and generates peculiar microstructures 
with fine mixing of shorter half sarcomeres located on the 
ascending limb of the tension-length curve and longer half 
sarcomeres supported mostly by the passive structures [237]. 
The mixed configurations represent periodically modulated 
patterns that are undistinguishable from the homogeneous 
deformation if viewed at a coarse scale. The descending 
limb can be again interpreted as a union of positively sloped 
steps that can be now of vastly different sizes. It is interest-
ing that the discrete structure of the force-length curve sur-
vives in the continuum limit, which instead of smoothening 
makes it extremely singular. More specifically, the variation 
of the degree of non-uniformity with elongation along the 
global energy minimum path exhibits a complete devil’s 
staircase type behavior first identified in a different but con-
ceptually related system [341], see figure 65 and [237] for 
more detail.

To make the nonlocal model compatible with observations, 
one should again abandon the global minimisation strategy 
and associate the descending limb with metastable (rather 
than stable) states. In other words, one needs to apply an aux-
iliary construction similar to the one shown in figure 63 for 
the local model, which anticipates an outcome produced by a 
realistic kinetic model of tetanization.

6.  Non-muscle applications

The prototypical nature of the main model discussed in this 
review (HS model, a parallel bundle of bistable units in pas-
sive or active setting) makes it relevant far beyond the skeletal 
muscle context. It provides the most elementary description 
of molecular devices capable of transforming in a Brownian 
environment a continuous input into a binary, all-or-none out-
put that is crucial for the fast and efficient stroke-like behav-
ior. The capacity of such systems to flip in a reversible fashion 
between several metastable conformations is essential for 
many processes in cellular physiology, including cell signal-
ing, cell movement, chemotaxis, differentiation, and selective 
expression of genes [342, 343]. Usually, both the input and the 
output in such systems, known as allosteric, are assumed to 
be of biochemical origin. The model, dealing with mechani-
cal response and relying on mechanical driving, complements 
biochemical models and presents an advanced perspective on 
allostery in general.

The most natural example of the implied hypersensitivity 
concerns the transduction channels in hair cells [344]. Each 
hair cell contains a bundle of N ≈ 50 stereocilia which are 
mechanically stimulated by the vibrations in the inner ear. 
The stereocilia possess transduction channels closed by ‘gat-
ing springs’ which can open (close) in response to a positive 
(negative) shear strain imposed on the cilia from outside.

The broadly accepted model of this phenomenon [120] 
views the hair bundle as a set of N bistable springs arranged in 
parallel. It is identical to the HS model if the folded (unfolded) 
configurations of cross-bridges are identified with the closed 
(opened) states of the channels. The applied loading, which 
tilts the potential and biases in this way the distribution of 
closed and open configurations, is treated in this model as a 
hard device version of HS model. Experiments, involving a 
mechanical solicitation of the hair bundle through an effec-
tively rigid glass fiber, showed that the stiffness of the hair 
bundle is negative around the physiological functioning point 
of the system [121], which is fully compatible with the predic-
tions of the HS model.

A similar analogy can be drawn between the HS model 
and the models of collective unzipping for adhesive clusters 
[7, 12, 119, 340, 345]. At the micro-scale we again encounter 
N elements representing, for instance, integrins or cadherins, 
that are attached in parallel to a common, relatively rigid 
pad. The two conformational states, which can be described 
by a single spin variable, are the bound and the unbound 
configurations.

The binding-unbinding phenomena in a mechanically 
biased system of the HS type are usually described by the Bell 
model [118], which is a soft device analog of the HS model 
with κ0 = ∞. In this model the breaking of an adhesive bond 
represents an escape from a metastable state and the corre
sponding rates are computed by using Kramers’ theory [340, 
346] as in the HS model. In particular, the rebinding rate is 
often assumed to be constant [262, 347], which is also the 
assumption of HS for the reverse transition from the post- to 
the pre-power-stroke state. More recently, Bell’s model was 
generalized through the inclusion of ligand tethers, bringing a 

Figure 64.  Schematic representation of the structure of a half-
sarcomere chain surrounded by the connecting tissue. Adapted 
figure with permission from [237]. Copyright (2015) Sage Journals.
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finite value to κ0 and by introducing the master equation for 
the probability distribution of attached units [119, 347].

