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The chemomechanical model of Huxley and Simmons (HS) [A. F. Huxley and R. M. Simmons, Nature 233,
533 (1971)] provides a paradigmatic description of mechanically induced collective conformational changes
relevant in a variety of biological contexts, from muscles power stroke and hair cell gating to integrin binding
and hairpin unzipping. We develop a statistical mechanical perspective on the HS model by exploiting a formal
analogy with a paramagnetic Ising model. We first study the equilibrium HS model with a finite number of
elements and compute explicitly its mechanical and thermal properties. To model kinetics, we derive a master
equation and solve it for several loading protocols. The developed formalism is applicable to a broad range of
allosteric systems with mean-field interactions.
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I. INTRODUCTION

Passive, mechanically induced conformational change in
a parallel bundle of bistable elements subjected to finite
temperature was first studied theoretically in the pioneering
paper of A. F. Huxley and R. M. Simmons (HS) [1]. They
modeled in this way the mechanism of fast force recovery
in skeletal muscles subjected to shortening under a length
clamp (isometric) protocol. Such loading defines a hard device
ensemble, which has to be distinguished from a soft device
(isotonic) ensemble exhibiting some rather different properties
[2].

The HS model interpreted the conformational change,
appearing in the muscle context under the name of a power
stroke, in a highly simplified way, as a “digital” switch between
an extended and a contracted states. HS assumed that the
contracted state is biased by the imposed shortening and treated
the ensuing collective folding as a deterministic chemical
reaction. The information about the energetic preference of the
contracted state and about the corresponding energy barriers
was encoded into the reaction rates which became functions
of the “mechanical configuration” of the system.

In the muscle literature the chemomechanical description
of HS was later refined through the inclusion of numerous
additional chemical reactions between various intermediate
configurations and their kinetics was modelled phenomeno-
logically [3–7]. Almost identical descriptions of mechanically
driven conformational changes were proposed independently
in the studies of cell adhesion [8,9] and in the context of
hair cell gating [10,11]. Other closely related systems include
mechanical denaturation of RNA (ribonucleic acid) and DNA
(deoxyribonucleic acid) hairpins [12–14], unzipping of bio-
logical macromolecules [15–21], collective action of SNARE
(soluble N-ethylmaleimide sensitive receptor) proteins during
opening of synaptic pores [22], and even formation of ripples
in graphene sheets [23]. For all these systems the HS model
can be viewed as a fundamental mean-field prototype.

The goal of the present paper is to reassess the chemical
reaction-based approach of HS from the perspective of

*Corresponding author: matthieu.caruel@u-pec.fr

statistical mechanics for a system with a finite number of
elements while emphasizing the role of fluctuations. In such
reformulation of the HS model we follow the pioneering
work of T. L. Hill [3,24] and more recent developments in
Refs. [2,25]. The zero temperature HS model was studied
from this viewpoint in Ref. [26], where it was presented
as a version of a fiber bundle model [27]. Here we extend
the analysis of Ref. [26] to finite temperatures focusing
on thermomechanical coupling that has not been previously
addressed in the chemomechanical framework.

Viewed from an abstract statistical mechanics perspective,
the HS model is quite similar to a paramagnetic Ising model
whose thermodynamic and kinetic properties are well known
[28]. The equivalence, however, is not complete due to the
presence in the HS model of an elastic spring, buttressing
each spin element. Another complication is the length clamp
control, which is unconventional for magnetic analogs of the
HS system. Among the new effects revealed by the HS model,
which would be unusual for paramagnets in an external field, it
is enough to mention negative susceptibility and pseudocritical
behavior without genuine cooperativity.

Given that the explicit formulas for the equilibrium free
energy of a spin system with mean-field interactions are
rather straightforward, we can easily access both mechanical
and thermal properties of the HS model, including the heat
release associated with mechanical loading. We can also
specify the entropic contributions to mechanical and thermal
susceptibilities and distinguish adiabatic from isothermal
responses.

To complement the equilibrium picture, we study in this
paper the stochastic dynamics of a HS system with a finite
number of elements. The starting point here is a thermally
induced random walk in the energy landscape biased by the
mechanical loading [29,30]. We show that, due to the mean-
field nature of the interactions, the kinetic properties of the
HS system are fully determined by the behavior of a single
element. This justifies the approach of HS who could model
the evolution of the first moment of the underlying probability
distribution by a single reaction equation.

While we did not attempt in this paper to conduct a
systematic quantitative comparison of our statistical HS model
with experiment, we included at the end of the paper a
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FIG. 1. Huxley-Simmons (HS) model of a single cross-bridge: (a)
mechanical representation a myosin head and (b) energy landscape
representing two chemical states. The conformation is characterized
by the spin variable x which represents two conformations of the
head. The bistable element is linked in series with a linear spring of
stiffness κ0.

brief discussion of the relevance of our results for skeletal
muscles and for several other allosteric system with mean-field
coupling.

The paper is organized as follows. In Sec. II we study
the equilibrium properties of N bistable elements connected
in parallel and loaded in a hard device. Section III contains
the analysis of the mechanical transients in this system.
The applicability of the original HS model for the descrip-
tion of skeletal muscles is discussed in Sec. IV. Various
nonmuscle applications are briefly reviewed in Sec. V. In
Sec. VI we summarize our results and identify some open
problems.

II. EQUILIBRIUM

In this section we study the finite-temperature equilibrium
mechanical response of a folding-unfolding system containing
a finite number of elements.

A. Single HS element

The Huxley-Simmons paper [1] deals essentially with a
single folding element (representing a myosin cross-bridge).
The HS element can be modeled as an elastic spring with
stiffness κ0 (denoted by K in Ref. [1]) which is connected in
series with a bistable unit, see Fig. 1. The two states represent
the two conformations of the myosin head and the variable
x (denoted by −θ in Ref. [1]) takes the values 0 (pre-power-
stroke or unfolded conformation) and −a (post-power-stroke
or folded conformation). The discrete “digital” nature of the
conformational state in the HS model allows us to interpret
x as a spin variable. The soft spins (snap-springs) version
of the HS model, corresponding to the case when each of
the two energy wells is represented by a quadratic potential,
was developed in Refs. [2,25], however, the comparison of
the two models shows that the additional effects due to elas-
ticity of the conformational states are of mostly quantitative
nature.

We choose a, denoted by h in Ref. [1], as the “reference”
size of the conformational change equal to the distance
between two infinitely localized energy wells, and we denote
by v0 the intrinsic energy bias distinguishing the two states;
see Fig. 1. The energy of the spin element can be now written

as

vHS(x) =
⎧⎨
⎩

v0 if x = 0,

0 if x = −a,

∞ otherwise.

The energy v0 is an implicit representation of the ATP-fueled
activity in this otherwise passive system. The presence of such
bias ensures that in the reference state the series spring is
stretched and generates (active or tetanized) tension.

It will be convenient to use dimensionless variables and
we choose a as our characteristic distance, assuming that the
nondimensional spin variable x takes values 0 or −1. We
normalize the total energy of the system by κ0a

2 and obtain

v(x; y) = (1 + x)v0 + 1
2 (y − x)2, (1)

where x = {0, − 1} and y is the length of the combined
element that includes a bistable unit and a linear spring.
If we define y0 = v0 − 1/2 and use the muscle mechanics
jargon, then we can say that for y > y0 (respectively, y < y0)
the global minimum of the energy (1) corresponds to the
pre-power-stroke state (respectively, post-power-stroke state);
in Ref. [1], the shifted elongation y − y0 was denoted by y.

Note that our variable y plays a role of the external
(magnetic) field for the spin variable x and therefore our model
resembles the zero-dimensional Ising model of paramagnetism
[28]. However, due to the presence of a linear spring, this Ising
model is unusual: The external field has its own “energy”
represented by the quadratic term in y. In the original HS
experiments a muscle was loaded in a hard device which
apparently makes this “energy” irrelevant. However, as we
show below, the quadratic term in y brings additional stiffness
into the overall mechanical response of the system and is
therefore responsible for some interesting effects.

a. Thermal equilibrium. Denoting by T the absolute
temperature, we can write the equilibrium probability density
for the configuration of a single element x at fixed y in the
form

ρ1(x; y,β) = Z1(y,β)−1 exp[−βv(x; y)], (2)

where

β = κ0a
2

kbT

is the nondimensionalized inverse temperature and kb is
the Boltzmann constant. The partition function for a single
element is then

Z1(y,β) = exp

[
−β

2
(y + 1)2

]
+ exp

[
−β

(
y2

2
+ v0

)]
. (3)

From (2) we can compute the average conformation 〈x〉 =∑
x={0,−1} xρ1(x; y,β), obtaining

〈x〉(y,β) = −1

2

{
1 − tanh

[
β

2
(y − y0)

]}
, (4)

which is the analog of Eq. (15) in Ref. [1] (where the
corresponding variable was denoted by −n2). In paramag-
netic interpretation, 〈x〉(y,β) is the “average magnetization”
conjugate to the “applied magnetic field” y.

