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A salient feature of skeletal muscles is their ability to take up an applied slack in a microsecond timescale.
Behind this fast adaptation is a collective folding in a bundle of elastically interacting bistable elements. Since
this interaction has a long-range character, the behavior of the system in force and length controlled
ensembles is different; in particular, it can have two distinct order-disorder–type critical points.We show that
the account of the disregistry between myosin and actin filaments places the elementary force-producing
units of skeletal muscles close to both such critical points. The ensuing “double criticality” contributes to the
system’s ability to perform robustly and suggests that the disregistry is functional.
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If an isometrically activated muscle is suddenly
shortened, the force first abruptly decreases but then
partially recovers over ∼1 ms timescale [1–3]. Behind this
swift contraction is a cooperative conformational change in
an assembly of actin-bound myosin heads (cross bridges).
Given that the implied “power stroke” takes place at a
timescale that is much shorter than the timescale of
the adenosine triphosphate (ATP)-driven attachment-
detachment (∼100 ms) [4–6], the fast force recovery can
be interpreted as a passive phenomenon [7,8].
If it is an applied force, which is controlled, the mean-

field theory of fast force recovery, viewing filaments as
rigid and cross bridges as parallel [9], predicts the pos-
sibility of metastability associated with a coherent response
[10]. It also predicts the existence of an order-disorder–type
critical point, and it was argued that this critical point plays
an essential role in the functioning of the muscle machinery
[11,12]. This is consistent with the fact that critical systems
are ubiquitous in biology which is explained by their
adaptive advantages, in particular, their robustness in the
face of random perturbations [13–17]. Criticality is often
linked to marginal stability and, indeed, skeletal muscles
are known to exhibit near zero rigidity in physiological
(isometric contractions) conditions [2,18–20].
The mechanical functioning of the force generated system

is complicated by the fact that muscle architecture involves
both parallel and series connections (see Fig. 1). Parallel
elements respond to a common displacement (hard device,
Helmholtz ensemble),while series structures sense a common
force (soft device, Gibbs ensemble). To fold coherently,
individual contractile units should be able to coordinate in
both types of loading conditions; however, the dominance of
long-range interactions [21,22] induces different collective
behavior in force and length controlled ensembles [10]. In
particular, the critical points corresponding to length and force
clamp loading conditions are strictly distinct [12].

In realistic conditions, however, they turn out to be close
to each other and, to ensure the robustness of the response
under a broad range of mechanical stimuli [23], the system
can be poised in the vicinity of both critical points.
In this Letter, we argue that such double criticality is

actualized in the system of muscle cross bridges due to
quenched disorder. While skeletal muscles are often com-
pared to ideal crystals, the perfect ordering is compromised by
the intrinsic disregistry between the periodicities of myosin
cross bridges and actin binding sites. Binding of cross bridges
is restricted to incompatibly placed segments on actin
filaments (target zones), and experimental studies based on
electronmicroscopyandx-raydiffraction suggest thatmyosin
heads are bound to actin at seemingly random positions
[24,25]. To gain an insight into the role of variable offsets, we
assume that the attachment sites are indeed chosen at random
and show that it results in an analytically tractable model.
The idea that actomyosin disregistry brings the system’s

stiffness to zero was pioneered in [26]. More recently,
the utility of quenched disorder for the active aspects of
muscle mechanics has been advocated in [27]. The ben-
eficial role of random inhomogeneity has been established
in many other fields of physics from high-temperature

FIG. 1. Schematic representation of a muscle myofibril, of an
elementary contractile unit (half-sarcomere) and of a parallel
bundle of N cross bridges. In the model, the double-well
potentials are mimicked by spin variables.
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superconductivity in electronic materials [28] to Griffiths
phases in brain networks [29].
To explore the reachability of the double-criticality in

realistic conditions,we reduce the description of the systemof
interacting cross bridges to a random field Ising model
(RFIM) and compute the equilibrium free energy applying
techniques from the theory of glassy systems [30]. We then
use the available experimental data on skeletal muscles to
justify the claim that quenched disorder is the factor ensuring
the targeted mechanical response.
We associate with each cross bridge a spin variable x

taking the value 0 in the pre-power-stroke state (unfolded
conformation) and −1 in the post-power-stroke state
(folded conformation). Each spin element is then placed
in series with a linear elastic spring of stiffness κ0. If we
nondimensionalize lengths by the power-stroke size a and
energy by κ0a2, the dimensionless energy of a cross bridge
reads ð1þ xÞvþ 1

