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Abstract

To account for surface relaxation in ultra-thin .lms, we consider the simplest one-dimensional
discrete chain with harmonic interactions of up to second nearest neighbors. We assume that
the springs, describing interactions of the nearest neighbors (NN) and next to nearest neighbors
(NNN) have incompatible reference lengths, which introduce a hyper-pre-stress and results in
a formation of the exponential surface boundary layers. For a .nite body loaded by a system
of (double) forces at the boundary, we explicitly .nd the displacement .eld and compute the
energies of the inhomogeneous stressed and reference con.gurations. We then obtain a simple
expression for the hyper-pre-stress-related contribution to the surface energy and show an unusual
scaling of the total energy with the .lm thickness. For ultra-thin .lms we report an anomalous
sti3ness increase due to the overlapping of the surface boundary layers. Implications of the micro
level hyper-pre-stress in fracture mechanics and in the theory of non-Bravais lattices are also
discussed. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The growing demands of modern industry require an understanding of the mechanical
behavior of nano-meter sized objects. An extreme miniaturization of the mechanical
structures makes classical continuum models incomplete for their adequate description
mostly because the associated size e3ects can no longer be neglected. As an example,
one can mention new technologies utilizing ultra-small actuators and sensors, where
a satisfactory account for the microscopic surface boundary layers is essential. Here
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we are using the term ultra-small to identify objects where the bulk and the surface
contributions to the elastic energy cannot be considered independently.

As a .rst step in the direction of understanding the size e3ect in ultra-thin mechanical
structures, here we study a discrete model accounting for surface relaxation in a linear
solid. The relaxation is localized in the areas adjacent to the unloaded free surfaces
and is due to the presence of broken bonds; the size of the corresponding layers is
measured in the units of a single atomic cell. Conventional discrete models limited to
the nearest neighbor (NN) interaction fail to capture these e3ects and we, following
some previous work, employ a model with the simplest next to nearest neighbor (NNN)
interaction.

The object we model can be viewed as an in.nite crystalline plate. The relaxation
of the atomic layers parallel to the surface produces a non-trivial inhomogeneous con-
.guration: lattice spacing normal to the surface of the .rst few atomic layers di3ers
from the spacing of the deep layers. The structural relaxation manifests itself through
the di3use x-ray di3raction and broadened phonon scattering pro.les (e.g. Germer et
al., 1961; Houchmandzadeh et al., 1992). To secure the presence of the boundary
layers at the free surfaces, we assume that the e3ective springs, describing NN and
NNN interactions have incompatible reference lengths which introduces a mismatch
or pre-stress. As a result, the macroscopically unloaded crystal in equilibrium will not
be free of micro-stresses generated by an e3ective system of self-equilibrated forces
and self-equilibrated couples. In view of the fact that the corresponding couples are
“invisible” at the macroscopic level, the resultant pre-stress does not .t the de.nition
of a standard pre-stress of the classical continuum elasticity theory and we use the
term hyper-pre-stress to distinguish the two. Our type of pre-stress plays an important
role when the micro-scales are important, for example when the crack opens inside
the solid and the associated relaxation layers appear in the areas adjacent to the newly
formed free surfaces. For suGciently closely located free surfaces, as in the case of an
ultra-thin .lm or a tip of a crack, the relaxation strain .elds will overlap, producing a
non-trivial energy and e3ective sti3ness dependence on the external length scale. The
goal of this study is to make a simple quantitative model of these e3ects allowing one,
for instance, to study the e3ective surface energy scaling with the size of the body.

Given that in our setting, the forces and displacements vary only in the direction nor-
mal to the boundaries of the plate, the problem is essentially one-dimensional. In fact,
we assume tacitly that all relaxations are longitudinal in character, i.e. only interlayer
spacings change when we approach the surface of the body. The simplest 1D atomistic
model capturing these e3ects is a set of crystallographic planes joined by harmonic
NN and NNN springs with incompatible reference lengths and distinct sti3nesses. Ac-
tually, the linear elastic constants of NN and NNN springs can even have opposite
signs which may be the case when the primary interatomic potential is non-convex.
The introduction of the NNN interaction in the one-dimensional theory may also be
viewed as an attempt to mimic long range e3ects of the simpler NN models in two
and three dimensions (see discussion in Pouget, 1991).

Within the framework of a one-dimensional model with compatible reference states,
discrete chains with NNN interactions have already been investigated in the literature,
originally, in the context of validating continuum theories with couple-stresses. Thus,
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Toupin and Gazis (1964) were probably the .rst to study surface puckering in .-
nite crystals with NNN interactions produced by a self-equilibrated system of surface
couples. In order to describe more adequately large relative displacements of the parti-
cles near the free boundary, Gazis and Wallis (1965) considered a semi-in.nite NNN
chain with an-harmonic forces localized in a few atomic layers near the free surfaces.
Mindlin (1965) extended the above approach to the case of third nearest neighbors
although in much less detail. Conditions of linear stability for an in.nite crystal with
NNN interaction were obtained in Gazis and Wallis (1962; 1965) and Kunin (1982).
More recently, Houchmandzadeh et al. (1992) re-derived some of these results and
extended the analysis of stability to the in.nite chains with third nearest neighbor in-
teractions. Without a reference to the boundary layers, an in.nite chain with non-linear
NN and NNN interactions (and zero pre-stress) was studied in Janssen and Tjon (1982)
and Janssen (1991) as a prototypical model of stable incommensurate crystal phases;
two-dimensional models of this type were considered in Chow et al. (1996). Some
numerical results for a .nite nonlinear NNN chain were obtained in Trianta.llydis and
Bardenhagen (1993) where the emphasis was on fracture and phase transitions while
surface relaxation was arti.cially suppressed.

A mismatch between the reference lengths of the NN and NNN springs has been
recently introduced in Lee et al. (1999). Their analysis is similar in focus to ours, albeit
the fact that instead of dealing directly with the discrete model, the authors studied
a long wave quasi-continuum approximation with higher strain gradients. The main
price of the simplicity associated with such an approximation is that important e3ects
carried by the discreteness of the original problem are left out. Thus, one can show
that the approximate formula for the surface energy obtained in Lee et al. (1999) is
valid only in the narrow range of spring sti3nesses and outside this range may di3er
considerably from the exact result obtained in the present paper. Another drawback of
the quasi-continuum approach is that such a description is inherently non-unique. For
example, a quite di3erent quasi-continuum model with higher gradients and surface
boundary layers was studied earlier by Mindlin (1965) who derived it from a discrete
theory involving interaction of third neighbors. Mindlin’s model was employed by Wu
(1992) who computed an apparent Young’s modulus for an ultra-thin plate and showed
that it may be much higher than the one obtained for a continuum 3D body of the same
geometry. We notice that the surface boundary layers have also been studied in the
context of purely phenomenological theories with higher gradients (e.g. Casal, 1963;
Toupin, 1964; Vardoulakis and Sulem, 1995) as well as in the framework of strongly
non-local continuum models with integral spatial “memory” (e.g. Eringen, 1992; Kunin,
1982; Fosdick and Mason, 1996).

In the present paper, by assuming that the e3ective springs describing NN and NNN
interactions have arbitrary reference lengths and arbitrary bulk moduli, we study a
general discrete problem for a .nite chain loaded by generic forces. Depending on
the magnitude of the ratio of the elastic moduli, we obtain three types of solutions
to the “bulk” equations: homogenous with monotone exponential boundary layers at
the free surfaces, homogenous with oscillations superimposed on exponential boundary
layers, and inhomogeneous (periodic), which describe commensurate and incommen-
surate non-Bravais lattices. The solutions are simple enough and as an example we
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present the detailed calculations for a .nite body in a soft device. Using our equilib-
rium solutions, we explicitly compute the surface energy and identify a contribution
due to hyper-pre-stress. In the case when the exponential envelopes of the boundary
layers overlap and the surface cannot be naturally separated from the bulk, we observe
a strong dependence of the e3ective elastic sti3ness on the external dimension of the
object. In the concluding part of the paper, we argue that the consequences of the
localized relaxation may also be signi.cant outside the thin .lm theory; for instance,
in fracture mechanics where the radius of curvature of the free surface at the tip of the
crack is typically of the order of the thickness of our boundary layers. Other relevant
physical phenomena include phase transitions and twinning, where the long range in-
teractions contribute to the formation of the boundary layers near the internal surfaces.
The exponential interaction of these boundary layers plays an important role in the
selection of the scale of the microstructure.