The dependence of 〈x〉 on the relative elongation y − y0

is illustrated in Fig. 2(a). In the zero-temperature limit the
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FIG. 2. Average conformation and susceptibility of a single HS
element in thermal equilibrium. [(a) and (b)] Average configuration as
a function of the applied elongation at different temperatures (a) and
as a function of temperature at different elongations (b); [(c) and (d)]
susceptibility as a function of elongation at different temperatures (c)
and as a function of the temperature for selected values of y (d).

system driven through y follows the global minimum of the
internal energy (1) and the population of the wells changes
discontinuously at y = y0 [26]. As the temperature increases,
the transition smoothens and in the limit β → 0 we have
〈x〉 = −1/2 independently of the elongation as illustrated in
Fig. 2(b).

By differentiating Eq. (4) with respect to y we obtain the
explicit representation of the equilibrium susceptibility

χ (y,β) = ∂

∂y
〈x〉(y,β) = β〈[x − 〈x〉(y,β)]2〉, (5)

which is always positive, as expected in paramagnetic systems.
Given that the elastic element is linear, Eq. (5) does not depend
on the particular form of the energy vHS(x). Thus, it also applies

to models with more than two discrete states [7] and even to
models with continuous energy landscape [2,25].

Note that the susceptibility is proportional to the variance
of x which in the HS model takes the form

〈[x − 〈x〉(y,β)]2〉 = (1/4){sech[β(y − y0)/2]}2.

Both quantities will be used in what follows to assess the
intensity of fluctuations.

In the zero-temperature limit the variance of x is neg-
ligible at large absolute elongations. Instead, at y = y0,
the strength of fluctuations is independent of temperature
and we obtain that χ = β/4, which is an analog of the
Curie law in paramagnetism [28]; see Figs. 2(c) and 2(d).
For other values of elongation y �= y0, one can define a
characteristic temperature β = β∗

χ (y) solving the equation
β∗

χ (y − y0) tanh [β∗
χ (y − y0)/2] = 1. At this temperature fluc-

tuations are maximized, see Fig. 2(d). Below the characteristic
temperature the system is essentially “frozen” and therefore
resistant to fluctuations. Fluctuations are also irrelevant at large
temperatures where the system is maximally disordered.

b. Mechanical behavior. The free energy of a single HS
element in a hard device can be computed explicitly,

f (y,β) = − 1

β
log[Z1(y,β)] = 1

2
y2 + v0 + y − y0

2

− 1

β
ln

{
2 cosh

[
β

2
(y − y0)

]}
. (6)

Its dependence on elongation is illustrated in Fig. 3(a). We
observe that for β � 4 (large temperatures) the free energy is
convex while for β > 4 (small temperatures) it is nonconvex.
The emergence of a “pseudocritical” temperature β = βc = 4
in a paramagnetic system is a result of the presence of the
quadratic energy associated with the “applied field” y.

To study the mechanical manifestations of the implied
“criticality” we introduce the tension σ = y − x experienced
by the series linear spring. Due to the presence of the quadratic
term y2 in the energy, the conjugate variable to elongation y

is not the average “magnetization” 〈x〉 but the average tension
〈σ 〉 which is a linear function of 〈x〉 independently of the form
of the potential (1).

The convexity properties of the free energy can be obtained
through the study of the averaged tension-elongation relation
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FIG. 3. Thermal equilibrium properties of the HS model in a hard device for different values of temperature. (a) Helmholtz free energy;
(b) tension-elongation relations; (c) stiffness. Parameters are β = 2 (dotted), β = 4 (solid), β = 10 (dashed), and β → ∞ (dash-dotted). In the
limit β → ∞, corresponding to zero temperature, the stiffness κ diverges at y = y0, see (c).
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which corresponds to Eq. (16) in Ref. [1],

〈σ 〉(y,β) = ∂f

∂y
= σ0 + y − y0 − 1

2
tanh

[
β

2
(y − y0)

]
, (7)

where σ0 = v0. The dependence of 〈σ 〉 on the elongation
y − y0 is illustrated in Fig. 3(b) for different values of the
temperature.

We observe that while the relation 〈x〉(y) at fixed tempera-
ture is always monotone, as it is supposed to be in a classical
paramagnetic spin system, see Fig. 2, the dependence of the
tension 〈σ 〉 on its conjugate variable y can be nonmonotone,
see Fig. 3(b). Behind this nonmonotonicity is the fact that the
equilibrium stiffness

κ(y,β) = ∂〈σ 〉(y,β)/∂y = 1 − χ (y,β)

= 1 − β〈[σ − 〈σ 〉(y,β)]2〉
= 1 − (β/4){sech[β(y − y0)/2]}2 (8)

is a sign-indefinite sum of two terms.
Equation (8) is a representation of the standard [31,32]

decomposition of an elastic susceptibility into a Cauchy-
Born part associated with affine deformation κCB = 1, and
a fluctuation part associated with nonaffine deformation,
here κF = (β/4){sech[β(y − y0)/2]}2. Interestingly, in the HS
model the fluctuation-related term in (8) does not disappear
in the zero-temperature limit, producing a singular δ-function-
type contribution to the affine response at y = y0. At this value
of the elongation the global minimum of the elastic energy
is not unique and fluctuations are formally present even in
the zero-temperatrure (purely mechanical) model. This can be
viewed as a manifestation of a glassy behavior [33,34].

At finite temperatures the fluctuation-related contribution
to the elastic modulus has a standard temperature dependence
in pure phases |y − y0| � 1 (softening). Instead, we observe a
rubber-elasticity-type hardening type behavior around y = y0,
see Fig. 4. In this mixture region the negative entropic elasticity
starts to dominate the positive enthalpic elasticity at β > βc.

The “critical” temperature βc = 4 is defined by the condi-
tion that the tension-elongation relation develops zero stiffness
at y = y0. In this state κ = 1 − β/4, which can be again

0 20 40
−1

−0.5

0

0.5

1

βc

softening

hardening

β

κ

|y − y0|
0

0.15

0.3

FIG. 4. Equilibrium stiffness as function of the temperature at
different levels of elongation. In the low-temperature regimes (large
β), an increase of temperature induces softening while at high
temperatures (low β) it induces hardening. Close to the critical point
βc, small changes in temperatures have a large impact on the value of
the stiffness which may even change its sign.

viewed as the analog of the Curie law in magnetism. Negative
stiffness, resulting from nonadditivity of the system, prevails
at subcritical temperatures; in this range a shortening of an
element leads to a tension increase which can be interpreted as
a metamaterial behavior [2,35]. At supercritical temperatures
the stiffness becomes positive, reaching asymptotically the
value κ = 1.

It is remarkable that while fitting their experimental data
HS found exactly the critical value β = 4 (which corresponds
to the choice 4/α = 8 nm in the units adopted in Ref. [1]),
concluding implicitly that the state of isometric contractions
is only marginally stable. The advantages of this state are
clear from Fig. 4: Small variations of temperature generate
large changes in stiffness which can vary from positive to
negative values and such temperature dependence is almost
insensitive to the small changes in the stretching around y0.
The “criticality” in HS system at y0, however, is subdued in
the hard device ensemble, similar to the behavior of a van-der-
Waals gas under controlled volume. The physical picture here
differs from the case of a ferromagnetic system under applied
magnetic field where interactions and cooperativity play an
important role and zero susceptibility signals the presence of
a real critical point with diverging fluctuations.

To characterize the metamaterial behavior at temperatures
below critical, we define an interval [y−,y+] where the
stiffness of the system is negative. The boundaries y− and
y+ correspond to the zeros of the second derivative of the free
energy. For β > 4 we have

y+(β) − y0 = 1

β
log

[√
β + √

β − 4√
β − √

β − 4

]

y−(β) − y0 = − 1

β
log

[√
β + √

β − 4√
β − √

β − 4

]
.

In the zero-temperature limit this interval collapses to a
single point y = y0. The equilibrium tensions σ− and σ+
corresponding to y+ and y− are given by

σ+(β) = v0 + 1

2

√
1 − 4β−1 − 1

β
log

[√
β + √

β − 4√
β − √

β − 4

]

σ−(β) = v0 − 1

2

√
1 − 4β−1 + 1

β
log

[√
β + √

β − 4√
β − √

β − 4

]
.

They become equal to σ+ = v0 + 1/2 and to σ− = v0 − 1/2,
when β → ∞, see Ref. [26] for more detail. The evolution
of the domain of metamaterial behavior with temperature is
shown in Fig. 5.