2
ðy − xÞ2, where y is the dimensionless

displacement of myosin relative to actin and v is the
dimensionless energetic bias (see Fig. 1). To model dis-
registry, we assume that the parameter v is different for
different cross bridges [31].
Consider now a parallel bundle of N cross bridges

shown schematically in Fig. 1. Individual cross bridges
are attached to a backbone composed of myosin tails. The
elasticity of the backbone can be accounted through a lump
spring of stiffness κf in series with the bundle [32–34]. The
system loaded in a hard device is then characterized by the
dimensionless energy

E ¼
XN

i¼1

�
ð1þ xiÞvi þ

1

2
ðy − xiÞ2

�
þ N

λf
2
ðz − yÞ2; ð1Þ

where z is the applied displacement and λf ¼ κf=ðNκ0Þ.
We assume that the parameters vi are independent
identically distributed random variables with probability
density pðvÞ.
If we replace variables xi by si ¼ 2xi þ 1 ¼ �1 and

adiabatically eliminate y, assuming that ∂E=∂y ¼ 0, the
energy (1) takes the form

E ¼ −J=ð2NÞ
X

i;j

sisj −
X

i

hisi þ c;

where J ¼ 1=4ð1þ λfÞ, c is a z-dependent constant, and the
coefficients hi are linear in vi (see Supplemental Material
[35]).We can then conclude that (1) is a version of the mean-
field RFIM, which is explicitly solvable [38,39].
Using the self-averaging property of the free energy in

the thermodynamic limit, we write

F ðβ; zÞ ¼ − lim
N→∞

ðNβÞ−1hlogZðβ; z; fvgÞiv;

where the averaging h·iv is over the disorder, β ¼ κ0a2=
ðkBTÞ, and

Z ¼
Z

dy
X

x∈f0;−1gN
expð−βEðx; y; z; fvgÞ:

In the thermodynamic limit, we obtain [35]

F ðβ;zÞ¼ λf
2
ðz−y0Þ2þ

1

4
ðy0þ1Þ2þ1

2

�
y20
2
þv0

�

−
1

β

Z
dvpðvÞ log

�
2cosh

�
β

4
ð1þ2y0−2vÞ

��
;

ð2Þ

where y0 must solve the self-consistency equation

y0 ¼
2λfz−1

2ðλfþ1Þþ
Z

dv
pðvÞ

2ðλfþ1Þ tanh
�
β

4
ð1−2vþ2y0Þ

�
:

ð3Þ

The multiplicity of solutions of Eq. (3) is a result of the
nonconvexity of the free energy with respect to y, which is
ultimately an effect of long-range interactions. This non-
convexity leads to the possibility of discontinuous tension-
elongation curve t ¼ ∂F=∂z ¼ λfðz − y0Þ.
If we assume that the disorder is Gaussian pðvÞ ¼

ð2πσ2Þ−1=2 expf−½ðv − v0Þ2=2σ2�g, the behavior of the
system will be fully defined by the temperature 1=β, the
variance of disorder σ2, and the parameter λf, character-
izing the degree of elastic coupling. The resulting phase
diagram is shown in Fig. 2. The disorder-free section σ ¼ 0
of this diagram was previously studied in [12]. At σ > 0 the
system responds as if it was subjected to a higher effective
temperature [40,41]. The Helmholtz free energy F ðβ; zÞ
and the tension-elongation relations tðβ; zÞ in the three
phases I, II, and III are illustrated in Fig. 3.

FIG. 2. (a) Configuration of phases I, II, and III in the
parameter space (1=β, σ, λf). (b) A section of this phase
diagram corresponding to λf ¼ 0.54� 0.2; the shadowed re-
gion near the boundary of II and III reflects the uncertainty in
λf . The realistic dataset for skeletal muscles is presented in
(b) by a filled circle with the superimposed error bars indicating
uncertainty in temperature. Analytic approximations in (b):
dashed-dotted lines indicate low temperature limit; dashed lines
indicate low disorder limit.
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In phase I, the cooperativity is absent and the cross
bridges fluctuate independently. In phase III, the cross
bridges can synchronously switch between two “pure
states.” In the intermediate phase II, the tension-elongation
relation exhibits negative stiffness. The boundary between
phases II and III is defined by the condition ∂2F̃ ðβ;
z; yÞ=∂y2 ¼ 0, which means that the three roots of (3)
coincide.
In the limiting case σ → 0, the point p in Fig. 2(b) is at

