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Abstract Our starting point is a parameterized family of functionals (a ‘theory’) for which we are interested
in approximating the global minima of the energy when one of these parameters goes to zero. The goal is
to develop a set of increasingly accurate asymptotic variational models allowing one to deal with the cases
when this parameter is ‘small’ but finite. Since �-convergence may be non-uniform within the ‘theory’, we
pose a problem of finding a uniform approximation. To achieve this goal we propose a method based on
rectifying the singular points in the parameter space by using a blow-up argument and then asymptotically
matching the approximations around such points with the regular approximation away from them. We illustrate
the main ideas with physically meaningful examples covering a broad set of subjects from homogenization
and dimension reduction to fracture and phase transitions. In particular, we give considerable attention to the
problem of transition from discrete to continuum when the internal and external scales are not well separated,
and one has to deal with the so-called ‘size’ or ‘scale’ effects.

Keywords Asymptotic expansions · Gamma-convergence · Uniformity · Fracture · Phase transitions ·
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0 Introduction

Most of the models in continuum mechanics describing equilibrium configurations are based on the mini-
mization of functionals which contain a small parameter of either constitutive or geometrical nature. It is
natural to try to use the smallness of the parameter to replace the original model by a simpler one. The well-
known examples of such simplifications are the low-dimensional theories of thin-walled structural elements
(e.g., [26]), the homogenized models of composite materials (e.g., [48]) and the continuum models of crystal
lattices (e.g., [11]). In all those cases the approximate models are more tractable than their prototypes because
they do not contain the small parameter and enjoy the advantages of reduced dimensionality, homogeneity or
continuity. Often, the simplified model can be constructed by the more or less straightforward dropping of the
‘small’ terms. While such pointwise limits can be rigorously justified in some situations (e.g., [7,9]), there
are other cases when the limit is non-trivial due to only weak convergence of the minimizers (e.g., [67]). In
those cases in order to derive the limiting theory, one has to use more sophisticated methods, in particular, the
methods of �-convergence [14,28,32].
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In some cases the limiting models derived by the methods of �-convergence are degenerate, and it is clear
that a physically meaningful model must contain the original small parameter. Typical examples include the
plate theories combining membrane deformations with bending [37], the theories of phase transitions with
surface tension [49], and the theories of fracture assuming a nonzero toughness [39]. The small parameter
must also be preserved when the ratio of the internal to external scales is small but not too small, for instance,
when the main modeled phenomenon is associated with the ‘size’ or ‘scale’ effects [33,62]. Heuristic models
of this type have been suggested in applications and it is not uncommon that several such approximations have
overlapping domains of application (e.g., Bernoulli and Timoshenko theories for rods [7,43,52], Kirchhoff and
Mindlin–Reissner models for plates [3,7,43], gradient and nonlocal continuum models of crystal elasticity
[41,49,59], various regularizations in the models of phase transitions and strain localization [6,44]). The
present study has been originally motivated by the desire of the authors to rigorously distinguish between the
theories of Griffith [39] and Barenblatt [5] in fracture mechanics under the assumption that they represent
various asymptotic limits of a lattice model with Lennard–Jones interactions [19,64].

To justify the higher-order corrections rigorously, it is necessary to formally define�-asymptotic expansion.
In the current mathematical literature, the issue is usually addressed by constructing a �-limit in the proper
limiting space and then improving it inside the same space through increasingly more accurate approximations
of the minimal value (�-development, see [2]). The obvious problem with this approach is that the class of
minimizers is decided already in the first step, and after this class is exhausted, the process of the improvement of
the minimizer terminates (locking). In addition, as we show in the paper, the higher-order �-limits may simply
ceases to exist (choking). Another type of problems concerns parameterized families of functionals, since
at certain value of the parameter the �-convergence may cease to be uniform. In these cases we encounter
physically interesting singular phenomena, associated, for instance, with nucleation, buckling or material
failure, and it is disastrous that around these singular points the precision of the conventional �-development
drops dramatically.

In this paper we propose a new methodology aimed at overcoming the drawbacks of the existing formal
approach and reconciliating the ad hoc approaches with �-convergence. Our starting point is the concept
of �-asymptotically equivalent functionals of given order, which generalizes the corresponding concept in
the classical perturbation methods [36,40,54]. We show that, outside the zero-order �-limit, the class of
�-equivalent variational approximations of a given minimization problem may be rather large and raise the
question of the additional criteria securing the uniqueness of the asymptotic expansion. In search of such criteria,
we move from single functionals to ‘theories’ interpreting the latter as parameterized sets of functionals, where
parameters may characterize the geometry of the domain, the boundary conditions, the bulk ‘loading’, or the
constitutive behavior (see examples in [27,37,46,60]). To deal with the parameter values where the �-limit
is singular (for instance, discontinuous), we propose a way of rectifying the singular behavior by local blow
up of the functional and constructing the ‘table’ of �-limits, which fully characterizes the crossover between
different singular regimes. We then show that if the ‘tables’ in all singular points are known the uniform
expansion can be constructed by matching the boundary layer type �-expansions near the singular points with
the regular �-expansions outside these points.

Despite its mainly theoretical focus, the paper contains a series of illuminating examples of equivalent
theories and discusses the multiplicity of ways of generating uniform approximations with respect to classes
of boundary conditions. In our selection of examples, we intentionally resisted the temptation of dealing
with the most general cases and instead limited ourselves almost exclusively to the problems where a one-
dimensional, scalar version of a particular model could substitute its multi-dimensional, tensorial analog. Some
of our examples use arguments that can be derived from the known theories, and in these cases the details are
not included or only sketched. The full proofs are given only for the cases that are not present in the literature.

The paper is organized as follows. To motivate the subsequent definitions, in Sect. 1 we review the existing
asymptotic procedures based on �-convergence. In Sect. 2 we introduce ‘theories’ and then show in Sect. 3
that within a ‘theory’ the standard �-development can be nonuniform. In Sect. 4 we introduce the concept of
�-equivalence and study the main properties of the asymptotic factorization of the set of functionals. Some
systematic methods of generating �-equivalent functionals are proposed and discussed in Sect. 5. In Sect. 6
we extend the definition of �-equivalence to ‘theories’. The regular points within the ‘theories’ are studied in
Sect. 7. The structure of the singular points constitute the subject of Sect. 8 where we also formally define a
‘table’ of �-limits and present several detailed computations of various ‘tables’ in the problems of physical
interest. In Sect. 9 we pose the problem of rectifying singular points and produce a rather general recipe for
constructing uniformly equivalent theories. Our conclusions are summarized in Sect. 10.
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1 Background

Consider a minimization problem involving a small parameter ε. Suppose that one would like to approximate
the original problem with a new one where the dependence on this parameter has been eliminated. In the
situation where the object of interest is the global minimum of the energy, the adequate language has been
developed by De Giorgi [30,32]. His approach is based on the notion of �-convergence which we briefly
review below to make our presentation self-contained (see [14,15,28] for more details).

The first requirement to �-convergence is that

Fε
�−→ F (0) (1)

implies
min Fε → min F (0). (2)

The second requirement is that (almost) minimizers of Fε converge to minimizers of F (0)

uε −→ u(0), (3)

even though the meaning of convergence may be very weak. The third requirement concerns the stability of
the �-limit with respect to the addition of continuous perturbations

(Fε + G)
�−→ (F (0) + G). (4)

If the condition (4) is satisfied, then, once the �-limit F (0) is computed, the result can be used to describe a
whole class of problems. This implies that �-convergence can deal with some simple ‘theories’.

We now proceed with the formal definition:

Definition 1.1 Let X be a first-countable space (e.g., a metric space) and let Fε : X → [−∞,+∞]. Then Fε
�-converges to F0 as ε → 0 (and F0 is the �-limit of Fε) if the following two conditions are satisfied for all
x ∈ X :

(i) (lim inf inequality) for all xε → x F0(x) ≤ lim infε→0 Fε(xε).
(ii) (existence of a recovery sequence) there exists xε → x such that F0(x) = limε→0 Fε(xε).

From this definition one can see that implication (1) ⇒ (2) is valid if some equi-coerciveness assumptions on
Fε are satisfied (i.e., if we may find converging minimizing sequences) and throughout this paper, we suppose
that such assumptions indeed hold.

We illustrate the notion of �-equivalence by following examples. They deal with the derivation of a
continuum elasticity theory as the asymptotic limit of different lattice models.

Example 1.2 For ε such that N = 1
ε

∈ N consider the functional

Fε(u) = ε

N∑

i=1

W (ui ) (5)

where u : {1, . . . , N } → R and

ε

N∑

i=1

ui = 0. (6)

The energy (5) describes a chain of particles with nearest neighbor (NN) interactions. The system can also
be interpreted as a set of springs connected in series and therefore not interacting modulo the ‘mean field’
interaction with a hard loading device. Suppose that W is strictly convex. Then one can show that (see [21])

F (0)(u) =
1∫

0

W (u)dt, (7)

with constraint
1∫

0

u(s) ds = 0. (8)
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Fig. 1 A double-well potential (Example 1.4)

Example 1.3 To show that the previous result is stable with respect to adding long-range interactions, we
introduce a constant J > 0 and consider the following ‘elastic’ Ising model

Fε(u) =
N∑

i=1

ε (W (ui )− Jui ui+1) , (9)

where we set uN+1 = u1 to avoid boundary effects. We again impose the constraint (6). If we now rewrite the
energy in the form

Fε(u) =
N∑

i=1

ε

(
W̃ (ui )− 2J

∣∣∣∣
ui + ui+1

2

∣∣∣∣
2
)
,

it can be interpreted as the model of a chain with the nonlinear interaction of nearest neighbors characterized
by the convex potential

W̃ (z) = W (z)+ J |z|2,
and an additional linear interaction of the next to nearest neighbors (NNN model). Suppose that W (z) ≥
C(|z|2 − 1) with C > J , so that the energies Fε are equi-coercive. Then, if the function

W (z) = W̃ (z)− 2J |z|2 = W (z)− J |z|2.
is convex one can show that (see [21] for more details)

F (0)(u) =
1∫

0

W (u) dt.

The two examples above represent the simplest cases of periodic convex homogenization where the result
could also be obtained by pointwise convergence. The next example shows the simplest case where the notion
of �-limit is essential.

Example 1.4 Consider again Example 1.2 and suppose now that W is a double-well potential as shown in
Fig. 1. We obtain (see [14] Theorem 4.3)

F (0)(u) =
1∫

0

W ∗∗(u) dt,
∫ 1

0
u dt = 0.

Here and often in the sequel, we denote by W ∗∗ the convex envelope of W , whose appearance highlights the
formation of microstructure.
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1.1 �-development

If the description given by F (0) is too coarse, further information can be obtained by iteration of the �-limit
procedure. More specifically if some α > 0 exists such that

F (α)ε := Fε − min F (0)

εα
�−→ Fα, (10)

then, using again the fundamental property (2) of �-convergence, we obtain

min F (α)ε

(
= min Fε − min F (0)

εα

)
→ min F (α). (11)

In other words, one can write the more accurate development

min Fε = min F (0) + εα min F (α) + o(εα). (12)

Remark 1.5 The convergence of minima takes place if there exist a precompact sequence of minimizers of
Fε, or, more in general, if there exists a precompact εα-minimizing sequence; i.e., xε such that Fε(xε) =
inf Fε + o(εα), which implies the equi-coerciveness of F (α)ε .

The process of �-development [2] (or development by �-convergence) is formally resumed in the equality

Fε
�= F (0) + εαF (α) + o(εα). (13)

The general equality (13) is only formal since the domains of the functionals may be different, and even when
they are equal the energy F (0) + εαF (α) is equal to +∞ outside the set of minimizers of F (0).

We say that a �-development is complete if for all 0 < γ < α we have

F (γ )(u) := �- lim
ε→0

Fε(u)− min F (0)

εγ
=
{

0 if u is a minimizer of F (0)

+∞ otherwise

Note that if the �-development is not complete, i.e. F (γ ) does not have the form above for some γ , but
min F (γ ) = 0, then such F (γ ) plays no role in (12).

As an illustration we may compute the scaled �-limit of the energies in Example 1.2 at various orders. The
computation shows that all higher-order limits are trivial; therefore, the development is complete already after
the first step. This explains the ‘stiffness’ of the classical elasticity theory which works in a remarkably broad
range of scales from meters to nanometers.