We finish this subsection with the observation that
since 〈σ 〉(y,β) = y − 〈x〉(y,β), we have 〈[σ − 〈σ 〉(y,β)]2〉 =
〈[x − 〈x〉(y,β)]2〉, which shows that the fluctuations of tension
originate from the fluctuations of the conformation. In this
sense, the “noisy” macroscopic force-elongation relations can
be used as an experimental window into the microscopic
behavior of the system.

c. Thermal behavior. While the experiments on muscles
have been traditionally focused on the mechanical response
[36–43], our study suggests that measuring the thermal or
calorimetric response of such systems may be at least as
informative; see some existing work along these lines on
muscles in Refs. [44–50]. The statistical HS model has a
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FIG. 5. The temperature dependence of the parameter domain
where the HS system exhibits negative stiffness. In (a) and (b) we
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considerable predictive power in this respect. For instance,
the entropy of the HS element can be computed explicitly,

s(y,β) = −β
∂

∂β
log[Z1(y,β)] + log[Z1(y,β)]

= log

{
2 cosh

[
β

2
(y − y0)

]}

− β

2
(y − y0) tanh

[
β

2
(y − y0)

]
, (9)

and we illustrate the behavior of the function s(y,β) in
Figs. 6(a) and 6(b). We see that the degree of disorder is
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FIG. 6. Entropy [(a) and (b)] and specific heat [(c) and (d)] in
thermal equilibrium represented as function of elongation at different
temperatures [(a) and (d)] and as function of temperature for different
elongations [(b) and (d)].
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FIG. 7. Isothermal heat released induced by a displacement from
the state y = y0 at different temperatures.

maximal in the state of isometric contractions, y = y0. Note
also that the entropy depends on a single normalized coordinate
β(y − y0) combining both control parameters, temperature
and displacement.

A measure of the dependence of the entropy on temperature
is the specific heat [28]

c(y,β) = −β
∂

∂β
s(y,β) =

{
β

2
(y − y0)sech

[
β

2
(y − y0)

]}2

,

which is represented as function of y − y0 and β in Figs. 6(c)
and 6(d). As is typical for paramagnetic systems, the specific
heat depends only on the combination β(y − y0). Since at
y = y0 the entropy is temperature insensitive [s(y0) = log(2)],
the specific heat vanishes. Similarly, at large elongations, the
systems becomes more and more ordered and temperature
changes no longer affect the entropy. As a result, the
specific heat is maximized at a characteristic value of the
temperature β = β∗

c which solves the equation β∗
c (y − y0)

tanh [β∗
c (y − y0)/2] = 2.

To study the heat release associated with the change of
length we can use our knowledge of the entropy variation with
y. We introduce the heat release Q(y,β) = −β−1�s(y,β),
where �s(y,β) = s(y,β) − s(yin,β), is the entropy change
from the initial state yin. The function Q, which is illustrated in
Fig. 7, can be potentially measured by calorimetric techniques
if the system is first driven away from equilibrium adiabatically
by a rapid length change and then allowed to relax reaching
the original temperature.

Note that the expression for entropy (9) can be also rewritten
in the form s = β〈v〉 − βf where 〈v〉 is the average internal
energy

〈v〉(y,β) = y2/2 + v0 − (y − y0)〈x〉(y,β).

In contrast to the equilibrium free energy, which decreases
with temperature, see Fig. 3(a), the average internal energy
increases with temperature, see Fig. 8. In the opposite
zero-temperature (athermal) limit (β → ∞) both the average
internal energy and the free energy tend to the same limiting
curve representing the global minimum of the elastic energy
which is a nonconvex function of elongation energy [26].
Observe, however, that the average internal energy approaches
the mechanical energy “from above” while the free energy
approaches the mechanical energy “from below.”

Another interesting and potentially measurable quantity
is the entropic contribution to stress which also serves as a
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measure of thermal expansion

γ = − ∂s

∂y
= β2

4
(y − y0)

{
sech

[
β

2
(y − y0)

]}2

.

The dependence of γ on elongation and temperature is
illustrated in Fig. 9. We observe that for y > y0 (respectively,
y < y0) the growth of temperature enhances (respectively,
diminishes) the tension, see Fig. 3(b), and the temperature
sensitivity of tension is the highest at a particular value of the
temperature. In large shortening or stretching regimes and at
y = y0, the mechanical response is temperature insensitive.

d. Adiabatic response. The knowledge of the thermal
properties of the HS model allows one to address the question
of whether the isothermal approximation is justified when
applied to experiments involving folding or unfolding under
fast loading. Below, we consider an alternative hypothesis that
the response is adiabatic, which implies that in this problem the
heat exchange is the rate-limiting process. To remain within
the equilibrium framework, we replace the task of computing
the actual adiabats by computing the isoentropes to which we
will be still referring as adiabats. We discuss the applicability
of the adiabatic assumption for the description of fast force
recovery in muscles in Sec. IV.

As the entropy of the system depends solely on β|y − y0|,
see Eq. (9), the temperature varies along the adiabats propor-
tionally to the elongation, see Fig. 10(a). More specifically,
along an adiabat starting at y = yin with temperature β = βin,
we have βad = βin

|yin−y0|
|y−y0| . Since, according to Eq. (4), the

average configuration depends only on β(y − y0), the variation
of temperature along adiabats must ensure that the average
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FIG. 9. The dependence of the coefficient γ on elongation (a) and
temperature (b).

configuration 〈x〉 is preserved. This is true for every value of y

except y = y0 where the adiabat experiences a discontinuity.
Along adiabats the average configuration evolves according to

〈x〉ad(y,β) = −1

2
+ 1

2
tanh

[
βin|yin − y0|

2
sign(y − y0)

]
.

The adiabatic response of the microconfiguration of the
system to abrupt “length steps” is illustrated in Fig. 10(b),
where the initial temperature is always βin = 10. Observe that
for the adiabat passing through the point y = y0 the average
configuration is frozen at 〈x〉 = −1/2 (solid line); the behavior
of a microconfiguration along an isotherm passing through
y = y0 drastically differs (dotted line).

Since equilibrium tension along the adiabats depends
linearly on 〈x〉, the adiabatic stress response to shortening from
y = y0 is quasilinear elastic, even though the temperature is
changing. More specifically, one can show that outside the
point y = y0 the adiabatic stiffness is equal to the purely
mechanical stiffness

κad = ∂2

∂y2
f (y,βad(y,s)) = κ0 � κ,

where the function βad(y,s) describes temperature variation
with elongation at a given entropy s.

Note that at y = y0, the inverse temperature β diverges
and even small adiabatic length change would lead to a
dramatic increase of temperature (β → 0). This means, in
particular, that reaching this state adiabatically brings about
infinite cooling. A similar effect in a paramagnetic spin system
is known as “cooling by adiabatic demagnetization.” In the
HS system the applied field y − y0 can be both positive and
negative and, in this case, if y < y0, then a shortening would
lead to a similar “adiabatic heating,” which can be, in principle,
measured in experiment, see Sec. IV.

For the adiabats starting at other points y �= y0 the average
configuration 〈x〉 is frozen at its initial value until the loading
reaches the point y = y0. At this point, the continuity of en-
tropy requires that the configuration changes discontinuously.
Due to adiabatic cooling at y − y0 the temperature goes to zero
and the response becomes discontinuous (quasimechanical,
see Ref. [26]). This is in stark contrast with continuous
evolution of the configuration along a typical isotherm, also
shown in Fig. 10(b) (dotted line). One can say that, during
adiabatic response, the temperature-induced smoothing of the
force-elongation relation gets overridden by the anomalous
cooling around the point y = y0.

The adiabatic tension-elongation relations originating from
this behavior of the micro-configuration are piecewise linear
with stiffness equal to 1 for y �= y0, see Fig. 10(c). The
presence of a discontinuity at y = y0 signifies an extreme
meta-material-type behavior. Interestingly, the adiabat orig-
inating exactly from the equilibrium state y = y0 can be
confused with the purely elastic isothermal force elongation
relation. The associated temperature variation, however, is
non-negligible and should be, in principle, measurable in
experiments.
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FIG. 10. Adiabatic response. (a) Evolution of temperature as function of the applied loading along adiabats for s = 0.2 (dotted), s = 0.4
(solid), and s = 0.6 (dashed). (b) Average conformation following adiabatic length changes from two different thermal equilibrium initial
conditions y = y0 (solid) and from y = y0 ± 0.1 (dashed) at βin = 10. The isothermal response is represented by the dotted line. (c) Adiabatic
tension-elongation relations. Dotted line, isotherm response for β = 10; dashed line, adiabatic response with initial state at y − y0 = ±0.1
with βin = 10; solid line, adiabatic response with initial state at y = y0 with βin = 10.

B. Bundle of HS elements

Consider now a finite number of HS elements attached in
parallel between two rigid backbones. In the skeletal muscle
context, such a bundle represents a minimal actomyosin
complex which we refer to as an elementary half-sarcomere,
see Fig. 11.