β ¼ 4ðλf þ 1Þ. Around this point, the p − q curve can be
approximated by the low-disorder approximation βe ¼
4ðλf þ 1Þ where βe ¼ ðβ−2 þ σ2=2Þ−1=2 is the inverse
effective temperature [35]. In another limiting case
β → ∞, the point q can be found from the equation σ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðλf þ 1Þp

and around this point the p − q curve
is given by the small temperature approximation
σe ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðλf þ 1Þp

, where σ2e ¼ ðσ2 þ 2β−2Þ ¼ 2β−2e is
the variance of the effective disorder [35].
The boundary between phases II and III marks a

second-order phase transition: the order parameter
ϕ ¼ N−1PN

i¼1 hsiiβ, where h·iβ is the thermal average,
is double valued in phase III and single valued in phase II.
To distinguish between different microscopic configura-
tions, we also compute the Edwards-Anderson (overlap)
parameter qEA ¼ N−1 PN

i¼1hhsii2βiv [35]. If qEA ≠ 0 while
ϕ ¼ 0, the pre- and post-power-stroke symmetry is broken
and cross bridges may be locally frozen in either of the two
states, even though such local ordering in time does not
imply any spatial order. Figure 4 shows that qEA is indeed
different from zero in the phase II close to the p − q
boundary, which indicates weakly glassy behavior
[38,39,42]. This is a hint that, in a more realistic model,
where the finite backbone stiffness is taken into account, a
real “strain glass” phase [43,44] may appear.
To find the boundary between phases I and II, we need to

solve the equation ∂2F=∂z2 ¼ 0 or ∂y0=∂z ¼ 1, where y0
is a solution of (3). When σ ¼ 0, we obtain β ¼ 4, which
defines the location of point s in Fig. 2(b) (see also [10,33]).
The low-disorder approximation gives βe ¼ 4. In another
limiting case β → ∞, the location of the point r in Fig. 2(b)
is given by σ ¼ σe ¼

ffiffiffiffiffiffiffiffiffiffi
1=2π

p
.

The boundary between the phases I and II can be also
interpreted as a line of second-order phase transitions, but
now in the soft device (force clamp) ensemble. In this case,
the presence of a series spring is irrelevant and we can
assume that λf → 0, z → ∞, but λfz → t, where tension t is
the new control parameter. Following the approach used in
the case of a hard device, we similarly obtain the Gibbs free
energy Gðβ; tÞ and compute the tension-elongation relation
y ¼ −∂G=∂t (see Supplemental Material [35]).
In Fig. 5, we show that the soft device tension-elongation

relation in phase II is monotone but discontinuous. On the
boundary of I and II [see Fig. 2(b)], the stiffness becomes
zero in stall conditions, which means that it is a set of
critical points in the soft device ensemble. This line,
targeted numerically in [26], represents regimes that can
be expected to deliver the optimal trade-off between
robustness and flexibility in the soft device [45,46].
So far, we have operated under an implicit assumption

that in the thermodynamic limit κf → ∞, while λf remains
finite. This assumption is based on the picture of a myosin
filament as a parallel arrangement of N myosin tails, all
contributing to the lump stiffness of the backbone. Another
limiting assumption may be that the effective stiffness of the
backbone κf does not depend on the number of attached
cross bridgesN and, in this case, we have a different scaling
λf ∼ N−1. Then Fig. 2(a), illustrating in this case the size
effect, suggests that the quasicritical behavior can be

FIG. 3. (a) Representative Helmholtz free energies in each of
the phases I, II, III. (b) The corresponding tension-elongation
relations; z0 ¼ ð1þ λfÞv0=λf − 1=2; t0 ¼ v0.

FIG. 4. The behavior of the parameter ϕ2 (solid lines) and the
Edwards-Anderson parameter qEA (dashed lines) near the boun-
dary between phases II and III at the realistic value of disorder.
(Inset) The case of weak disorder.