Our first example of a nontrivial development illustrates the ‘size’ effect in classical elasticity due to lattice
incompatibility with the ‘shape’ of the macroscopic boundary.

Example 1.6 To capture the incompatibility effect in the one-dimensional setting we consider a functional
almost equivalent to the one in the Example 1.2,

Fε(u) =
∑

{i :εi∈(0,1)}
εW (ui ), (14)

again with constraint (6). While the zero-order�-limit is the same as the one in Example 1.2, to proceed further
a correction must be made at order ε. If in place of Fε(u), we consider

F̃ε(u) =
∑

{i :εi∈(0,1)}
εW (ui )− cε, (15)

with constraint (8), and

cε = ε

([
1

ε
− 1

]
− 1

ε

)
W (0)
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(here [t] is the integer part of t), then the development is the same as in Example 1.2. The constant cε is due to
the approximate identification of a discrete function u with its piecewise-constant counterpart in (0, 1). This
can be easily dealt with in dimension 1, but may be a delicate problem in higher dimension. In the rest of the
paper we will mainly stick to the case ε = 1/N with N ∈ N and avoid inaccuracy problems. In the general
case some additive constant cε must be taken into account as in the present example.

Remark 1.7 In the computation of the higher-order�-limits some non-trivial scale analysis must be performed
to understand what is the relevant scaling εα (or, more general, f (ε)). Note however that, up to rescaling, we
can always suppose that F (0) is non-trivial and, if needed, that the next relevant scale is ε.

Once the first development is computed, the analysis at successively lower scales

1 >> f1(ε) >> · · · >> fm(ε)

can be performed by iteration (in these notations, in the development above we have taken f1(ε) = f (ε), or
εα). Then we obtain a development

Fε
�= F (0) + f1(ε)F

(1) + · · · + fm(ε)F
(m) + o( fm(ε)), (16)

where (with a little abuse of notation with respect to (13)), we have set

F ( j) = �- lim
ε→0+ F ( j)

ε , where F ( j)
ε (u) := Fε(u)−∑i< j fi (ε)m(i)

f j (ε)
, (17)

and m(i) = min F (i).

We now discuss some limitations of the straightforward �-development.

1.2 ‘Locking’ of minimizers

A rather unfortunate consequence of the definition (11) is that the approximate energy is infinite outside the set
of minimizers of F (0). The latter may reduce to a trivial set (e.g., a single point) that cannot be refined by the
successive�-limits. In what follows we shall be referring to this property of the straightforward�-development
as the locking of the minimizers.

Remark 1.8 If F (0) has a unique minimum point u0 then the computation of F (α) reduces to that of F (α)(u0).
If Fε are equi-coercive, then this amounts to computing

F (α)(u0)
(
= min F (α)

)
= lim
ε→0

min Fε − min F (0)

εα
.

This observation will be frequently used in the sequel.

Example 1.9 To illustrate the locking phenomenon, consider

Fε(u) =
1∫

0

(|u′|2 + ε|u|2)dt, u(0) = 0, u(1) = 1. (18)

We can compute the �-development with respect to the strong L2 topology (or equivalently with respect to

the weak H1 topology), and obtain Iε
�= F (0) + εF (1) + o(ε), where

F (0)(u) =
1∫

0

|u′|2dt, u(0) = 0, u(1) = 1. (19)
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and

F (1)(u) =
{

1
3 if u = t
+∞ otherwise.

(20)

The computation of the last �-limit is trivial since the problem (19) admits the only minimum point

u(t) = t.

This expression should be compared to the actual minimizer uε of the original problem, whose formal asymp-
totic expansion goes as follows

uε(t) = t + ε
1

6
(t3 − t)− ε3 1

18
(t − t3)+ o(ε2).

One can see that the successive �-development locks the minimizer and does not allow to improve its quality
beyond what have been found in the first step even though finer and finer information about the minimizer is
needed to compute the higher-order �-limits.

The next example shows that the locking of the minimizer may not happen at the level of the first approx-
imation but may be delayed and occur during the subsequent higher-order development.

Example 1.10 Let W : R → R be a continuous double-well potential with wells (absolute minima) in ±1 and
more than linear growth at ∞ (e.g., W (s) = min{(s + 1)2, (s − 1)2}). Consider

Fε(u) =
∫

�

(W (u)+ Cε2|∇u|2) dx, u ∈ H1(�),

∫

�

udx = 0.

If we use the weak L1-topology, suggested by the superlinear growth conditions of W at infinity, then the first
�-limit is (see, e.g., [14,15])

F (0)(u) =
∫

�

W ∗∗(u) dx, u ∈ L1(�),

∫

�

udx = 0. (21)

Note that even though we may find piecewise-constant minimizers with u = ±1, due to the degeneracy of the
energy (21) they are not unique. Only the measures of the sets where u = 1 and u = −1 are known at this
stage while the location of the interfaces (internal boundary layers) between the states with u = 1 and u = −1
and even their number remain unspecified. This information, however, can be recovered in the next step of
�-development, which locks the minimizer. Indeed, we obtain (see, e.g., [14,15])

F (1)(u) = cW Hn−1(S(u)), |u| = 1 (22)

Here u ∈ {±1} is piecewise constant,
∫
�

udx = 0 and

cW = 2
√

C

1∫

−1

√
W (s)− min W ds,

where S(u) denotes the interface between the phases {u = ±1} and Hn−1 the (n − 1)-dimensional (surface)
measure.

The minimization of the functional (22) fixes the location of the interface and locks the minimizer. In the
subsequent approximations only the minimal value is changing. Interestingly, the relevant scale successive to
ε, is of exponential type εe−c1/ε and not of the form εα [23,70]. Indeed, we recall that in the one-dimensional
case with � = (0, 1) the set of ‘locked’ minimizers is {u0,−u0}, where

u0(t) =
{

−1 if t < 1/2,
1 if t > 1/2.
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The development reads as

Fε
�= F (0) + εF (1) + εe−1/2εF∞ + o(εe−1/2ε),

where

F∞(u) =
{

C∞ if u = ±u0

+∞ otherwise,

and the constant C∞ may be computed in terms of the limit of minimum problems as in Remark 1.8. One
can see that, the first approximation (at scale 1) locks the phase fractions, the second (at scale ε) fixes the
geometry of the interface, and the higher-order approximations describe exponentially weak corrections due to
interaction of the interface with the external boundary (size effect). The latter will be the subject of a detailed
analysis in Example 8.4, where we consider setting where the size effect is dominant.

Remark 1.11 Since the weak-L1 equi-coerciveness improves to strong-L1 coerciveness at scale ε, then we
may (a posteriori) choose to compute the first �-limit F (0) with respect to the strong L1-topology, obtaining

F (0)(u) =
∫

�

W (u) dx,

while F (1) remains unchanged. This shows that sometimes the �-limit may look superficially as a pointwise
limit even if the argumentation behind its derivation is entirely different.

1.3 ‘Choking’ of �-development

Locking of the minimizer is not the only problem which one may encounter while constructing the
�-development. Thus, one of the higher-order limits may simply cease to exist. We illustrate this phenomenon
by the following examples:

Example 1.12 Consider a non-constant strictly positive and bounded one-periodic function a : R → R, and
the functionals

Fε(u) =
1∫

0

a

(
t

ε

)
|u′|2dt (23)

subject to the boundary conditions

u(0) = 0, u(1) = 1.

A standard argument shows that for all strictly positive and bounded f : [0, 1] → R, we have

min

⎧
⎨

⎩

1∫

0

f (t)|u′|2dt : u(0) = 0, u(1) = 1

⎫
⎬

⎭ = f , where
1

f
=

1∫

0

1

f (s)
ds. (24)

We can now apply this result to f (s) = aε(s) = a(s/ε), and recalling that a−1
ε ⇀ (a)−1, obtain the well-know

fact that the �-limit of Fε is (see , for instance, [20])

F (0)(u) = a

1∫

0

|u′|2dt, u(0) = 0, u(1) = 1. (25)
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The unique minimum point of F (0) is u(t) = t , and in order to compute any further development it suffices to
compute it at this function (locking). The next meaningful order is ε. The �-limit makes sense for sequences
ε j → 0 if there exists the limit (see Remark 1.8)

lim
j

1

ε j

⎛

⎝min

⎧
⎨

⎩

1∫

0

a

(
t

ε j

)
|u′|2dt : u(0) = 0, u(1) = 1

⎫
⎬

⎭− a

⎞

⎠

= lim
j

1

ε j

⎛

⎜⎝

⎛

⎝
1∫

0

1

a(s/ε j )
ds

⎞

⎠
−1

− a

⎞

⎟⎠ = lim
j

a2
∫ 1/ε j

[1/ε j ]

(
1

a
− 1

a(s)

)
ds. (26)

The value of the limit (26) (equal to F (1)(u)) depends on the sequence (ε j ). This means that the develop-
ment at order ε does not exist, which terminates the process and prevents one from improving upon the first
approximation.

Here we encounter another example of the interaction between the boundary of a body and the homog-
enization procedure. In the case when the scales are well separated ε � 1 (i.e., when we consider only the
development at order 1) the energy associated with the boundary layers is negligible. As the external (1) and
internal (ε) scales get closer to each other, one enters the domain of the size effect where the oscillatory struc-
ture of the corrections to the homogenized theory, preventing the minimal value of the approximate functional
from converging, becomes more and more noticeable.

The next example shows that the �-development may not terminate before a sufficiently high order of the
approximation.

Example 1.13 Consider again Example 1.4 where the functional Fε (see (5)) can be thought as the discretization
of the continuum energy

∫ 1
0 W (u) dt . We assume that the discretization is perfectly compatible with the ‘shape’

of the body, meaning that we set ε = 1/N . In Example 1.4 we have obtained the following result:

F (0)(u) =
1∫

0

W ∗∗(u) dt,

1∫

0

u dt = 0.

The computation of the �-limit at scale ε gives the same trivial result, as in the convex case. On the contrary,
the �-limit related to the scale ε2 , which is trivial in the convex case, does not exist in the non-convex case.
To justify this result we refer to the study of the parameterized minimum problems

mε(λ) = min{Fε(u) : ∑
i
εui = λ}.

In the case W (s) = (s −1)2 ∧ (s +1)2, an analysis of the exact solution of this discrete problem (e.g., [35,57])
pictures the dependence on λ as in Fig. 2 from which we see that ε−2mε(0) does not converge to 0 = min F (0).

-1 1

1

m  ( )
2

Fig. 2 Minimal energy of a chain of bi-stable springs (Example 1.13)
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Indeed, the minimal value at, say, λ = 0 fluctuates as the small parameter goes to zero. This example shows
that for non-convex energies homogenization methods must take into account the scale of the approximation
and that different theories may have to be used at different scales (contrary to what one expects in the convex
case).

If the parameter λ in Example 1.13 is allowed to vary, the non-existence of the second-order �-limit
persists for the whole interval λ ∈ (−1, 1). In the next section we discuss more systematically some other
typical problems which arise when the �-development is applied to a parameterized family of functionals.

2 Theories

We recall that �-convergence has been designed to automatically handle functionals parameterized by ‘lower-
order terms’. In this case the parametrization does not affect the first-order �-limit in an essential way, with the
corresponding terms being either continuous perturbation or in some way ‘compatible’ with �-convergence.
However higher-order �-limits do not enjoy the same ‘invariance’ property with respect to such apparently
friendly extensions. Moreover, in the typical problems of interest the parameter enters the functional in a
variety of ways that are not at all ‘compatible’ with �-convergence.

In what follows we shall refer to a class of minimization problems originating from a parameterized family
of functionals as a ‘theory’. This terminology comes from applications where one encounters, for instance,
a multiplicity of theories of beams, plates and shells, theories of low or high frequency vibrations, quasi-
continuum theories of crystals and cohesive theories of cracks. We adopt the following formal definition:

Definition 2.1 Let E be a set of positive real numbers with 0 ∈ E , and let� be a subset of a topological space.
Then a family of functionals Fλε is called a parameterized family on� (the space of parameters) or a ‘theory’.

We begin the analysis of the ‘theories’ by listing a series of examples.