The energy of the system with N elements can be written
as

e(x; y) = 1

N

N∑
i=1

[
(1 + xi)v0 + 1

2
(y − xi)

2

]
,

where x = {x1, . . . ,xN }. The individual bistable elements do
not interact among themselves while they all interact with
the same external field y. The origin of this mean-field
type interaction is a hard device constraint which is not
affected by the microconfiguration of the system. In the
language of magnetism, we are dealing here with a one-
dimensional paramagnetic system. In fact, for such systems,
the dimensionality is irrelevant and one can expect the results
obtained for the zero-dimensional model to remain valid for
the case of N elements.

a. Thermal equilibrium. In thermal equilibrium, the prob-
ability density for a micro-state x reads

ρ(x; y,β) = Z(y,β)−1 exp [−β e(x; y)], (10)

half-sarcomere
(a)

Σ Σ

rigid
backbone

vHS κ0

N

y

(b)

FIG. 11. (a) Schematic representation of an actomyosin filaments
organization in a superstructure of half-sarcomeres. (b) A single half-
sarcomere represented as a of cluster containing N cross-linkers, see
Fig. 1. The control parameter is the total elongation y and the total
tension generated by the system is denoted by .

where the partition function is

Z(y,β) =
∑

x∈{0,−1}N
exp [−βNe(x; y)].

Due to the additivity of the energy we obtain Z(y,β) =
[Z1(y,β)]N, where Z1 is given by (3). Therefore ρ(x; y,β) =∏N

i=1 ρ1(xi ; y,β), which shows that the elements are indepen-
dent.

The total free energy can be written as F (y,β) = Nf (y,β),
where the expression for the free energy of a single HS
element f is given by (6); this formula is analogous to
the corresponding result for paramagnetic Ising model and
other mean-field-type systems, e.g., Ref. [16]. Similarly, other
extensive equilibrium variables are also additive and it will be
convenient to normalize them by N .

To shed light on the internal microconfiguration of the
system, we introduce the fraction of HS elements in the folded
conformation

p = − 1

N

N∑
i=1

xi,

which, in our case, plays the role of an order parameter. The
internal energy (per element) corresponding to a given p can
be written as

e(p,y) = p(y + 1)2/2 + (1 − p)(y2/2 + v0). (11)

Due to permutational invariance, we can write the probability
of a given state with Np elements in the folded state in the
form of the binomial law:

ρ(p; y,β) =
(

N

Np

)
[ρ1(−1; y,β)]Np[ρ1(0; y,β)]N(1−p),

(12)
where ρ1 is given by (2) and ρ1(0; y,β) = 1 − ρ1(−1; y,β).

Note that the distribution (12) can be also written as

ρ(p; y,β) = Z(y,β)−1 exp[−βNf̃ (p; y,β)],

where

f̃ (p; y,β) = e(y,p) − (1/β)s(p), (13)
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FIG. 12. Nonequilibrium free-energy landscape and the corre-
sponding tension-elongation relations in a hard device for N = 2
[(a) and (b)] and in the limit N → ∞ [(c) and (d)]. Dotted lines,
free-energy levels, and tension corresponding to different values
of p; thick line, response corresponding to the global minimum
of the nonequilibrium free energy; thin lines, response in thermal
equilibrium; gray areas, domain of the metastable states in the
thermodynamic limit. In (a) and (c), the inserts show the marginal
free energy f̃ as function of p for y − y0 = −0.4,0,0.4. The plots
are obtained with β = 6, which explains the presence of negative
stiffness.

is the marginal free energy, e is the internal energy (11), and
s(p) = 1

N
log

(
N

Np

)
is the ideal entropy, all corresponding to a

fixed value of p and finite N .
To illustrate Eq. (13), consider the simplest case N = 2

when the marginal free energy can take only three values,

f̃ (0; y,β) = e(0; y) = 1

2
y2 + v0

f̃ (1/2; y,β) = 1

4
(y + 1)2 + 1

4
y2 + 1

2
v0 − log(2)

2β

f̃ (1; y,β) = e(1; y) = 1

2
(y + 1)2,

which are shown in Fig. 12 together with the corresponding
tension-elongation relations. Observe that the global minimum
response at finite temperature is characterized by a series
of jumps reflecting successive conformational changes in
individual elements. Between the jumps, the stiffness is
positive, which shows that each metastable state has a finite
basin of stability even though the overall (global) stiffness is
negative.

The changes in the marginal free-energy profiles with
increasing N are illustrated in Fig. 13. At N = 1, we obtain the
representation of the energy landscape due to T. L. Hill [36]. In
this case, the marginal free energy f̃ and the internal energy v

are identical (no entropic contribution). For finite N we obtain
N + 1 metastable states corresponding to different values of p

with the global minimum represented by a (nonconvex) lower
envelope.

While the lower envelope of the marginal free energy
f̃ (y,β) = minp f̃ (p,y,β) is a piecewise smooth function of
y with a number of singular points depending on N , the
equilibrium free energy f (y,β) = F (y,β)/N is a smooth
function laying strictly below: f (y,β) � f̃ (y,β). The N

independence of f (y,β)—see Eq. (6)—shows that for the HS
system the equilibrium response is size independent. However,
in real experiments for systems with small N conducted at
finite deformation rates one can expect to see the steps on
the force elongation curves associated with the singularities of
f̃ (y), see Sec. III B.

The average value of the parameter p (which is analogous
to the variable n2 in Ref. [1]) can be found from

〈p〉(y,β) =
∑

p ρ(p; y,β) = −〈x〉(y,β) = ρ1(−1; y,β).
(14)

This quantity plays the role of the average magnetization per
spin and does not depend on N ; however, the corresponding
variance decreases as 1/N ,

〈[p − 〈p〉(y,β)]2〉 = (1/N )〈[x − 〈x〉(y,β)]2〉.
Our Eq. (14) also shows that the whole distribution (12) can
be recovered if the parameter N is fixed and 〈p〉 is known as a
function of y and β. In particular, we can compute the variance

〈[p − 〈p〉(y,β)]2〉 = 〈p〉(1 − 〈p〉), (15)

which gives after substitution

〈[p − 〈p〉(y,β)]2〉1/2 = 1

2
√

N
sech

[
β

2
(y − y0)

]
. (16)
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FIG. 13. Hill-type energy landscapes for N = 1 (a) and N = 4 (b). In (c) we show the equilibrium free-energy profile f = F/N (solid
line), which is independent of N together with the metastable states for N = 4 (dotted lines). Here v0 = 1/2.
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By differentiating Eq. (14) with respect to y we can also obtain
the equilibrium susceptibility

X(y,β) = − ∂

∂y
〈p〉 = βN〈(p − 〈p〉)2〉 = χ (y,β),

where χ is the susceptibility of a single HS element, see Eq. (5).
We can similarly rewrite all other equilibrium characteristics
of the system in terms of −〈p〉 and N〈[p − 〈p〉(y,β)]2〉.

In the limit N → ∞ the expression for the marginal free
energy can be written explicitly,

f̃∞(p; y,β) = e(p; y) − (1/β)s∞(p), (17)

where s∞(p) = −[p log(p) + (1 − p) log(1 − p)] is the ideal
mixing entropy reflecting the absence of correlations between
the units. The function f̃∞(p) is always convex since

∂2

∂p2
f̃∞(p; y,β) = [β p(1 − p)]−1 > 0,

which signifies the lack of synchronization: In a similar
ferromagnetic system the marginal free energy would be
nonconvex. As N → ∞ the domain of the phase space
occupied by the metastable states becomes compact, see the
gray area in Figs. 12(c) and 12(d) not shown explicitly in
Fig. 13(c).

At large N , the summation over the set of discrete values
of p [see Eq. (14)] can be approximated by an integration
over the interval [0,1]. The integrals can be, in turn, computed
by using the Laplace method. Then, for the equilibrium free
energy, we can write f (y,β) = f̃∞(p∗(y,β); β), where f and
f̃∞ are given by (6) and (17), respectively. Here p∗(y,β) is
a minimizer of f̃∞, which is a solution of the transcendental
equation,

p∗/(1 − p∗) = exp[−β(y − y0)].

It is easy to check that p∗(y,β) = 〈p〉(y,β) where 〈p〉(y,β) is
given by Eq. (14). The resulting free-energy profile is shown
in both Figs. 12(c) and 13(c).

b. Mechanical behavior. For a given configuration x, the
tension in the system can be written as

(x,y) = N
[
y − (1/N )

∑
xi

]
= N (y + p).

The average tension, conjugate to the control parameter y, is
then

〈〉(y,β) = N [y + 〈p〉(y,β)] = N〈σ 〉(y,β),

where 〈σ 〉 is the average tension of a single element, see
Eq. (7). The variance of the total tension can be written as

〈[ − 〈〉(y,β)]2〉 = N〈[σ − 〈σ 〉(y,β)]2〉.
The relative fluctuations,

〈[ − 〈〉(y,β)]2〉1/2

〈(y,β)〉 = 1

2
√

N

{(
y + 1

2

)
cosh

[
β

2
(y − y0)

]

− 1

2
sinh

[
β

2
(y − y0)

]}−1

, (18)

decay as 1/N1/2, which is a sign that the measured force in this
model is an extensive quantity. The formula (18) can be used

to estimate the number of elements N from the knowledge of
the fluctuations of the force.