FIG. 5. (a) Representative Gibbs free energies in each of the
phases I and II. (b) The corresponding tension-elongation curves;
z0 ¼ ð1þ λfÞv0=λf − 1=2; t0 ¼ v0.
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associated only with the particular (optimal) number of
cross bridges.
To apply our results to a realistic muscle system, we use

the data for Rana temporaria at T ¼ 277.15 K [12]. From
structural analysis, we obtain the value a ∼ 10 nm [47–49].
Measurements of the fiber stiffness in rigor mortis, where
all the 294 cross bridges per half-sarcomere were attached,
produced the estimate κ0 ¼ 2.7� 0.9 pN=nm [18,19]. The
number of attached cross bridges in physiological con-
ditions isN ¼ 106� 11 and experimental measurements at
different N converge on the value κf ¼ 154� 8 pNnm−1

for the lump filaments stiffness [5,50,51]. This gives
λf ¼ 0.54� 0.2. Knowing κ0 and a, we can estimate the
nondimensional inverse temperature β ¼ 71� 26.
Now, for y > y�, where y� ¼ v0 − 1=2, the ground state

of a single cross bridge is in the pre-power-stroke state,
while for y < y� it is in the post-power-stroke state, so y�
represents the characteristic offset for an individual cross
bridge. Knowing that y� ∼ 4 nm [2,26], we conclude that
v0 ∼ 24.3 pN=ðκ0aÞ. It was experimentally shown in [25]
that at least 60% of the cross bridges are axially displaced
within half of the spacing between actin monomers, which
corresponds to ∼2.76 nm shift from the nearest actin
binding site (see also [26]). Given the linear relation
between v0 and y�, with the proportionality coefficient
equal to one, the variances of these two quantities are the
same. If the axial offsets are Gaussian random numbers, we
can estimate the standard deviation of the energetic bias
σ ∼ 3.3 nm=a [35].
Based on these data we find that, rather remarkably, the

system appears to be operating in a narrow domain of stability
of phase II, close to both critical linesp − q and r − s [see the
point marked by a filled circle in Fig. 2(b)]. The gap between
these boundaries corresponds to ∼1 nm difference in the
cross bridge attachment positions, which is rather small given
that the size of a single actin monomer is about 5.5 nm. The
mechanical responses in the adjacent critical regimes are
structurally similar; however, if in the hard device ensemble
we can expect coherent fluctuations of stress (infinite
rigidity), in the soft device, criticality would manifest itself
through system size correlations of strain (zero rigidity).
The special nature of the critical regimes is illustrated in

Fig. 6 for the case of a hard device. In phase I, the response
is uncorrelated, and the collective power stroke is impos-
sible [Figs. 6(a) and 6(d)]. In phase III, the response is
synchronous but at the cost of crossing an energetic barrier
that diverges in the thermodynamic limit (F is the free
energy per cross bridge), which facilitates freezing (met-
astability) in the pure states [see Figs. 6(b) and 6(e)]. The
advantage of the critical regime is that the system can
perform the collective stroke without crossing a prohibi-
tively high macroscopic barrier, [Figs. 6(c) and 6(f)]. The
analysis is similar for the case of a soft device.
Our study then suggests that evolution might have used

quenched disorder to tune the muscle machinery to perform

near the conditions where both the Helmholtz and the
Gibbs free energies are singular. Such design is highly
functional when elementary force-producing units are
loaded in a mixed soft-hard device. We recall that the
muscle architecture is characterized by hierarchical struc-
tures with coupled modular elements loaded both in parallel
and in series. In such systems, the proximity to only one of
the two critical points will not be sufficient to ensure high
performance in a broad range of conditions [23,52].
Moreover, as we show in the Supplemental Material
[35], the very idea of ensemble independent local con-
stitutive relations for such systems is questionable.
In conclusion, we established new links between muscle

physiology and the theory of spin glasses and revealed a
tight relation between actomyosin disregistry and the
optimal mechanical performance of the force-generating
machinery. At a price of neglecting many important
features of actual muscles, we were able to focus attention
on the role of quenched disorder in the functioning of this
biological system. The observed glassiness in the regime of
isometric contractions allows the system to access the
whole spectrum of rigidities from zero (adaptability, fluid-
ity) to infinite (control, solidity) and may serve as the factor
ensuring the largest dynamic repertoire for the “muscle
material.” Similar disorder-mediated tuning towards criti-
cality can be expected in other biological systems relying
on bistability and long-range interactions [9], including hair
cells, which employ elastically coupled gating springs [53]
and focal adhesions with their cell adhesion molecules
bound to a common elastic substrate [54].

The authors thank M. Caruel and R. Garcia-Garcia for
helpful discussions. H. B. R. received support from an
Ecole Polytechnique Fellowship; L. T. was supported by
Grant No. ANR-10-IDEX-0001-02 PSL.

FIG. 6. The structure of the energy barriers in different regimes
for the case of the hard device. (a)–(c) z dependence of the order
parameter ϕ ¼ N−1 PN

i¼1hsii in different regimes; (d)–(f) match-
ing free energies at fixed z ¼ z0. λf ¼ 0.35 and v0 ¼ 0.1
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