1. Van der Waals’s theory of phase transitions (e.g., [69]). Suppose that W is a double-well potential as in
Example 1.10. Take � = R or � = [−1, 1] and define

Fλε (u) =
1∫

0

(
W (u)+ ε2|u′|2) dt,

1∫

0

u(t)dt = λ. (27)

In this case λ represents an imposed integral constraint representing, for instance, average strain in a bar if
v′ = u. A typical problem in this theory is to determine the function

m(λ, ε) = mε(λ) = min

⎧
⎨

⎩

1∫

0

(W (u)+ ε2|u′|2)dt :
∫ 1

0
udt = λ

⎫
⎬

⎭ , (28)

whose first derivative m′
ε(λ) gives the effective stress-strain relation. In the limit ε → 0, we obtain the famous

Maxwell ‘common-tangent’ construction (e.g., [7]); however, as we show below, the resulting theory does
not handle nucleation appropriately, even in the restricted framework of global minimization. To deal with
nucleation one needs to develop an approximation which accounts for ε. More broadly, different theories
of type (27) have recently been unified under the general title of ‘phase-field’ models; the main goal of the
phase-field model is numerical capturing of sharp discontinuities (e.g., [24]). In this framework it is of interest
to construct an intermediate theory which avoids the drawbacks of the sharp interface limit but does not have
to resolve the higher derivative terms where it is not absolutely necessary.

2. 1D Lattice theory of fracture (e.g., ([64])). Let J : [0,+∞) → R be a Lennard–Jones interatomic
potential with minimum in 1 and vanishing at +∞ (see Fig. 3), ε = 1/N with N ∈ N, and consider the scaled
energy

Fλε (u) =
N∑

i=1

ε J

(
ui − ui−1

ε

)
(29)
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Fig. 3 A Lennard–Jones potential (Example 3.2)

with boundary conditions u0 = 0, uN = λ. In this case λ represents an imposed displacement in a hard device.
A problem of interest is to compute

m(λ, ε) = mε(λ) = min

{
N∑

i=1

ε J

(
ui − ui−1

ε

)
, u0 = 0, uN = λ

}
,

whose first derivative again defines the effective stress–strain relation. When ε = 0, one obtains a material
that does not support tension and breaks at infinitesimal tension ([19,64]). Real cracks, on the contrary, appear
only at finite tension. The challenge is then to capture this effect when ε is small but finite. While the theory of
fracture in this example looks superficially very different from the theory of phase transitions discussed above,
we show in what follows that the two theories are in fact remarkably similar.

3. Homogenization theory (e.g., [48]). Take � = (0,+∞) and consider a functional

Fλε (u) = 1

λ

λ∫

0

a

(
t

ε

)
|u′|2dt u(0) = 0, u(λ) = λ. (30)

In this case λ is a geometrical parameter (the length of a bar). The typical problem in this theory is to find
the minimum m(λ, ε) of Fλε and then compute the effective elastic modulus ā = 2m(λ, ε)/λ2. The problem
has a classical homogenization solution when ε = 0. The computation of a correction to this result at ε ∼ λ
constitutes the main task of the theory of ‘size effect’ in homogenization.

4. Theory of finite scale micro-structures (e.g., [58]). This title refers to the broad class of models with
competing interactions where certain factors drive the coarsening of the microstructure while the other factors
enforce its refinement. Here we consider the simplest model of this type [1,65]. Suppose that � = [0,+∞)
and define

Fλε (u) =
1∫

0

(
W (u′)+ ε2|u′′|2 + λu2) dt, u(0) = u(1) = 0. (31)

The parameter λ represents a combination of material and geometrical parameters and characterizes the ‘anti-
ferromagnetic’ component of the interactions which drives the system towards the refinement of the mi-
crostructure. This interaction competes with a ‘ferromagnetic’ contribution due to the ε term in the energy,
which drives the system towards coarsening. The problem is to characterize the scale of the microstructure
in the limit when ε → 0. Due to the approximately periodic arrangement of the optimal microstructure, the
adequate parameter is the density of interfaces for the minimizer N (λ, ε). If λ is finite, then N (λ, 0) = ∞. An
interesting question is to predict the value of N (λ, ε) when ε ∼ λ and λ is small but finite. Other examples of
models with competing interactions can be found in [4,58].
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3 Non-uniformity of �-developments

In this section we further elaborate on the first two of the above examples in order to illustrate the typical
problems encountered by the straightforward �-development applied to ‘theories’.

Example 3.1 Consider the family of functionals (27). It is well known (see [15,50]) that the volume constraint∫
u dt = λ is compatible with the �-limit procedure. We recall that for |λ| ≥ 1 the unique minimizer of Fλε is

the constant state u = λ for all ε, the�-development consist only of one term, and mε(λ) = m(0)(λ) = W ∗∗(λ).
For all λ ∈ (−1, 1) the development of the minimum values is given by m(0)(λ)+ εm(1)(λ)+ o(ε), where

m(1)(λ) = cW min

⎧
⎨

⎩#(S(u)) : u ∈ {±1},
1∫

0

udt = λ

⎫
⎬

⎭ = cW .

The plot of the function m(0)(λ)+ εm(1)(λ) illustrating the �-development for the minimum values of the
functional (27) is given in Fig. 4 together with the corresponding effective stress-strain relation. The horizontal
segment on the stress-strain curve between λ = −1 and λ = 1 results from Maxwell construction. Observe that
nucleation (annihilation) takes place at points 1 and −1 and that the newly forming nucleus has infinitesimal
‘size’. This can be compared with the exact solution of the problem at finite ε (e.g., [65,68]) showing that
even in the global minimization framework the nucleation starts at a finite distance from the points 1 and −1
and that the first nucleus is finite. To capture this phenomenon our approximate theory of order ε, needs to be
corrected near these points at the same order ε.

In a more formal language, we can reformulate the above observations as follows. We first recall that the
value mε(λ) is continuous with respect to λ, and in particular limλ→1 mε(λ) = m(0)(1). Then one can write

lim
λ→1−(mε(λ)− m(0)(λ)− εm(1)(λ)) = −εcW ,

from which we argue that the description given by the �-development at scale ε is not accurate close to the
point 1. Similar result can be obtained for point −1.

The key point is that near both limits λ = ±1 the external length scale represented here by the distance
between the interface and the external boundary and the internal length scale represented by the interface
thickness are no longer ’separated’: during nucleation both scales become comparable. One encounters this
type of non-uniformity also in the multi-dimensional setting when the two interfaces get sufficiently close to
each other or when the radius of curvature of one interface becomes comparable to the interface thickness (for
instance, during topological transitions).

Despite its rather different formal appearance, the next example is very similar to the previous one. Here
instead of the nucleation of a new phase we deal with the nucleation of a crack.

Example 3.2 Consider a lattice theory of fracture with the energy (29). After identifying discrete functions
with their piecewise-affine interpolations the �-limit at order 1 can be computed as in the other cases involving
the passage from discrete to continuous and is simply

F0
λ (u) =

1∫

0

J ∗∗(u′)dt

Fig. 4 Approximate minimum values by �-development (Example 3.1)
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Fig. 5 Approximate minimum values by �-development (Example 3.2)

with boundary conditions u(0) = 0, u(1) = λ, defined on all increasing functions u : [0, 1] → R such
that u(0) = 0 and u(1) = λ (see e.g., [14,64]; see also Example 6.5). Note that such functions may be
discontinuous, but the derivative u′ is defined almost everywhere. The integrand J ∗∗ is constant and equal to
min J = J (1) on [1,+∞), so that

min F0
λ = J ∗∗(λ) =

{
J (λ) if λ ≤ 1
J (1) if λ > 1.

To see this we use Jensen’s inequality and obtain min F0
λ ≥ J ∗∗(λ). If λ ≤ 1 then uλ(t) = λt is the only test

function for which we have equality. If λ > 1 then all increasing functions satisfying the boundary conditions
and with u′ ≥ 1 are minimizers; in particular the function

ûλ(t) =
{

t if 0 ≤ t < 1
λ if t = 1,

which satisfies the boundary conditions, jumps at t = 1, but has u′ = 1 almost everywhere. One can see that
in this approximation the effective material does not support any tension.

The next scale is ε, for which we have

F1
λ (u) =

{
0 if u = uλ
+∞ otherwise

if λ ≤ 1, and

F1
λ (u) =

{
−J (1)#(S(u)) if u is piecewise affine and u′ = 1 a.e.
+∞ otherwise

for λ > 1. Here it is understood that u is increasing and satisfies the boundary conditions (see [14] for more
details). In particular we see that ûλ above is a minimizer for F1

λ and min F1
λ = −J (1).

Again we can compute the approximation of mε(λ) = min Fλε given by the development by�-convergence
m(0)(λ)+ εm(1)(λ), and we get

m(0)(λ)+ εm(1)(λ) =
{

J (λ) if λ ≤ 1
J (1)− εJ (1) if λ > 1.

The plot of the approximate minimum values obtained by�-development is given in Fig. 5 together with the
effective stress-strain relation. One can see that the first-order refined theory again delivers the same physically
absurd result that the fracture occurs at zero tension. More formally, as in the previous example, we can write

lim
λ→1+(mε(λ)− m(0)(λ)− εm(1)(λ)) = εJ (1),

from which one can argue that the description given by the �-development at scale ε is not accurate close
to the point 1. Here again, we deal with the phenomenon of nucleation, this time of a crack. For the newly
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Fig. 6 Non-uniformity of the �-development associated with the nucleation phenomenon (Examples 3.1, 3.2)

formed micro-crack the opening is comparable to the small parameter ε, which breaks the scale separation
legitimizing the �-development.

It is again instructive to compare the approximation of the minimal value delivered by the �-development
and shown in Fig. 5 with the exact solution of the fracture problem at finite ε (see [19,64] for more details).
The local picture near the singular point λ = 1 is exactly the same as in the case of phase transition problem
near the points λ = ±1. Thus, again, at small but finite ε, one can always get sufficiently close to the nucleation
point in order to find that the approximation which is supposed to capture the terms of the order ε makes an
error at least of the same order. The resulting non-uniformity of the �-development is illustrated in Fig. 6,
where we show the behavior of the function mε(λ) near ε ≈ 0 and λ ≈ 1. One can see that no matter how small
ε is, it is possible to choose λ sufficiently close to 1 to have the minimal value of the functional approximated
by the standard development with an error of order ε. A similar picture can obviously be repeated for both
singular points λ = ±1 appearing in the case of a phase transition.

Remark 3.3 Recall that the breakdown of uniform convergence (non-uniformity) in conventional asymptotic
expansions for the functions fε(x) is often due to the formation of boundary layers in the x space. As our
examples show, in the case of functionals, the non-uniformity of the �-development can also present itself
through the formation of boundary layers, but now for the function describing the distribution of the minimal
values of the functional (function mε(λ)) in the space of parameters (λ space).

Our main goal in the rest of the paper is to develop an adequate vocabulary aimed at overcoming the above
drawbacks of the straightforward �-convergence and to find the way of reinterpreting rigorously the ‘good’
approximate theories used in applications.

4 �-equivalence

The first observation is that equality of�-limits gives an equivalence relation between families of energies; i.e.,
if �-lim Fε = �-lim Gε then we may say that Fε is equivalent to Gε. In this way the concept of �-limit can
be replaced by that of an equivalence class. Note that the domain of equivalent Fε and Gε may be completely
different.

Remark 4.1 In order not to make the extraction of a �-converging sequence a loss of generality, from now
on we will tacitly assume that our �-limits are computed with respect to a separable metrizable convergence
(which is usually the case in applications).

Definition 4.2 Fε and Gε are equivalent at order εα if there exist translations mε such that for all sequences
ε j for which the limits exist we have

�- lim
j

Fε j − mε j

εαj
= �- lim

j

Gε j − mε j

εαj
,

and these limits are non-trivial (i.e., they do not take the value −∞ and are not identically +∞).
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Observe, that in the spirit of (13), we may write

Fε
�= Gε + o(εα),

even when no �-development of either functional exists. If α = 0 within this definition, Fε is equivalent to
itself, even when (Fε) does not converge, and two sequences converging to +∞ are not always equivalent.
Note that in the definition above, we may always choose mε = min Fε.

