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Mechanically induced unfolding of passive crosslinkers is a fundamental biological phe-
nomenon encountered across the scales from individual macro-molecules to cytoskeletal
actin networks. In this paper we study a conceptual model of athermal load-induced
unfolding and use a minimalistic setting allowing one to emphasize the role of long-range
interactions while maintaining full analytical transparency. Our model can be viewed as a
description of a parallel bundle of N bistable units confined between two shared rigid
backbones that are loaded through a series spring. We show that the ground states in this
model correspond to synchronized, single phase configurations where all individual units
are either folded or unfolded. We then study the fine structure of the wiggly energy
landscape along the reaction coordinate linking the two coherent states and describing
the optimal mechanism of cooperative unfolding. Quite remarkably, our study shows the
fundamental difference in the size and the structure of the folding–unfolding energy
barriers in the hard (fixed displacements) and soft (fixed forces) loading devices which
persists in the continuum limit. We argue that both, the synchronization and the non-
equivalence of the mechanical responses in hard and soft devices, have their origin in the
dominance of long-range interactions. We then apply our minimal model to skeletal
muscles where the power-stroke in acto-myosin crossbridges can be interpreted as pas-
sive folding. A quantitative analysis of the muscle model shows that the relative rigidity of
myosin backbone provides the long-range interaction mechanism allowing the system to
effectively synchronize the power-stroke in individual crossbridges even in the presence
of thermal fluctuations. In view of the prototypical nature of the proposed model, our
general conclusions pertain to a variety of other biological systems where elastic inter-
actions are mediated by effective backbones.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In contrast to inert matter, distributed biological systems are characterized by hierarchical network architectures with
domineering long-range interactions. Even in the absence of metabolic fuel this leads to a highly nontrivial cooperative
mechanical behavior in both statics and dynamics. Passive collective effects are usually revealed through synchronized
conformational changes interpreted here as generic folding–unfolding transitions. The experiment shows that, such systems
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exhibit coherent macroscopic hopping between folded and unfolded configurations resisting the destabilizing effect of finite
temperatures (Dietz and Rief, 2008; Thomas and Imafuku, 2012; Erdmann et al., 2013).

Aminimalmechanical model showing the cooperative behavior is a parallel bundle of bistable units linked by two shared
backbones and its most natural biological prototype is a muscle half-sarcomere undergoing the power-stroke (Caruel et al.,
2013). Another example is the unbinding of focal adhesions with individual adhesive elements coupled through a common
elastic background (Erdmann and Schwarz, 2007). Similar behavior has also been associated with mechanical denaturation
of RNA and DNA hairpins where the long-range interactions are due to the prevalence of stem-loop structures (Liphardt
et al., 2001; Bosaeus et al., 2012). Other molecular systems with cooperative unfolding include protein β-hairpins (Munoz
et al., 1998) and coiled coils (Bornschlögl and Rief, 2006). The backbone dominated internal architecture in all these systems
leads to a mean-field type mechanical feedback which is also ubiquitous in bi-stable social systems (Kometani and Shimizu,
1975; Desai and Zwanzig, 1978).

In this paper we systematically study the mechanics of the minimal model in the setting which can be directly associated
with skeletal muscles. We recall that the mechanically induced conformational change (power-stroke) in skeletal muscles
takes place in myosin heads (cross-bridges) that are bound in parallel to actin filaments (Smith et al., 2008; Linari et al.,
2010; Guerin et al., 2011; Erdmann and Schwarz, 2012; Piazzesi et al., 2014). The (thermo)mechanical behavior of this
systemwas first analyzed by Huxley and Simmons (1971) who interpreted the pre- and post-power-stroke conformations of
the myosin heads as discrete chemical states (spin model). Similar ideas have been independently advanced in the studies of
bistable adhesion clusters (Bell, 1978) and in other applications ranging from the Jahn–Teller effect and ripples in graphene
sheets (Bonilla et al., 2012) to unzipping of biological macromolecules (Gupta et al., 2011; Prados et al., 2012).

Since in Huxley and Simmons (1971) the behavior of the spin model was studied only in a hard device (prescribed
displacements), the cooperative effects were not found. To understand this surprising result we study the zero-temperature
analog of the Huxley and Simmons model. We show that for this system the structures of the energy landscape in hard and
soft (prescribed forces) loading conditions are rather different. In particular, we explain why in this model the collective
behavior at finite temperature can be expected in the soft but not in the hard device. To capture the coherent hopping in the
hard device case, we regularize the spin model in two ways. First, following Marcucci and Truskinovsky (2010) we replace
the discrete chemical states (hard spins) by a continuous double-well potential with a finite energy barrier (snap-spring
model). Second, to take into account the elastic interactions between individual crosslinkers, we introduce a series spring
mimicking the backbone elasticity (Wakabayashi et al., 1994; Huxley et al., 1994) and bringing in mean-field interactions.We
show that in the snap-spring model the energy barriers separating the synchronized states are still markedly higher in a soft
device than in a hard device which provides an explanation for the observed retarded relaxation in isotonic experiments on
skeletal muscles (Reconditi et al., 2004; Piazzesi et al., 2002; Decostre et al., 2005).

An interesting peculiarity of the snap-spring model is that the relaxed potential, representing the global minimum of the
energy, is always convex in a soft device but is only convex–concave in a hard device. This means that the macroscopic
stiffness, which is always positive in a soft device, can become negative in a hard device. The negative stiffness (meta-
material) response (Nicolaou and Motter, 2012), which persists in the continuum limit, clearly contradicts the intuition
developed in the studies of systems with short-range interactions. The non-convexity of the ground state energy in a hard
device means that the system is non-additive and cannot be relaxed through the mixing of folded and unfolded units.

To illustrate our general results, we consider in some detail the special case of skeletal muscles where we can make
quantitative estimates by using realistic parameters. Our analysis shows that the height of the microscopic energy barriers
for the power-stroke in individual cross-bridges is of the order of the energy of thermal fluctuations. This implies that the
cross-bridges can undergo conformational changes in a non-cooperative stochastic manner. However, the presence of long-
range interactions creates a bias in the individual folding–unfolding equilibria in the form of a macroscopic barrier on top of
which the microscopic barriers are superimposed. We call this barrier macroscopic because its height is proportional to the
number of elements in the system. Due to the presence of the macroscopic barrier, the folding transitions in individual
cross-bridges become energetically preferable only after the top of this barrier has been reached which means that in-
dividual cross-bridges have been synchronized. These observations suggest that the elementary contractile unit of skeletal
muscles has evolved to control the state of a large assembly of folding elements through a mean-field type mechanical
feedback. Due to such passive synchronization, the power-stroke takes place collectively which obviously amplifies the
mechanical effect.

While we focus in this paper on the athermal behavior, our analysis reveals the origin of the anomalous thermodynamics
and kinetics of skeletal muscles and similar systems observed at finite temperatures (Caruel et al., 2013). A detailed study of
the temperature effects on the collective unfolding will be presented elsewhere.

The paper is organized as follows. In Section 2, we study the equilibrium mechanical behavior of the spin model and
show that already in this minimal setting the behavior of the system in soft and hard devices is different. The snap-spring
model is introduced in Section 3 where we demonstrate that it removes the degeneracies of the spin model and effectively
interpolates between the soft and hard device behaviors. In the same section, we also study the fine structure of the energy
landscape separating the coherent states of the system and introduce a reaction coordinate to describe the successive
individual folding–unfolding transitions constituting the collective unfolding. The adaptation of the snap-spring model for
skeletal muscles is presented in Section 4. Finally in Section 5 we present our conclusions.