The paper is organized as follows. In Section 2, we formulate our discrete model and
introduce the notion of hyper-pre-stress. In Section 3, we classify equilibrium solutions
for the in.nite chains and distinguish homogeneous con.gurations with boundary layers
from the periodic regimes describing multi-lattices. In Section 4, we explicitly solve the
“boundary equations” for a .nite chain in a (generalized) soft device. In Sections 5–8,
we describe the inhomogeneous reference con.guration, compute the e3ective surface
energy, and study its dependence on the hyper-pre-stress and the ratio of the NN and
NNN elastic moduli. In Sections 9–10, we study the size dependence of the surface
energy and e3ective elastic moduli for the ultra-thin objects. In the .nal section, we
summarize our .ndings and mention some open questions. The more technical stability
analysis is left for the appendix.

2. The model

Consider a one-dimensional lattice with N + 1 identical material particles connected
by 2N + 1 elastic springs. We label the x-coordinate of the kth particle by xk , where
0 6 k 6 N . We then denote by x0

k , the value of the coordinate xk , at rest (in the
unloaded chain), and introduce elastic displacements from the reference con.guration

uk = xk − x0
k :

We notice that the reference (rest) con.guration x0
k may not be homogeneous.

Suppose that each particle in the interior of the chain interacts symmetrically with
four other particles. Two of them are its nearest neighbors and the other two are its
next to nearest neighbors (see Fig. 1).

The elastic energy of the chain is de.ned as a sum of two terms

W (x0; : : : ; xN ) =
N∑
k=1

w1(xk − xk−1) +
N−1∑
k=1

w2(xk+1 − xk−1): (2.1)

In order to be able to obtain analytical results we suppose that both functions w1 and
w2 are quadratic. Speci.cally, we introduce

w1(z) =


2

(z − �1)2 + w0
1 (2.2)
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Fig. 1. One-dimensional chain with next to nearest neighbor (NNN) interactions in a soft device represented
by the four forces: f1; f2; f3; f4.

as the energy of the NN interaction and

w2(z) =

2

(z − 2�2)2 + w0
2 (2.3)

as the energy of the NNN interaction. In formulas (2.2), (2.3) the constants 
,  are
elastic sti3nesses of the springs; �1; 2�2 are the natural spring lengths, and w0

1, w0
2

are the corresponding reference energies. In the generic case when �1 �= �2 the two
interactions compete and the springs are pre-stressed even in the absence of the applied
loads.

Energy (2.1) can be viewed as a harmonic approximation for a Lennard–Jones chain;
the constants 
, , �1, �2, w0

1, and w0
2 can then be considered as adjustable parameters

(see Section 11 for an explicit identi.cation). In what follows, we will present the
most general case and assume that the elastic moduli 
 and  may take arbitrary
values, including the situations when they may be of di3erent signs.

Contrary to the case of an NN chain, where only two boundary conditions are
necessary, the NNN model requires four boundary conditions. In fact, the two missing
bonds on a free surface on each side have to be replaced by either given forces or by
the prescribed displacements. The following three loading devices will be relevant for
our analysis:

1. Soft device. The external work takes the form

Q(x0; x1; xN−1; xN ) = f4uN + f3uN−1 − f1u0 − f2u1; (2.4)

where we assume that fp; p = 1; : : : ; 4 are given constants satisfying the overall
equilibrium condition

f4 + f3 = f1 + f2 : =f: (2.5)

2. Hard device. The particle positions x0; x1; xN−1, and xN are prescribed.
3. Mixed device. Only the positions of the boundary particles x0 and xN are prescribed.

The “non-local” interaction with the loading device is modeled by the given forces
f2 and f3 applied to the second and the N − 1st atoms, producing the work term

Q(x1; xN−1) = f3uN−1 − f2u1: (2.6)

After the work of the loading device is speci.ed, the total energy can be written as

P =W − Q; (2.7)



222 M. Charlotte, L. Truskinovsky / J. Mech. Phys. Solids 50 (2002) 217–251

and the equilibrium equations can be obtained from the conditions 9P=9xk = 0. In the
case of a soft device this yields the system of N + 1 equations which can be divided
into two parts. First, we obtain the “bulk” equations

0 = 
(xk+1 + xk−1 − 2xk) + (xk+2 + xk−2 − 2xk); (2.8)

where 2 6 k 6 N − 2. These equations must hold for the N − 3 inner atoms that
interact with their two NN and two NNN neighbors.

The four boundary atoms will also interact through forces with the loading device,
providing four “boundary equations”

0 = 
(x1 − x0) + (x2 − x0) − (f1 + 
�1 + 2�2); (2.9)

0 = 
(x2 + x0 − 2x1) + (x3 − x1) − (f2 + 2�2); (2.10)

0 = 
(xN + xN−2 − 2xN−1) + (xN−3 − xN−1) − (f3 + 2�2); (2.11)

0 = 
(xN−1 − xN ) + (xN−2 − xN ) − (f4 + 
�1 + 2�2): (2.12)

Eqs. (2.8)–(2.12) show that the global equilibrium condition (2.5) is necessary and
that the pre-stress can be interpreted as a self-equilibrated system of applied “forces”.
The appearance of boundary layers in the case �1 �= �2 can be attributed to the fact
that these internal “forces” are compatible with the homogeneous distribution of spring
lengths only if �1 =�2. Finally we remark that the system of Eqs. (2.8) can be formally
“integrated” to give


(xk+1 − xk − �1) + (xk+2 − xk − 2�2) + (xk+1 − xk−1 − 2�2) = f; (2.13)

which is a statement that the total force (2.5) is constant throughout the length of the
chain.

For the case of a hard device, Eq. (2.8) will still hold, while instead of Eqs. (2.9)
–(2.12) one has to prescribe the boundary displacements u0; u1; uN−1, and uN . In the
case of a mixed device, two displacements must be prescribed and two “boundary”
equations are to be solved.

3. Solution of the “bulk” equations

Since our linear system (2.8) has constant coeGcients, we can use standard methods
(e.g. Levy and Lessman, 1959) to obtain an explicit solution in the form

xk =�1(k)�k1 +�2(k)�k2 +�3(k)�k3 +�4(k)�k4: (3.1)

Here �q; q = 1; : : : ; 4, are complex roots of the characteristic equation

�4 + 
�3 − 2(
 + )�2 + 
�+ = 0: (3.2)

If the root �q has multiplicity nq¿ 1, with
∑

nq = 4, then �q(k) is the associated
complex polynomial of the order nq − 1.
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The characteristic equation (3.2) has a special structure and one double root is
straightforward

�1;2 = 1: (3.3)

The associated position .eld is linear

xk = A+ Bsk (3.4)

with A and B arbitrary constants. Here we introduced a new (centered) labeling of the
springs

sk = k − N
2
:

so that A in Eq. (3.4) may be associated with the rigid displacement of the center of
the chain. The latter may or may not coincide with the location of a particle.

The displacement .eld (3.4) describes a uniform distribution of particles in accor-
dance with the Cauchy–Born hypothesis and provides a general solution for the NN
chain ( = 0). With NNN interaction added, the characteristic equation (3.2) has two
other roots, which can also be found in an explicit form. First, introduce the ratio of
the elastic moduli describing NN and NNN interactions

� =


4
: (3.5)

Then

�3;4 = −(2� + 1) ± 2
√
�(� + 1); (3.6a)

for �6 −1 and �¿ 0, and

�3;4 = −(2� + 1) ± 2i
√

−�(� + 1); (3.6b)

for −1 6 � 6 0. Notice that in both cases, �3 = �−1
4 . The location of the roots �3

and �4 on the complex plane and their dependence on � is illustrated in Fig. 2.
As it follows from Fig. 2 we have speci.ed parameter �3 by the additional conditions

Im �3 ¿ 0, |�3|¿ 1. It will also be convenient to introduce two other real parameters,
�1¿ 0 and �2 ∈ [0; �], by the formula

�3 = exp(�1 + i�2):

Notice that �1, describes exponential variations of the atomic position .eld while �2 is
responsible for the bounded periodic modulations.

