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ABSTRACT 

SOME CONWJWENCX~ of a simple theoretical model for the stress-induced, isothermal phase transformation 
of an isolated tetragnnal zirconia crystal are studied. The transformation to a monoclinic state is viewed 
as mechanical buckling from one homogeneous geometrical configuration to another. The model is used 
to predict the manner in which an applied shear stress should interact with hydrostatic stress in causing 
the transformation, and also the reverse monoclinic-to-tet~g(~nai phase change. An isolated tetragonal 
inclusion in an elastic matrix is also considered, and its response to a far-fieId combination of shear and 
hydrostatic stress is analysed. 

THE DISCOVERY by GARVIE et al. (1975) of the transformation-toughening effects of 
zirconia (Zr02) particles embedded in a brittle matrix has spawned a large literature 
on the subject [see Evans and HEUER (1980), EVAI% and CANNON (1986), GREEN et 

al. (I 989), R&KB and EVANS (1989) for reviews], and research continues apace. Early 
theoretical analyses of transformation toughening were based on the assumption that 
a ~etrago~l-ho-monoclinic fr - m) phase transformation of zirconia incfusions is 
provoked by a critical hydrostatic tension ~~~~E~K~N~ and EVANS, t982 ; BUDIANSKY 

et al., 1983), and tbc same basis was used in several Iater studies (e.g. ROSE, 1986; 
AMAZXCO and BUDIAN~KY, 1988; STUMP and BUDIANSKY, I989a, b). But in several 

theoretical studies (e.g. EVANS and CANNON, 1986; LAMBROPOULOS, 1986: CHEN 

and REYES Monrz, 1987 ; SUN et cd., 1990 ; SRJMP, 1991) shear-stress effects on 
transformation toughening have been explored, and found to be substantial (and in 
Stump’s work, startling). Furthermore, experiments on composites (CHEN and REYE~ 

MOREL, 1986) have shown that shear and hydrostatic stress may interact significantly 
in triggering the m -+ t transformation. 

In this paper we explore some consequences of a simple Landau model for the 
stress-induced, isothermat phase ~ransforma~ian of an isofated tetragonal zirconia 
crystal. The transformation is viewed as mechanical buckling f’rom one homogeneous 
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geometrical configuration to another. The analytical formulation is based on the most 
elementary polynomial strain-energy functional that is sufficiently rich to imply the 
t + m transformation at a critical pressure. A similar functional has been written for 
zirconia by CHAN (19X8), but we explore its implications in rather different directions 
here. The model is used to predict the manner in which an applied shear stress should 
interact with hydrostatic stress in causing the transformation, and also the reverse 
m + t transformation. The theory also implies constraints on the signs and ratios of 
some of the elastic constants in the monoclinic phase. These results will be confronted 
with those of recent acoustic experiments by NEVITT ct u/. (1988) and atomic N/J irzirio 

calculations by COHEN et d. (1988). 
On the basis of an idealized. approximate version of the model, we also look briefly 

at an isolated tetragonal inclusion in an elastic matrix, and study its response to a far- 
field combination of shear and hydrostatic stress vis-a-vis that of an unconstrained 
crystal. 

MODELING GOALS 

Guided by various experimental observations [particularly those of BLOCK ct ul. 

(l985)], we shall postulate several basic phenomenological features of the phase 
transformations of zirconia, and attempt to build a mathematical mechanical model 
that is consistent with these characteristics and permits the prediction of others. We 
will assume that (i) at a fixed temperature a single crystal of zirconia is stable in a 
tetragonal configuration for sufficiently high pressures,* (ii) under &crm.sin,q pressure, 
the zirconia suddenly snaps into a homogeneous monoclinic phase (see Fig. 1) at a 
critical pressurep = pC ; and (iii) under subsequent reapplication of irzcrmsing pressure, 
a sudden reverse transformation back to the tetragonal phase occurs at p = pi > pL. 
The data of BLOCK et cd. (I 985) show room-temperature values of pC s 2.8 GPa and 

p: = pc+Apc z 3.4 GPa during such pressure cycles, and also indicate that for increas- 

ing temperature both critical pressures decrease linearly. with Ap< remaining constant. 
fhis hysteretic behavior is illustrated schematically by the phase diagram in pressure 

FIG. I, Tctragonal and monoclinic axes. 