The main difference between the Bell-type models and the 
HS model is that the detached state cannot bear force while the 
unfolded conformation can. As a result, while the cooperative 
folding-unfolding (ferromagnetic) behavior in the HS model 
is possible in the soft device setting [100], similar cooperative 
binding-unbinding in the Bell model is impossible because 
the rebinding of a fully detached state has zero probablity. To 
obtain cooperativity in models of adhesive clusters, one must 
use a mixed device, mimicking the elastic backbone and inter-
polating between soft and hard driving [119, 180, 198, 340].

Muscle tissues maintain stable architecture over long 
periods of time. However, it is also feasible that transitory 
muscle-type structures can be assembled to perform par
ticular functions. An interesting example of such assembly 
is provided by the SNARE proteins responsible for the fast 
release of neurotransmitors from neurons to synaptic clefts. 
The fusion of synaptic vesicles with the presynaptic plasma 
membrane [348, 349] is achieved by mechanical zipping of 
the SNARE complexes which can then transform from opened 
to closed conformations [350].

To complete the analogy, we mention that individual 
SNAREs participating in the collective zipping are attached 
to an elastic membrane that can be mimicked by an elastic or 
even rigid backbone [351]. The presence of a backbone medi-
ating long-range interactions allows the SNAREs to cooperate 
in fast and efficient closing of the gap between the vesicle and 
the membrane. The analogy with muscles is corroborated by 
the fact that synaptic fusion takes place at the same time scale 
as the fast force recovery (1 ms) [352].

Yet another class of phenomena that can be rationalized 
within the HS framework is the ubiquitous flip-flopping of 
macro-molecular hairpins subjected to mechanical loading 
[188, 189, 197, 200]. We recall that in a typical experiment of 
this type, a folded (zipped) macromolecule is attached through 
compliant links to micron-sized beads trapped in optical twee-
zers. As the distance between the laser beams is increased, 
the force applied to the molecule rises up to a point where 
the subdomains start to unfold. An individual unfolding event 
may correspond to the collective rupture of N molecular bonds 
or an unzipping of a hairpin. The corresponding drops in the 
force accompanied by an abrupt increase in the total stretch 

can lead to an overall negative stiffness response [187, 200, 
204]. Other molecular systems exhibiting cooperative unfold-
ing include protein β-hairpins [353] and coiled coils [209]. 
The backbone dominated internal architecture in all these sys-
tems leads to common mean-field type mechanical feedback 
exploited by the parallel bundle model [354, 355].

Realistic examples of unfolding in macromolecules may 
involve complex ‘fracture’ avalanches [356] that cannot be 
modeled by using the original HS model. However, the HS 
theoretical framework is general enough to accommodate 
hierarchical meta-structures whose stability can be also biased 
by mechanical loading. The importance of the topology of 
interconnections among the bonds and the link between the 
collective nature of the unfolding and the dominance of the 
HS-type parallel bonding have been long stressed in the stud-
ies of protein folding [357]. The broad applicability of the HS 
mechanical perspective on collective conformational changes 
is also corroborated by the fact that proteins and nucleic acids 
exhibit negative stiffness and behave differently in soft and 
hard devices [209, 358, 359].

The ensemble dependence in these systems suggests 
that additional structural information can be obtained if the 
unfolding experiments are performed in the mixed device set-
ting. The type of loading may be affected through the variable 
rigidity of the ‘handles’ [360, 361] or the use of an appropriate 
feedback control that can be modeled in the HS framework by 
a variable backbone elasticity.