In the representation of the general solution of the bulk equations di3erent possibil-
ities arise depending on the value of �, including three generic cases and two limiting
cases, �= 0 and −1, corresponding to the situations with a double root �3;4 =−1 and
a fourfold root �1;2;3;4 = 1, accordingly. Below, we give a complete list of solutions.
Let C and D be two arbitrary real constants. Then, for the generic cases we obtain

• −∞¡�¡− 1 (Case I):

xk = A+ Bsk + C cosh(�1sk) + D sinh(�1sk); (3.7)
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Fig. 2. The location of the non-trivial complex roots �3 and �4 of the characteristic equation (3.2) at di3erent
values of the parameter �. The arrows indicate variation of the roots as � increases from ∞ to +∞.

where

�1 = ln(−(2� + 1) + 2
√
�(� + 1)); �2 = 0: (3.8)

(To establish relation between Eqs. (3.7) and (3.1) we notice that Eq. (3.7) can also
be written as

xk = A+ B
(
k − N

2

)
+
(
C + D

2

)√
�N4 �

k
3 +

(
C − D

2

)√
�N3 �

k
4

and use the identities cosh �1 = −(2� + 1) and sinh �1 = 2
√
�(� + 1));

• −1¡�¡ 0 (Case II):

xk = A+ Bsk + C cos(�2sk) + D sin(�2sk); (3.9)

where

�1 = 0; �2 = arg(−(2� + 1) + 2i
√

−�(� + 1)) ∈ (0; �); (3.10)

which can also be written as cos �2 = −(2� + 1) and sin �2 = 2
√−�(� + 1);

• 0¡�¡+ ∞ (Case III):

xk = A+ Bsk + (−1)k [C cosh(�1sk) + D sinh(�1sk)]; (3.11)

where

�1 = ln(2� + 1 + 2
√
�(� + 1)); �2 = �; (3.12)

which can also be written as cosh �1 = 2� + 1 and sinh �1 = 2
√
�(� + 1).

In the non-generic cases we obtain

• � = −1

xk = A+ Bsk + Cs2k + Ds3k ; (3.13)
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Fig. 3. The number of springs n inside the boundary layers as a function of � in the Cases I and III.

where �1 = �2 = 0,

• � = 0

xk = A+ Bsk + (−1)k [C + Dsk ]; (3.14)

where �1 = 0; �2 = �.

Each of the above position .elds is a sum of a uniform particle distribution and an
inhomogeneous component. The character of the inhomogeneous part of the solutions
in Cases I and III is di3erent from the one in Case II.

As it follows from Eqs. (3.7), (3.11), in the generic Cases I (�¡ − 1) and III
(�¿ 0) the inhomogeneous component of xk is exponential, which suggests formation
of the boundary layers in a .nite chain: the exponential “tails” will be localized near
the boundaries (surface relaxations) with the “interior” particles distributed almost ho-
mogeneously. The number of springs in the boundary layers is of the order n = 1=�1;
for the notion of a boundary layer to be adequate, we need N�n. As we show in
Fig. 3, n tends to zero as � → ±∞ (NN model) and tends to in.nity in the special
cases when � → −1 and � → 0, meaning that the boundary layers spread throughout
the chain.

In Case III the boundary layers will contain oscillations at the scale of the lattice
modulated by an exponential envelope. By rearranging the terms in Eq. (3.11) we can
rewrite the corresponding solution as

xk =
[

1 + (−1)k

2

]
[A+ Bsk + C cosh(�1sk) + D sinh(�1sk)]
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Fig. 4. A typical modulated equilibrium con.guration in the Case II (−1¡�¡ 0) representing a non-simple
lattice.

+
[

1 − (−1)k

2

]
[A+ Bsk − C cosh(�1sk) − D sinh(�1sk)]; (3.15)

which reveals a superposition of two structures each analogous to Eq. (3.7).
In the generic Case II (−1¡�¡ 0), the solution behaves quite di3erently and

instead of exponential boundary layers, we obtain periodic con.gurations which may
be described as a succession of stretched and compressed zones (see Fig. 4).

Spatial modulations of the particle density in Case II result from the presence of
competing interactions; 1 the “frustrated” system produces non-simple (or non-Bravais)
lattice which may be either commensurate or incommensurate with the periodic ref-
erence state. If the period of the inhomogeneous component of the displacement .eld
n = 2�=�2 = p=q is a rational number, which takes place at � = − 1

2 [1 + cos(2�q=p)],
the minimal unit cell is formed of q particles. If the period is irrational, the long range
periodic order is incommensurate with an imaginary periodic lattice.

The �-dependence of the number of springs comprising a period of modulations
is shown in Fig. 5. As we see, around � = −1 only very long chains can exhibit
sub-lattices. On the contrary, around � = 0 the period approaches 2 atomic distances.
In the former case the sub-cell is in.nite, while in the latter case it is formed exactly
of 2 atoms. The last observation is in agreement with the behavior of the transitional
non-generic solution. Thus, at � = 0, in spite of the degeneration of the exponential
“tail”, the decomposition analogous to Eq. (3.15) is available

xk =
(

1 + (−1)k

2

)
[A+ C + (B + D)sk ] +

(
1 − (−1)k

2

)
[A− C + (B− D)sk ]:

(3.16)

The position .eld (3.16) can be viewed as a superposition of two displaced homo-
geneous lattices, forming an elementary non-Bravais lattice (2-lattice).

1 In continuum mechanical framework systems with long range competing (antiferromagnetic) interactions
have been previously considered in the context of gradient models with alternating signs of higher derivatives
(Mizel et al., 1998) and in the fully non-local integral models with sign-indeterminate kernels (Ren and
Truskinovsky, 2000). In both cases modulated structures have been obtained.
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Fig. 5. A number of springs inside the period n = 2�=�2 as a function of � in Case II (−1¡�¡ 0).

4. Finite lattice

As we have seen in the previous section, the general solution of the “bulk” equations
(2.8) is de.ned up to four arbitrary real constants A; B; C and D. To specify these
constants, one should use four “boundary equations” (2.9)–(2.12), which play a role
of the boundary conditions. Below we show how the “boundary equations” can be
applied in the case of a generic soft device.

First notice that since the four applied forces satisfy the constraint of a global equi-
librium (2.5) the number of loading force parameters can be reduced to three and
simultaneously one can always eliminate the overall rigid displacement of the chain by
choosing A= 0. A “natural” reduction of an arbitrary force system (f1; f2; f3; f4), to
the triple of independent components must respect the constraint of the overall equi-
librium and be able to distinguish between the self-equilibrated contributions and the
overall applied force. The application of the above constraints leads to the following
result

f1 = (2� + 1)F − F ′ − F ′′; f2 = F + F ′ + F ′′;

f3 = F − F ′ + F ′′; f4 = (2� + 1)F + F ′ − F ′′: (4.1)

This decomposition, which generalizes a construction from Toupin and Gazis (1964), is
illustrated in Fig. 6. One can see that F ′ and F ′′ represent symmetric and anti-symmetric
components of the self-equilibrated loading device, while F is proportional to the total
force. As we show below, the forces F; F ′ and F ′′ are directly associated with the coef-
.cients B; C and D in the representation of the general displacement .eld for the in.nite
chain.
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Fig. 6. Elementary force systems responsible for the homogeneous component of the strain .eld and for
symmetric and anti-symmetric components of the boundary layers.

We begin with the observation that the homogenous part of the position .eld can
be presented in the form

B =
F
2

+
(
� − 1
� + 1

)
�+ �̃; (4.2)

where

�=
�1 − �2

2
; (4.3)

is a characteristic of the hyper-pre-stress and

�̃=
�1 + �2

2
; (4.4)

is the average of the two reference spring lengths. In the case of zero pre-stress (�=0),
parameter �̃ from Eq. (4.4) describes the lattice unit of an unloaded lattice.