M. Caruel et al. / J. Mech. Phys. Solids 76 (2015) 237–259 239
2. The hard spin (HS) model

Consider the behavior of an elementary cluster of N bistable units connecting two rigid backbones. In the spin model
(Huxley and Simmons, 1971), each crosslinker is represented by a bistable potential connected to a series spring. The po-
tential, representing two folding configurations, is assumed to have infinitely narrow energy wells representing two che-
mical states, see Fig. 1. The potential describing individual spin units can be written in the form
Fig. 1. Hard spin model of a parallel bundle of bistable crosslinkers. (a) Energy landscape of an individual crosslinker; (b) N crosslinkers loaded in a soft
device.
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Here the spin variable x takes two values, 0 and �a, describing the unfolded and the folded conformations, respectively. By a
we denoted the “reference” size of the conformational change interpreted as the distance between the two energy wells.
With the unfolded state we associate an energy level v0 while the folded configuration is considered as a zero energy state.
The potential (1) is shown schematically in Fig. 1(a).

In addition to a spin unit with energy (1) each cross-bridge contains a linear shear spring with stiffness k, see Fig. 1(b).
The energy of the elastic spring is u x kx( ) /2E

2= and the energy of the whole crosslinker is

u u x u z x( ) ( ). (2)HS E= + −

Without loss of generality, we can assume that the reference length of the linear spring is already incorporated into the
definition of the elongation z. Notice that the mechanical system with energy (2) has a multi-stable response, see Fig. 2. To
non-dimensionalize the resulting model, which one can associate with the names of Huxley and Simmons even though they
never considered such parallel connection explicitly (for this representation, see Marcucci and Truskinovsky, 2010), we
choose a as a characteristic length, associate the characteristic energy scale with ka2 and normalize forces by ka. The only
remaining dimensionless parameters of the model are N and v0 and we can write the dimensionless energy of the system
(per crosslinker) in the form
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Here, for convenience, we preserved the same notations for non-dimensional quantities.
In a hard device each crosslinker is exposed to the same total elongation z and thus the individual units are independent.

In the soft device case, where the control parameter is the total tension T, the energy per crosslinker is
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where t¼T/N is the force per crosslinker. Now for each crosslinker both xi and z are internal degrees of freedom and the
individual units can no longer be considered as independent. Indeed, if we minimize out the global continuous variable z by
solving w z/ 0t x,{ }i∂ ∂ | = , we obtain
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Fig. 2. Behavior of a single crosslinker in the spin model. (a) Equilibrium states for various z; (b) corresponding tension levels. Dashed lines, metastable
states; bold line, global minimum. Arrows show the response to sudden shortening including a frozen elastic phase (A B1→ ) and a subsequent phase
equilibration (B B1 2→ ). Here we used v 00 = .
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which after inserting in Eq. (4) shows that the partially minimized energy depends quadratically on xi
N
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One can see that the transition from hard to soft device introduces a mean-field interaction among the crosslinkers which,
as we show later, is ultimately responsible for the cooperative behavior.
2.1. Mechanical equilibrium in a hard device

To describe the equilibrium response of the HS model in a hard device, we need to compute the local minima of the
mechanical energy (3) at fixed z. Since each of the internal degrees of freedom xi, for i N1 ≤ ≤ can take only two discrete
values, x x 0i 0= ˆ = and x x 1i 1= ˆ = − , a given equilibrium state is characterized by the distribution of the N crosslinkers
between the two spin configurations. Due to the permutational invariance of the problem, each equilibrium state is fully
characterized by a discrete order parameter representing the fraction of crosslinkers in the folded state
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In Appendix A we show that all equilibrium configurations of this type correspond to local minima of the energy (3). At a

given value of the order parameter p, the energies of all such metastable states are equal to
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This is a linear combination of the energies of two limiting configurations, one fully folded with p¼1 and the energy
z( 1)1

2
2+ and the other one fully unfolded with p¼0 and the energy z v1

2
2

0+ . The absence of a mixing energy is a mani-
festation of the fact that the two coexisting populations of crosslinkers do not interact.

The tension–elongation relations along metastable branches parameterized by p can be written as
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so for given p we obtain equidistant parallel lines, see Fig 3. A peculiar feature of the HS model is that the domain of
hysteretic behavior extends indefinitely because the spin system does not have any stress thresholds.

To find the global minimum of the energy we need to perform at each value of z an additional minimization over the
discrete variable p. If we compute the derivative

p
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which does not depend on p, we obtain that for z z> ⁎, where z v 1/20= −⁎ , the global minimizer is the folded state with
p¼1 and for z z< ⁎ it is the unfolded state with p¼0, see Fig. 3. The global minimum energy profile exhibits a kink near the
crossing (folding) point. Similar kinks associated with unfolding of hairpins and other folding patterns have been observed



Fig. 3. Mechanical response of the HS model in a hard device with N¼5. (a) Energy levels of the metastable states (p 0, , , 11
5

= … ) for different applied
elongations. (b) Corresponding tension–elongation relations. (c) and (d) are details of (a) and (b) with an illustrated response path to a fast loading
experiment including a frozen elastic phase (A B1→ ) followed by a subsequent phase equilibration (B B1 2→ ). Thick lines, global minimum corresponding to
p¼0 (resp. p¼1) for z z> ⁎ (resp. z z< ⁎) . t v0=⁎ and z v 1/20= −⁎ . Parameters are v 10 = and N¼5.
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in the energy profiles reconstructed from single molecule force spectroscopy measurements of proteins and nucleic acids
(Gupta et al., 2011).

Observe that the ground state energy in this model is nonconvex independently of the number of units. This means that
the energy is not convexified through the formation of mixtures as in systems with short-range interactions (see, for in-
stance, Puglisi and Truskinovsky, 2000). The reason is that this mean-field system is strongly non-additive and all mixed
states are energetically unfavorable due to high cost of mixing. Somewhat similar situation takes place in theory of elastic
phase transitions where the relaxed energy is also nonconvex in the general case (it is only quasi-convex) which is again the
consequence of long-range elastic interactions exemplified by the gradient constraint (see, for instance, Ball, 2002).

A consequence of the energy nonconvexity is the non-monotonicity of the force–elongation relation shown in Fig. 3(b
and d). More specifically, the system exhibits a negative stiffness at the point where all crosslinkers collectively flip from the
folded to the unfolded state. Similar mechanical behavior has been recently artificially engineered in metamaterials by
drawing on the Braess paradox for decentralized globally connected networks (Cohen and Horowitz, 1991; Nicolaou and
Motter, 2012). As in our case, the mean-field type coupling in metamaterials is achieved via parallel connections with
multiple shared links. Biological examples of systems with negative stiffness are provided by unzipping RNA and DNA
hairpins (Woodside et al., 2008; Bosaeus et al., 2012).