As we have already mentioned, collective conformational 
changes in distributed biological systems containing coupled 
bistable units can be driven not only mechanically, by apply-
ing forces or displacements, but also biochemically by, say, 
varying concentrations or chemical potentials of ligand mol-
ecules in the environment [362]. Such systems can become 
ultrasensitive to external stimulations as a result of the inter-
action between individual units undergoing conformational 
transformation which gives rise to the phenomenon of confor-
mational spread [343, 363].

The switch-like input-output relations are required in a 
variety of biological applications because they ensure both 
robustness in the presence of external perturbations and abil-
ity to quickly adjust the configuration in response to selected 
stimuli [342, 364]. The mastery of control of biological 
machinery through mechanically induced conformational 

Figure 65.  (a) The force-length relation along the global energy minimum path in the continuum limit for the model shown in figure 64. (b) 
The force-length relation along the global energy minimum path with the contribution due to connecting tissue subtracted. (c) The active 
force-length relation along the global energy with the contribution due to connecting tissue and sarcomere passive elasticity subtracted. 
Adapted figure with permission from [237]. Copyright (2015) Sage Journals.
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spread is an important step in designing efficient biomimetic 
nanomachines [196, 365, 366]. Since interconnected devices 
of this type can be arranged in complex modular metastruc-
tures endowed with potentially programmable mechanical 
properties, they are of particular interest for micro-enginner-
ing of energy harvesting devices [13].

To link this behavior to the HS model, we note that the 
amplified dose response, characteristic of allostery, is anal-
ogous to the sigmoidal stress response of the paramagnetic 
HS system where an applied displacement plays the role of 
the controlled input of a ligand. Usually, in allosteric protein 
systems, the ultrasensitive behavior is achieved as a result of 
nonlocal interactions favoring all-or-none type of responses. 
The required long-range coupling is provided by mechanical 
forces acting inside membranes and molecular complexes. 
In the HS model such coupling is modeled by the parallel 
arrangement of elements, which preserves the general idea of 
nonlocality. Despite its simplicity, the appropriately general-
ized HS model [100] captures the main patterns of behavior 
exhibited by apparently purely chemical systems, including 
the possibility of a critical point mentioned in [362].

7.  Conclusions

In contrast to inert matter, mechanical systems of biologi-
cal origin are characterized by structurally complex network 
architecture with domineering long-range interactions. This 
leads to highly unusual mechanical properties in both statics 
and dynamics. In this review we identified a particularly sim-
ple system of this type, mimicking a muscle half-sarcomere, 
and systematically studied its peculiar mechanics, thermody-
namics and kinetics.

In the study of passive force generation phenomena our 
starting point was the classical model of Huxley and Simmons 
(HS). The original prediction of the possibility of nega-
tive stiffness in this model remained largely unnoticed. For 
30 years the HS model was studied exclusively in the hard 
device setting which concealed the important role of coop-
erative effects. A simple generalization of the HS model for 
the mixed device reveals many new effects, in particular the 
ubiquity of coherent fluctuations.

Among other macroscopic effects exhibited by the gener-
alized HS model are the non-equivalence of the response in 
soft and hard devices and the possibility of negative suscepti-
bilities. These characteristics are typical for generic nonlinear 
elastic materials in 3D at zero temperature. Thus, the relaxed 
energy of a solid must be only quasi-convex which allows for 
non-monotone stress strain relations and different responses 
in soft and hard devices [367]. Behind this behavior are the 
long range elastic interactions which muscle tissues appear to 
be emulating in 1D.

For a long time it was also not noticed that the original 
parameter fit by HS placed skeletal muscles in the critical 
point. Such criticality is tightly linked to the fact that the num-
ber of cross-bridges in a single half sarcomere is of the order 
of 100. This number is crucial to ensure mechanical ultra 
sensitivity that is not washed out by finite temperature and it 

appears quite natural that muscle machinery is evolutionaty 
tuned to perform close to a critical point. This assumption is 
corraborated by the observation that criticality is ubiquitous in 
biology from the functioning of auditory system [121] to the 
macroscopic control of upright standing [368, 369].