*At room temperature. the high-pressure phase may really be slightly orthorhombic rather than tctra- 
gonal (AKASHI et ccl.. 1988: CHIAU and CHEN. 1990). but our elementary analysis remains applicable. 
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FIG. 2. Schematic pressure--temperature phase diagram. 

tempe~ture space sketched in Fig. 2, wherein the solid line represents the tetragonal- 
to-monoclinic (t -+ m) transformation under decreasing pressure at constant tempera- 
ture or decreasing temperature at fixed pressure, and the dashed line is the m -+ t 
boundary for increasing pressure or increasing temperature. The obvious analogous 
interpretations of these boundaries are presumed to apply for curved paths in 
pressure-temperature space, but in the rest of this paper we will restrict ourselves to 
consideration of isothermal phase changes. 

The current lore of zirconia has it that at room temperature, and under purely 
hydrostatic loading, a dilatational strain (3, of about 0.04 should occur during the 
t~tragonal-to-mol~oclinic phase transformation. The magnitude of the accompanying 
shear strain yr with respect to u~re of the two original pairs of u-c axes (see Fig. I) is 
believed to be about 0.16, while the a-a axes, as well as the other a-c pair, remain 
orthogonal as they transform into the n-h and h--c axes in the monoclinic phase. 
Clearly, the transformation shear strain may be positive or negative (corresponding 
to symmetry related variants of monoclinic configurations) and so the sudden mar- 
tensitic t --+ m phase change induced by decreasing pressure has the earmarks of a 
symmetry-breaking, mechanical instability akin to the buckling of an imperfection- 
sensitive structure. [The general theory of buckling and post-buckling behavior of 
elastic structures is due to KOITER (1945) ; see BUDIANSKY (1974) for a review.] 
Following up on this point of view, we propose to regard the t + m phase change 
under hydrostatic pressure as the result of a buckling instability at a critical pressurep, 
that follows from an appropriately invented strain-energy functional of the dilatation 0 
and the shear strain 7 in the a--c axes. The formulation should also be consistent with 
the hysteresis in critical pressure associated with the reverse transformation. The main 
goal of the exercise will then be to see-lz.iti?out,furlher assumptions or the iurroduction 
ofudditional adjustuhle parametc>r.yP---what the model would predict about the simul- 
taneous effects of applied shear stress and pressure in provoking the t -+ m phase 
change and its reversal. Other implications of the model will also be deduced and 
assessed. 

While this program contemplates an unconstrained zirconia single crystal, it can 
also be imagined applicable to a purtiaZl_y stahilked zirconia crystal containing a 
dopant (e.g. CaO, MgO, CeO,, Y,O?) by adjustment of the magnitudes ofp,, p:, and 
if necessary, 0, and ;j-,-. However, stabilization of a zirconia inclusion by surrounding 
elastic material is another matter, and we will use the ESHELBY (1957) equations to 
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make a preliminary study of the phase change of an isolated spherical zirconia 
inclusion in an elastic medium subjected to combined hydrostatic stress and shear. 
Here twinning becomes important, and we will make a few remarks about this. 

MODEL ASSUMPTIONS AND CALCULATIONS 

Struifl-energy, potentiul ei7rrgy ~2nd quilihri2~n? 