2.2. Mechanical equilibrium in a soft device

Consider now the HS model loaded in a soft device when the equilibrium states correspond to local minima of the
mechanical energy (4). An equilibrium state is again fully characterized by the fraction of units in the folded state p, defined
by Eq. (6). We can then write the (marginal) energy of the partially equilibrated system as

w p z t v p z tz( , ; ) ( , ) ,˜ = ^ −

where v̂ is the energy of the metastable branch parametrized by p in the hard device case, see Eq. (7).
Then we eliminate z by using Eq. (5). Each value of the order parameter p defines a branch of local minimizers of the

energy (4) parameterized by t, see Appendix B. At a given value of p, the energy of a metastable state reads

w p t t pt p p p v( ; ) (1 ) (1 ) . (9)
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In contrast to the case of a hard device, here there is a nontrivial coupling term p p(1 )− describing the energy of mixing.
The presence of this term is a signature of a mean-field interaction among individual crosslinkers. Indeed, if one element
changes configuration, its contribution to the common tension changes accordingly and the other elements must adjust to
maintain the force balance. The tension–elongation relation associated with a set of metastable states sharing the same
value of the parameter p can be written in the form

z p t
t

w p t t p( ; ) ( ; ) .^ = − ∂
∂

^ = −

At a given value of p this relation is identical with its counterpart in the case of a hard device, see Eq. (8).
The globally stable states can be found by minimizing (9) over p. Since w p/ 12 2∂ ^ ∂ = − , this function is concave in p.

Therefore, the global minimum is again attained either at p¼1 or p¼0. The energies of the two coherent configurations with
p¼1 and p¼0 coincide when t t v0= =⁎ . Our Fig. 4 illustrates the structure of the energy–tension and the tension–elon-
gation relations corresponding to different values of p for the system with N¼5. Notice that in contrast to the case of a hard
device, the force–elongation relation characterizing the global minimum in a soft device exhibits a plateau indicating a
discontinuity in elongation as the crosslinkers switch collectively at t t= ⁎ from unfolded to folded conformation.

Notice that the plateau replaces the region of negative stiffness detected in the hard device case and the force–elongation
relation becomes monotone. This shows that even in the continuum limit the stable “material” responses of our system in
hard and soft devices remain different. Such behavior would be completely unexpected from the perspective of classical
statistical mechanics, however, it is characteristic of systems with domineering long-range interactions (Dauxois et al.,
2003).
2.3. Energy landscape

As we have seen in the previous sections, the globally stable state of the HS system corresponds to one of the two
coherent configurations characterized by p¼1 and by p¼0. We can now pose the question about the size of the energy
barrier separating these two configurations. To access the energy barriers and to find the transition states (saddle points of
the energy) we study the energy dependence on p. For general values of the loading parameters this dependence was found
to be linear in a hard device, indicating that there is no conventional barrier, and concave in a soft device which means that
there is a potential energy barrier. This observation shows that a switch from unfolded to folded configuration in a soft
device carries an energetic cost while in a hard device the transition is cost-free.
Fig. 4. Mechanical response of the HS model in a soft device. (a) Energy levels of the metastable states (p 0, , , 11
5

= … ) for different applied forces.
(b) Corresponding tension–elongation relations. In (c) and (d) we zoom into domain near t t v0= =⁎ and show schematically the response of the system to
a sudden application of a load increment with an elastic phase (A C1→ ) followed by a folding phase C C1 2→ . Thick lines, global minimum corresponding to
p¼0 (p¼1) for t t> ⁎ (t t< ⁎). Parameters are v 10 = and N¼5.



Fig. 5. (a) Energy landscape at the global minimum transition for the HS model. Solid lines, hard device at z z= ⁎; dashed lines, soft device at t t= ⁎. Dots
represent the energy of the different configurations for a system with N¼5; lines correspond to the limit N → ∞. Parameters are v 10 = and N¼5.
(b) Representation of the behavior of a system with two crosslinkers with v 00 = imposing t 0=⁎ and z 1/2= −⁎ , the transition of the global minimum
tension–elongation curve (thick line) occurring in a stress-free configuration in a soft device. Dashed lines, metastable states p¼0 and p¼1. The inter-
mediate stress-free configuration is obtained either by mixing the two geometrically compatible states B and D in a hard device which results in a BþD
structure without additional internal stress or by mixing the two geometrically incompatible states A and C in a soft device which results in a AþC
structure with internal residual stress.
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The (collective) transition takes place at z z= ⁎ in a hard device and t t= ⁎ in a soft device. The difference between the
corresponding energy landscapes at the threshold values of parameters is illustrated in Fig. 5(a). For the ease of comparison
the energy minima are shifted to zero in both loading conditions. Each black dot represents the energy level of a particular
metastable state and the dotted line represents the set of such metastable states in the continuum limit N → ∞ when p
becomes a continuous variable. The barriers separating individual metastable states are not defined in the spin model. A
simple way to recover microscopic barriers by switching from hard to soft spins is discussed in Section 3; for another
regularization approach see Benichou and Givli (2013).

To understand the origin of this peculiar behavior of the energy landscape it is instructive to consider the minimal HS
system with N¼2, see Fig. 5(b). Here for simplicity we assumed that v 00 = implying t 0=⁎ and z 1/2= −⁎ . The two “pure”
configurations are labeled as A (p¼0) and C (p¼1) at t t 0= =⁎ and as D (p¼0) and B (p¼1) at z z 1/2= = −⁎ . In a hard
device, where the two elements do not interact, the transition from state D to state B at a given z z= ⁎ goes through the
configuration BþD which has the same energy as configurations D and B: the crosslinkers in folded and unfolded states are
geometrically perfectly compatible and their mixing requires no additional energy. Instead, in a soft device, where in-
dividual elements interact, a transition from state A to state C taking place at a given t¼0 requires passing through the
transition state AþC which has a nonzero residual stress. Individual crosslinkers in this mixture state have different values
of z and therefore the energy of the stressed “mixed” configuration AþC is larger than the energies of the “pure” unstressed
states A and C. We conclude that the macroscopic barrier in a soft device is higher than in a hard device because in a soft
device a transition is a genuinely cooperative effect requiring essential interaction of individual elements while in a hard
device the conformational change in different units takes place independently.

For general values of the loading parameters, we consider the N → ∞ limit where the energy landscape becomes smooth
and the barrier is located at the saddle point p p= ⁎, where p t v 1/20= − +⁎ is the solution of w p/ 0∂ ^ ∂ = . Since p0 1≤ ≤⁎ , we
obtain that the macroscopic barrier and the ensuing cooperative effects exist for t t t≤ ≤− + with t t 1/2= −− ⁎ and
t t 1/2= ++ ⁎ , in the soft device setting. Notice that the boundaries of this interval correspond to the threshold t z(0; )^

⁎ and
t z(1; )^

⁎ delimiting the region with negative stiffness in the hard device case, see Fig. 3.
We summarize the results obtained within the HS model in Fig. 6. In the main frame, we show the tension–elongation

relations corresponding to p 0, 0.1, , 1= … , for a system with N¼10 (gray lines). Thick lines show the tension–elongation
relations in the global minimum characterized by a transition located at zn in a hard device and tn in a soft device. The
horizontal dotted lines show the limits of the domain where a macroscopic barrier is present in a soft device. On the satellite
frames (top – for a hard device and right – for a soft device) we show the energy barriers between the homogenous
configurations in the case N → ∞ (solid lines) and for discrete values of p (dots) at different values of the loading.