From Eq. (4.2), we conclude that neither F ′ nor F ′′ a3ects the homogeneous part of
the position .eld. Instead, these two components of a generic loading device are respon-
sible for the formation of the boundary layers and internal modulations. Since, according
to Eqs. (2.9)–(2.12), the hyper-pre-stress is equivalent to a symmetric self-equilibrated
system of applied forces, its presence will be felt outside the bulk deformation through
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the renormalization of F ′′ only. More speci.cally in each of the main cases we obtain

• �¡− 1

D =
F̃
′′

4
√
�(� + 1) cosh(�1N=2)

; (4.5)

C = − F ′

4
√
�(� + 1) sinh(�1N=2)

; (4.6)

• �¿ 0

D =
[((−1)N − 1)=2]F ′=2− [(1 + (−1)N )=2]F̃

′′
=2

2
√
�(� + 1) cosh(�1N=2)

; (4.7)

C =
[(1 + (−1)N )=2]F ′=2+ [(1 − (−1)N )=2]F̃

′′
=2

2
√
�(� + 1) sinh(�1N=2)

; (4.8)

• −1¡�¡ 0

D =
F̃
′′

4
√−�(� + 1) cos(�2N=2)(

� �= −1
2

(
1 + cos

(
2m− 1
N

�
))

; 1 6 m6
N
2

)
; (4.9)

C =
F ′

4
√−�(� + 1) sin(�2N=2)(

� �= −1
2

(
1 + cos

(
2m
N
�
))

; 1 6 m¡
N
2

)
: (4.10)

In the above formulas we introduced a renormalized force F̃
′′

which depends on the
pre-stress through the parameter �

F̃
′′

= F ′′ −
(

4�
� + 1

)
�: (4.11)

In order to rewrite expressions (4.2), (4.5)–(4.10) in terms of the original force com-
ponents, one needs to invert the force decomposition relations (4.1)

f3 + f4

2(� + 1)
= F;

f4 − f1

2
= F ′;

(2� + 1)f3 − f4

2(� + 1)
+
f4 − f1

2
= F ′′: (4.12)

From these relations it is clear that F is responsible for the overall force f3 + f4 =
f1 + f2 acting on the system. One can also notice that in the limiting case of large
|�| the NN model with f1 = f4 is recovered.
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The equilibrium displacement .elds for all three generic Cases I, II, and III are
illustrated in Fig. 7 where we present the simplest example of a body with zero external
forces and non-zero hyper-pre-stress. More speci.cally, we assume that

F = 0; F ′ = 0; F̃
′′

= −
(

4�
� + 1

)
�: (4.13)

The .rst two graphs exhibit monotone and oscillatory boundary layers, while the third
graph demonstrates the formation of an incommensurate sub-lattice.

Localized boundary layers in the Cases I and III, can be observed for suGciently
long chains when N�1�1. At .xed N , and � approaching 0 or −1, the inhomogeneous
boundary layers broaden and propagate inside the chain. Thus, the Taylor expansion
of the solution around � = −1 takes the form

xk =
[
f3 − f1

4
+ �1 +

(
f4 + f3

4
− 2�

)(
2 − 3N 2

6

)]
sk +

(
f1 − f4

4N

)
s2k

+
2
3

(
f4 + f3

4
− 2�

)
s3k + O(� + 1):

Here we dropped the term of the order |� + 1|−1, which corresponds to the overall
translation of the chain. As expected, the rest of the expansion matches exactly our
solution at � = −1 (see Eq. (3.13). Similarly, around � = 0 we obtain

xk =
(
f4 + f3

4
+�2

)
sk+

(
(−1)k − 1

2N�

)[
f4 − f1

4
+
(

1 − (−1)N

2

)(
f3 − f4

4

)]

+(−1)ksk

[
f1 − f4

4
+
(

1 + (−1)N

2

)(
f4 − f3

4

)]
+ O(�):

Here we preserved the singular term of the order |�|−1, which describes the disintegra-
tion of our lattice into two sub-lattices. This phenomenon reRects the fact that for �=0,
the NNN chain can be represented as two non-interacting NN sub-chains. As a result
it is unstable unless the loading is special (meaning f4 = f1 for even N or f3 = f1

for odd N ). Up to this rigid motion, the displacement .eld accurately reproduces our
special solution (3.14).

As we have already indicated above, in Case II (−1¡� 6 0) the expressions for
D in Eq. (4.9) and C in Eq. (4.10) diverge at N critical (bifurcational) points

�c(q) = −1
2

(
1 + cos

( q
N
�
))

; (4.14)

where q is an integer, 1 6 q6 N . For q odd, the coeGcient D diverges at � → �c(q)
when the chain is hyper-pre-stressed or if the loading is symmetric; for q even, the
coeGcient C diverges only when the chain is loaded asymmetrically. These special
values of � mark the onset of the instability associated with the bifurcations of the
periodic and quasiperiodic equilibrium con.gurations; the exact nature of these bifur-
cations depends on the nonlinear part of the model which we do not specify in the
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Fig. 7. Examples of the atomic positions for a hyper-pre-stressed .nite chain in a reference con.guration.
Here � = −5 × 10−3 and: (a) � = −1:065, B0 = 5 × 10−2 ; (b) � = 0:1, B0 = 4 × 10−3; (c.) � = −0:65,
B0 = 5 × 10−2.
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Fig. 8. Distribution of the critical points �c (4.14) as a function of N , and q. Con.gurations with odd q are
indicated by the zeros, con.gurations with even q-by the crosses.

present study. The distribution of the critical points on the plane (N; �) is illustrated
in Fig. 8. Each point in this .gure corresponds to an under-determined equilibrium
con.guration with the number of atoms inside a “macro-cell” 2�=�c

2 = N=q. As N →
∞, the distribution of the critical points �c becomes dense in (−1; 0].

Due to the fact that the bifurcation points of the equilibrium problem correspond
to the points of degeneracy of the Hessian matrix (in our case the matrix of elastic
sti3nesses), it is not surprising that the parameters �c play a prominent role in the
analysis of stability of the equilibrium solutions. Because of the rather technical nature
of this analysis, it is presented in the appendix.

5. Reference con!guration

As an application of the general formulas obtained in the previous section, here we
consider a special case of an unloaded, self-equilibrated lattice with f1 = 0, f2 = 0,
f3 = 0 and f4 = 0. This case is particularly interesting since it describes a reference
con.guration of the chain, which is in general nontrivial (see Fig. 7).

First notice that in the reference con.guration

B0 = �̃+
(
� − 1
� + 1

)
�; (5.1)

which is the limiting value of the lattice parameter away from the free surfaces.
Other coeGcients C0; D0 can be readily obtained from (4.5)–(4.10). Thus, for the
non-oscillatory Case I (�¡− 1), we obtain

C0 = 0; D0 = − ��√
�(1 + �)(1 + �) cosh(�1N=2)

:
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The reference strains can now be computed explicitly

xk◦ − xk−1◦ = B0 + 2�
(

�
1 + �

)(
cosh((2sk − 1)=2�1)√−� cosh(�1N=2)

)
: (5.2)

From Eq. (5.2) one can see that at large N the particle spacing approaches the con-
stant value B0. One can also notice that if �¿ 0 (�¡ 0) the length of the springs is
necessarily shorter (longer) near the surface than inside the chain.

Although such simple conclusions cannot be reached for the oscillatory Case III
(�¿ 0), we can still estimate the deviation of the spring lengths from their homoge-
neous value B0. We obtain

|xk◦ − xk−1◦ − B0| = 2|�|
(

�
1 + �

)(
cosh((2sk − 1)=2�1)√

� sinh(�1N=2)

)
(5.3)

for N even and

|xk◦ − xk−1◦ − B0| = 2|�|
(

�
1 + �

)(
sinh((2sk − 1)=2�1)√

� cosh(�1N=2)

)
(5.4)

for N odd. As it follows from Eqs. (5.3) and (5.4), these deviations are necessarily
larger near the free surfaces than inside the lattice.

Now, for the total length of the chain in the reference con.guration we obtain

L0 = NB0 + 2�
(

�
� + 1

)3=2 tanh(�1N=2)
�

(5.5)

at �¡− 1 and

L0 =NB0 +
2�
�

(
�

� + 1

)3=2((1 + (−1)N

2

)
tanh(�1N=2)

+
(

1 − (−1)N

2

)
tanh−1(�1N=2)

)
(5.6)

at �¿ 0. One can see, that for �¡−1 and �¿ 0 (�¡ 0), the relaxed chain is shorter
(longer) than the equivalent homogeneous lattice without the boundary layers. When
�¿ 0, the chain with boundary layers is longer (shorter) for �¿ 0 (�¡ 0). Now,
since for �1N�1 we can approximate

tanh(�1N=2) ≈ 1 − 2 exp(−2�1N=2);

the di3erence between the two lengths, mentioned above, behaves asymptotically as

L0 − NB0 ≈ 2�
(

�
� + 1

)3=2(1 − 2 exp(−�1N )
�

)
(5.7)

for �¡− 1 and

L0 − NB0 ≈ 2�
(

�
� + 1

)3=2(1 − 2(−1)N exp(−�1N )
�

)
(5.8)

for �¿ 0. As N → ∞ or � → ∞ the right hand sides of these expressions tend to a
constant, which means that for suGciently large N ,

L0 ≈ NB0:
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This, of course, agrees with the classical continuum theory, which characteristically
assumes that the reference con.guration is homogeneous.