We contemplate a tetragonal crystal subjected to an applied stress, but restrict 
ourselves to external loading that consists only of hydrostatic stress D = -y and shear 
stress T in a pair of CL--C axes (Fig. 3), and assume that the isothermal elastic strain 
energy density at room temperature may be written as a smooth function F(8,7) of 
the associated dilatation and shear strain. Thus we suppress the possibility that a 
shear strain with respect to the other pair of u--c tetragonal axes wilt occur. Also. for 
convenience, we assume that F(0, 0) = 0, and that 0 is measured from the tetragonal 
state corresponding to ;J = 0, o = ? = 0. The following polynomial choice for F(f), 7) 
is the simplest one that will have the modeling consequences that we seek : 

F(O,y) = #O’s_ iGy’-Coy’+ &‘+&“. (1) 

In the conventional small-strain approximation, the specific potential energy of the 
loaded system is then defined by 

@ = F(Q)-00-77 (2) 

and equilibriL~m states (0, y) are governed by the conditions 

c:@ c?@ 
&=*=O (3) 

of stationary potential energy. These equilibrium states need not, of course. be stable. 

H~~drostatic. loudinq (t = 0) 

With z dropped, we get the equilibrium equations 

KQ-@ ZZ @ 

(G-2C0)y+&3+o;,5 = 0. 

The~~?zdff~e~zt~l solution is 

(4a) 

(4b) 

FIG. 3. Hydrostatic stress o and shear stress t applied to the tetragonal crystal produces dilatation 0 and 
shear strain :‘. 
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FIG. 4. Schematic relation between hydrostatiic stress ci and shear strain 3’ > 0. 

0, = o/K, yo = 0 (5) 

which identifies K as the tetragonat bulk modulus, w~~~~ w assume CO he pusike. 

But we require that for increasing cr (i.e. decreasing p) this solution changes from 
stable to unstable at some critical value of rs. Since 8@/3y2 = G- 2CoJK is positive 
when the fundamental state is stable, we must have C > 0, and so the tetragonal 
configuration becomes unstable for (T > Q, where 

is the critical hydrostatic stress for phase transformation. Note the parameter G will 
be negative if the tetragonal phase is unstable in the stress-free state. 

An alternative solution of (4) with y # 0 is specified by 

which provide D and 0 explicitly in terms of y*. This solution bifurcates from the 
fundamental one (5) at (r = CT,. These equations can be put into an illuminating 
nondimensional form. For ;J > 0, we demand that the relation between Q and 7 implied 
by (7b) have the form sketched in Fig. 4, with a minimum at a: = r~,-- do ; and (7) 
should have the solutions H = c~/K-i-@~ and y = yr at u = rr,, corresponding to the 
monoclinic-phase strains. (There is, of course, a symmetrica solution with y < 0.) If 
we eiiminate the constants in (7) in favor of K, &, yT and do, we get 

(8) 

and we can write (7) as 



(9b) 

where ii,, is the linear function of B given in (5). These equations provide the non- 
d~rnen~~~~n~l relations between toad and distortion shown by the solid curves in Figs 
5(a) and ib). We review the behavior these curves reflect. Starting out from the 
tetragonal phase (;$ = 0) with n -C c7,. increasing (T simpiy induces e&tic dilatirtion 
changes until the martensitic phase transformation into the monoclinic state occurs 
as a consequence of the buckling instability at a = G,. Then ;’ jumps to ;‘,,. and 0 
increases suddenly by the amount 0,. Under subsequent stress reversal, the material 
snaps back to the tetragonal shape when (r renches o, ~30. 

An immediate consequence of our simple model is that the instantaneous strain 

tx&~:~ions yf and tPr durmg the reverse m -+ t transformation are given by ;*\. = 

Yr/,/ ‘2 and Or,. = ii,i”), substantially smaller than the jumps of the t + m phase change. 
t‘fcarty. such special relations can not hake any basic significance. and are not to bc 
regarded as predictions. Rather, they emphasize the likely need for more elaborate 
energy functionals in order to achieve consistency with the details of actual reiations 
between direct and reverse tr~n5forn~~tjo~l strains. Such experimental data for pressure 
cycling are not known to us. 