While we may also define ‘equivalence at order f (ε)’, where f (ε) is any function of ε, we limit ourselves
to the scaling εα for the sake of simplicity.

Theorem 4.3 Let Hε and H ′
ε converge continuously to H (i.e, Hε(xε) → H(x) if xε → x; e.g., Hε = H

a continuous function) and let Fε and Gε be equivalent at order εα; then Fε + εαHε and Gε + εαH ′
ε are

equivalent at order εα

Proof This follows immediately from the definition, and reduces to the compatibility of the �-limit with
respect to continuous perturbations if α = 0. ��
Theorem 4.4 Let (Fε) and (Gε) be equi-coercive and equivalent at order εα; then we have

inf Fε = inf Gε + o(εα).

Proof The functionals

Fαε = Fε − mε

εα
, Gα

ε = Gε − mε

εα

are equi-coercive. Given (ε j ) converging to 0, upon extraction of a subsequence, by the compactness of
�-convergence, Fαε j

→ H and Gα
ε j

→ H for some coercive H ; hence, we have

lim
j

inf Fε j − inf Gε j

εαj
= lim

j

(
inf Fε j − mε j

εαj
− inf Gε j − mε j

εαj

)

= min H − min H = 0.

The statement of the theorem now follows from the arbitrariness of (ε j ). ��
Note that, since we do not require the existence of the �-limits, even if minimizers exist, they may not

converge. However, arguing by subsequences, we still deduce that the cluster points of εα-minimizers of Fε
are the same as those of Gε. In the particular case when the functional H in the proof above has a unique
minimizer, then we may conclude that minimizers of converging subsequences of Fε and Gε indexed by the
same (ε j ) have the same limits, and in this sense are close.

Below we present several examples of equivalent functionals of different order. The first example illustrates
the fact that already in the linear case a multiplicity of equivalent functionals can be easily generated without
modifying the structure of the problem.

Example 4.5 An equivalent energy at order ε to Fε in Example 1.9 can be searched among quadratic functionals
of the form

Gε(u) =
1∫

0

(aε|u′|2 + bε|u|2)dt, u(0) = 0, u(1) = 1, (32)

The condition of equivalence at order 1 gives aε = 1 + o(1) and bε = o(1) and the condition of equivalence
at order ε gives

3aε + bε = 3 + ε + o(ε).

One can choose for example either

Gε(u) =
(

1 + ε

3

) 1∫

0

|u′|2dt, u(0) = 0, u(1) = 1, (33)
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or

Gε(u) =
1∫

0

((1 + ε)|u′|2 − 2ε|u|2)dt, u(0) = 0, u(1) = 1. (34)

The next example shows that also in the nonlinear case, equivalent problems may have the same general
form and differ only in details.

Example 4.6 Let

Fε(u) =
∫

�

(
W (u)+ Cε2|∇u|2) dx

and

F̃ε(u) =
∫

�

(
W̃ (u)+ C̃ε2|∇u|2) dx

be two energies as in Example 1.10 with W and W̃ two double-well potentials with wells in ±1. Then F̃ε and
Fε are equivalent at order ε if and only if min W = min W̃ and

√
C

1∫

−1

√
W (s)− min W ds =

√
C̃

1∫

−1

√
W̃ (s)− min W̃ ds.

In this case, by Example 1.10, they are both equivalent to

F(u) = |�| min W + εF (1)(u),

with F (1) given by (22). The conditions of equivalence at order 1 are different if we take the weak or the strong
L1-topology. In the first case the condition is W ∗∗ = (W̃ )∗∗; in the second one W = W̃ .

The next two examples illustrate the fact that equivalent theories may also have a rather different structure.

Example 4.7 Consider the discrete model (9) with the double-well energy

W (z) = min{(z − 1)2, (z + 1)2},
and J < 1, so that Fε are equi-coercive. It is easy to see that W from Example 1.3 is itself a double-well
potential, with symmetric wells that we denote by ±a. Let m0 = min F (0) = min W = W (a).

We may now apply to Fε the first-order analysis of [16] obtaining that the next meaningful scale is ε, and
that the next term in the development is

F (1)(u) = KW #(S(u)), u ∈ {±a},
where

KW = inf

{ +∞∑

i=−∞

(
1

2
(W (vi )+ W (vi−1)− 2Jvivi+1)− m0

)
:

v : Z → R, vi = −a if i ≤ −N , vi = a if i ≥ N , N ∈ N}
The value KW represents the energy of an interface which is obtained by means of a ‘discrete optimal-profile
problem’ connecting the two constant (minimal) states ±a. Note that for fixed N the terms in the sum in the
minimum problem are 0 for i ≥ N and i < −N − 1; moreover the function vi = a sign i is an admissible test
function for all N ≥ 1, from which we obtain KW ≤ 4Ja2.

This development gives the equivalent energy at scale ε

Gε(u) =
{

m0 + εKW #(S(u)) if u ∈ {±a}
+∞ otherwise.
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A comparison with the gradient theory of phase transitions shows that the functional

G̃ε(u) =
1∫

0

(W (u)+ ε2C |u′|2) dt, (35)

is also equivalent to Fε at order ε, provided that C is chosen such that

KW = 2
√

C

a∫

−a

√
W (s)− min W ds.

The minimizers of the approximate energy (35) agree with the exact solution of the original problem which
is known in the explicit form for finite ε [66]. It is interesting that another approximation at order ε with the
same structure as in (35) but different W (u) and C can be formally obtained by a pointwise limit [10,66].

Remark 4.8 In the case of a general W the ‘effective’ potential W is given by the more complex formula

W (z) = 1

2
inf{W (z1)+ W (z2) : z1 + z2 = 2z} − 2J z2

(see [14,21,56]) highlighting oscillations at microscopic scale. Some equivalent energies in this case can be
deduced from the analysis in [16].

The next example shows that even the number of variables in equivalent theories with otherwise similar
structure may be different.

Example 4.9 Consider a functional which one encounters in the Timoshenko theory of beams

Fε(u, φ) =
l∫

0

(
E |φ′|2 + H

ε2 (φ − u′)2
)

dt.

Below we prove (see also [7]) that the corresponding minimization problem is �-equivalent at order 1 to the
more conventional Euler–Bernoulli bending problem characterized by the functional

G(u) = E

l∫

0

|u′′|2dt.

Here we have assumed the identification of G with

G(u, φ) =
⎧
⎨

⎩
E
∫ l

0
|u′′|2dt if φ = u′

+∞ otherwise.

To justify the claim we have to show that �-limε→0+ Fε = G. It suffices to prove that if uε, φε are such that
sup Fε(uε, φε) < +∞, then, up to subsequences and translations by constants (for φε) and affine functions
(for uε), we have φε ⇀ φ and uε ⇀ u weakly in H1(0, l), with u ∈ H2(0, l) and u′ = φ, and

lim inf
ε→0

Fε(uε, φε) ≥ E

l∫

0

|u′′|2 dt.

From sup
∫ l

0 |φ′
ε|2dt < +∞ we deduce φε ⇀ φ, while from

l∫

0

|u′
ε|2dt ≤ C

l∫

0

(|φε|2 + |u′
ε − φε|2)dt ≤ C(1 + ε2)
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we deduce that uε ⇀ u. By the lower semi-continuity of the norm

l∫

0

|u′ − φ|2dt ≤ lim inf
ε→0

l∫

0

|u′
ε − φε|2dt = 0,

so that u′ = φ and u ∈ H2(0, l). Finally,

E

l∫

0

|u′′|2dt = E

l∫

0

|φ′|2dt ≤ lim inf
ε→0

E

l∫

0

|φ′|2dt ≤ lim inf
ε→0

Fε(uε, φε).

The obtained result is stable with respect to the addition of the boundary conditions, prescribing, for instance,
displacements (hinging) and rotations (clamping) at the endpoints.

5 Systematic methods

Although a sufficiently general method of generating the whole class of�-equivalent functionals does not exist,
we discuss in this section three rather systematic approaches of producing at least some equivalent functionals.

5.1 ‘Taylor’ expansion

If a �-development exists then it is easy to construct an equivalent family as follows.

Theorem 5.1 Let Fε and mα
ε be such that the limit

F (α) = �- lim
ε→0+

Fε − mα
ε

εα

exists and is not trivial. Then (Fε) is equivalent to

Gε(u) := mα
ε + εαF (α)(u)

at order εα . In particular, if a �-development F (0) + εβ1 F (1) + · · · + εβM F (M) + εαF (α) exists, with 0 =
β0 < · · · < βM < α, then we may take

Gε(u) :=
M∑

k=0

εβk m(k) + εαF (α)(u),

with m(k) = min F (k).

Proof It suffices to apply Definition 4.2 above, with mα
ε = ∑M

k=0 ε
βk m(k) in the case of a �-development. ��

Remark 5.2 It must be noted that only the values m(k) = min F (k) are necessary for the definition of Gε but
not the actual form of F (k). In particular, energies with different developments may be equivalent at scale εα .

Example 5.3 An equivalent energy at order ε to Fε in Example 1.9 can be obtained directly from the develop-
ment as

Gε(u) =
{

1 + ε
3 if u = t

+∞ otherwise.
(36)
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Example 5.4 An equivalent energy at order 1 and ε in Example 1.12 is given by

Gε(u) =
(

a + εa2b

(
1

ε

)) 1∫

0

|u′|2dt, u(0) = 0, u(1) = 1, (37)

where

b(t) =
t∫

0

(
1

a
− 1

a(s)

)
ds (38)

(note that b is 1-periodic, so that we may remove the integer part in the lower extreme of the integral in (26)).

Also, note that
(∫ 1

0
1

a(s/ε j )
ds
)−1

can be developed in a power series in terms of ε, a and b, obtaining equivalent

energies up to order εk for all k ∈ N of the form

Gε(u) = a

(
1 + εab

(
1

ε

)
+ · · · + εkak

(
b

(
1

ε

))k
) 1∫

0

|u′|2dt, u(0) = 0, u(1) = 1.

5.2 ‘Stretched’ variables and ansätze

Another widely used approximation scheme is by the computation of the�-development of functionals obtained
from the original functional through a special change of variables (ansatz) which anticipates the structure of
the minimizer.

Consider the simplest case where one seeks to construct the lowest order of approximation to a family of
functionals Fε(u). Suppose that the �-limit of Fε(u) is either trivial or does not exist. Suppose further that one
can find a new variable v, such that

u = 1

φ(ε)
�(v) (39)

and that a re-scaled functional

�ε(v) = ψ(ε)Fε

(
�(v)

φ(ε)

)
(40)

has a nontrivial �-limit. Then the functional �ε expressed in terms of u will deliver the desired equivalent
theory. The possibility of nontrivial limits of the type (40) reveals the self-similar structure of the singularity
at ε = 0.

A more general formal procedure (here we only deal with the scale 1; i.e., α = 0) goes as follows:

1. Find a bijective change of variables �ε : V → X and define Hε(v) = Fε(�ε(v));
2. Compute the �-limit H : V → X of Hε;
3. Define Gε(u) = H(�−1

ε (u)) and prove that Gε is equivalent to Fε.

The procedure above can be easily adapted to the general scale εα . We also remark that sometimes the
passage in Point 3 is not straightforward since the domain of H may be different from that of Hε. It becomes
feasible, however, if other invertible changes of variables exist �ε : V → V carrying the domain of H into
the domain of Hε. In this case we need to put Gε(u) = H(�−1

ε (�−1
ε (u))).

In many cases, a possible change of variable is of the type u = u0 + εγ v where u0 is a minimizer for F (0);
i.e., �ε(v) = u0 + εγ v in the remark above. It is clear that finding the relevant scaling (stretching) requires a
deep understanding of the solution to the original problem and can not be fully formalized even though one can
of course try to make an exhaustive search through the particular classes of scaling ansätze. Some well-know
examples of the use of stretched variables can be found in various theories of plates and rods (see, for instance,
[7,37,43,55]). Another nontrivial applications of the method can be found in the higher-order approximations
for composites [8,61]. Here we illustrate this method by two simple examples.
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Example 5.5 Consider again Example 1.9. Our goal is to obtain an equivalent energy at scale ε2 to Fε. In this
case the locked minimizer is u0(t) = t , so we may choose a change of variables of the form�ε(v) = u0 +εγ v
with v(0) = v(1) = 0, and compute the �-limit of

Hε(v) = 1

ε2

(
Fε(�ε(v))− 1 − 1

3
ε

)
. (41)

If γ < 1 this limit is identically 0, while if γ > 1 it is trivial. We then choose γ = 1 and the change of
variables u = u0 + εv, for which the �-limit of Hε is

H(v) =
1∫

0

(|v′|2 + 2tv)dt.