6. The total energy

In this section, we calculate the total elastic energy of the equilibrium chain and
specify the contribution associated with the surface energy. We use the de.nition

W = Nw0
1 + (N − 1)w0

2 +


2

N∑
k=1

(xk − xk−1 − �1)2 +

2

N−1∑
k=1

(xk+1 − xk−1 − 2�2)2:

(6.1)

This expression can be rewritten as

W =W0 +W1 +W2; (6.2)

where

W0 =Nw0
1 + (N − 1)w0

2 +


2

N∑
k=1

(x0
k − x0

k−1 − �1)2

+2
N−1∑
k=1

(
x0
k+1 − x0

k−1

2
− �2

)2

(6.3)

is the energy of the reference state;

W1 = 

N∑
k=1

(uk − uk−1)(x0
k − x0

k−1 − �1)

+
N−1∑
k=1

(uk+1 − uk−1)(x0
k+1 − x0

k−1 − 2�2) (6.4)

is the linear coupling term and .nally

W2 =


2

N∑
k=1

(uk − uk−1)2 + 2
N−1∑
k=1

(
uk+1 − uk−1

2

)2

(6.5)

is the quadratic energy of the elastic deformation due to the external loading. To
compute the energy of a given equilibrium con.guration we must substitute in Eq.
(6.1) the values of the equilibrium displacements xk . For determinacy, in what follows
we consider the chain in a soft device and use our explicit solution (4.2)–(4.10).
According to Clapeyron’s theorem,

Q = 2W2;
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and therefore, whenever the elastic energy (6.2) is known, the calculation of the total
energy is straightforward.

We .rst notice that due to the condition of equilibrium, our linear coupling term in
the energy is equal to zero

W1 =
N∑
k=0

uk
9P
9xk

(x0
k) ≡ 0: (6.6)

To compute two other terms—the reference energy W0 and the elastic energy W2— it
is convenient to make some changes in the representation of the general solution of
the equilibrium equations. For simplicity, we shall illustrate the method for the Case
II (−1¡�¡ 0).

Let us rewrite the expressions for the reference particle con.guration and for the
displacement .eld due to the applied forces in the common form

xk◦ = B0sk + X0 sin(k�2 + ’0); (6.7)

uk = B′sk + X ′ sin(k�2 + ’): (6.8)

Here X ′; B′ and ’ are real constants satisfying

B′ = B− B0; (6.9)

C′ = C − C0 = X sin
(
N
2
�2 + ’

)
; (6.10)

D′ = D − D0 = X ′ cos
(
N
2
�2 + ’

)
: (6.11)

The constants X0, and ’0 characterizing the reference state can be obtained from

C0 = X0 sin
(
N
2
�2 + ’0

)
= 0; (6.12)

D0 = X0 cos
(
N
2
�2 + ’0

)
= −

(
2�
� + 1

)
�

cos(N=2�2) sin �2
: (6.13)

In order to obtain analogous representation for the equilibrium solutions in the other
two Cases I and III, we do not need to do additional computations. In Case I, it is
suGcient to replace in the .nal formulas

�2 → i�1;

’ → i’;

C → C;

D → −iD:
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In Case III, the replacement formulas are as follows:

�2 → � + i�1;

’ → i’;

C → C cos(�N=2) − iD sin(�N=2);

D → −C sin(�N=2) − iD cos(�N=2):

For simplicity we provide the detailed calculations in Case II only. For the other two
main cases, the .nal expressions can be easily obtained by the above substitutions.

7. The reference energy

In order to calculate the reference elastic energy W0 in the Case II (−1¡�¡ 0),
we substitute Eq. (6.7) into Eq. (6.3) to obtain

W0

2
=
Nw0

1 + (N − 1)w0
1

2
+ N�(B0 − �1)2 + (N − 1)(B0 − �2)2

+X0

[
−
(
B0 − �1

2

) N∑
k=1

(sin((k + 1)�2 + ’0) − sin((k − 1)�2 + ’0)

+ sin(k�2 + ’0) − sin((k − 2)�2 + ’0))

+ (B0 − �2)
N−1∑
k=1

(sin((k + 1)�2 + ’0) − sin((k − 1)�2 + ’0))

]

+
X 2

0

2
sin �2

[
−sin �2 −

N∑
k=1

(
sin 2(k�2 + ’0) − sin 2((k − 1)�2 + ’0)

2

)

+
N−1∑
k=1

(
sin((2k + 1)�2 + 2’0) − sin((2k − 1)�2 + 2’0)

2

)]
: (7.1)

Due to the mutual cancellations, the trigonometric sums in Eq. (7.1) can be computed
explicitly

W0

2
=
Nw0

1 + (N − 1)w0
2

2
+ N�(B0 − �1)2 + (N − 1)(B0 − �2)2

+ (1 + cos �2)(�1 − �2)X0[sin(N�2 + ’0) − sin’0] + (B0 − �2)2

− 1
2 [B0 − �2 + X0 sin(N�2 + ’0) sin �2]2 − 1

2 [B0 − �2 + X0 sin’0 sin �2]2

− (1 − cos �2)X 2
0

4
sin �2[sin 2(N�2 + ’0) − sin 2’0]: (7.2)
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By rewriting Eq. (7.2) in terms of the original constants C0; D0; we obtain

W0

2
=
Nw0

1 + (N − 1)w0
2

2
+ N [�(B0 − �1)2 + (B0 − �2)2]

− 4�(�1 − �2)D0 sin
(
N�2

2

)
−
[
B0 − �2 + D0 cos

(
N�2

2

)
sin �2

]2

−(� + 1)D2
0 sinN�2 sin �2 +

C2
0

2
sin �2(sinN�2 − sin(N + 1)�2 + sin �2)):

(7.3)

Finally, after replacing B0; C0 and D0 by the corresponding expressions (5.1), (6.13),
(6.13), we obtain

W0(N ) = Nw0
1 + (N − 1)w0

2 + 2
�2
(

1
� + 1

)(
N −

√ −�
� + 1

tan
N�2

2

)
: (7.4)

This is a desired formula for the reference energy. Notice that the .rst two terms char-
acterize the ground-state cohesive energy while the last term represents the contribution
due to the pre-stress.

By using the replacement rules formulated in the end of Section 6, we can obtain
formulas for the reference energy in Cases I and III. Thus, for �¡− 1 we get

W0 = Nw0
1 + (N − 1)w0

2 + 2
�2
(

1
� + 1

)(
N −

√
�

� + 1
tanh

N�1

2

)
: (7.5)

For �¿ 0 we obtain

W0(N ) =Nw0
1 + (N − 1)w0

2

+ 2
�2
(

1
� + 1

)[
N −

√
�

� + 1

[(
1 + (−1)N

2

)
tanh

N�1

2

+
(

1 − (−1)N

2

)
tanh−1 N�1

2

]]
: (7.6)

At large N the energy in Cases I and III approaches a linear function. On the contrary,
at small N the deviations from the linearity are substantial, pointing towards a charac-
teristic size e3ect due to the overlapping of the boundary layers. In Case II the energy
at large N oscillates periodically around a linear function, exhibiting singularities near
the bifurcational points N (�c) (see Eq. (4.14)).

8. Surface and fracture energies

In this section by subtracting from the reference energy of a .nite body W0 the
“bulk” part W b

0 , we compute the surface energy of a chain with NNN interaction. It
is natural to interpret the bulk energy W b

0 as the energy of the uniform distribution of
particles with the lattice parameter equal to B0 (see Eq. (5.1)). To compute the bulk
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energy for a .nite chain we should take the energy of the shared bonds into account.
We obtain

W b
0 =

N∑
k=1

w1(xk − xk−1) +
N−1∑
k=1

w2(xk+1 − xk−1)

+ 1
2w1(x0 − x−1) + 1

2w2(x1 − x−1) + 1
2w2(x0 − x−2)

+ 1
2w1(xN+1 − xN ) + 1

2w2(xN+1 − xN−1) + 1
2w2(xN+2 − xN ): (8.1)

By substituting the de.nitions of w1; w2 and using our ansatz x0
k =B0sk for the uniform

reference displacement .eld, we obtain

W b
0 = (N + 1)

[
w0

1 + w0
2 + 2


(
1

� + 1

)
�2
]
: (8.2)

Now the surface energy associated with each of the free surfaces can be computed
from the formula

Es =
W0 −W b

0

2
: (8.3)

By using expressions for W0 from the previous section, and introducing the notation

E0
s = −1

2
w0

1 − w0
2 ; (8.4)

we obtain

Es = E0
s − 
�2

(
1

1 + �

)(
1 +

√
�

� + 1
tanh

N�1

2

)
(8.5)

at �¡− 1 and

Es = E0
s − 
�2

(
1

1 + �

)[
1 +

√
�

1 + �

[(
1 + (−1)N

2

)

×tanh
N�1

2
+
(

1 − (−1)N

2

)
tanh−1 N�1

2

]]
(8.6)

at �¿ 0. The typical graphs of the hyper-pre-stress related part of the surface energy
E�s =Es−E0

s versus the number of particles N are presented in Fig. 9 at di3erent values
of �. For determinacy, here and in what follows we assumed that 
¿ 0. One can see
that the short chains exhibit size e3ect. For suGciently long chains, Es approaches a
constant value which would commonly be associated with the surface energy.