If we denote by K the total stiffness of the system, then we
can write

K(y,β) = Nκ(y,β) = N − β〈[ − 〈〉(y,β)]2〉, (19)

where κ is defined by Eq. (8). As in the case of a single
HS element, the total stiffness decomposes into an elastic (or
enthalpic) contribution dominating at |y − y0| � 1 and a term
containing entropic contribution which dominates around y =
y0.

In dimensional form (19) becomes

Kd = Nκ0 − 1

kbT
〈[d − 〈〉d ]2〉

= Nκ0

[
1 − κ0 a2

4kbT

{
sech

[
κ a

2kbT

(
yd − yd

0

)]}2]
, (20)

where the superscript d indicates that the normalization has
been dropped.

Note, first, that the fluctuation-related contribution to
stiffness is an order of one effect in terms of the number
of elements N , which means that the effect of fluctuations
does not disappear in the thermodynamic limit. Also, since
the stiffness in the HS model is an extensive property, the
analysis of the temperature and elongation dependence of
κ(y,β) presented in Sec. II A remains valid here as well.

The fact that the stiffness has an nonthermal, purely me-
chanical part, that can be potentially extracted from structural
measurements, and an equally important and even dominating
fluctuation-related component, that can be measured inde-
pendently, has been largely overlooked in the literature on
systems with nonconvex internal degrees of freedom because
in classical materials, which can be thought to be composed
of almost linear springs, the fluctuational effect on stiffness
is usually small. Here we see that in the presence of internal
“snap-springs” this effect can be considerable. For instance, the
difference between the smaller quasistatic stiffness of myosin
II [51,52] and the larger instantaneous stiffness—believed to
be largely unaffected by fluctuations [53]—may be linked to
the importance of the second term in our Eq. (20).

On the other hand, if N is known and the variance of the total
force can be measured, then one can recover the stiffness of a
single element κ0. Conversely, knowing κ0 and measuring fluc-
tuations of the force one can estimate N from (20). We empha-
size again that the relation (20) is independent of the detailed
structure of the energy landscape (1) and can therefore be used
in the presence of multiple power-stroke-type energy wells.

c. Thermal behavior. Since the entropy of the finite-size
bundle of HS elements is extensive S(y,β) = Ns(y,β), the
analysis of the adiabatic response for a single HS element
presented in Sec. II A remains valid for the bundle of N HS
elements.

III. KINETICS

In this section we study kinetics of the HS system and
build links between the stochastic dynamics of a single HS
element, the evolution of the bundle of HS elements connected
in parallel, and a conventional chemomechanical modeling of
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FIG. 14. One-dimensional Markov chain description for a single
HS element (a) and for a system with N elements (b).

such systems in terms of deterministic chemical reactions.
Following the original HS model, we assume, for simplicity,
that during loading the temperature is kept constant.

A. Single HS element

In the paper of Huxley and Simmons [1] the relaxation of the
system to equilibrium was modeled as a deterministic chemical
reaction of the first order. In their description HS followed
the average population of elements in the two conformational
states without attempting to trace the dynamics of individual
flips experienced by the spin variables x.

To simulate stochastic dynamics of a single HS element we
need to know the probabilities of the forward and reverse flips

P[xt+dt = −1|xt = 0] = k+(y,β)dt

P[xt+dt = 0|xt = −1] = k−(y,β)dt. (21)

Here k+(y,β) [respectively k−(y,β)] is the transition rate
for the jump from the unfolded state (respectively, folded
state) to the folded state (respectively, unfolded state), see
Fig. 14(a). We assume that the total elongation y and the
inverse temperature β are the controlling parameters which
may vary at a time scale much larger that the characteristic time
of the individual conformational transitions. As the transition
probabilities (21) depend only on the current state of the
system, the dynamics is described by a discrete Markov chain
[30,54].

To compute the transition rates k±(y,β) we need to know
the structure of the actual energy landscape separating the two
conformational states. In their paper [1], HS simply assumed
that the hypothetical barrier separating the two wells of the
potential vHS is flat and is characterized by the energy level
E1, see Fig. 15. By taking the energy of the elastic spring into
account, we can then write the transition rates in the form

k+(y,β) = k exp[−β[E0 + max{y + 1/2,0}]],
k−(y,β) = k exp[−β[E1 + max{−y − 1/2,0}]],

where E1 = E0 + v0 and the common prefactor k defines the
characteristic time scale for a single-well system. If y > −1/2,
then only the energy barrier from the unfolded to the folded
state depends on y, see Fig. 15(a). In this case, the rates can
be written in the form

k+(y,β) = k− exp[−β(y − y0)], (22a)

k−(y,β) = k exp[−β E1] = const, (22b)

and the time scale of the jump process is τ = 1/k− =
k−1 exp [β E1]. If y < −1/2, see Fig. 15(b), then we obtain

x0

v0

E0E1

−1

(a) y > −1/2

u

x0

v0

E0

E1

−1

(b) y < −1/2

u

−2 −1 0 1

2

4

6

β = 1

β = 2

y

k̃τ

(c)

FIG. 15. Schematic representation of the energy barrier in the HS
bistable potential. The energy barriers corresponding to the transition
rates in the absence of elastic contribution are denoted E1 and E2.
We define the characteristic time scale by τ = exp[βE1]. (a) Energy
landscape for y > −1/2 which is the case considered in Ref. [1]; (b)
energy landscape for y < −1/2 not considered by HS. (c), Relaxation
rate as function of the total elongation y for β = 1 (dashed line) and
β = 2 (solid line).

instead

k+(y,β) = k− exp [β v0] = const.

k−(y,β) = k− exp [β(y − y0 + v0)].

We see in Fig. 15 that, in response to shortening, the overall
transformation rate k̃ = k+ + k− first increases exponentially
as the forward barrier is lowered (while the reverse barrier
remains constant) and then decreases as the reverse barrier
is elevated (while the forward barrier remains constant). In
addition, we see that for large stretching k̃ ≈ k− and for large
shortening k̃ ≈ k− exp[β v0].

Note that HS considered only the case y > −1/2, see
Fig. 15(a). To see why the value y = −1/2 is special in the
muscle context, we recall that in this case the unloaded system
is symmetric, 〈p〉 = 1/2. Then the tension during the purely
elastic phase of the fast force recovery (when 〈p〉 remains
constant) is σ = y + 1/2, which becomes negative exactly at
y = −1/2. In experiments on muscles, the relaxation rates
have been measured only for y > −1/2 because below this
threshold muscle fibers are usually subjected to buckling. Our
analysis suggests that near the regimes with y = −1/2 the step
size dependence of the rate of fast force recovery may deviate
from exponential.

The results of numerical simulations of stochastic hopping
for a single HS element subjected to a quasistatic stretching
are shown in Fig. 16. For y < y0 the spin variable spends most
of the time in the folded conformation (x = −1). When the
loading device approaches the point y = y0, the flips between
the wells become more frequent before finally the system
stabilizes again in the unfolded configuration (x = 0).

The stochastic dynamics shown in Fig. 16 can also be
seen through the prism of the deterministic evolution of a
single-particle probability distribution ρ1(t). For a generic test
function q we can write

d〈q(x)〉 = q(−1)[ρ1(−1,t + dt) − ρ1(−1,t)]

+ q(0)[ρ1(0,t + dt) − ρ1(0,t)],
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FIG. 16. Hopping response to a ramp stretch from y = y0 − 1
to y = y0 + 1 (single trajectory with jumps hardly distinguishable
around y = y0). The time step is �t = 10−3τ and the time is measured
in the units of τ . The average trajectory is shown by the gray line.
Here β = 4.

then, using (21), we obtain

d〈q(x)〉 = q(−1){k+[1 − ρ1(−1,t)] − k−ρ1(−1,t)}dt

+ q(0){k−[1 − ρ1(0,t)] − k+(ρ1(0,t))}dt.

In the limit dt → 0, we obtain exactly the HS kinetic equation

∂

∂t
ρ1(t) = k+(y)[1 − ρ1(t)] − k−(y)ρ1(t). (23)

Its general solution can be written as

ρ1(t) = ρ1(0) exp[−A(t)]

+
∫ t

0
k̃(t ′) exp[A(t ′) − A(t)]ρ∞

1 (y(t))dt ′,

where A(t) = ∫ t

0 k̃(t ′)dt ′ and ρ∞
1 = k+/k̃ is the stationary

distribution (2). Since 〈x〉 = ρ1, this equation describes the
time dependence of the average configuration shown in Fig. 16
by the gray line.

The comparison of individual stochastic trajectories with
the evolution of averages shows that the information about
individual flips, potentially measurable in single-molecule
experiments, gets lost in the chemomechanical description.
In particular, near the point y = y0, fluctuations play a
dominant role in the stochastic description, as is suggested
by our equilibrium theory, while from the chemomechanical
perspective this particular state is completely indistinguishable
from the other equilibrium states.