By inverting the change of variables v = (u− t)/εwe get the integral 1
ε2

∫ 1
0 (|1−u′|2 +2εt (u− t))dt , and, after

integrating by parts and using the boundary condition, we obtain the following functional which is equivalent
to Fε at scale ε2

Gε(u) =
1∫

0

(|u′|2 + ε(|u|2 − |u − t |2)dt.

Example 5.6 The same scheme can be applied for the linearization of finite elasticity, where the starting energy
is of the form

Fε(u) =
∫

�

f (∇u)dx, u(x) = x + εφ(x) on ∂�

with f a hyperelastic energy density with its minimum on SO(3). The �-limits of higher order are locked on
the identity u0(x) = x . A change of variables�(v) = u0 + εv allows to express a functional equivalent to Fε
at order ε2 in terms of the functionals of linearized elasticity. For details we refer to [29].

A nontrivial application of the method of stretched variables will be given in the Example 8.5.

5.3 Matched expansions

Another rather general approximation scheme is based on the assumption that the original functional can be
restricted to some part of the domain (say, around the singularities in the original problem), while a functional
equivalent to the truncated �-development of a finite order is operative in its complement (say, far away from
the singularities). In this case the full description corresponding to finite ε is preserved in the domain which is
shrinking as ε → 0, while an approximate description is used in the domain which is enlarging as the small
parameter diminishes. This method is used for the fully atomistic resolution of the cores of the defects within
continuum elasticity (quasi-continuum method, [63])

The first example deals with the boundary layers in homogenization.

Example 5.7 Consider again Example 1.12. It is not difficult to see that an equivalent theory of arbitrary order
can be obtained if we take

G̃ε(u) =
1∫

0

aε(t)|u′|2dt, u(0) = 0, u(1) = 1

where

aε(t) =
⎧
⎨

⎩

a if t ′ε ≤ t ≤ t ′′ε
a

(
t

ε

)
otherwise,

where 0 ≤ t ′ε ≤ t ′′ε ≤ 1 and t ′′ε − t ′ε ∈ εN. To prove this it is enough to observe that under the imposed
conditions the minimum values of the approximate and original functional simply coincide.
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In the second example, instead of external boundary layers, we deal with internal boundary layers emerging
due to the non-convexity of the energy.

Example 5.8 Consider the energy in Example 4.7 with conditions
∑

i ui = 0 and set for simplicity uN+1 = uN .
In this case a minimizer of the �-limit at order ε has a unique phase transition at the point 1/2. To resolve
the fine features of the transition we can use the discrete formulation close to 1/2, while using the continuous
description ‘far’ from 1/2. This can be done by considering the equivalent functional

Gε(u) =
∫

(0,1)\Iε

(W (u)+ Cε2|u′|2)dt +
Nε−1∑

i=−Nε

ε(W (ui )− Jui ui+1),

(the constant C as in the functional defined in (35)) defined on H1 functions coinciding in Iε with their
interpolations on the lattice εZ. Here we have chosen Nε ∈ N with Nε → +∞ and εNε → 0 and set
Iε = {|t − 1/2| ≤ εNε}.

The main difficulty in applying this method is that the exact location of the domain where the full description
should be used, is usually unknown a priori. This poses an additional ‘localization’ problem. An interesting
example of the matching method involving first the localization of the fully resolved domain in the case of 1D
fracture can be found in [9].

6 Uniform �-equivalence

In this section we present a more systematic analysis of parameterized families of functionals (‘theories’). We
begin with a definition of equivalence for parameterized functionals.

Definition 6.1 Two families of functionals Fλε and Gλ
ε are equivalent at order εα at λ0 ∈ � if Fλ0

ε and Gλ0
ε

are equivalent at order εα .

The definition is illustrated by an example dealing with a size effect in composites.

Example 6.2 Let λ > 0 and consider the one-dimensional homogenization problem of the form:

min

⎧
⎨

⎩
1

λ

λ∫

0

a
( x

ε

)
|u′|2dx : u(0) = 0, u(λ) = λ

⎫
⎬

⎭ , (42)

where the function a is 1-periodic, bounded and strictly positive. It is convenient to rewrite this problem as a
minimum problem for the energy:

Fλε (u) =
1∫

0

a

(
λx

ε

)
|u′|2dx, u(0) = 0, u(1) = 1. (43)

In Example 1.12 we showed that the �-limit of Fλε is

F0
λ (u) = a

1∫

0

|u′|2dx, u(0) = 0, u(1) = 1, (44)

independent of λ, and that the �-development does not exist at scale ε. An equivalent parameterized functional
for all λ > 0 at scale 1 and ε is

Gλ
ε (u) =

(
a + εa2b

(
λ

ε

)) 1∫

0

|u′|2dt, u(0) = 0, u(1) = 1. (45)
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After rescaling back to the original variables, we obtain

F0
λ (u) = a

λ

λ∫

0

|u′|2dx, u(0) = 0, u(λ) = λ, (46)

and

Gλ
ε (u) =

(
a

λ
+ ε

a2

λ
b

(
λ

ε

)) λ∫

0

|u′|2dt, u(0) = 0, u(λ) = λ. (47)

Note that for all ε fixed, we have

lim
λ→0+ min Fλε = min

⎧
⎨

⎩

1∫

0

a(0)|u′|2dt : u(0) = 0, u(1) = 1

⎫
⎬

⎭

= a(0) �= a = lim
λ→0+ min F0

λ ,

while

lim
ε→0

lim sup
λ→0

∣∣a − min Gλ
ε

∣∣ = 0.

As we see the equivalence is not uniform because for sufficiently small bodies homogenization may interfere
with the boundary. Thus in the limit λ → 0, the boundary layers at the extremities of the body start to dominate
the effective response. A similar phenomenon for discrete lattices was studied in [22,25].

In view of the previous example it is natural to upgrade Definition 6.1 to a uniform equivalence of para-
meterized functionals.

Definition 6.3 Two families of functionals Fλε and Gλ
ε are uniformly equivalent at order εα at λ0 ∈ � if there

exist translations mλ
ε such that for all ε j → 0 and all λ j → λ0 we have, upon extraction of subsequences,

�- lim
j→+∞

F
λ j
ε j − m

λ j
ε j

εαj
= �- lim

j→+∞
G
λ j
ε j − m

λ j
ε j

εαj
, (48)

and these �-limits are non-trivial.
We say that Fλε and Gλ

ε are uniformly equivalent at order εα on � if they are uniformly equivalent at all
λ0 ∈ �.

Note again that the space on which uniformly equivalent functionals are defined may be different, and may
vary with ε and λ.

Theorem 6.4 Let � be sequentially compact, and let Fλε and Gλ
ε be uniformly coercive and uniformly equiv-

alent at order εα on �. Then
sup
λ∈�

∣∣inf Gλ
ε − inf Fλε

∣∣ = o(εα). (49)

Proof By contradiction, suppose that a sequence (λ j ) exists such that

| inf G
λ j
ε j − inf F

λ j
ε j | ≥ Cε j

α.

By the compactness of �, we may suppose that λ j → λ0, and by the definition above that (48) holds. By
coerciveness we then obtain that

lim
j→+∞

inf F
λ j
ε j − m

λ j
ε j

εαj
= lim

j→+∞
inf G

λ j
ε j − m

λ j
ε j

εαj
,

and that the limit is finite. From this we immediately obtain a contradiction.
To give another illustration of non-uniform �-equivalence we revisit the problem of discretization for

non-convex energies (see our Example 1.2). ��
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Example 6.5 For ε such that N = 1
ε

∈ N, and for λ ∈ R we again consider the parameterized functional

Fλε (u) =
N∑

i=1

εW (ui )

N∑

i=0

ε ui = λ (50)

where u : {1, . . . , N } → R. We recall that, after the identification of u with a piecewise-affine function on
(0, 1) and letting ui = u(i/N ), this problem can be viewed as the ‘naive’ discretization of the continuum
problem with the energy

∫ 1
0 W (u) dt and the same boundary conditions.

If W is strictly convex then ‘naive’ approach works and Fλε is uniformly equivalent at all orders to the
parameterized continuous functional

Gλ
ε (u) = Gλ(u) =

1∫

0

W (u)dt,

1∫

0

u(s) ds = λ (51)

(independent of ε).
If W is not convex then the situation is different and Fλε and Gλ

ε are not equivalent at order ε2, as we have
shown in Example 1.13 for λ = 0. In fact none of the points in the interval λ ∈ (−1, 1) is a point of uniformity.
To construct a uniformly equivalent functional at order ε2 in the case W (z) = min{(z − 1)2, (z + 1)2} we can,
for instance, take

Wε(z) = min

{(
z − 1 + 2i

N

)2

: i = 0, . . . , N

}
, (52)

and define

Gλ
ε (u) =

1∫

0

(
Wε(u)+ |u′|2) dt,

1∫

0

u(s) ds = λ. (53)

This construction is in some sense trivial, because it presupposes the complete knowledge of the minimizer for
the original discrete problem at finite ε. The development of a nontrivial continuum model with the same degree
of approximation poses considerable challenge, because in the interval λ ∈ (−1, 1) the system behaves as
‘strongly discrete’. Thus in this regime the individual elements transform independently, one after another, so
even the weakest forms of the Cauchy–Born rule [34], which is usually the basis of a continuum approximation,
can not be expected to work.

7 Regular points

As we have seen in the preceding examples, for parameterized families of minimization problems one can
distinguish (in the space of parameters) the regular points, where the approximation is uniform, and the singular
points, where it is not. We begin with the formal definition of a regular point in the λ–ε space.

Definition 7.1 Let (Fλε ) be a family of parameterized functionals. A point λ0 ∈ � is a regular point for (Fλε )
at scale εα if for all ε j → 0 and sequences m j , λ j → λ0, λ

′
j → λ0 we have, upon extraction of a subsequence,

that

�- lim
j

F
λ j
ε j − m j

εαj
= �- lim

j

F
λ′

j
ε j − m j

εαj
. (54)

Remark 7.2 We may take m j = inf F
λ j
ε j so that for this sequence (m j ) the first limit in (54) is non-trivial.

Note that we may take λ′
j = λ0 so that for all λ j → λ0

�- lim
j

F
λ j
ε j − m j

εαj
= �- lim

j

Fλ0
ε j − m j

εαj
. (55)
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Theorem 7.3 Let (Fλε ) be an equi-coercive parameterized family such that all λ are regular points at scale
εα , and let

Fαλ = �- lim
ε→0

Fλε − mλ
ε

εα
(56)

exist and be non-trivial, where

mλ
ε = inf Fλε .

Then λ �→ Fαλ is continuous with respect to �-convergence.

Proof Since we suppose that our energies are equi-coercive, the topology of �-convergence is metrizable and
compact (see [28]). Let λk → λ0 be such that Fαλk

�-converge to some F . By a diagonal argument we can find
a sequence εk such that

F = �- lim
k

Fλk
εk − mλk

εk

εk
α

. (57)

We then have

F = �- lim
k

Fλk
εk − mλk

εk

εk
α

= �- lim
k

Fλεk
− mλk

εk

εk
α

= Fαλ0
+ lim

k

mλ
εk

− mλk
εk

εk
α

.