Cornhind locrding : I~~~dro.st~~ tic stress md slwar 

It is convenient to wark with the reduced energy function O-Qo, where cDo. defined 
as the potential energy of the fundamental tetragonal state (5) under pure hydrostatic 
stress, is given by 
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Then, (l), (2), (6) and (8) provide a nondimensional reduced energy ‘P that may be 

written as 

where 

The equilibrium equations (8P/%) = (PI’/ay) = 0 give 

where we have introduced the nondimensional shear stress parameter 

(13a) 

(13b) 

(13c) 

[The 8-y relation (13a) is the same as it was for 5 = 0.1 Equations (13) provide the 
dashed curves in Figs 5(a) and (b), which show how the application of a constant 
shear stress, represented by several values ofz, affects the relations between hydrostatic 
stress and strain. The important thing to note is that in the presence of shear the 
t + m phase transformation under increasing cr is no longer associated with a hifur- 
cation instability. as it was for 5 = 0. Instead, for a range of nonzero ss, the phase 
change reflects hit-point buckling at the local maximum in the o-7 (or a-fl) relation, 
and the critical stress CT,,,,, for the t + m jump may be reduced substantially below oC 

by the presence of shear. For small values of z. the snapping stress grnClx implied by 
(I 3) is given asymptotically by 

(14) 

The reverse m -+ t transformation stress D,,,,” is also lowered by shear stress (linearly 

for small z), and the hysteresis [cmnn - c,,,,~] is less than the original Aa. Further, for 
sufficiently large values of shear stress, namely 

48 

=,, 
(15) 

the tetragonal-to-monoclinic transition under increasing 0 becomes gradual, losing 
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its buckling character, and under reverse loading the trip back follows the same 
continuous path. All of this is qualitatively consistent with the buckling behavior of 
imperfection-sensitive structures, in which small initial displacements lead to cata- 
strophic collapse at loads significantly lower than the critical bifurcation load. 

Stwss-spucc phuse diupum 

Equation (13b) implies that for CT = CJ,,,,, OY c = (T~~~i~~r the variables y, o and z must 
satisfy the relations 

where (16b) follows from the condition, for fixed z, (r’cr/+), = 0 applied to (16a). 
Hence (I 6) provide a parametric representation, via y/y,, for the t --f m and m --+ t 

phase boundaries shown in Fig. 6. The range 0 < ~/;j-, < d3/lO gives G,,,,, and the 

lower boundary, for cr,,,in, corresponds to ,/3/ IO Q Y/Y_~ < J1 f2. These curves inter- 

sect tangentially at the uitid point z = (4S/25),/3!1~. (o-c~),‘AG = - 1.8, cor- 
responding to (80jZ-j’)~ = 0. Note the vertical slope at r = 0 of the t --f m boundary. 
consistent with (15). (The reflection of these curves about the a-axis provides the 
stress-space phase boundaries for T < 0.) The long arrows in Fig. 6 emphasize the 
directions of stress change that provoke t --+ m and m + I phase changes, and the 
distance between the two curves represents the hysteresis. However, the phase diagram 
is also valid for arbitrary stress paths in ~-5 stress space that cross the boundaries 
from the inside to the outside of the region they bound. Finally, we note that stress 

FIG. 6. Non-dimensional. isothermal phase diagram. showing cnmhinations of hydrostatic stress CT and 
T > 0 for phase change: the arrows show d~rectmns of loadmg in stress-space for the tetragonal-to- 

monoclinic t~nsform~~ti~~n and its reverse. 
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paths that remain outside this region induce only continuous strain changes, like those 
shown by the bottom curves of Fig. 5. 

The t -+ m curve can be imagined analogous to a “yield” locus of plasticity theory, 
and then the associated jumps in 19 and y are like plastic strains. However, in con- 
ventional plasticity theory a “normality” rule constrains the plastic strain ratios. In 
our problem, the condition of normality means that at each point on the t -+ m phase 
boundary, the t + m jumps 68 and 6y, and increments do and dz along the curve, 
would have to satisfy the relation bQ da+67 dz = 0. This is clearly not so; indeed, at 
z = 0, normality would imply 66 = O! 