B. Bundle of HS elements

The isothermal discrete dynamics of a system with N

elements can be described in terms of the macroscopic
parameter p ∈ {0,1/N, . . . ,1}. If only one transition occurs
between the time t and the time t + dt , then the function p(t)
is a one-dimensional random walk (see Fig. 14), governed by
the jump probabilities

P[pt+dt = pt + 1/N] = φ+(pt ; y,β)dt, (24a)

P[pt+dt = pt − 1/N] = φ−(pt ; y,β)dt, (24b)

where φ+(p; y,β) = N (1 − p) k+(y,β) and φ−(p; y,β) =
Np k−(y,β). Following a similar procedure as the one leading
to Eq. (23), we obtain the master equation for the probability
distribution ρ(p,t)

∂

∂t
ρ(p,t ; y,β) = φ+(1 − p + 1/N ; y)ρ(p − 1/N,t ; y,β)

+φ−(p + 1/N ; y)ρ(p + 1/N,t ; y,β)

− [φ+(1 − p; y) + φ−(p; y)]ρ(p,t ; y,β),

(25)

which can be solved numerically since we know the tridiagonal
transfer matrix of the process at each time step. It is clear, how-
ever, that since the transition probabilities (21) depend only on
the control parameter y, the trajectories of individual elements
are independent. Hence, at a given y each macroconfiguration
can be viewed as a realization of N Bernoulli processes with
the probability of success ρ1(t) solving Eq. (23). Therefore,
the probability density ρ(p,t) = P(pt = p) is a binomial
distribution with parameters N and ρ1(t):

ρ(p,t) =
(

N

Np

)
[ρ1(t)]Np[1 − ρ1(t)]N−Np. (26)

One can verify that that (26) solves (25) and since 〈p〉(t) =
ρ1(t), Eq. (23) can be viewed as the analog of Eq. (9) in
Ref. [1]. We have then shown that the dynamics of the entire
distribution is enslaved to the dynamics of the order parameter
〈p〉(t) captured by the original HS model. It is also clear that
in the long-time limit the distribution (26) converges to the
Boltzmann distribution (10).

a. Quasistatic loading. To illustrate the fact that our dynam-
ical model is fully compatible with the equilibrium behavior
studied in Sec. II B, we now consider the quasistatic driving
of a cluster of N HS elements, see Fig. 17. The behavior of
the individual trajectories generated by the stochastic random
walk Eq. (24) is shown for N = 10 (light gray) and N = 100
(dark gray). The system is subjected to continuous stretching
from y = y0 − 1 to y = y0 + 1 over the time interval [0,103 τ ]
with the temperature remaining constant; this loading protocol
mimics the unzipping tests for biological macromolecules
[12,15,18,55]. The results were obtained using the same
numerical procedures as in the case of a single element.

The stochastic evolution of the order parameter p and of
the corresponding tension are illustrated in Fig. 17. Together
with single trajectories, we show the evolution of the average
(solid black line) obtained from Eq. (23) and the corresponding
equilibrium response curves (open circles). The inserts in
Figs. 17(a) and 17(b) show samples of the trajectories for
single elements computed from (21).

Observe that individual trajectories reveal at finite N a
succession of jumps describing individual folding-unfolding
events as is suggested by the analysis of the marginally
equilibrated system. As the number of element increases, the
fluctuations of p decrease in accordance with our Eq. (16),
and a single realization trajectory (dark gray) gets close to the
average trajectory (black).

In the inserts in 16(c) and 16(d) we show the probability
density ρ obtained from (26) at different times (solid line)
together with the equilibrium density (open circles). As
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FIG. 17. Response of the HS model to a ramp loading from y0 − 1
to y0 + 1 achieved in 1000 τ , for β = 4 [(a) and (c)] and β = 10 [(b)
and (d)]. Individual stochastic trajectories are shown for N = 10
(light gray) and N = 100 (dark gray). [(a) and (b)] Evolution of
the order parameter p. The inserts show two samples of a single
trajectory around the point where p = 1/2. [(c) and (d)] Tension-
elongation relations obtained from σ = y + p. The inserts show the
marginal distribution ρ at the two different times indicted by the
vertical bars. Solid lines represent the thermal equilibrium averages
given by Eq. (14) and Eq. (7) and open symbols show the solutions
of the HS kinetic equation (23) and the distribution (26).

expected, the distribution does not depend on temperature at
y = y0 while becoming progressively more localized away
from this point.

To make the stochastic fluctuations more visible, we
compare in Fig. 18 the variance of the order parameter p

obtained from the stochastic model (24) (gray lines) with
the results of the analytic computations based on the kinetic
equation (26) (thin lines) and the equilibrium model, see
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FIG. 18. Evolution of the normalized variance N〈(p − 〈p〉)2〉 and
the heat release as function of the elongation during a quasistatic
stretching between t = 0 and t = 103τ . For each temperature we
show the analytic computations from (16) and (9) (open circles), the
results of the stochastic model (24) corresponding to 104 independent
realizations with N = 10 (gray lines), and the solution based on the
solution of the kinetic equations (23) and (26) (thin lines).
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FIG. 19. Stochastic simulation of a quick force recovery in
response to a step of y − y0 = −0.5. (a) Tension per cross-linker;
(b) heat released. Dotted lines: Single stochastic trajectory for a
system with N = 10; gray line: single trajectory with N = 100; solid
line: average over 1000 trajectories with N = 10; squares: response
obtained using the HS kinetic equation (23). Inserts in (a), gray
(respectively, solid) line, fluctuations obtained using 1000 realizations
for N = 100 (respectively, N = 10). Here β = 4 and y0 = 0.5.

Eq. 16 (open circles). The system contains N = 10 elements
and each stochastic trajectory corresponds to 104 realizations
of our random walk. We see that stochastic simulations are
fully compatible with the predictions of equilibrium theory;
in particular, we see once again that the normalized variance
reaches a maximum at y = y0, becoming independent of the
temperature.

b. Fast loading. In addition to averages, captured already
by the chemomechanical kinetic equation (23), the master
equation (25) allows one to follow the evolution of higher-
order moments. To illustrate this point, we now show how the
HS system responds to abrupt perturbations, which is exactly
the type of mechanical test conducted in Ref. [1], see Fig. 19.
The system is first maintained in equilibrium at y = y0 = 0.5
before an instantaneous length change (to y = 0) is applied.
This protocol is repeated for systems with N = 10 (dotted
lines) and N = 100 (solid line). Again, individual realizations
may strongly depart, especially at low N , from the average
behavior described by the HS reaction equation (23) (symbols).

These fluctuations can also be seen from the dynamics of
the density ρ which is reconstructed from a large number of
sample trajectories/experiments in Fig. 20. We observe that
for a system with a small number of elements [see Fig. 20(a),
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FIG. 20. Time evolution (snapshots) of the probability density
ρ(p,t ; y,β) showing gradual equilibration of the system subjected
to an abrupt shortening. Lines: Histograms obtained from 104

trajectories; symbols: distributions recovered from the first-order
kinetic equations (23) and (26). Parameters are the same as described
in the caption to Fig. 19.
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N = 10] the probability distribution remains broad even after
the recovery while, for a system with large N [see Fig. 20(b),
N = 100], the distribution is sharply peaked throughout the
process. Again, we find a perfect agreement between the
distribution obtained from the Monte Carlo simulations (lines)
and the one recovered from the knowledge of the averaged
behavior given by the HS kinetic equation parametrizing the
binomial distribution (26) (symbols).

IV. SKELETAL MUSCLES

The development of the HS model was originally motivated
by the mechanical experiments involving rapid shortening
of skeletal muscles with the goal of distinguishing passive
from active contributions to tension recovery [1,56–59]. It
was shown that the first phase of the response to a quasi-
instantaneous shortening imposed on a maximally activated
(tetanized) single muscle fiber represents a purely elastic
force drop. During the second phase, the tension recovers
to a level which depends nonlinearly on the amplitude of
the shortening. This fast force recovery, lasting about 1 ms,
precedes a considerably slower phase at the end of which the
tension fully returns to its original value. The latter, taking
place on a 100-ms time scale, is usually interpreted as an
active process driven by ATP hydrolysis [7,60].

a. Biochemistry vs mechanics. In their classical 1971 paper
HS conjectured that the force recovery at the ms time scale
must be attributed to a rapid folding in an assembly of attached
cross-bridges linking actin and myosin filaments. The idea of
bistability in the structure of myosin heads, giving rise to the
concept of a power stroke, has been later fully supported by
crystallographic studies [61,62].

While the scenario proposed by HS is in agreement with
the fact that the power stroke is the fastest step in the
Lymn-Taylor (LT) enzymatic cycle [63,64], there is a subtle
formal disagreement with the existing biochemical picture,
see Fig. 21. Thus, HS assumed that the mechanism of the
fast force recovery is fully passive and can be reduced to a
mechanically induced conformational change. In contrast, the
LT cycle for actomyosin complexes is based on the assumption
that the power stroke can be reversed only actively through the
completion of the biochemical pathway including adenosine
diphosphate (ADP) release, myosin unbinding, binding of
uncleaved adenosine triphosphate (ATP), splitting of ATP into
ADP and Pi, and then rebinding of myosin to actin [6,63].