To conclude, we have shown that the HS model exhibits different mechanical responses in a hard and a soft device even
though in both cases the global minimum of the energy is achieved for homogenous configurations. This behavior originates
from the presence of long-range interactions between the crosslinkers. These interactions introduce an elastic feedback in
the soft device case which creates a macroscopic energy barrier for the cooperative folding–unfolding process.



Fig. 6. Summary of the behavior of the HS model. The main frame shows the tension–elongation relations corresponding to p 0, 0.1, , 1= … for a system
with N¼10 (gray lines) and the tension–elongation relation in the global minimum (thick lines). The horizontal dotted lines show the limit of the domain
where a macroscopic energy barrier is present in a soft device. The satellite frames (above, hard device; right, soft device) show the energy barriers
corresponding to various transitions (A B C D, ,→ → …) shown by dashed lines in the main frame.
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3. The snap-spring model

The minimal description of unfolding transition provided by the spin model has its limitations. For instance, the de-
scription of the barriers in the HS model is incomplete because it does not take into account the microscopic energy barriers
between the states with different values of the order parameter p. Another problem is that in the hard device setting the
spin model is degenerate because configurations with different values of the order parameter are equivalent.

To deal with these problems we regularize the spin model by introducing two additional physical mechanisms. First,
following Marcucci and Truskinovsky (2010) we replace hard spins by snap-springs also known as soft spins, so that x
becomes a continuous variable. For simplicity we assume that the corresponding double-well potential can be represented
as a minimum of two parabolas, see Fig. 7(a). By using non-dimensional variables we can then write

⎧
⎨⎪
⎩⎪

u x
k x v x l

k x x l
( )

( ) if

( 1) if
SS

1
2 0

2
0

1
2 1

2
=

+ >

+ ≤
Fig. 7. Snap-spring model of a cluster. (a) Dimensional energy landscape of a bistable crosslinker. (b) Structure of a parallel bundle containing N cross-
linkers in a soft device.



Fig. 8. Behavior of a single crosslinker in the snap-spring model. (a) Equilibrium positions for various y; (b) corresponding tension levels. Solid lines,
metastable states; dashed lines, unstable state; bold line, global minimum. Arrows indicate the response to a sudden shortening with an elastic unloading
in the unfolded state (A B1→ ) followed by the conformational change to the folded state (B B1 2→ ). Parameters are 0.41λ = , 0.70λ = , l 0.3= − .
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Here l is the dimensionless position of the energy barrier, v0 is the dimensionless energy bias of the unfolded state and k1
and k0 are dimensionless elastic moduli of the folded and unfolded states, respectively. Interestingly, a comparison with the
reconstructed potentials for unfolding biological macro-molecules shows that this approximation may be in fact very good
(Gupta et al., 2011). A spinodal region can be obviously added to the potential of the bi-stable unit, however, in this case we
lose transparency without gaining essential effects.

The important observation is that while in the snap-spring model the bottoms of the energy wells remain the same as in
the spin model, the barrier separating the two conformational states is now well defined, see Fig. 7. The mechanical
response of a single crosslinker with an attached series spring is governed by the dimensionless energy

u u x y x( ) ( ) ,SS
1
2

2= + −

where y is the total elongation. The solutions of the equilibrium equation u x y x( )SS = −′ are shown in Fig. 8. Notice the multi-
valuedness of the relation linking the variables x and y and the appearance of the spinodal branch x̄⁎ connecting the two
stable branches x y( )1¯ and x y( )0¯ .

The mechanical independence of the crosslinkers in a hard device disappears if we take into account the finite stiffness of
backbone which, in the case of skeletal muscle, corresponds to the combined stiffness of actin and myosin filaments
(Wakabayashi et al., 1994; Huxley et al., 1994; Ford et al., 1981; Mijailovich et al., 1996; de Gennes, 2001). Following (Jülicher
and Prost, 1995), we use a lump description of backbone elasticity by introducing an additional elastic spring with stiffness

k Nk/( )b bλ = and the energy u x N x( ) /2b b
2λ= . If we attach this spring in series to our parallel bundle of crosslinkers, see Fig. 7

(b), we can write the total energy of the system per crosslinker in the form
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In the hard device case z is the control parameter, xi are the continuous microscopic internal variables generalizing the spin
variables in the HS model and y is a new continuous mesoscopic internal variable. Notice that now even in a hard device the
individual crosslinkers are not independent; the implicit mean-field interaction becomes obvious if the variable y is adia-
batically eliminated (minimized out) by solving v y/ 0xz,∂ ∂ = . We obtain
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which after inserting into Eq. (10) gives the partially equilibrated energy
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Observe that the quadratic term in xi∑ vanishes when the elasticity of the backbone becomes infinite ( bλ → ∞) showing
that in this limit the long-range interactions disappear.

The resulting snap-spring model can be viewed as a regularization of the HS model. To recover the HS model in a hard
device case from Eq. (10), we need to perform the double limit: k1,0 → ∞ and bλ → ∞. The first of these limits ensures that x
becomes a spin variable while the second guarantees that y¼z. To obtain the HS model in a soft device we need to consider
the triple asymptotics: k1,0 → ∞, 0bλ → and z → ∞ where the last two limits must be linked in the sense that z tbλ → which
ensures that the force per crosslinker t remains finite.
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In a soft device, the total energy per crosslinker in the snap-spring model can be written as
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where t¼T/N is again the applied force per crosslinker.

3.1. Mechanical equilibrium in a hard device

To find equilibria in a hard device we need to solve the following system of equations:

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

v
x

i N

v
y

0 for all 1 (a)

0 (b)
(12)

i z y x

z x

, ,{ }

,{ }

j i

i

∂
∂

= ≤ ≤

∂
∂

=

≠

Eq. (12a) have up to three solutions that can be parameterized by y

⎧
⎨⎪

⎩⎪

x y y x l

x y y x l

x l

( ) (1 ) if

( ) (1 ) if

(13)

i

i

1 1 1

0 0

λ λ
λ

¯ = − − <
¯ = − >
¯ =⁎

where we redefined the dimensionless parameters

k
k

k
k1

,
1

.0
0

0
1

1

1
λ λ=

+
=

+

The solution of Eq. (12b) given by Eq. (11) allows us to express the mesoscopic variable y through the microscopic variables
xi. Because of the permutational invariance, the equilibrium solution of Eq. (12) is fully characterized by the fraction p of
crosslinkers in the folded conformation x y( )1¯ and the fraction r of crosslinkers in the unfolded conformation x y( )0¯ . The
fraction of crosslinkers in the “spinodal point” x̄⁎ is then q p r1= − − .