It may be of interest to note that normality WOZ& hold if the phase jumps were 
arbitrarily required to occur (reversibly) on a phase boundary in c-7 space cor- 
responding to the Maxwell condition of equal potential energy in the two phases, 
rather than at the states of limit-point instability. Since the energy is 

(17) 

we have dF = 0 dc+ y dz along any curve in ~-5 space. The energy jump 6F = 0 

therefore implies 6[dF] = 60 do+& dz = 0 along the Maxwell locus. [This kind of 
argument was used by RICE (197 1) to make normality plausible in plasticity.] However, 
we emphasize that there is no apparent reason to impose the Maxwell condition on 
martensitic phase changes that display stress hysteresis. 

Monoclinic elastic moduli 

A credibility check on our mode1 can be made by calculating the predicted cross- 
compliance dy/do z (@/da), of the stable monoclinic phase at zero pressure and 
shear, and comparing with available experimental data (NEVITT et al., 1988) and 
atomic-theory estimates (COHEN et al., 1988). 

From (9b), the shear strain y. at g = 7 = 0 (and room temperature) is given by 

Yo -= 
YT 

(18) 

and the cross-compliance dy/do follows from (9b) by differentiation. The reciprocal 
of this compliance is the monoclinic cross-modulus given by 

(19b) 

This is the slope of the c-y curve (Fig. 4) at 0 = 0,)’ = yO. Similarly, by differentiation 
of (13), we get the monoclinic shear modulus at g = z = 0 as 
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(20) 

The s&n of the predicted value of (dy/do) ’ is of particular interest. Our model 
says it is positive, which means that incremental hydrostatic tension applied to room- 
temperature, monoclinic zirconia should inc~as~ the shear angle 7 defined in Figs I 
and 2. Careful attention to sign convention is clearly crucial in the assessment of this 
prediction vis-a-vis the measurements of Nevitt et ul. and the atomic calculations of 
Cohen rt ul. Telephone communication with both Nevitt and Cohen has confirmed 
that they used conventional monoclinic axes (NYE. 1957), for which the P-angle 
between the N and c axes (Fig. 1) is grruter than 90 , whereas we adopted the twinned 
configuration having an acute angle between the L/ and c axes. This means that we 
have to change the signs of their reported tension-shear cross-compliances when we 
use them to make comparisons with the predictions of (19). (More precisely, in terms 
of the standard crystallographic compliances S,,, our dy/do is equal to [ - S, 5 - Sz5 ~ 
S3,l.I 

Guided by the measurements of BLOCK ct ~1. ( 1985) for room-temperature zirconia 
we assume gc = - 2.8 GPa and Ao = 0.6 GPa in (I 8) to get ;~~~jy, = 1.30. Although 
the transformation strain 7, has usually been presumed to be equal to about 0.16, this 
is evidently based on the value of (/I-n/2), where p = 99 is the reported magnitude 
of the angular lattice parameter of monoclinic zirconia at zero pressure and room 
temperature (GREEN rt u/., 1989). Hence it is more appropriate to use 0.16 as the 
value ot y,,. rather than ;I,, in (I 9) and (20). A room-temperature value of (& is not 
well established, but we will evaluate (20) using the assumption y-r/I), = 4. This is 
consistent with lattice-parameter data quoted by GREEN et ul. (1989, p. 220) for 
monoclinic Zr02 at 956 C and tetragonal ZrO, at I 152 ‘C, which indicate Or = 0.03. 

rather than the usually assumed value 0.04. 
Table I shows the magnitudes of (dyjdo) ’ and (dyjdr) ’ thereby given by (19) 

and (20), together with the values (for our coordinate system) derived from the 
measurements of Nevitt cr crl. and the atomic estimates of Cohen rt rd. The two sets 
of numbers in the last column correspond to two different atomic structures that were 
assumed by Cohen rt d. for monoclinic zirconia. 