Speci.cally, in the limit N�1 → ∞ for both Cases I and III we obtain

Ẽs = −1
2
w0

1 − w0
2 − 
�2

(
1

1 + �

)[
1 +

√
�

1 + �

]
: (8.7)

This expression can be interpreted as (one half of) the total energy of fracture associated
with breaking the bond between the two adjacent half-spaces. This energy consists of
two contributions

Ẽs = E0
s + Ẽ

�
s : (8.8)
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Fig. 9. The dependence of the prestress-related part of the surface energy of a .nite chain on the number
of particles N . (a) � = −1:005, (b) 0:005.

The .rst term E0
s (see Eq. (8.4)) is the standard “pre-stress-free” surface energy. One

can expect this term to be positive. The second term

Ẽ
�
s = −
�2

(
1

1 + �

)[
1 +

√
�

1 + �

]
; (8.9)

which is entirely due to the pre-stress, is plotted in Fig. 10 as a function of �. One
can see that it is positive in the non-oscillatory Case I (�¡ − 1) and is negative in
the oscillatory Case III (�¿ 0).

Let us consider the process of the creation of new free surfaces in more detail. When
the material on one side of the fracture plane is removed, the internal forces on that
surface are no longer balanced. The new equilibrium con.guration has a region close
to the surface which is strained with respect to the bulk. To avoid this relaxation, one
can impose a system of forces preventing boundary layers from forming. The net force
must be zero so this system of forces must be self-equilibrating. By using Eq. (5.1),
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Fig. 10. The � dependence of the normalized surface energy for an in.nite chain.

it is not hard to show that it amounts to applying a couple

f1 = − 4��
1 + �

; f2 =
4��
1 + �

: (8.10)

In terms of the generalized force components (4.1), we obtain

F = 0; F ′ = 0; F ′′ =
4��
1 + �

: (8.11)

The energy of a “free” surface with forces (8.10) applied is equal to

Ẽ
0
s = E0

s − 
�2 1 + 2�
(1 + �)2 : (8.12)

This energy has a cohesive contribution E0
s and another term due to the hyper-pre-stress

interaction with the deformation in the bulk. Now, if we remove forces (8.10), the
relaxation near the surface will follow, leading to the formation of the boundary layers.
The corresponding energy change can be computed by subtracting Eq. (8.12) from Eq.
(8.7). We obtain

Ẽs − Ẽ
0
s = 
�2 1

1 + �

√
�

1 + �

(√
�

1 + �
− 1
)
: (8.13)

The right hand side of this expression represents the surface energy contribution due
solely to the boundary layers. Intuitively, one can expect that the presence of a surface
allows the system to lower its free energy by changing its con.guration in a region
near the surface from its bulk con.guration; as a result, free energy change associated
with the surface relaxation must be negative. Analysis of formula (8.13) shows that
this is in fact what is happening in both Cases I and III.
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9. The elastic energy

Now we consider the elastic energy W2 which is entirely due to the external loading.
The computations here are exactly analogous to the ones in Section 7 with parameters
�1; �2; w0

1 ; w
0
2 dropped, and the constants (B0; C0; D0) replaced by (B′; C′; D′). Starting

as before with Case II (−1¡�¡ 0) we obtain

W2 = 2(� + 1)(NB
′2 − D

′2 sinN�2 sin �2) − 2
(
B′ + D′cos

N�2

2
sin �2

)2

+ 2C
′2 sin

N�2

2
sin �2

[
cos

N�2

2
− cos

(
N
2
− 1
)
�2

]
: (9.1)

For the other generic cases the formulas for W2 are analogous. Thus, in Case I (�¡−1)

W2 = 2(� + 1)(NB
′2 − D

′2 sinhN�1 sinh �1) − 2
(
B′ + D′ cosh

N�1

2
sinh �1

)2

− 2C
′2 sinh

N�1

2
sinh �1

[
cosh

N�1

2
− cosh

(
N
2
− 1
)
�1

]
; (9.2)

and in Case III (�¿ 0)

W2 = 2(� + 1)[NB
′2 + (D

′2 + C
′2) sinhN�1 sinh �1]

− 
[
B′ − (−1)N

(
D′ cosh

N�1

2
+ C′ sinh

N�1

2

)
sinh �1

]2

− 
[
B′ −

(
D′ cosh

N�1

2
− C′ sinh

N�1

2

)
sinh �1

]2

: (9.3)

The explicit value of the energy depends on the coeGcients B′; C′; D′; which in turn
depend on the speci.cs of the loading device. As an example, consider a (particular)
hard device providing overall strain T'

uN = uN−1 = −u1 = −u0 =
N
2
B0 T': (9.4)

For these boundary conditions, the equilibrium problem can be solved explicitly (for
details see Charlotte (2001)). In Case I (−1¡�¡ 0) we obtain

B′ = NB0 T'
(

sinh((N=2) − 1)�1 − sinhN�1=2
N sinh((N=2) − 1)�1 − (N − 2) sinhN�1=2

)
; (9.5)

D′ =
NB0 T'

N sinh((N=2) − 1)�1 − (N − 2) sinhN�1=2
; (9.6)

C′ = 0: (9.7)
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Fig. 11. The elastic part of energy of a chain as a function of the number of particles. Here �=−2; B0=10−4.

To calculate the energy W2 we substitute the values of the coeGcients B′; C′; D′;
from Eqs. (9.5)–(9.7) into Eq. (9.2). After straightforward calculation we obtain

W2( T') = NB0
E T'2

2

(
1 +

2 tanhN�1=2
2[N (� + 1) − 1] tanhN�1=2 + N sinh �1

)
: (9.8)

Here we introduced the overall bulk modulus of an in.nite chain

E = 4(� + 1)B0 = (
 + 4)B0: (9.9)

For other generic Cases II (−1¡�¡ 0) and III (�¿ 0) the expressions for the energy
are similar. The dependence of the energy W2 from Eq. (9.8) on the number of particles
is illustrated in Fig. 11. One can see that at large N , the energy is proportional to
the number of particles as in a conventional continuum theory; this assumption leads
to a classical scaling for the energy of a thin plate. However, at suGciently small
N , there is a pronounced size e3ect characterized by a non-linear and non-monotone
dependence of the energy on N . This observation suggests that for ultra-thin plates
with the thickness of the order of internal length scale (several atomic distances in our
case), the classical scaling assumption neglecting interaction of the boundary layers
needs to be reconsidered.

The loading device (9.4) is not the only non-local generalization of what is con-
ventionally called hard device in the local theories. Thus, one can consider a special
mixed device with the imposed overall strain T' and zero “long range” forces f1 and f2

uN = −u0 =
N
2
B0 T'; f1 = f2 = 0: (9.10)



M. Charlotte, L. Truskinovsky / J. Mech. Phys. Solids 50 (2002) 217–251 243

For the boundary conditions (9.10) the constants B′; C′; D′, in Case I take the form
(see Charlotte (2001) for details)

B′ =
NB0 T' coshN�1=2 sinh �1

N coshN�1=2 sinh �1 − 2 sinhN�1=2
; (9.11)

D′ = − NB0 T'
N coshN�1=2 sinh �1 − 2 sinhN�1=2

; (9.12)

C′ = 0: (9.13)

After tedious but straightforward calculations we obtain the expression

W2( T') = NB0
E T'2

2

(
1 +

2 tanhN�1=2
N sinh �1 − 2 tanhN�1=2

)
: (9.14)

Notice that Eq. (9.14) has the same limit as Eq. (9.8) at large N but behaves di3erently
at small N . These non-Saint Venant’s deviations which we study in more details in
the next section are characteristic of the theories exhibiting size e3ect.