Using (11), we can eliminate the variable y and obtain an explicit representation of the microconfiguration in terms of
p q r( , , )
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Here p q r p q r( , , ) 1 0Λ λ λ= + + represents the equivalent stiffness of the parallel bundle of crosslinkers in a mixed config-
uration parameterized by p q r( , , ). The energies of the equilibrium configurations can be now computed explicitly. For a
given p q r( , , ) we obtain
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The corresponding tension–elongation curves can be written as
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Each triple p q r( , , ) defines an equilibrium branch which extends between the two limits z z[ , ]inf sup induced by the in-
equalities x l1ˆ < and x l0ˆ > . We obtain
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Fig. 9. Mechanical response of the snap-spring model in a hard device. (a) Energy levels of all the p q r( , , ) configurations for the case N¼3 at different
applied elongations. (b) Corresponding tension–elongation relations. Solid lines, metastable states with p 0, 1/3, 2/3, 1= and r p1= − , q¼0; dotted lines,
unstable states with q 0≠ ; thick lines, global minimum corresponding to p r0, 1= = , for z z> ⁎, and to p r1, 0= = , for / z z< ⁎. (c and d) Blow-up of (a and
b) illustrating the response of the system to abrupt shortening with an elastic unloading (A B1→ ) followed by a massive conformational change in isometric
conditions (B B1 2→ ). Parameters are 0.41λ = , 0.70λ = , l 0.3= − , 1bλ = , and N¼3.
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The analysis presented in Appendix A shows that all equilibria with q¼0 are stable while all the ones with q 0≠ are
unstable. Therefore, as in the HS model, the metastable configurations in the snap-spring model can be parameterized by a
single parameter p. The obtained results are illustrated in Fig. 9.

We now show that the global minimum of the energy is again achieved exclusively on homogeneous configurations
(1, 0, 0) and (0, 0, 1). Assuming that q r p0, 1= = − and computing the second derivative of v in (17) while interpreting p as
a continuous variable leads to

p
v p z
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This inequality shows that the energy is concave, which means that the ground states are necessarily synchronized and
separated by mixed configurations with higher energy levels forming a macroscopic energy barrier. Observe that for

bλ → ∞ we have p v p z( / ) ( ; ) 02 2∂ ∂ ^ → and thus the macroscopic barrier disappears and we recover the degeneracy of the HS
model. The switch between the two homogeneous states takes place at the elongation z z= ⁎ which solves
v z v z(0, 0, 1; ) (1, 0, 0; )^ = ^

⁎ ⁎ . We obtain
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where v2( ) 00 1 1 0 0μ λ λ λ λ= + − ≥ . Notice that we recover the position of the transition point of the HS model, z v 1/20= −⁎ ,
when considering the symmetric case with 11λ = and bλ → ∞.

While the global minimum path in the snap-spring model has the same structure as in the HS model, we see that at the
transition point z z= ⁎ the energies of the mixture states are now strictly higher than the energies of the coexisting pure
states, see Fig. 9(a and c).

The ensuing force–elongation relations, presented in Fig. 9(b and d), show that the singular metamaterial behavior
exhibited by the HS model in a hard device is not regularized in the snap-spring model where the stiffness corresponding to
the globally stable response is still equal to minus infinity at the transition point.
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3.2. Mechanical equilibrium in a soft device

To find equilibrium states in the snap-spring model loaded in a soft device we need to solve the system
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As in the hard device case, each crosslinker can be in three states and the equilibrium branches can be parameterized by the
triplet p q r( , , ). After elimination of the internal degrees of freedom xi and y, the corresponding partially equilibrated energy
can be written in the form

w p q r z t v p q r z tz( , , , ; ) ( , , , )˜ = ^ −

where the function v̂ is given by Eq. (17). After elimination of z, the solution of the full mechanical equilibrium is obtained
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The energy of a configuration p q r( , , ) can be again computed explicitly
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and the corresponding tension–elongation relations read
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Similarly, we can obtain the lower and upper limits for a branch labeled by p q r( , , )
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The stability analysis presented in Appendix B shows again that configurations with q 0≠ are unstable and therefore all
metastable states can be parameterized by a single parameter p. Since
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the global minimum is again attained either at p¼1 or p¼0 and these pure states are robust and separated by a macroscopic
energy barrier. Notice that in contrast to the hard device case, see Eq. (19), the presence of this barrier does not depend on
the backbone stiffness. The switch between them, signaling a collective folding-unfolding, takes place at t t= ⁎ where
w t w t(1, 0, 0, ) (0, 0, 1, )^ = ^

⁎ ⁎ . We obtain

⎡⎣ ⎤⎦t ( )0 1
1

0 1 0 1λ λ λ λ μλ λ= − −⁎
−

which simplifies into t v0=⁎ if 1 0λ λ= . Note that in this later case, the value of tn is the same as in the HS model.
The equilibrium behavior of the snap-spring model in a soft device is illustrated in Fig. 10. As in the HS model, the

globally stable response contains an extended plateau at t t= ⁎ where the systems collectively switches between fully folded
and fully unfolded configurations. The constitutive behavior remains quantitatively the same in the continuum limit N → ∞.



Fig. 10. Mechanical response of the snap-spring model in a soft device. (a) Energy levels of all the p q r( , , ) configurations for the case N¼3 at different
applied tensions. (b) Corresponding tension–elongation relations. Solid lines, metastable states with p 0, 1/3, 2/3, 1= and r p1= − , q¼0; dotted lines,
unstable states with q 0≠ ; thick lines, global minimum corresponding to p r0, 1= = for t t> ⁎ and to p r1, 0= = , for t t< ⁎. (c,d) zoom in of (a and b)
illustrating the response of the system to abrupt shortening with an elastic unloading (A B1→ ) followed by a massive conformational change in isometric
conditions (C C1 2→ ). Parameters are as in Fig. 9.
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3.3. Energy landscape

We now study the size of the energy barrier separating the homogenous configurations characterized by p¼0 and p¼1.
In the HS model, we have demonstrated that such macroscopic barrier exists only in the soft device case. In the snap-spring
model the mechanical feedback introduced by the backbone elasticity introduces a variable degree of cooperativity between
the crosslinkers which results in an increased energy of the mixed states already in a hard device as shown in Fig. 9.

To find the energy minimizing “reaction path” connecting the homogeneous states through the set of inhomogeneous
metastable states with p0 1< < . The energy of these intermediate state can be made explicit by putting q r p0, 1= = − in
(17). We obtain
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We have shown that for bλ < ∞ the function v p z( ; )^ is concave in p, see Eq. (19), which signals the presence of a macroscopic
energy barrier. However, since the variable p is discrete, this information is incomplete and we need to also account for the
microscopic barriers separating configurations with different values of p. Such barriers, associated with the conformational
changes in individual crosslinkers, were essentially infinite in the HS model.

To reconstruct the fine structure of the energy barriers, we consider a configuration with N1 crosslinkers in the folded
state, N0 crosslinkers in the unfolded state and N N N N1 0= − −⁎ crosslinkers switching collectively from the unfolded to the
folded state. The initial stable configuration is fully characterized by the parameter p N N/1= and we denote by N N/α = ⁎ the
fraction of switching crosslinkers which satisfies p0 1α≤ ≤ − .

To find the barrier which the system has to overcome, we need to choose a microscopic “reaction path” separating the
initial configuration characterized by p and the final configuration characterized by p α+ . Assuming for simplicity that the
switching crosslinkers are characterized by the same strain variable x, it is natural to choose x as a “reaction coordinate”.

Due to permutational invariance, the choice of the Nn switching crosslinkers is arbitrary, and for commodity, we select
x x, , N1 … ⁎. The energy landscape (per crosslinker) along the chosen reaction path can be recovered if we minimize out the
rest of the internal variables x x y, , ,N N N…− ⁎ . We obtain
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where the first term does not depend on x; it converges to v p z( ; )^ given by Eq. (24) in the thermodynamic limit when
N → ∞. The second term vanishes in the thermodynamic limit because it is proportional to α which goes to zero when
N → ∞.