Hence, F and Fαλ0
differ by a constant. Note however that by the property of convergence of minima and the

renormalization by mλ
ε we have min F = min Fαλ0

= 0, so that F = Fαλ0
. ��

Theorem 7.4 Let (Fλε ) be a equi-coercive parameterized family such that all λ are regular points at scale εα .
If for all λ fixed a development of the form

Fλε = εβ0 F (0)λ + εβ1 F (1)λ + · · · + εβM F (M)λ + εαF (α)λ + o(εα) (58)

exists with β0 < . . . < βM < α, and we set

mα
ε (λ) =

M∑

k=0

εβk min F (k)λ , (59)

then Fλε is uniformly equivalent to the family

Gλ
ε (u) = mα

ε (λ)+ εαF (α)λ (u) (60)

at scale εα . In particular, if � is compact we have

sup
λ∈�

| min Fλε − mα
ε (λ)− εα min F (α)λ | = o(εα). (61)

Proof This immediately follows from Theorem 7.3 above, setting mλ
ε = mα

ε (λ), and from Theorem 6.4. ��
It is worth noting that in the case α = 0 condition (61) reduces to

sup
λ∈�

| min Fλε − min F (0)λ | = o(1); (62)

which can be viewed as a uniform version of the fundamental theorem of �-convergence dealing with conver-
gence of minimum problems.

Our next example illustrates the effect of the regular interference between the size of the support of a
distributed force and the scale of homogenization.
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Example 7.5 Consider the one-dimensional homogenization problem

min

⎧
⎨

⎩

1∫

−1

a

(
t

ε

)
dt + 1

2λ

λ∫

−λ
udt : u(±1) = 0

⎫
⎬

⎭ .

Here λ ≥ 0 represents the size of the region where distributed forces are applied. In the singular case λ = 0,
which will be considered in more detail in the next section, the second integral is replaced by u(0). Consider
the related family of parameterized functionals

Fλε (u) =
1∫

−1

a

(
t

ε

)
|u′|2dt + 1

2λ

λ∫

−λ
udt, u(±1) = 0, (63)

if λ > 0, and

F0
ε (u) =

1∫

−1

a

(
t

ε

)
|u′|2dt + u(0), u(±1) = 0, (64)

if λ = 0. Since the second term in both cases represents a continuous perturbation, the �-limit is simply

F0
λ (u) = a

1∫

−1

|u′|2dt + 1

2λ

λ∫

−λ
udt, u(±1) = 0, (65)

if λ > 0, and

F0
0 (u) = a

1∫

−1

|u′|2dt + u(0), u(±1) = 0, (66)

if λ = 0. Note that F0
λ has a unique minimizer for all λ ≥ 0, which we denote by uλ0. It gives the following

minimum value m(0)(λ)

m(0)(λ) = 1

8a

(
−1 + 2

3
λ

)

Suppose that a is even, so that by a reflection argument also the minimizer uλε of Fλε is even. In this case
the computation of mε(λ) := min Fλε is easily carried over. We have (uλε )

′(0) = 0, and uλε solves the Euler–
Lagrange equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a

(
t

ε

)
u′ = t

4λ
for 0 < t < λ

a

(
t

ε

)
u′ = 1

4
for λ < t < 1,

supplemented by the only boundary condition uλε (1) = 0. After computing this solution, we obtain

mε(λ) = − 1

8λ2

1∫

0

min{s2, λ2}
a(s/ε)

ds.

Then the �-limit at scale ε is

F1
λ (u) = �- lim

j

Fλε j
(u)− m(0)(λ)

ε j
=
{

K if u = uλ0
+∞ otherwise,
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where K = − 1
8 lim j b(1/ε j ) (b as in (38)). Since we are interested in the dependence of the result on λ we fix

a sequence ε j in such a way that the limit in the definition of K exists. In this case all points λ > 0 are easily
seen to be regular. On the contrary, the point λ = 0 is not regular and its appropriate neighborhood represents
the domain of the size effect. This singular case will be treated in Example 8.7.

Now, we formulate a simple necessary condition of regularity.

Theorem 7.6 If (Fλε ) is a equi-coercive parameterized family which for each λ admits a �-development of

the form (58), is regular for all scales εβ with β < α and is regular at λ0 at scale εα , then λ �→ min F (α)λ is
continuous at λ0.

Proof The proof can be performed by induction. It suffices to check when α = 0, in which case the thesis
is that λ �→ min Fλ is continuous at λ0, where Fλ = �- limε→0+ Fλε . Indeed, if λk → λ0 then min Fλk =
limε→0+ min Fλk

ε . By a diagonal argument we may find εk → 0 such that limk min Fλk = limk min Fλk
εk . By

the regularity at λ0 we have that the �-limit of Fλk
εk is the same as that of Fλεk

; i.e., Fλ. By the convergence of
minima we then obtain min Fλ = limk min Fλk . ��

In the next example we list several cases studied above where the necessary condition of regularity suggested
by Theorem 7.6 fails.

Example 7.7 If Fλε is as in Example 3.1 then all λ different from ±1 are regular points. From the study of
minimum problems for the limit as summarized in Fig. 4, we deduce by Theorem 7.6 that ±1 are not regular
points for Fλε at scale ε. Similarly, for Example 3.2 (see Fig. 5) we deduce that 1 is not a regular point, and for
Example 6.2 that 0 is not a regular point.

8 Singular points and ‘tables’ of �-limits

We are now in the position to give the formal definition of a singular point.

Definition 8.1 Let Fλε be a family of parameterized functionals, with λ ∈ �. We say that λ0 is a singular point
at scale εα if it is not regular; i.e., if there exist mε, λ′

ε → λ0 and λ′′
ε → λ0 such that (up to subsequences)

�- lim
ε→0

F
λ′
ε

ε − mε

εα
�= �- lim

ε→0

F
λ′′
ε

ε − mε

εα
. (67)

Example 8.2 In Example 3.1 the points ±1 are singular at scale ε; in Example 3.2 the point 1 is singular at
scale ε. In both cases (61) does not hold for α = 1 even though the limit F (1)λ exists, and we have (taking e.g.,
� a compact set containing a neighbourhood of 1)

sup
�

∣∣∣min Fλε − m(0)(λ)− εmin F (1)λ

∣∣∣ ≥ Cε.

As we see at a singular point λ0 the computation of the �-limit or �-development with fixed λ0 is not
sufficient to accurately describe the behavior of minimum problems. We have then to look at the possibility of
different limits along different paths λε → λ0. To simplify the bookkeeping of various distinct limits around
the singular point, we introduce the notion of a ‘table’ of �-limits. We limit ourselves to the analysis at scale
1 and ε; the general case requiring only more complex notation.

Definition 8.3 The table of �-limits at scale 1 for Fλε at λ0 are all sequences (ε j , λ j ), and functionals F (0)(ε j ,λ j )

with ε j → 0, λ j → λ0, and

F (0)(ε j ,λ j )
= �- lim

j
F
λ j
ε j .

The table of�-limits at scale ε for Fλε at λ0 are all sequences (ε j , λ j ), and functionals F (1)(ε j ,λ j )
with ε j → 0,

λ j → λ0, and

F (1)(ε j ,λ j )
= �- lim

j

F
λ j
ε j − min F (0)(ε j ,λ j )

ε j
,

etc.
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1

Nucleation curve

Homogeneous state

Phase mixture

Fig. 7 Crossover boundary describing nucleation threshold in the ε–λ space (Example 8.4)

We recall that if the point λ0 is regular then

F (1)(ε j ,λ j )
= �- lim

j

F
λ j
ε j − min F (0)λ0

ε j
,

for all ε j → 0 and λ j → λ0. Below we give several examples of singular points.
We begin with the situations when the boundaries between different entries in the table are sharp crossover

phenomenon as in the case of nucleation (see below), fracture (see below) and buckling (not discussed here,
see [38,42,51]). The first example deals with nucleation (or annihilation) in the case of gradient theory of
phase transitions.

Example 8.4 Consider again the energy (27). Suppose that W is of class C2, with minimum 0 and that
W ∗∗(z) = W (z) if |z| ≥ 1. We focus on the singular point λ0 = 1.

First note that the functionals F (1)(ε j ,λ j )
are finite only at the constant function u = 1, so that it suffices to

compute the limit

F (1)(ε j ,λ j )
(1) = lim

j
min

⎧
⎨

⎩

1∫

0

(
W (v)

ε j
+ ε j |v′|2

)
dt :

1∫

0

vdt = λ j

⎫
⎬

⎭ (68)

We obtain (see Appendix A.1 for details)

F (1)(ε j ,λ j )
(1) = lim

j
min

{
α
(1 − λ j )

2

ε j
, β

}
, (69)

where

α = 1

2
W ′′(1), β = cW . (70)

As we see, the existence of the�-limit F (1)(ε j ,λ j )
is equivalent to the existence of the limit of the ratio (1−λ j )

2/ε j .
We can summarize our findings in the form of the following table for m1 (�-limit at the constant function
u = 1) which gives the first-order term in the development of minima.

1. If (1 − λ)2 = Cε, where C ≤ β
α

, then m1 = αC .

2. If (1 − λ)2 ≥ β
α

then m1 = β.

The crossover behavior of the system close to the point ε = 0 and λ = 1 can be pictured in the ε–λ plane,
where the line ε = α

β
(1 − λ)2 (for λ < 1) (nucleation threshold) separates the zone with phase mixture from

the one where the stable configuration is homogeneous (Fig. 7).

The next example concerns the nucleation of cracks in the discrete lattices with Lennard–Jones interactions.
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Example 8.5 We consider the theory (29) and focus as in the Example 3.2 on the singular point λ0 = 1.
Observe that the functionals F (1)(ε j ,λ j )

are finite only at the affine function u(t) = t . Then to find the limit along
arbitrary sequence in the parameter space it suffices to compute

F (1)(ε j ,λ j )
(u) = lim

j
min

{
∑

i

(
J

(
ui − ui−1

ε j

)
− J (1)

)
: u0 = 0, uN = λ j

}
. (71)

To see which sequences produce a nontrivial limit, one can follow the method of Section 5.2 and look for
a rectifying change of variables u = �ε(v). In this situation, the knowledge of the separation of scales in the
discrete solution [64] suggests that one can consider an expansion around u of the form u = u + εγ v, which
ensures that the ’bulk’ energy term (corresponding to springs with ui − ui−1 ∼ ε) and the ’surface’ energy
term (corresponding to springs with ui − ui−1 ∼ 1) are of the same order. To achieve such parity one must
choose γ = 1/2 because then the surface energy in the stretched variables vi is of order ε and the bulk energy
which scales with the elastic modulus of J̃ (z) = J (

√
εz) is also of the order ε. A different heuristic argument

leading to the same conclusion can be found in [22]. We also remark that very similar reasoning is used in
plate theory to justify the approximations containing both membrane and bending terms (e.g., [37]).

Following the above analysis, we set

vi = ui − ε j i√
ε j

, ψ j (z) = 1

ε j
(J (1 + √

ε j z)− J (1)),

and obtain

F (1)(ε j ,λ j )
(u) = lim

j
min

{
∑

i

ε jψ j

(
vi − vi−1

ε j

)
: v0 = 0, vN = λ j − 1√

ε j

}
. (72)

Now we can characterize the behavior of the original minimum problem via the computation of the �-limit
for the rescaled functional in the variable v. This �-limit has been computed in [22] (see also [21]): it exists
whenever the limit of min

{
α(λ j − 1)2/ε j , β

}
as j → +∞ exists, where

α = 1

2
J ′′(1), β = −J (1), (73)

and more precisely

F (1)(ε j ,λ j )
(u) = lim

j
min

⎧
⎨

⎩α
1∫

0

|v′|2dt + β#(S(v)) : v(0) = 0, v(1) = λ j − 1√
ε j

⎫
⎬

⎭

= lim
j

min

{
α(λ j − 1)2

ε j
, β

}
.

Note the similarity of this case with the previous example even though the methodologies of finding the final
result have been (superficially) different. Thus, in the case of phase transitions we used the direct method,
while in the case of fracture we used the method of ‘stretched’ variables.

We can summarize our results in a form of the following ‘table’, in terms of m1 (the �-limit at u(t) = t),
which also gives the first-order term in the development of minima:

1. If (1 − λ)2 = Cε, and C ≤ β
α

, then m1 = αC .

2. If (1 − λ)2 ≥ β
α
ε then m1 = β.

The behavior of the system close to the point ε = 0 and λ = 1 can be again pictured in the ε–λ plane,
where the crossover line ε = α

β
(1 − λ)2 (for λ > 1) (fracture threshold) separates a zone where there is a

crack from one where the stable configuration is elastic (Fig. 8).