Not too much significance should be attached to the absolute magnitudes of our 
numbers, because our model is so primitive. but the difference in sign between our 
result for the cross-modulus and Nevitt’s experimental value is disappointing, because 
it is hard to see how our model could easily be modified to change the sign of dyjdo. 
Of course, the same sign difference between the Nevitt and Cohen results do suggest 

TABLE 1. Monoclinic morluli (CPU) (CJ, = ~ 2.8 GPa, Ag = 0.6 GPa. 
;‘() = 0.16. ;‘,/Hr = 4) 

Modulus Equations (18)-(20) Nevitt cf ul. (1988) Cohen et al. (1988) 

(d;:‘do) ’ 121 - 680 400, 260 
(d;sidz) ’ IX 65 90, 64 
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that final judgement may be premature. In this connection, we have scrutinized the 
elastic constants tabulated by SIMMONS and WANG (1971) for 21 different monoclinic 
materials, and we find that dy/da is positive for 12 of these, and negative for the rest. 
Perhaps our model and variants thereof could make sense only for some kinds of 
monoclinic materials and not others. (Also, we remain uneasy about the consistency 

of the sign conventions for monoclinic crystals used by various authors.) 
Although our zirconia model has failed to pass the experimental credibility check 

we sought, we will stay with it a little longer, and explore some of its consequences 
concerning phase changes of inclusions from tetragonal to monoclinic, and back. 

Elustically constrained crystals 

We contemplate next an isolated, single tetragonal crystal embedded in an infinite 
matrix of non-transforming, isotropic, linearly elastic material, and seek to determine 
critical combinations of stress at infinity that will cause its transformation to a 
monoclinic phase. We restrict ourselves to the application of just two stress types at 
infinity, namely hydrostatic stress 0x and a single shear stress rr, the latter aligned 
with the u-c axes (Fig. 3) of the tetragonal inclusion. In this exploratory study, we 
will make some simplifying assumptions, as follows : 

(i) the inclusion will be assumed to be spherical ; 
(ii) strains will be assumed homogeneous in the inclusion; specifically, twinning 

will be presumed not to occur; 
(iii) we will continue to apply the single crystal relations (9a) and (13) connecting 

c’, t, 8 and y to the inclusion, with o reinterpreted as the mean normal stress, This 
represents an extra simplifying assumption, because the constrained crystal will suffer 
stress states that are more complex than the combination of pure hydrostatic loading 
and simple shear which we contemplated in our study of the unconstrained crystal ; 

(iv) the bulk modulus of the matrix will be set equal to the tetragonal bulk modulus 
K of the inclusion. 

Assumption (ii) is drastic. Constrained tetragonal zirconia inclusions generally do 

display multiple twinned monoclinic bands when they transform. It seems, never- 
theless, worthwhile to pursue the idealized constrained-crystal model we have set, to 
see how the calculations go, in preparation for the considerably more sophisticated 
analysis that would be needed to take twinning into account; and to gain some insight 
into the magnitudes of stresses and strains that would be involved in a hypothetical 
twin-free transformation. 

The exact EshelbyyHill relations (ESHELBY, 1957; HILL, 1965) for a homogeneous 
spherical inclusion can be written as 

i 

&- -0 = K(a-‘-1)(8-P) 
TX --z = G,(/?-‘-l)(y--y”) (21) 

in terms of the bulk modulus Kand shear modulus GM of the matrix, and the Eshelby 
parameters 
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(22a) 

The strains at infinity are 0’ = a’“/K and 7’~’ = r”/K. With GM = K[3( I -2v)]/ 
[2(1 ---v)] (2l), together with the inclusion relations (13) may be used to eliminate 0 
and T. and get the connections 

0 - H ’ 7’ 2 

(j_,- = a! y , 0 

LTL -tic 

AC7 

where 

3(1 -2~)(7-51,) 

A = 4(l+V)(4-59) 

and 

L‘ = 1 - C?,( I - %)/4. 