10. Elastic moduli

To illustrate the di3erence between the loading devices (9.4) and (9.10) in this sec-
tion, we compute the dependence of the corresponding e3ective overall elastic moduli
of the chain on the number of particles. To de.ne the modulus, we .rst introduce the
elastic energy density

w2( T') =
W2( T')
NB0

: (10.1)

Then, the elastic modulus can be de.ned as

TE =
d2w2

d T'2
= (
 + 4)

dB′

d T'
: (10.2)

The .nal expression can be written in the form

TE = E(1 + ((N )) (10.3)

Here E is given by Eq. (9.9) and correction factor ((N ) depends on the speci.cs of
the loading device disappearing in the limit N → ∞. It the case of the hard device
(9:4) and �¡− 1; we obtain

(1(N ) =
tanhN�1=2

[N (� + 1) − 1] tanhN�1=2 + N
√
�(� + 1)

: (10.4)

Similarly, for the hard device (9.10), the computations give

(2(N ) =
tanhN�1=2

N
√
�(� + 1) − tanhN�1=2

: (10.5)

The behavior of the function (1(N ) and (2(N ) is illustrated in Fig. 12. At small N we
again observe a characteristic size e3ect: the dependence of overall elastic modulus on
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Fig. 12. Behavior of the function (1(N ) and (2(N ) in the Case I (with � = −2).

the length of the chain. We notice that the qualitative behavior of the functions (1(N )
and (2(N ) is similar with both expressions overestimating at small N the value of the
elastic modulus for the in.nite chain.

The fact that the modulus gets higher as the specimen thickness tends to zero is
in agreement with the .ndings of Wu (1992) and seems to be supported by the ex-
perimental observations (e.g. Lakes, 1995). The results of this section suggest that the
elasticity of the ultra-thin objects may deviate substantially from the bulk elasticity of
the material. This is a natural consequence of the fact that at the atomic sizes surface
e3ects dominate bulk properties.

11. Concluding remarks

In this paper we constructed a complete set of static equilibrium solutions for a
.nite discrete chain with generic linear interactions of both nearest and next to nearest
neighbors. The behavior of a linear chain with the interaction of the nearest neighbors
only is trivial: the particles are always equidistant. By introducing the NNN interac-
tion, we were able to capture some of the non-locality of the non-one-dimensional
discrete models. The main focus, however, was on the e3ects of the hyper-pre-stress.
Hyper-pre-stress appears in the model if NN and NNN springs have incompatible ref-
erence lengths. In this case the two interactions, favoring di3erent spacings compete,
producing con.gurations, which are internally stressed even in the absence of the ap-
plied forces.

The two main e3ects of the nonzero hyper-pre-stress are the surface relaxations
and the internal modulations, which may be commensurate or non-commensurate with
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the reference lattice. Contrary to most of the previous work, our emphasis was on a
description of a .nite chain with the interacting boundaries. In particular, we studied
e3ects of non-local loading and gave a detailed solution of the equilibrium problem for
the case of a generic soft device. As a part of the solution, we singled out combinations
of applied forces responsible for bulk deformation and speci.ed self-equilibrated force
systems contributing to the boundary layers only.

When the chain contains suGciently large number of particles, the boundary layers
around the free surfaces become autonomous and one can de.ne the corresponding
excess energy. Our model allows one to compute this energy explicitly and to separate
the conventional contribution, due to the background cohesion from the contribution
due to the hyper-pre-stress. We show, that the cohesive part of the surface energy
is always positive, while the hyper-pre-stress related contribution may have di3erent
signs depending on the ratio of elastic moduli characterizing NN and NNN interactions.
One of the important conclusions is that for an object with the size of the order of
the internal length scale, the e3ective surface energy can no longer be considered
independent of the size and the shape of the body; one can expect the internal length
to be on the order of 10 lattice spacings. Our analysis of the size dependence of
the elastic modulus suggests, that due to the interaction of the boundary layers, the
ultra-thin bodies will exhibit anomalous sti3ness, in tension, torsion and bending.

One important question, which could not be fully addressed in harmonic approxi-
mation concerns with the stability of the equilibrium con.gurations. Previous analyses
of the linear stability for the in.nite chain with NNN interactions have lead to the
well known instability conditions {
¡ 0; 
 + 4¡ 0} (e.g., Gazis and Wallis, 1962,
1965; Kunin 1982). It is not hard to see that the application of these inequalities re-
sults in the instability of all con.gurations associated with our Case II (−1¡�¡ 0).
For a .nite chain, the computations presented in the appendix show that the domain
of instability is strictly inside the above intervals which means that some of the Case
II solutions are stable (the ones with 
 − 4minq �c(q)¿ 0; 
 − 4maxq �c(q)¿ 0).
On the other hand since the instability cannot be judged based on the linear part of
the model only, the precise conditions of stability will depend on the non-linear terms
neglected in the present study. In fact, by adding to our energy in Case II quartic
terms (guaranteeing suGcient growth of the energy at in.nity), one can obtain sta-
ble periodic microstructures even in the in.nite domain (e.g. Janssen, 1991). Stable
two-dimensional quasi-periodic microstructures in the in.nite nonlinear lattices have
also been studied in the literature (see for instance Chow et al., 1996).

Another interesting question, which has not been addressed in this paper is related
to the derivation of an adequate continuum approximation for the NNN model with
the hyper-pre-stress. The standard long wave approximation will work only in the
range of parameters where the boundary layers are suGciently wide and the oscilla-
tions on the scale of the lattice are absent; this means our Case I with � close to −1.
The main diGculty arises from the necessity of adding to the bulk energy appropri-
ate null-Lagrangians responsible for the formation of the boundary layers. This issue
deserves a separate analysis and will be considered elsewhere.

Our results may have some bearing on the criteria of failure in solids. Thus we
show that when a chain with a hyper-pre-stress is being broken, two quite di3erent



246 M. Charlotte, L. Truskinovsky / J. Mech. Phys. Solids 50 (2002) 217–251

phenomena are taking place simultaneously. First, the boundary layers are created with
the corresponding energy expenditure solely due to the hyper-pre-stress. Second, the
two freshly formed surfaces need to be separated and now the corresponding work
has basically nothing to do with the hyper-pre-stress. The above two-stage scenario
suggests an idea that the dependence of the surface energy on the separation of the
crack surfaces may be bi-modal with two plateaus: the smaller one corresponding to
the energy of the boundary layers and bigger one corresponding to the energy of the
ultimate de-cohesion. This idea, formulated as an assumption of the non-concavity of
the surface energy, has been recently used in Del Piero and Truskinovsky (2001) to
simulate fractured con.gurations where several micro-cracks (or pre-cracks) coexist
with a developed macro-crack.

In the context of fracture mechanics, it is also of interest to study directly the
behavior of a discrete model with the non-linear interaction of the Lennard–Jones
type: w1(z) = w2(z) = w(z). For close to homogeneous equilibrium con.gurations, our
linear analysis can provide a good approximation to the nonlinear solution. To insure
the agreement between the two models, the parameters of the harmonic approximation

; ; �1; �2; w0

1 ; w
0
2 must be chosen compatible with the non-linear potential w(z). By

cutting a chain suGciently far away from the external surfaces one can see that the
quasi-homogeneous particle spacing B can be found from the equation w′(B)+2w′(B)=
f, where f = f1 + f2 = f3 + f4 (cf. Eq. (2.13)). Then by linearizing the nonlinear
potential around the homogeneous states with the spacings B(f) and 2B(f), one obtains
the following parameters of the “tangential” model:

w0
1 = w(B) − w

′2(B)
2w′′(B)

; w0
2 = w(2B) − w

′2(2B)
2w′′(2B)

;

�1 = B− w′(B)
w′′(B)

; �2 = B− w′(2B)
2w′′(2B)

;


 = w′′(B); = w′′(2B):

In particular the non-dimensional parameter

� =
w′′(B)

4w′′(2B)

can clearly be in any of the three generic domains. Notice also that in the present
setting, the hyper-pre-stress � is generically di3erent from zero

�=
w′(B)

2w′′(B)
− w′(2B)

4w′′(2B)
:

The linear approximation obviously fails when one approaches the bifurcation points
(4.14) indicating the onset of instability. The analysis of the associate non-linear model
can reveal the structure of the bifurcated branches leading to fractured lattice con.gura-
tions. Partial theoretical results concerning the behavior of an in.nite NNN system with
Lennard–Jones potential can be found in Braides and Gelli (1999); selected numerical
computations for a .nite chain were reported in Trianta.llydis and Bardenhagen (1993).
In spite of these e3orts and the fact that the associated NN problem is thoroughly
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studied (e.g. Truskinovsky, 1996; Braides et al., 1999), the general bifurcational dia-
gram for the Lennard–Jones NNN problem is far from being known.