In other words, while HS postulated that thermal fluctua-
tions experienced by the attached myosin heads can be biased
by external loading and that the power stroke can be reversed
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FIG. 21. Biochemical vs purely mechanistic description of the
power stroke in skeletal muscles: (a) The Lymn-Taylor four-state
cycle, LT(71), and (b) the Huxley-Simmons two-state cycle, HS (71).

by mechanical means, most of the biochemical literature is
based on the assumption that the power-stroke recocking
cannot be accomplished without the presence of ATP. In
particular, physiological fluctuations in muscle response are
mostly addressed in the context of active behavior [65–71].

Some authors, however, follow the HS mechanistic ap-
proach in assuming that the power-stroke-related leg of the
LT cycle can be decoupled from the rest of the biochemical
pathway; see, for instance, Refs. [49,72]. Below we adopt
this perspective, which implies that at a 1-ms time scale the
mechanism dominating muscle response is a purely mechan-
ical folding-unfolding. We then collect specific predictions,
generated by our augmented HS model, and use them as a
guidance in designing new experiments aimed, in particular, at
verifying the correctness of the underlying purely mechanistic
model.

b. Thermal effects. The knowledge of the free energy of the
HS system allows one to assess not only mechanical but also
thermal manifestations of the fast force recovery. The latter
have been measured in experiments employing calorimetric
techniques [49,50,73], however, a thermomechanical interpre-
tation of these experiments in the HS framework is still an
open question.

For instance, studies of the heat exchange following the
application of a fast length drop showed an increase of
temperature at the time scale of the purely elastic response
followed by a slower cooling during the force recovery up to
a level which is higher than the baseline preceding the step.
While, the temperature decay was linked to the equilibrium
heat effect of the conformational change, which was assumed
to be negative [73], the HS model predicts a positive heat effect
because a “mixed” state with high entropy is transformed into
a “pure” state with low entropy.

More specifically, the HS-type interpretation of the temper-
ature measurements during the fast force recovery would be
as follows:

(i) The rapid increase of temperature recorded during the
applied length step is a reflection of an adiabatic temperature
increase. To justify this claim, we mention that several ex-
perimental studies of muscles, involving temperature changes
due to rapid switching between solutions, showed that the time
scale of temperature equilibration within a typical muscle fiber
is of the order of 10 ms [74,75], which is 10 times slower than
the duration of the fast force recovery process.

(ii) The subsequent temperature decay is an outcome of the
cooling due to heat conduction and the heat release due to the
conformational change. The fact that the temperature at the end
of the recovery is higher than the baseline temperature is a
signature of the exothermic nature of the folding process (of
the working-stroke) and the inefficiency of the heat removal
mechanism at this time scale.

Several groups have also addressed the influence of temper-
ature on the force generation either by performing mechanical
experiments in different solutions [45,46] or by applying rapid
temperature changes to tetanized muscle fibers [47,48,76]. In
both cases the experiments show that the isometric tension
increases with temperature while the conformational state
of the cross-bridges becomes more homogeneous. Such a
response in the case of fast adiabatic changes can be explained
by the fact that, in order to maintain the value of the entropy
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at higher temperature, the HS system must evolve towards
a more ordered configuration. This effect, however, is not
captured by the HS model where temperature does not affect
the value of isometric tension at y = y0, see our Fig. 3. To
describe quantitatively the temperature dependence of the
tension-elongation curves, we may augment the HS model
by assuming phenomenologically that the energy bias v0 is a
function of temperature [46].

While the value of the isometric tension may depend
significantly on temperature, experiments show that the slope
of the tension-elongation curve is only weakly temperature
sensitive [49]. In general, the HS model predicts considerable
dependence of the shape of the tension-elongation relation
on temperature, including the possibility of negative stiffness
which is not observed in experiment. However, in the range of
temperatures considered in experiment (no more than 20 ◦C)
this effect is weak. For instance, if we assume that the
mechanical properties of the cross-bridges are not affected
by temperature, as is observed in experiments [45], and take
β = 4 at T = 4 ◦C, we obtain β ∼ 3.8 at T = 24 ◦C. In the
HS model, the sensitivity of the equilibrium tension-elongation
curves to such variations of β is negligible.

Among other interesting thermomechanical effects, in-
voked by the HS model, we mention the “infinite” cooling
in the process of reaching the state of isometric contractions.
To observe this effect the muscle must be first equilibrated
after shortening (at the T2 state) and then stretched back to the
T0 state.

c. Fluctuations. While in myofibrils half-sarcomeres fluc-
tuations can be expected to average out, at the scale of an
elementary acto-myosin complex (our half-sarcomere, see
Fig. 11), where N ∼ 102, fluctuations may interfere with
experiments. For instance, as we have seen in our Fig. 17 and
Fig. 19, the abrupt transitions associated with conformational
changes in individual cross-bridges may produce measurable
steps in the response curves.

Another way of assessing the role of fluctuations is through
the measurement of equilibrium susceptibilities. Thus, the
effective stiffness of the HS bundle can be represented as a sum
of an enthalpic term describing zero-temperature elasticity and
an entropic term that can be evaluated from the measurements
of tension fluctuations. More specifically, given that such
fluctuations can be measured, our Eq. (20) allows one to track
the number of the attached elements at different degrees of
stretching and different temperatures.

On the other hand, in mechanical experiments conducted
on single fibers and involving x-ray diffraction measurements
[77], one can, in principle, test the prediction of the model
that the configuration with 〈p〉 = 1/2 is the state of maximum
disorder. By studying statistics of the observed fluctuations in
the steady states, one can also search for deviations from the
static fluctuation-dissipation relation (5). If found, then they
may reveal the presence of out-of-equilibrium active processes
at the time scales of fast force recovery which would then
reconcile the mechanical and the biochemical pictures of this
phenomenon [78].

d. Cooperativity. Statistics of fluctuations for groups of
myosins has been studied exhausively in experiments involv-
ing active contraction. Considerable coordination between in-
dividual elements was detected, responsible for synchronized

oscillations in close to stall conditions (our point y = y0)
[56,79–84]. The cooperative behavior was explained by the
fact that, due to the presence of long-range elastic interactions
transmited through compliant backbones, the mechanical state
of one motor influences the kinetics of other motors [40,41].
The implied myosin-myosin coupling was taken into consid-
eration in models addressing active behavior of motor groups
[85,86] and emergent phenomena characterized by large-scale
entrainment signatures were identified [29,65,66,87,88]. The
claims that activity in such systems is crucial for the emergence
of synchronized oscillations were supported by in vitro assays
[65,66] showing that the finite-size scaling of the fluctuations
fundamentally differs from the equilibrium one N−1/2.

It is clear that to capture this effect, the original HS model
with rigid backbone and controlled displacement has to be
generalized, but the actual role of activity in synchronization of
cross-bridges is not obvious. Thus, it has been recently argued
[2] that the dominant factor behind collective behavior is not
activity but the long-range interactions between cross-bridges.
The simplest way to create such “cross-talk” without leaving
the HS framework is to consider the response of a HS system
subjected to a constant force (soft device) rather than a constant
displacement [26]. It has been shown that in the systems of
this type the nonconvexity of the free energy can resist thermal
fluctuations at sufficiently low temperatures, giving rise to
macroscopic cooperativity. Moreover, in the case of soft and
mixed (soft-hard) loadings, the pseudocritical point of HS at
β = 4 becomes a real critical point of the Curie type around
which fluctuations diverge in the thermodynamic limit and can
show unusual finite-size scaling [2].

V. NONMUSCLE SYSTEMS

The prototypical nature of the HS model makes it relevant
outside the skeletal muscle context as well. In fact, it can
be viewed as a description of a large class of biological
systems involving collectively biased multistable elements and
exhibiting, as a result, sigmoidal or ultrasensitive response at
finite temperatures as in our Fig. 2(a). The HS model describes,
perhaps, the most elementary molecular system capable of
transforming in a Brownian environment a continuous input
into a binary, all-or-none output that is crucial for the fast and
efficient, stroke-type behavior.

We recall that the capacity of multisite systems to flip in a
reversible fashion between several metastable conformations is
essential for many processes in cellular physiology, including
cell signaling, cell movement, chemotaxis, differentiation,
and selective expression of genes [89,90]. Usually, both the
input and the output in such systems, known as allosteric, are
assumed to be of biochemical origin. The HS model, dealing
with mechanical response and relying on mechanical driving,
complements biochemical models and presents a different
perspective on allostery.

a. Hair cell gating. Our first example of hypersensitivity
concerns the transduction channels in hair cells [91]. Each
hair cell contains a bundle of N ≈ 50 stereocilia which are
mechanically stimulated by the vibrations in the inner ear. The
stereocilia possess transduction channels closed by “gating
springs” which can open (close) in response to a positive
(negative) shear strain X, imposed on the cilia from outside.
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The broadly accepted model of this phenomenon [10] views
the hair bundle as a set of N bistable springs arranged in
parallel. It is identical to the HS model if the folded (unfolded)
configurations of cross-bridges are identified with the closed
(opened) states of the channels. The applied loading, which
tilts the potential and biases in this way the distribution of
closed and open configurations, is treated in this model as a
hard device of HS.