The mechanism of fine tuning to criticality can be under-
stood if we view the muscle fiber as a device that can actively 
modify its rigidity. To this end the system should be able to 
generate a family of stall states parameterized by the value of 
the meso-scopic strain. A prototypical model reviewed in this 
paper shows that by controlling the degree of non-equilibrium 
in the system, one can indeed stabilize apparently unstable or 
marginally stable mechanical configurations, and in this way 
modify the structure of the effective energy landscape (when it 
can be defined). The associated pseudo-energy wells with res-
onant nature may be crucially involved in securing robustness 
of the near critical behavior of the muscle system. Needless to 
say that the mastery of tunable rigidity in artificial conditions 
can open interesting prospects not only in biomechanics [370] 
but also in engineering design incorporating negative stiffness 
[371] or aiming at synthetic materials involving dynamic sta-
bilization [372, 373].

In addition to the stabilization of passive force generation, 
we also discussed different modalities of how a power-stroke-
driven machinery can support active muscle contraction. 
We have shown that the use of a hysteretic design for the 
power-stroke motor allows one to reproduce mechanistically 
the complete Lymn–Taylor cycle. This opens a way towards 
dynamic identification of the chemical states, known from the 
studies of the prototypical catalytic reaction in solution, with 
particular transient mechanical configurations of the acto-
myosin complex.

At the end of the review we briefly addressed the issue of 
ruggedness of the global energy landscape of a tetanized mus-
cle myofibril. The domain of metastability on the force-length 
plane was shown to be represented by a dense set of elastic 
responses parameterized by the degree of cross-bridge con-
nectivity to actin filaments. This observation suggests that the 
negative overall slope of the force-length relation may be a 
combination of a large number of micro-steps with positive 
slopes.

In this paper we focused almost exclusively on the results 
obtained in our group and mentioned only peripherally some 
other related work. For instance, we did not discuss a vast 
body of related experimental results, e.g. [117, 167, 374, 
375]. Among the important theoretical work that we left out-
side, are the results on active collective dynamics of motors  
[12, 376–378]. Interesting attempts of building alterna-
tive models of muscle contraction [56, 379] and of creating 
artificial devices imitating muscle behavior [196] were also 
excluded from the scope of this review. Other important omis-
sions concern the intriguing mechanical behavior of smooth 
[380, 381] and cardiac [382–386] muscles.

Despite the significant progress in the understanding of 
the microscopic and mesoscopic aspects of muscle mechan-
ics, achieved in the last years, many fundamental problems 
remain open. Thus, the peculiar temperature dependence of 
the fast force recovery [99, 387] has not been systematically 
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studied, despite some recent advances [122, 181]. A similarly 
important challenge presents the delicate asymmetry between 
shortening and stretching, which may require the account of 
the second myosin head [94]. Also outside most of the stud-
ies was left the short-range coupling between cross-bridges 
due to filaments extensibility [81], the inhomogeneity of the 
relative displacement between myosin and actin filaments, 
and more generally the possibility of a non-affine displace-
ments in the system of interacting cross bridges. Other under-
investigated issues include the mechanical role of additional 
conformational states [79] and the functionality of parallel 
elastic elements [388].

We anticipate that more efforts will be also focused on 
the study of contractional instabilities and actively gener-
ated internal motions [149] that should lead to the under-
standing of the self-tuning mechanism bringing sarcomeric 
systems towards criticality [100, 389, 390]. The proximity 
to the critical point allows the system to amplify interac-
tions, ensure strong feedback, and achieve considerable 
robustness in front of random perturbations. Most impor-
tantly, it is a way to quickly and robustly switch back and 
forth between highly efficient synchronized stroke and stiff 
behavior in the desynchronized state [100]. All these issues 
will surely become the subject of detailed studies in the 
future.
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