(22b) 

(22c) 

(23) 

(24) 

It now follows from (22b) that for r* = 0, the tetragonal inclusion strains remain 

equal to 0 = 0’ and ;! = 0 until CT” reaches the bifurcation stress 

CJ,’ = ~~+j.~(~~~~,)~ 

= a, + ;“K;;/f~-,-. (25) 

The inclusion strains will then have finite .jumps onlt, if c > 0. with magnitudes 

/ y., = \/ c;‘, , 0,. = d,. (26) 

During reverse loading, the jump back to the tetragonal state will occur at 

0’ = aL? - Ao * , where 

Ao” = c’(A.6) (27) 

is the hysteresis in CF. The relations (2%~) may now be rewritten to look very much 
like those in (13) for the unconstrained crystal, as follows : 

(28a) 

(28b) 

where 

(2% 
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Accordingly, for c > 0, all of the results plotted in Figs 5-6 become applicable to the 
constrained crystal, simply by substituting D%, CT:, Aaz for a, a, and Ao, respectively, 
and replacing y7, OT and z by &, & and Z. For the special case v = 0.2, (22) give 
CI = /II = 0.5, and the analogy between (13)-(14) and (28)-(29) becomes perfect. For 
this choice of v, we get /?. = 3/8 and c = 1 -o/8. 

For c < 0, (22) show that even with ? = 0 the inclusion would undergo a smooth 
transition to a monoclinic-like state as the remote hydrostatic tension is increased 
beyond its critical value. This corresponds to the case called “subcritical” by BUDI- 
ANSKY et at. (1983) ; their ~‘super~ritical” case, in which the constrained inclusion 
transforms abruptly at a criticat stress, corresponds to c > 0. 

A rough estimate of a: via (25), with I. = 3/8, K = 150 GPa, IT, = - 3 GPa, 
yT = 0.12, and & = 0.03, gives a,” = 24 GPa. This seems much too high; working 
backwards from measured toughnesses of transformation-toughened materials sug- 
gests values of a,” around l/2 GPa. Some reduction of the elastic constraint on 
inclusions can be attributed to inclusion interaction, but the chief culprit invalidating 
the calculation of a,” must be twinning. Finally, we note that for v = 0.2, the super- 
critical transformation criterion c > 0 requires w = Kt),/Aa < 8; with Acr = 0.6, we 
get the estimate w = IO--too high for supercriticality. 

There are at least two distinct ways in which twinned configurations could occur 
in transforming crystals (CHEN and CHIAO, 1983), thereby invalidating our calcu- 
lations. First of all, even an unconstrained tetragonal crystal can be expected to suffer 
twinning as it transforms to the monoclinic state, as a consequence of habit-plane 
compatibility requirements when a phase-change interface sweeps across the crystal 
(WAYMAN, 1964). Second, minimum-energy requirements associated with the phase 
change of an elastically constrained embedded single crystal may induce bands of 
monoclinic variants, as has generally been observed in all but very small inclusions. 
At least qualitatively, this kind of twin-band development, and the dependence of the 
number of twin bands on crystal size, may be analysed (e.g. EVANS et al., 1981 ; KOHN 

and MUILER, 1992) on the basis of a trade-off between the reduced elastic strain 
energy provoked by multiply twinned configurations of transforming embedded 
inclusions and the band interface surface energies. A quantitative mechanical analysis 
for zirconia of these twinning issues and their interactions, in the spirit of the present 
approach, remains to be executed. Not least of the difficulties in such a task is the 
stipulation of the required twin-band interface energies, the magnitudes of which are 
not known. 

CONCLUDING REMARKS 

Subject to the admittedly drastic simpIi~cation of permitting only homogeneous 
states in both constrained and unconstrained crystals, we have presented a model for 
tetragonal-to-monoclinic transformation in zirconia, and the reverse phase change, 
under a simple state of combined hydrostatic tension a and shear r. The nature of the 
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combined (r-r stress conditions for phase change has been explored, albeit specu- 

latively, as have several other implications of the modet. Similar studies involving 
more complex stress states of loading can be undertaken, and the more chalienging 
problem of incorporating twinning effects remains to be met. 

We are grateful for instructive comments by Professor Arthur Heuer concerning the essential 
role of twmning in zirconia phase transfarmation. This work was supported in part by the 
National Science Foundation under a Mat&& Research Laboratory grant (D~R-~9-2~90)~ 
in part by a DARPA University Research Initiative grant (Subagreement P.O. No. VB38639- 
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