For convenience, we map the reaction coordinate to the interval p p[ , ]α+ by replacing x with a stretched variable ξ
defined by

p
x x p z

x p z x p z

( , )

( , ) ( , )
,

(27)
0

1 0
ξ α

α
= +

− ^
^ + − ^

where x0
^ and x1

^ are the locations of the bottoms of the energy wells defined by Eqs. (15) and (16). One can see that the
variable ξ can be viewed as a global reaction coordinate that encompasses the local reaction coordinates of individual
transitions in a step by step manner and thereby defining the position of the system on the whole reaction path (see also
Truskinovsky and Vainchtein, 2003). The values pξ = and pξ α= + are associated with the metastable states
v p q r p z( , 0, 1 ; )^ = = − and v p q r p z( , 0, 1 ; )α α^ + = = − − , respectively, see Eq. (7). At p l x x x( )/( )0 1 0ξ α= + − ^ ^ − ^ , we have
x¼ l and the energy has a local maximum, namely v p q p( , , 1 )α α^ = − − . These states belong to the unstable equilibrium
branches characterized by q 0> and shown in Fig. 9 by dotted lines.

The local “microscopic” energy barriers surrounding a given metastable state characterized by a particular p may be
either in the direction of additional folding (B→) or additional unfolding (B←) of a fraction α of crosslinkers. The height of
these barriers can be expressed analytically (from Eqs. (24) and (26)) as follows:
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In the thermodynamic limit, we have N N/ 0α = →⁎ and the overall microscopic energy barriers take the form
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The explicit expressions for the coefficients a, b, a′ and b′ are given in Appendix C. We observe that in the thermodynamic
limit, the height of the energy barriers between different metastable states has a finite limit while the height of a generic
barrier per crosslinker (B N/→ or B N/← ) vanishes. Similar results have been previously obtained for chains of bistable elements
connected in series (Puglisi and Truskinovsky, 2000; Benichou and Givli, 2011; Manca et al., 2013; Tshiprut and Urbakh,
2009).
Fig. 11. Energy landscape at the global minimum transition for the snap-spring model with N¼5. (a) Hard device at z z= ⁎; (b) soft device at t t= ⁎. Solid
lines, successive barriers obtained from Eqs. (26) (a) and (31)(b); dashed lines, continuum limit, N → ∞. Energy minima are arbitrarily set to 0 for com-
parison. Here, 1bλ = and other parameters are as in Fig. 9. In particular, we have 0 1λ λ≠ which explains why the curve is not symmetric.
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To facilitate comparison with the HS model we first limit our attention to the barriers associated with the transition
between the two globally stable coherent states taking place at z z= ⁎ and consider only the energy minimizing reaction
path which is characterized by successive single crosslinker conformational change ( N1/α = ). The resulting energy land-
scape v ( )ξ¯ at z z= ⁎ is shown in Fig. 11(a) where we compare two cases, N¼5 (solid line and metastable states marked with
dots) and N → ∞ (dashed line). At finite N we see themacroscopic barrier, not captured by the HS model and a superimposed
set of microscopic barriers representing “lattice pinning”. These microscopic barriers are due to the discreteness of the
problem and they disappear in the continuum/thermodynamic limit N = ∞ when pξ → .

In the case of a soft device, the energy of metastable states is obtained by inserting q¼0 in Eq. (9). We obtain
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The partially equilibrated energy at fixed t, p, α and x is then given by
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We again map the reaction coordinate x in the interval p p[ , ]α+ using Eq. (27) where x p z( ; )0
^ and x p z( ; )1

^ have to be
replaced by x p t( ; )0

^ and x p t( ; )1
^ given by Eqs. (30) and (31), respectively. The microscopic energy barriers for folding (B→) or

unfolding (B←) of Nn crosslinkers are obtained analytically from Eqs. (30) and (31)
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As in the hard device case, we obtain in the thermodynamic limit
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∼ −

∼ ′ − ′

→

←

The explicit formulas for the coefficients c, c′, d and d′ are given in Appendix D; as one can expect, these coefficients do not
depend on the backbone stiffness λb. Notice that the result is fully analogous to what we obtained in the case of a hard
device, see Eq. (29): in the thermodynamic limit, the individual overall energy barriers remain finite while the barriers per
cross-bridge vanish. The fine structure of the ensuing energy landscape (per cross-bridge) is illustrated in Fig. 11(b) for t t= ⁎
and successive transitions with N1/α = . At finite N, we see again the two-scale structure, however, the macroscopic barrier
is markedly higher in a soft than in a hard device.

In Fig. 12 we illustrate the dependence of the energy landscape in a hard device on the parameter λb characterizing the
backbone elasticity in a systemwith N¼20. To simplify the comparison we adjusted the parameter z z= ⁎ at each value of λb
Fig. 12. Energy landscape at the global minimum transition for the snap-spring model in a hard device at different values of the coupling parameter λb with
N¼20. Bold line, bλ → ∞; solid line, 1bλ = ; dotted line, soft device limit as the hard device case where 0bλ → , z → ∞⁎ . Energy minima are arbitrarily set to
0 for comparison. Other parameters are as in Fig. 9.
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so that the coherent states with p¼0 and p¼1 have the same energy (arbitrarily set to zero for the sake of comparison). As
we know, the snap-spring model converges to the HS model as bλ → ∞ and we see in Fig. 12 that the “macroscopic barrier”
disappears in this limit. The microscopic barriers remain and that is what distinguishes the model proposed in Marcucci and
Truskinovsky (2010) from the HS model. Of course, in the continuum limit N → ∞ we lose the microscopic barriers and
recover the interpolated version of the HS model, see Fig. 5(a).

In the same figure we illustrate the limit 0bλ → and z → ∞⁎ . In this case we recover in the hard device setting the
predictions of the soft device model with t t→ ⁎. Once again, in the continuum limit N → ∞ the microscopic barriers dis-
appear and we recover the basic picture predicted by the HS model.

Similar analysis of the barrier structure can be performed for a generic loading. Consider first the hard device case. In the
continuum limit N → ∞, the variable p becomes continuous. We denote by p z( )⁎ the position of energy barrier (saddle point)
which is obtained by solving v p/ 0∂^ ∂ = for a given loading z. We obtain
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Since p0 1≤ ≤⁎ , the macroscopic energy barrier exists only if z z z< <− +, where
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Fig. 13. Overall behavior of the snap-spring model. The main frame shows the tension–elongation relations corresponding to p 0, 0.1, , 1= … , for a system
with N¼10 (gray lines) and the tension–elongation relations in the global minimum (thick lines). The dotted lines show the limit of the domain where a
macroscopic energy barrier is present in a hard device (vertical lines) and in a soft device (horizontal lines). The satellite frames (above, hard device; right,
soft device) show the energy barriers corresponding to various transitions shown by dashed lines in the main frame. In particular, the transition C D→
(hard device) and the transition R S→ (soft device) correspond to z z= ⁎ and t t= ⁎, respectively. The other hard device transitions, A B→ and E F→ , are
outside the bistable interval z z[ , ]− + and thus contain a collective transition. The other soft device transitions, P Q→ and T U→ , exhibit the same kind of
synchronization along the segment of the ‘reaction path’ which is located inside the bistable domain. Parameters other than N are as in Fig. 9.
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Notice that for an arbitrary z, the reaction path does not have to pass through all intermediate configurations, see Eq.
(18). By inverting Eq. (18), we obtain that for a given elongation, the available metastable states are characterized by
p z p p z( ) ( )inf sup< < with

p z
z l

l

p z
z l
l

( )
(1 ) ( )

( ) (1 )

( )
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− + −

=
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+ − + −

Therefore, during the transition the system explores all metastable states satisfying Eq. (34) before cooperatively switching
directly to one of the homogeneous states with p¼1 or p¼0.