To stress the equivalence of the results, it is enough
to mention the expression for the total stiffness of a hair
bundle obtained in Ref. [10], which is a direct analog of our
Eq. (15). Moreover, the mechanical experiments, involving
a mechanical solicitation of the hair bundle through an
effectively rigid glass fiber showed that the stiffness of the
hair bundle is negative around the physiological functioning
point of the system [11], which is fully compatible with the
predictions of the HS model.

b. Cell adhesion. A similar analogy can be drawn between
the HS model and the models of collective unzipping for
adhesive clusters [9,92–95]. At the microscale we again
deal with N elements representing, for instance, integrins
or cadherins, that are attached in parallel to a common,
relatively rigid pad. The two conformational states, which can
be described by a single spin variable, are the bound and the
unbound configurations.

The binding-unbinding phenomena in a mechanically bi-
ased system of the HS type are usually described by the Bell
model [8], which is a soft device analog of the HS model with
κ0 = ∞. In this model the breaking of an adhesive bond repre-
sents an escape from a metastable state and the corresponding
rates are computed by using Kramers’ theory [95,96] as in the
HS model. In particular, the rebinding rate is often assumed to
be constant [97,98], which is also the assumption of HS for the
reverse transition from the post- to the pre-power-stroke state.
More recently, Bell’s model was generalized through the in-
clusion of ligand tethers, bringing a finite value to κ0 and using
the master equation for the probability distribution of attached
units [9,97].

The main difference between the Bell-type models and the
HS model is that the detached state cannot bear force while the
unfolded conformation can. As a result, while the cooperative
folding-unfolding (ferromagnetic) behavior in the HS model
is possible in the soft device setting [2], similar cooperative
binding-unbinding in the Bell model is impossible because
the rebinding of a fully detached state has zero probablity.
To obtain cooperativity in models of adhesive clusters, one
must use a mixed device, mimicking the elastic backbone and
interpolating between soft and hard driving [9,26,95,99].

c. Synaptic fusion. While muscle tissues maintain stable
architecture over long periods of time, it is feasible that
transitory muscle-type structures can be also assembled to
perform particular functions. An interesting example of such
assembly is provided by the SNARE proteins responsible for
the fast release of neurotransmitors from neurons to synaptic
clefts. The fusion of synaptic vesicles with the presynaptic
plasma membrane [22,100] is achieved by mechanical zipping
of the SNARE complexes which can in this way transform from
opened to closed conformation [101].

To complete the analogy, we mention that individual
SNAREs participating in the collective zipping are attached to

an elastic membrane that can be mimicked by an elastic or even
rigid backbone [102]. The presence of a backbone mediating
long-range interactions allows the SNAREs to cooperate in
fast and efficient closing of the gap between the vesicle and
the membrane. The analogy with muscles is corroborated by
the fact that synaptic fusion takes place at the same time scale
as the fast force recovery (1 ms) [103].

d. Macromolecular hairpins. Another class of phenomena
that can be rationalized within the HS framework is the
ubiquetous flip-flopping of macromolecular hairpins subjected
to mechanical loading [12–14,16].

We recall that in a typical experiment of this type, a folded
(zipped) macromolecule is attached through compliant links to
micron-sized beads trapped in optical tweezers. As the distance
between the laser beams is increased, the force applied to the
molecule rises up to a point where the subdomains start to
unfold. An individual unfolding event may correspond to the
collective rupture of N molecular bonds or an unzipping of
a hairpin. The corresponding drops in the force accompanied
by an abrupt increase in the total stretch can lead to an overall
negative stiffness response [12,15,55].

Realistic examples of unfolding in macromolecules may
involve complex “fracture” avalanches [19] that cannot be
modeled by using the original HS model. However, the HS
theoretical framework is general enough to accommodate
hierarchical metastructures whose stability can be also biased
by mechanical loading. In fact, the importance of the topology
of interconnections among the bonds and the link between the
collective nature of the unfolding and the dominance of the
HS-type parallel bonding have been long stressed in the studies
of protein folding [104]. The broad applicability of the HS
mechanical perspective on collective conformational changes
is also corroborated by the fact that proteins and nucleic acids
exhibit negative stiffness and behave differently in soft and
hard devices [18,20,21].

The ensemble dependence in these systems suggests that
additional structural information can be obtained if the
unfolding experiments are performed in the mixed device
setting. The type of loading may be affected through the
variable rigidity of the “handles” [105,106] or the use of an
appropriate feedback control that can be modeled in the HS
framework by a variable backbone elasticity.

e. Allosteric systems. As we have already mentioned,
collective conformational changes in distributed biological
systems containing coupled bistable units can be driven not
only mechanically, by applying forces or displacements, but
also biochemically by, say, varying concentrations or chemical
potentials of ligand molecules in the environment [107]. Such
systems can become ultrasensitive to external stimulations as
a result of the interaction between individual units undergoing
conformational transformation which gives rise to the phe-
nomenon of allostery also known as conformational spread
[90,108]. The switchlike input-output relations are required in
a variety of biological applications because they ensure both
robustness in the presence of external perturbations and ability
to quickly adjust the configuration in response to selected stim-
uli [89,109]. The mastery of control of biological machinery
through mechanically induced conformational spread is an
important step in designing efficient biomimetic nanomachines
[35,110–112].
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To link this behavior to the HS model, we note that
the amplified dose response, characteristic of allostery, is
analogous to the sigmoidal stress response of the paramagnetic
HS system where an applied displacement plays the role of
the controlled input of a ligand. Usually, in allosteric protein
systems, the ultrasensitive behavior is achieved as a result of
nonlocal interactions favoring all-or-none types of responses;
moreover, the required long-range coupling is provided by
mechanical forces acting inside membranes and molecular
complexes. In the HS model, such coupling is modeled
by the parallel arrangement of elements, which preserves
the general idea of nonlocality. Despite its simplicity, the
appropriately generalized HS model [2] captures the main
patterns of behavior exhibited by allosteric systems, including
the possibility of a critical point mentioned in Ref. [107].

VI. CONCLUSIONS

In this paper we presented a perspective on the seminal
work of Huxley and Simmons by viewing their results through
the prism of statistical mechanics. This allowed us to place an
emphasis on thermal effects and equilibrium fluctuations that
cannot be ignored in many biological applications of the HS
model.

The chemomechanical approach of HS is based on the
description of a mechanical system with N elements in
a thermal bath in terms of a single deterministic reaction
equation. Instead, our analysis starts with the analogy between
the HS model in a hard device and the paramagnetic Ising
model where the average conformation of a cross-bridge
viewed as the counterpart of magnetization. In view of
this analogy, the HS model describes a size indifferent
mean-field statistical mechanical system which explains why
the many-body stochastic dynamics can be modeled by a
single chemical reaction. The analogy with paramagnetism
is, however, not complete, asis revealed by the phenomena of
negative susceptibility and pseudocriticality that we identify
with the HS model. In particular, we show that while genuine
criticality requires cooperativity, in the HS model the collective
response is imposed through the rigid backbone rather than
being an emergent property.

Some of the most interesting findings of this paper concern
the thermal properties of the HS system. Thus, our analysis
highlights the previously unnoticed temperature robustness

of the pseudocritical state where specific heat vanishes
and fluctuations become temperature independent. We also
quantified the temperature variations during fast unfolding
and demonstrated that isothermal and adiabatic responses may
differ. These observations point towards the importance of the
nonorthodox experimental protocols combining mechanical
and calorimetric measurements. In particular, the revealed
fluctuation dependence of equilibrium susceptibilities suggests
a noncrystallographic way for the evaluation of the number of
folding elements.

To account for fluctuations in kinetics we, following
Refs. [29,30], went beyond the reaction-based modeling of
the averages and studied the time dependence of the proba-
bility distributions for various parameters during mechanical
transients. The results of the deterministic model of HS are,
of course, recovered from the analysis of the evolution of the
first moments of these distributions.

While being the simplest mean-field description of a broad
class of biological phenomena, the HS model clearly mis-
represents the important elastic coupling between the folding
elements, as has been long realized in muscle physiology
[40,41]. This drawback can be remedied by taking into account
the mechanical feedback induced by the backbone elasticity
[2] resulting in various degrees of synchronization already at
zero temperature [26]. A more important limitation of the HS
model is the neglect of the ATP-fueled activity which can
crucially interfere with passive folding [29,65,66,85–88,113].
The account of nonthermal driving in the HS setting produces
new qualitative effects [78,114] which opens the possibility
to build a fully mechanistic analog of the enzimatic cycle
originating in the work of Lymn and Taylor. Quantitative
applications of the HS model in and outside the muscle
context also call upon the account of complex geometry,
hierarchical architecture, soft-spin-type multistability, and
short-range interactions. All these potential augmentations,
however, will not diminish the role of the original HS model as
a source of fundamental physical intuition about the behavior
of a wide class of biological systems.
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