The next example shows that there may be an infinity of distinct entries characterizing a particular ‘table’.
This example deals with the theory of finite-scale micro-structures introduced in Sect. 2, which we simplify
here to avoid inessential technical difficulties.
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Fig. 8 Crossover boundary describing failure threshold in the ε–λ space (Example 8.5)

Example 8.6 Taking the gradient theory of phase transitions into account, we may consider instead of the
energy (31) the following functional:

Fλε (u) = 2ε#(S(u′))+ λ

1∫

0

u2dt, u(0) = u(1) = 0, |u′| = 1.

The equivalence of the two problems in some regimes can be deduced from [1,53,58]. Thus, one can see that
the first two terms of the integral in (31) have been replaced by (twice) the number of jump points of the
derivative and the constraint that u is piecewise affine with gradient u′ ∈ {±1}.

The �-limit of Fλε is

Fλ(u) = λ

1∫

0

u2dt, u(0) = u(1) = 0, |u′| ≤ 1,

with minimum equal to 0. If λ > 0 the unique minimizer is u(t) = 0, while the limit is identically 0 on all
admissible functions if λ = 0.

We may explicitly compute the minimum mε(λ) = min Fλε , which is achieved at the function uN with N
creases in (0, 1), 2/N = periodic, odd, and equal to (|2Nt − 1| − 1)/2N on [0, 1/N ], for which we have

Fλε (uN ) = 2εN + λ

12N 2 .

The optimal N = N (ε, λ) is obtained by minimizing this quantity for N ∈ N, N ≥ 1, obtaining

N (ε, λ) ∈
{[

3

√
λ

12ε

]
∨ 1,

[
3

√
λ

12ε

]
+ 1

}
,

and

min Fλε = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
2ε + λ

12
, 2ε

[
3

√
λ

12ε

]
+ λ

12

[
3
√

λ
12ε

]2 , 2ε

([
3

√
λ

12ε

]
+ 1

)
+ λ

12

([
3
√

λ
12ε

]
+ 1

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(74)
For fixed λ we then have

N (ε, λ) ∼ 3

√
λ

12ε
and min Fλε ∼ ε2/3λ1/3 3

√
2

3
.
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Young measures

N=1
N=2

N=3

Fig. 9 Crossover boundaries in the parameter space separating microstructures with different number of interfaces (Example 8.6)

We can now examine the behavior at λ = 0. The first interesting scale here is ε. The scaled energy is then
simply

1

ε
Fλε (u) = 2#(S(u′))+ λ

ε

1∫

0

u2dt, u(0) = u(1) = 0, |u′| = 1, (75)

whose �-limit depends on the ratio λ/ε. If λε/ε → p ∈ [0,+∞) then the corresponding �-limit is

F1
p(u) = 2#(S(u′))+ p

1∫

0

u2dt, |u′| = 1.

This shows that λ = 0 is a singular point at scale ε characterized by the following ‘table’ of �-limits:

ifCk−1ε ≤ λ ≤ Ckε, thenN = k,

Here Ck is an increasing sequence tending to +∞. The values of Ck can be computed from (74), for instance,
C0 = 0. The behavior of F1

λ/ε is pictured in Fig. 9 where the number of interfaces of the minimizer is marked
explicitly. Note that the behavior of this functional differs from that of functional (31) close to p = 0, where the
original functional admits homogeneous minimizers (e.g., [65]) that are not allowed by the simplified model.

The next two examples illustrate the cases when the boundary between different entries in a table is diffuse.
This means that different asymptotic theories have overlapping domains of application. Both examples deal
with size-effects in homogenization.

Example 8.7 We consider Fλε as in (43). Note that the definition can be extended by continuity to λ = 0 setting

F0
ε (u) =

1∫

0

a(0)|u′|2dt, u(0) = 0, u(1) = 1,

independent of ε. The point λ = 0 is the only singular point at scale 1. The table of �-limits at λ = 0 is
obtained by looking at the �-limits of functionals

Fλεε (u) =
1∫

0

a

(
λεt

ε

)
|u′|2dt, u(0) = 0, u(1) = 1.

We have two regimes which can be represented as a table:

1) If λε/ε → p ∈ [0,+∞), then F0(u) = ∫ 1
0 a(pt)|u′|2 dt with u(0) = 0, u(1) = 1;

2) If λε >> ε, then F0(u) = a
∫ 1

0 |u′|2 dt with u(0) = 0, u(1) = 1 (homogenization theory is exact).
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Size effect

Homogenization

Fig. 10 The domain of size effect in the parameter space (Examples 8.7, 8.8)

Observe that at the next scale ε all λ > 0 points are singular. The corresponding tables of the �-limits depend
on the existence (upon subsequences) of the limit

K0 = lim
ε→0

b

(
λε

ε

)

as λε → λ. We then obtain

F1
λ (u) =

{
a2 K0 if u(t) = t
+∞ otherwise.

(76)

The next example deals with a concentrated body force applied to a composite.

Example 8.8 We consider Example 7.5 and construct the table of �-limits at the singular point 0 for the
sequence ε j = 1

j , for which b(1/ε j ) = 0 = K . First, we observe that the �-limit

F1 = �- lim
j

F
λ j
ε j − m(0)(λ j )

ε j

is finite only at u0
0. The �-limit exists if the limit

K1 = lim
j

ε2
j

8λ2
j

λ j /ε j∫

0

(
t2 −

(
λ j

ε j

)2
)(

1

a
− 1

a(t)

)
dt

exists, in which case we have the two regimes. They may be presented in the form of a table:

1) If λ j/ε j → p ∈ [0,+∞), then

F1(u0
0) =

⎧
⎨

⎩

0 if p = 0
1

8p2

∫ p

0

(
t2 − p2)

(
1

a
− 1

a(t)

)
dt if p > 0;

2) If λ j >> ε j , then F1(u0
0) = 0 (homogenization theory is exact).

The division of the parameter space into domains of applicability of different asymptotic theories remains
in the present case basically the same as in the previous example (see Fig. 10) with the domain of ‘size effect’
gradually transforming into the domain of applicability of the homogenized model.

Another interesting set of examples, showing overlapping domains of validity for different asymptotic
theories, can be found in the problems involving dimension reduction. In this case the role of λ is played
by applied loads which have to be scaled with the slenderness parameter ε if one wants to get a nontrivial
�-limit. There may be several such limits and in [37,52], one can find some partially filled ‘tables’, not only
providing rigorous justification of the semi-empirical ansätze proposed by engineers, but also containing some
new entries.
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9 Uniform approximations

To construct a uniform approximation for a given theory one has to know the location of the singular points
because they have to be treated differently than the regular points. This observation is illustrated by the following
example, where the singularity is removed by the quasi-continuum method.

Example 9.1 We may construct equivalent theories at scale 1 to Fλε in (43) in Example 6.2. In Example 8.7
the table of �-limits at λ = 0 was computed noting that 0 is a singular point. This singularity can be removed
modifying the �-development. A uniformly equivalent functional Gλ

ε to Fλε at λ = 0 is constructed by setting

Gλ
ε (u) =

1∫

0

aε

(
λ

ε
x

)
|u′|2dx,

where

aε(y) =
{

a(y) if |y| ≤ ρε

a if |y| > ρε

and ρε → +∞ are such that ερε → 0. In this case the homogenized description with the modulus a is used
only at a sufficiently large scale, while we are resolving all the microscopic details at the small scale.

In most cases, one needs to know not only the location of the singular points but also their structure.
We have seen how the behavior of parameterized energies at singular points may be sometimes analyzed by
reconstructing directions in the ε–λ space, along which a regular �-development exists. Although this is not
the general case (recall the oscillatory behavior of the minimal values in Example 1.13 at scale ε2, and in
Example 8.7 at scale ε), it is frequent in applications. Now, if all singular points are rectifiable in this sense,
then there exists a specific way to construct a uniform approximation.

To formulate the method we need the following definition of a blown-up (or rectified) functional:

Definition 9.2 Let λ0 be a singular point for Fλε at scale 1. We say that Fλε admits a blow up at λ0 at order 1
if there exist the energies H p

ε and a continuous function p = p(λ, ε) such that

(i) H p
ε �-converge to H p, and all p are regular points;

(ii) Fλε = H p(λ,ε)
ε for (λ, ε) in a neighbourhood of (λ0, 0).

The definition can be easily extended to the scales εα .

We have already seen several examples of singular points where the singular behavior in the original
variables could be replaced by a regular behavior of a ‘blown-up’ functional. It will be convenient to have the
rectified functionals ready in our ‘twin’ cases of phase transition and fracture.

Example 9.3 In Example 8.4 we may ‘blow up’ functionals Fλε at the point λ0 = 1 at order ε. This is equivalent

to blowing up the functionals 1
ε
(Fλε − min F (0)λ ) at order 1. We may then take p = (1 − λ)2/ε, and define

H p
ε (u) =

1∫

0

(
W (u)

ε
+ ε|u′|2

)
dt,

1∫

0

udt = 1 − √
εp.

The rectified functional then takes the form:

H p(u) =
{

min{αp, β} if u(t) = 1
+∞ otherwise

where parameters α and β have been defined in (70).



Asymptotic expansions by �-convergence 53

Nucleation (Failure) curve

Homogeneous
(Elastic)

Phase mixtures
(Fractured)

p

Fig. 11 Rectified parameter space in the cases of phase transition and fracture (Examples 9.3, 9.4)

Example 9.4 As above, in Example 8.5 at λ = 1, we can take p = (1 − λ)2/ε and define

H p
ε (u) =

∑

i

(
J

(
ui − ui−1

ε

)
− J (1)

)
, u0 = 0, uN = 1 + √

εp.

The rectified functional can then be written in the form

H p(u) =
{

min{αp, β} if u(t) = t
+∞ otherwise

where parameters α and β have been defined in (73).

The following theorem states that for Fλε , which admits a blow up one can construct a uniformly-equivalent
family by simply taking H p computed at p = p(λ, ε).

Theorem 9.5 Let Fλε admit a blow up at λ0 by means of energies H p
ε with p ∈ � and � compact; then Fλε

is uniformly equivalent to Gλ
ε = H p(λ,ε) at λ0.

Proof Let λε → λ0; up to subsequences we may suppose the limits lim
ε→0+ p(λε, ε) = p0 exist and

�- lim
ε→0+ Fλεε = �- lim

ε→0+ H p(λε,ε)
ε = H p0 = �- lim

ε→0+ H p(λε,ε)

by the regularity of p0. (Fig. 11) ��
Now it is clear that in some cases a uniform approximation can be constructed by asymptotic matching of

the rectified structures of the functional around the isolated singular points with the standard �-development
around the regular points. More precisely, we mean a construction of the energies that are equivalent to the
�-limit (or �-development) far from singular points, and to the ‘rectified’ energies close to singular points.
We may apply this method to a generic theory Fλε by using the following algorithm:

1. Compute the table of �-limits of Fλε at every point λ. This actually often subdivides into two steps
1a) Identify regular points and compute �-developments.
1b) Identify singular points and compute the complete table.

2. Choose the classes of theories which are compatible with the tables of �-limits computed; i.e., such that
in those classes we may find parameterized energies equivalent to the ones computed in the step above. In
many cases these theories will depend on additional parameters;

3. Tune these additional parameters to obtain an equivalent Gλ
ε of the desired form. In practice this is often

done separately for regular and singular points. The method is applicable if the corresponding (locally)
equivalent theories can be matched.

Of course, the choice of the functionals at Step 2 is not unique, and additional criteria (simplicity, com-
putability, closeness to well-known theories, ability to capture local minimizers, etc) can drive the final selec-
tion. In general those functionals will range from ‘locked’ energies which only bear information about limit
minimizers plus a little more detail, to theories as complex as the original functionals Fλε . We may for instance
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enlarge the domain of ‘locked’ equivalent theories or adapt parameterized functionals from a larger class so
that the new class either includes or is equivalent to the class of Fλε .

We conclude with two examples showing how the above algorithm can be actually implemented. The first
example deals with the lattice model of fracture and brings us back to the original question of the asymptotic
relation between the theories of Griffith and Barenblatt.