These results are summarized in Fig. 13 where the main frame shows the tension–elongation relations corresponding to
the different metastable states for a system with N¼10. The satellite frames show the transition path related landscape
corresponding to three different values of z. For instance, in the case where z z< ⁎ (see A B→ ) all metastable states with
p 7/10≤ are available and then the system coherently switches from the state with p¼7/10 to the state with p¼1. On the
main frame, we indicate by vertical dotted lines the values of z− and z+ which delimit the domain where the macroscopic
barrier exists.

A similar analysis can be conducted in the soft device case. First, considering the continuum limit N → ∞, we solve
w p/ 0∂ ¯ ∂ = to locate the position of the energy barrier pn. We obtain
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Then the condition p t0 ( ) 1≤ ≤⁎ gives the interval t t[ , ]− + where the macroscopic barrier is present. Here
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Notice that we recover the same boundaries as in the HS model if we consider the limit of infinite stiffness 11λ → and set
1 0λ λ= . Finally, for a given t, the available metastable states satisfy p t p p t( ) ( )inf sup≤ ≤ . The boundaries can be obtained by
inverting Eq. (23)
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Again this shows that (i) the interval where the macroscopic barrier is present is finite and that (ii) the transition between
the globally stable homogenous states may involve coherent switches depending on the value of the applied tension. We
illustrate these results in Fig. 13, where the satellite plots on the right show the energy barrier as a function of ξ and where
the horizontal dotted lines delimit the macroscopic barrier domain.

We finally remark that while the individual local minima of the energy landscape at finite N can be interpreted as distinct
chemical states, the exponentially growth of the number of such states in the thermodynamic limit makes this interpretation
Table 1
Realistic parameters for the snap-spring model applied to
skeletal muscles.

Dimensional Non-dimensional

a 10 nm
l �0.8 nm l 0.08−
k 2.7 pN nm�1 N 100
kb 135 pN nm�1 λb 0.5
k1 0.79 pN.nm�1 λ1 0.23
k0 2 pN.nm�1 λ0 0.44
kbθ 3.8�10�21 J



Fig. 14. Result of the soft spin model with parameters adjusted to fit experimental data, see Caruel et al. (2013). Main frame, tension–elongation relation for
a single half-sarcomere. The gray area shows the existence domain of the metastable states. Solid lines, global minimum tension–elongation relation in
hard and soft devices. (a) and (b) Energy landscape corresponding to single transition between the homogeneous states in a hard device (A B→ ), see
(a) and in a soft device (C F→ ), see (b). (c) and (d) Size of the energy barriers corresponding to the individual folding (B→) and (B←) transitions obtained
with both finite N (open symbols) and in the thermodynamic limit (solid lines). To improve readability of the finite N plots, we only show one out of five
micro-transition points.
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unpractical. Instead, the description in terms of macro-wells and the associated mechanisms can lead to a meaningful quasi-
chemical representation of the loading-induced unfolding process. In the case of multiscale unfolding processes, the macro-
wells corresponding to synchronized configurations are usually hierarchically structured which makes the mechanical de-
scription of such systems an interesting challenge.
4. Application to skeletal muscles

In this section, we briefly discuss how our results can be applied to skeletal muscles. Our Table 1 summarizes the realistic
values of parameters calibrated in Caruel et al. (2013). We chose N¼100 by taking into consideration that only one-third of
cross-bridges are attached at any given moment of time (Piazzesi et al., 2007).

In Fig. 14 we show the metastability domain (gray area) and the tension–elongation relations describing the global
minimum of the energy. In the satellite frames we illustrate two sections of the energy landscape along the paths con-
necting the two homogeneous states: in a hard device at z z= ⁎, see Fig. 14(a), and in a soft device at t t= ⁎, see Fig. 14(b).
These plots are obtained by computing the energy Nv̄, see Eq. (26) and the energy Nw̄, see Eq. (31) for hard and soft devices,
respectively. In addition we show the size of the individual energy barriers for single folding (B→) and unfolding (B←) events,
see Fig. 14(c and d). The results for finite N (open symbols) were obtained by using Eq. (28) for the hard device case and Eq.
(32) for the soft device case. In the thermodynamic limit (solid lines) we used Eq. (29) in the hard device case and Eq. (33) in
the soft device case. Observe that the zone of bistable behavior in a soft device is much broader that in a hard device and
spans almost the entire metastability domain. This correlates with the fact that the macroscopic energy barrier in a soft
device, see Fig. 14(b) is about three times higher than in a hard device, see Fig. 14(a).

Since experiments on muscle fibers are performed at finite temperature, it is of interest to compare the height of the
microscopic and macroscopic energy barriers with the typical energy of thermal fluctuations kbθ where kb is the Boltzmann
constant and θ is the absolute temperature (see similar analysis of microscopic barriers for titin in Benichou and Givli, 2011).

In a hard device, the full range of metastable states between the two homogeneous states (labeled by A and B) is
available, see Fig. 14(a). In Fig. 14(c) we show the size of the microscopic barriers corresponding to single folding (resp.
unfolding) events, see B→ (resp. B←). These energy barriers are of the order of kbθ which suggests that thermal noise alone
can unfold single bistable elements. However, at small values of ξ the height of the energy barriers corresponding to folding
is systematically higher than for unfolding and vice-versa for large values of ξ. Therefore, although individual folding/un-
folding transitions can occur due to thermal fluctuations, the presence of a macroscopic barrier, which is at least 50 times
higher, ensures that the system is maintained in globally synchronized states, here corresponding to points A or B.
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In a soft device, see Fig. 14(b and d), the situation is slightly different. One can see that at t t= ⁎, the reaction path passes
through a reduced fraction of metastable states with high energy in the interval 0.3 0.8ξ≤ ≤ . Therefore, to switch from one
homogeneous configurations to another (say, from C to F), the systemmust first reach the metastable states D or E through a
massive collective transition (C D→ or F E→ ) requiring an energy of about k100 bθ , see Fig. 14(b and d). These massive
transitions are very unlikely, moreover the reverse transitions have almost zero energy barrier. Once the system has reached
the metastable states, D or E, we are back to the pattern encountered in the case of a hard device where energy barriers for
individual transitions were of the order of kbθ . The fact that the macroscopic barrier in the case of soft device is much higher
than in the case of hard device may be the reason behind the anomalously slow kinetics of relaxation observed in isotonic
experiments (Piazzesi et al., 2002; Reconditi et al., 2004; Decostre et al., 2005).