In a slightly di3erent but related context of the discrete theory of phase transitions,
the introduction of the NNN interaction has been shown to eliminate the degeneracy
of the simpler NN model through e3ective introduction of the interface energy (e.g.
Rogers and Truskinovsky, 1997; Puglisi and Truskinovsky, 2000). The origin of this
interface energy is the structural relaxation around the internal surfaces (phase or twin
boundaries). Based on the analogy with the present work, one can speculate that at
suGciently small scales the e3ective interface energy will strongly depend on the sep-
aration of the interfaces. This may explain, for example, why nano-scale particles of
smart materials do not exhibit a characteristic microstructure.
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Appendix

The equilibrium con.gurations of a chain in a soft device, studied in the main body
of the paper, satisfy the equilibrium and boundary conditions 9P=9xi = 0, where P is
the total energy of the system (see Sections 3, 4). To study the linear stability of the
equilibrium solutions one needs to analyze the positive de.niteness of the corresponding
Hessian matrix 92P=9xi9xj. In terms of the moduli 
 and  this (N + 1) × (N + 1)
matrix takes the form





 +  −
 − 0 · · · · · · · · · · · · · · · · · · 0

−
 2
 +  −
 − . . .
...

− −
 2(
 + ) −
 . . . 0
...

0 − −
 2(
 + )
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
...

... 0
. . . 0

...
. . . −
 2(
 + ) −
 −

...
. . . − −
 2
 +  −


0 · · · · · · · · · · · · · · · · · · 0 − −
 
 + 
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The principal minors of this matrix satisfy the following equations (see a related
case in Gazis and Wallis, 1965)

+1 = 
 + ;

+2 = (
 + 2)(
 + ) − 
2;

+k = (
 + 2)+k−1 − 2+k−2; 3 6 k 6 N − 1;

+N = (
 + )+N−1 − 2+N−2;

+N+1 = 0;

It is not hard to see that the .rst two equations provide “initial conditions” for the main
recurrent relation for +k ; the value of +N can be computed after all other principal
minors are known. The fact that the minor of rank N +1 is equal to zero can be linked
to the translational invariance of the chain in the soft device (and related arbitrariness
of the constant A from Section 3).

A general solution of the main di3erence relation for the minors can be written as
a combination of the monomials zk , with z being a root of the following characteristic
equation:

z2 − (
 + 2)z + 2 = 0:

If  �= 0 (NNN interactions are present) the two roots of the characteristic equations can
be written in the form z1;2 = �3;4, with �3;4 given by Eq. (3:6). Now, by substituting
the “initial data” for the minors of rank one and two into the general solution one
obtains the following explicit relations:

• −∞¡�¡− 1 (Case I):

+k = (−)k sinh[(k + 1=2)�1]
sinh(�1=2)

; 1 6 k 6 N − 1;

+N = 2(−)N coth(�1=2) sinh(N�1);

• −1¡�¡ 0 (Case II):

+k = (−)k sin[(k + 1=2)�2]
sin(�2=2)

; 1 6 k 6 N − 1;

+N = 2(−)N cot(�2=2) sin(N�2);

• 0¡�¡+ ∞ (Case III):

+k = k
cosh[(k + 1=2)�1]

cosh(�1=2)
; 1 6 k 6 N − 1;

+N = 2N tanh(�1=2) sinh(N�1):
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Here parameters �1 ¿ 0 and �2 ∈ (0; �) are the same as in Section 3. From these
expressions for the principal minors we observe that the stability conditions depend on
both material parameters 
 and ; we recall that the equilibrium con.gurations depend
only on their non-dimensional ratio �.

The analysis of Cases I and III is rather straightforward. Thus, in Case I all minors
are positive if and only if ¡ 0. This generates stability domain {¡ 0; 
 + 4¿ 0}
and instability domain {
+4¡ 0}. Similarly, in Case III all minors are positive if and
only if  ¿ 0. This produces {¿ 0; 
¿ 0} as stability domain and {¡ 0; 
¡ 0} as
instability domain. The situation is more subtle in Case II, which, for in.nite chains
turns out to be completely unstable.

In Case II one has to consider two possibilities: ¿ 0 and ¡ 0. If ¿ 0 the
principal minors are positive if and only if

2qk − k
k + 1=2

�6 �2 6
2qk + 1 − k
k + 1=2

�; 1 6 k 6 N − 1;

2qN − N
N

�6 �2 6
2qN + 1 − N

N
�:

Here for every 1 6 k 6 N , parameters qk span all positive integers compatible
with the constraint �2 ∈ (0; �). One can show that the above admissible intervals are
incompatible which means that the corresponding equilibrium states are unstable. As a
result we obtain another instability domain {
+4¿ 0; 
¡ 0}. If ¡ 0, the principal
minors are positive if and only if

2qk
k + 1=2

�6 �2 6
2qk + 1
k + 1=2

�; 1 6 k 6 N − 1;

2qN
N

�6 �2 6
2qN + 1

N
�;

where again for each 1 6 k 6 N the positive integers qk must be compatible with
the constraint �2 ∈ (0; �). The largest admissible domain in this case is: 0¡�2 ¡�=N
which in terms of � is equivalent to the following stability conditions

−1¡�¡− 1
2

[
1 + cos

( �
N

)]
= min

q
�c(q):

Here the function �c(q) is given by Eq. (4.14). By rewriting above conditions in
terms of 
 and  we obtain {
 − 4minq �c(q)¿ 0; 
¿ 0} as a stability domain and
{
− 4minq �c(q)¡ 0; 
¿ 0} as an instability domain.

The complete characterization of the stability domains requires consideration of the
limiting cases � = −1 and 0. In the .rst case (� = −1) we obtain

+k = (−)k(2k + 1); 1 6 k 6 N − 1

+N = 4(−)NN;
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which means that for stability it is necessary to have ¡ 0. In the second case (�=0),
we get

+k = (−)k ; 1 6 k 6 N − 1;

+N = 0;

meaning instability if ¿ 0 and neutral stability if ¡ 0. The case  = 0 (NN chain)
has to be treated separately; in this case +k = 
k for 1 6 k 6 N and stability requires

¿ 0.

By collecting all stability intervals indicated above, we obtain the following combined
conditions of stability{


− 4min
q
�c(q)¿ 0; ¡ 0

}
and {
¿ 0; ¿ 0}:

If we now recall that maxq �c(q) = 0, we can rewrite these conditions in the following
form

{
− 4min �c ¿ 0; 
− 4max �c ¿ 0}: (*)

We remark that in particular this means that the chain is unstable for minq �c(q)¡�¡
maxq �c(q).

Conditions (*) can be compared to the corresponding conditions for the in.nite chain

{
 + 4¿ 0; 
¿ 0}: (**)

Since −1 6 minq �c(q)¡maxq �c(q) 6 0, one can see that domain (*) is larger
than domain (**), which reRects the obvious fact that a .nite subsystem is more stable
than the whole in.nite system. By using the explicit relation for �c(q) (4.14) we can
compute stability limits for the chain of arbitrary length. In particular, for the shortest
NNN chain with N = 3, conditions of stability (*) reduce to 
 + 3¿ 0; 
¿ 0. The
substantial stretching of the stability domain in this case comparing to (**) illustrates
the enhanced stability of ultra-thin objects.

It is not hard to see that due to the broadening of the class of admissible variations,
the stability conditions for the soft device will also be suGcient for the cases of hard
and mixed devices. What is more interesting, conditions (*) are also suGcient for
those devices if parameters �c are taken to be bifurcational points associated with
the hard or mixed devices, accordingly. The fact that minq �c(q) and maxq �c(q) give
the lower and upper boundaries for the domain of instability in the �-space follows
from the observation that in both points the minimal eigenvalue of the Hessian matrix
becomes negative. To prove that (*) represent exact stability conditions in those cases
one needs to use the fact that additional constraints can only increase the value of the
minimal eigenvalue and that its dependence on elastic moduli 
 and  is continuous
and monotone. All these statements can be checked without diGculty.
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