To summarize, individual contractile units in skeletal muscles can be viewed as an assembly of nanometer sized bi-stable
mechanisms. In the absence of long-range coupling, these mechanisms would transform individually producing strongly
inhomogeneous temporal and spatial microstructures. The presence of long-range interactions is a way for the system to
strongly bias homogeneous states and in this way passively synchronize individual bistable mechanisms. The transition rate
associated with a macroscopic transition is extremely sensitive to the number of switching elements as the (macroscopic)
energy barrier is proportional to N. This suggests that the system can fine-tune its kinetics by recruiting a particular number
of crosslinkers. Our computation of the individual barrier heights, using the asymptotic formulas given by Eqs. (29) and (33),
shows that the energy per crossbridge in the asymptotic regime of infinitely large N is already well approximated at the
realistic values N 100∼ . This means that this number of cross-bridges, characterizing a single half-sarcomere, is sufficient
for the system to achieve the maximum synchronization ability. Even though our conclusions are reached based on the
analysis of the internal rather than the free energy, they are fully confirmed by the detailed study of the finite temperature
effects on muscle dynamics based on the direct modeling of the Langevin dynamics (Caruel et al., 2013).
5. Conclusions

A parallel bundle of bistable snap-springs is a simple mechanical system which, however, teaches important lessons. The
presence in this system of mean-field type interactions, induced by the coupling of individual bistable units through a
common backbone, produces a peculiar mechanical behavior. For instance, the transition between the two states (folded
and unfolded) takes the form of a collective switching event rather than a sequence of transitions in individual elements.
The system exhibits negative stiffness and, even in the continuum limit, the mechanical behavior is different in soft and hard
loading devices. Such systems, where each element is linked with almost equal strength with all other elements and the
whole is not a sum of the parts are ubiquitous in biology with skeletal muscles providing just one of the many examples.
While in such systems the individual units may be submitted to random thermal fluctuations, the domineering long-range
interactions provide a highly efficient way to maintain the individual units passively synchronized. More specifically, long-
range interactions impose a strong bias between forward and backward reaction rates for microscopic transitions favoring
globally ordered states.

The prototypical model studied in this paper has important applications outside the skeletal muscle context. We have
already mentioned the phenomena of synchronized unzipping of adhesive clusters (Erdmann and Schwarz, 2007; Chen and
Gao, 2011; Yao and Gao, 2006; Gao et al., 2011; Erdmann et al., 2013 ) and the cooperative flip-flopping of macro-molecular
hairpins (Liphardt et al., 2001; Prados et al., 2012; Bosaeus et al., 2012; Woodside et al., 2008). A more complex but related
example is provided by the “fracture” avalanches during unfolding of macro-molecules (Srivastava and Granek, 2013). The
broad applicability of the proposed mechanical perspective is also corroborated by the fact that proteins and nucleic acids
behave differently in isometric and isotonic conditions and that these mechanical systems can exhibit negative stiffness
(Gerland et al., 2003; Bornschlögl and Rief, 2006; Thomas and Imafuku, 2012). In the same vein, the importance of the
topology of interconnections among the bonds and the link between the cooperativity of unfolding and the dominance of
parallel bonding have been long stressed in the studies of protein folding (Dietz and Rief, 2008). By emphasizing the crucial
role of the force transmitting backbones our study provides a simple paradigmatic description of this class of phenomena.
On a more practical side, the model suggests an explicit path towards designing bio-mimetic materials and molecular nano-
machines whose functioning depends essentially on long-range feedback between multi-stable units (Yurke et al., 2000).
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Appendix A. Stability in a hard device.

The analysis of stability is similar in the HS and the snap-spring models. A technical complication is that in both cases the
bistable potentials uHS and uSS are singular. Thus, in the HS model the energy wells are infinitely narrow and the energy



M. Caruel et al. / J. Mech. Phys. Solids 76 (2015) 237–259256
barrier is formally infinite. In the snap-spring model, the energy wells have a finite curvature however the spinodal region is
reduced to a single point. To study stability, we first remove these singularities by considering smoother potentials and then
perform the appropriate limiting transition to singular potentials.

We start with the more general snap-spring model and regularize the bistable potential uSS by introducing an extended
spinodal interval l l[ ; ]− ϵ + ϵ where the new potential uSS˜ is concave. Assume that outside this interval the potential uSS˜
coincides with uSS and is therefore convex. In a hard device the new snap-spring energy can be written in the form
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We now analyze stability of the system described by energy (A.1). At a given z, the equilibrium equations can be written
as
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where y z p q r( , , , )^ is the equilibrium value of y for a given configuration p q r( , , ) given by Eq. (14). Assume that within the
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Here hn is negative because the corresponding crosslinker is the spinodal state. The other second derivatives of the energy
can be computed explicitly
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To write the expression for the Hessian matrix z p q rH( , , , ), it is convenient to introduce the following auxiliary quan-
tities:
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Each of the variables Hi can take three values: h1, h0 and h⋆. Now we can write
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To obtain a similar Hessian matrix for the HS model, we need to perform the limit k z( )1,0 → ∞ which means h1 → ∞, h0 → ∞
and h → − ∞⁎ , and to drop in (A.4) the last line and the last column.
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From the form of the matrix H, one can see that as soon as one of the terms Hi is equal to h z( )⋆ , which means that q 0> ,
at least one of the principal minors of H becomes negative. This means that the absence of crosslinkers in the spinodal
region is mandatory for stability at 0ϵ > .

We can now consider the limit 0ϵ → . The value of the equilibrium strain in the spinodal region x̂⁎ remains between l − ϵ
and l + ϵ and thus converges to l, when 0ϵ → . Therefore, if q 0≠ , the configuration p q r( , , ) is necessary unstable and we
know that such configurations are necessarily singular. Hence, in our snap-spring model, among the N N( 1)( 2)/2+ +
equilibrium branches, N N( 1)/2+ singular branches are unstable which leaves Nþ1 nonsingular branches describing local
minima of the energy. Since in the HS model the spinodal states are absent, all configurations are automatically metastable.
Appendix B. Stability in a soft device

In the soft device case, the tension t is fixed while z becomes an additional degree of freedom. Then the energy of the
nonsingular snap-spring system reads
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The analysis of the equilibrium states remains the same and we can similarly define the diagonal terms of the Hessian
matrix for the energy xw y z t( , , ; ),
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Here each term can take the following three values h k 1 01 1= + > , h p q r t k( , , , ) 1 00 0= + > or h p q r t( , , , ) 0<⋆ . The other
entries are the same as in the hard device case, see Eq. (A.3) except that now we have one additional row and one additional
column
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By bringing all these second derivatives together we can write the Hessian matrix for the snap-spring model in a soft device
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A straightforward adaptation of the above analysis shows that, as in a hard device, the system in a soft device is unstable
only when q 0≠ , i.e. when at least one cross-bridge is in the spinodal state.

Finally, to obtain the Hessian matrix for the HS systemwe need to drop the last row and the last column and consider the
limit k z( )1,0 → ∞ which means h1 → ∞, h0 → ∞ and h → − ∞⁎ . We also require that 0bλ → . Then, the Hessian reads
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The analysis here is similar to the case of a hard device and the conclusion is that again all equilibrium configurations are
metastable.
Appendix C. Energy barriers in a hard device

The explicit expressions for the coefficients in the asymptotic development (29) are
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with p( )Λ̂ given by Eq. (25).
Appendix D. Energy barrier in a soft device

The explicit expressions for the coefficients in the asymptotic development (33) are
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with p( )Λ̂ given by Eq. (25).
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