Example 9.6 In the case of a 1D lattice with Lennard–Jones interactions (see Sect. 2) the interesting interval
of boundary conditions is λ > 1 because for λ ≤ 1 the �-limit already gives a uniformly-equivalent theory.
Indeed at λ ≤ 1 one can write a class of uniformly equivalent theories at all orders in the form

Gλ
ε (u) =

1∫

0

ψ(u′)dt, u(0) = 0, u(1) = λ, (77)

provided that ψ∗∗(z) = J ∗∗(z) for z ≤ 1.
A singular point is located at λ = 1 and we know that to rectify the behavior at this point one has to look at

the �-limits of the scaled functionals in (71) and use the auxiliary variable v(t) = (u(t)− t)/
√
ε. In the limit

we obtain the Mumford–Shah functional

α

1∫

0

|v′|2dt + β#(S(v))

with the additional constraint of ‘increasing jumps’ v+ > v− on S(v) (see [22]). Now, we follow our algorithm
and formally pull back the variable u = t + √

εv in the limiting functional. We obtain

ε

⎛

⎝α
1∫

0

|v′|2dt + β#(S(v))

⎞

⎠ = α

1∫

0

|u′ − 1|2dt + εβ#(S(u)).

This approximation of the singular behavior has to be matched with the regular approximation (77) at λ ≤ 1
and another regular approximation at λ > 1.

Having in mind the blown-up energies at λ = 1 computed above, a class of equivalent theories at λ > 1
at scale ε (and uniformly equivalent on all compact sets of (0,+∞)) can be chosen in the same general form.
Thus, if we consider the class of energies

Gλ
ε (u) =

1∫

0

ψε(u
′)dt + ε

∑

S(u)

gε(u
+ − u−), u(0) = 0, u(1) = λ,

there are two conditions of equivalence: ψε = ψ which has a unique minimum in 1 with the value J (1) and
limε→0 gε(z) = β. In our case these conditions are satisfied by the same energy densities as in the blown-up
functional; i.e., ψ(z) = J (1) + (z − 1)2 and gε = β. This gives us a uniformly-equivalent theory for λ ≥ 1
in the form

Gλ
ε (u) = J (1)+ α

1∫

0

|u′ − 1|2dt + ε β#(S(u)), u(0) = 0, u(1) = λ (78)

with the condition u+ > u− on S(u). For λ ≤ 1 we may directly use (77) with ψ(z) = J (z).
One can see that the result coincides with the Griffith’s theory of brittle fracture with a unilateral condition

on the opening. We emphasize, that this theory contains an internal parameter ε and therefore cannot be
obtained as a straightforward �-limit [64]. The presence in this theory of an internal length scale allows one
to distinguish the bulk and surface energies which have different physical dimensions.

The dependence of the minimum values of Gλ
ε on λ and the corresponding stress-strain relation are shown

in Fig. 12. We see that fracture in this approximate theory does not take place at infinitesimal tension, as in
the straightforward �-development (see our Fig. 5), and that the nucleated crack has a finite opening (brutal
fracture). These features agree with the solution of the discrete problem at finite ε (see [64]).
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Fig. 12 Approximate minimum values for Gλ
ε in Example 9.6

Once the structure of one uniformly equivalent theory is established, other fracture energies may be con-
structed that belong to the same equivalence class but may have additional beneficial features. The corre-
sponding development is usually not systematic and requires additional knowledge about the structure of the
minimizers in the original problem at finite ε. For instance, one may consider the cohesive zone theories of the
form

Gλ
ε (u) = J (1)+ α

1∫

0

|u′ − 1|2dt + ε
∑

t∈S(u)

g

(
u+ − u−

ε

)
, u(0) = 0, u(1) = λ.

Within the class of functions g ≥ 0, which are concave and non-decreasing, the conditions of equivalence are:

g′(0) > 0 and lim
z→+∞ g(z) = β = −J (1).

In case (78) we had g(z) = 0, z = 0, and g(z) = β, z > 0. By modifying appropriately the behavior of
the Griffith function g(z) near z = 0 one can avoid some known limitations of Griffith’s theory [45,47]. For
example one can take g(z) = min{z, 1} as in the Dugdale’s theory of fracture and obtain better description of
the local minimizers than the Griffith’s theory [45]. The approximation can be further improved if g(z) is taken
to coincide with a particular rescaling (and translation) of a concave branch of the function J (z), as shown
in [64] where the comparison with the discrete theory is also presented. In this case the uniformly equivalent
theory coincides with Barenblatt’s theory of fracture, which now adequately describes even the fine structure
of the bifurcation of a solution with a crack from a homogeneous (Cauchy-Born) solution [19,64].

Our second example concerns the gradient theory of phase transitions (see Sect. 2), and here the goal of
a uniformly equivalent theory is to deal adequately with interfaces that are either close to each other or to
the exterior boundaries. Such approximation should be able to take into account that an interface adjusts its
internal structure while approaching an obstacle. Due to the mentioned similarity between the fracture problem
and the phase transition problem, we will use below the insights from Example 9.6.

Example 9.7 Consider again the ‘theory’ given by (27). To construct the simplest uniformly equivalent theory
one can try to modify the straightforward development of Fλε at the singular points λ = ±1. For simplicity we
suppose min W = 0 and define the following parameterized family of functionals:

Gλ
ε (u)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
W (λ) if u = λ

+∞ otherwise
if |λ| ≥ 1

{
min

{
εcW ,

1
2

((
W ′′(1)(λ− 1)2

) ∧ (W ′′(−1)(λ+ 1)2
))}

#(S(u)) if |u| = 1a.e.
+∞ otherwise

if |λ| < 1.

(79)
Observe that we have matched the regular approximation at |λ| ≥ 1 at order ε given by

Gλ
ε (u) =

{
W (λ) if u = λ

+∞ otherwise
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Fig. 13 Approximate minimum values for Gλ
ε in Example 9.7

with the one at |λ| < 1 , given by

Gλ
ε (u) =

{
εcW #(S(u)) if |u| = 1a.e.
+∞ otherwise

and, finally, with the rectified singular approximation at λ = 1 (and similarly at −1) given by

Gλ
ε (u) =

{
min

{
εcW ,

1
2

(
W ′′(1)(λ− 1)2

)}
#(S(u)) if |u| = 1a.e.

+∞ otherwise

(see Example 9.3). The uniform equivalence of the resulting theory (79) and the original theory (27) is imme-
diately proven by the reference to Remark 1.8.

The dependence of the minimum values of Gλ
ε on λ and the corresponding stress-strain relation are shown

in Fig. 13. We see that the phase transition in this approximate theory takes place at finite stress, contrary to
what is predicted by the straightforward �-development (see our Fig. 4), and that the nucleus has a finite size.
These features agree with the exact solution of the discrete problem at finite ε (see [65,68]).

The main defect of the constructed approximate ‘theory’ is its rigid structure adopted exclusively to one type
of loading. Such theory cannot be easily modified to cover other types of boundary conditions, or generalized
to describe higher dimensional case and to deal with local minimizers. The origin of the problem is that the
equivalent energy, which we have chosen for the singular point, is excessively simple (minimal). To improve
the situation we can choose a broader class of energies with the correct structure of the singularities which
would then generate more flexible uniformly equivalent theory.

The choice in this case should be driven by our computation of the energy singularity at ±1 which implicitly
enlarges the functional space to piecewise-constant functions or rather to SBV functions (see [13]). Thus,
following the pattern of fracture theory we can take

Gλ
ε (u) =

1∫

0

(W (u)+ Cε2|u′|2)dx + εβ#(S(u)),

1∫

0

udx = λ (80)

defined on SBV (0, 1). Here the only role of the gradient terms is to prevent the formation of discontinuities
outside the set S(u). Since only equivalence at scale ε is required, the potential W may be replaced by its
piecewise-quadratic analog

W0(z) = 1

2
min{W ′′(−1)(z + 1)2,W ′′(1)(z − 1)2},

provided that C is chosen such that

2
√

C

1∫

−1

√
W0(s) ds ≥ cW
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(see Appendix A.2(c)). The analysis of this theory shows that the convex component of W is now represented
by the bulk term in (80), while the concave component (the ‘spinodal’ region) is described by a (constant)
surface energy. We emphasize once again that the resulting theory contains a small parameter ε and therefore
cannot be obtained as a straightforward �-limit. The problem with the functional (80) is that it is again still
too rigid in its affinity to particular boundary conditions and can hardly be used to capture local minimizers
[65,68] or to deal with the multi-dimensional case.

To overcome these limitations we may try, as in the case of fracture, to modify the surface energy further. To
characterize the classes of eligible surface energies we can deal directly with n-dimensions. First, by enlarging
the space from piecewise-constant functions with values ±1 to all piecewise-constant functions we obtain the
class of functionals

Gε(u) =
∫

�

W (u)dx + ε

∫

S(u)

g(u+, u−)dHn−1, (81)

where u± are the traces on both sides of the set S(u) of discontinuity points of u, and g ≥ 0 is a subadditive
function. Clearly, Gε is equivalent to Fε at scale 1. Sufficient conditions on g for Gε to be equivalent to Fε at
scale ε are

g(u, v) ≥ 2
√

C

∣∣∣∣∣∣

v∫

u

√
W (s) ds

∣∣∣∣∣∣
for all u, v,

and g(1,−1) = g(−1, 1) = cW ; for example, g(u, v) ≡ cW (see Appendix A.2(a)). In an even larger space
SBV (�) (see [13,31]), we may take

Gε(u) =
∫

�

(W (u)+ Cε2|∇u|2)dx + ε

∫

S(u)
g(u+, u−) dHn−1 (82)

for u ∈ SBV (�), with g as above and C ≥ C (see Appendix A.2(b)). If C > C then sharp phase transitions are
favored. Inside this class a uniformly equivalent theory can be obtained if we take {u ∈ SBV (0, 1) : |u| ≥ T }
for some 0 < T < 1 together with the constraint that u− ≤ −T and u+ ≥ T (or the converse) on S(u) and
write a functional

Gλ
ε (u) =

∫

�+(u)

(
1

2
W ′′(1)(u − 1)2 + ε2C |u′|2

)
dt +

∫

�−(u)

(
1

2
W ′′(−1)(u + 1)2 + ε2C |u′|2

)
dt

+ ε
∑

S(u)

g(u−, u+),

where �±(u) = {±u ≥ T }. Note that here the gradient terms are not ‘formal’ as in (80) and are expected to
describe the boundary layers near the internal discontinuities. Therefore, the constants in front of them remain
the same as in the original theory.

For the approximation (83) to work, some technical conditions must be imposed on T , C and g, involving
the notion of subadditive envelope (see Appendix A.2(d)). As we have already seen, those conditions are
satisfied by taking g to be equal to constant cW , however, the example of fracture shows, that one can do better
if the goal is to capture local minimizers. Thus, if we identify g with appropriately re-scaled and translated
spinodal component of the function W , we may expect to obtain an approximate theory with a much better
capture of the local minimizers.

10 Conclusions

The goal of this paper was twofold. First, we wanted to show that the previous attempts to extend the idea
of �-convergence beyond the first �-limit have not been fully satisfactory. Second, we wanted to find the
way of constructing a rigorous asymptotic �-expansion which is devoid of the detected flaws by extending to
functionals the corresponding machinery developed by Poincaré (1886) in the context of differential equations.
This has placed the main focus of the paper on definitions rather than theorems.
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Thus, we have found it necessary to extend to functionals the concept of an asymptotic equivalence at a
particular order. This allowed us to represent the whole set of approximating functionals as a union of the
classes of equivalence. While one can propose different criteria making the approximation unique (analytical
simplicity, computability, ability to capture local minimizers, etc.), we have selected the one which emphasizes
that in application the particular functionals usually appear as representatives of the parameterized families
(e.g., Von-Karman theory of plates, lubrication theory, the theory of incompressible elastic solids, etc.). To deal
with such ‘theories’, we had to extend to parameterized families of functionals the concept of �-equivalence.
Since the so-defined equivalence may not be uniform with respect to parameters, we have been naturally led to
the important distinction between the regular and singular values of the parameters. Following the methodology
developed for functions, we have shown that even if a conventional �-limit in the singular point does not exist,
one can often reconstruct the structure of the singularity by the blow-up procedure. We have then showed that
the knowledge of the structure of the critical points allows one to construct matched asymptotic �-expansions
delivering globally uniform approximation of a given order.

We have applied the proposed methodology to problems of practical interest and produced several inter-
esting approximate theories. In some cases our formal development has given a rigorous justification for the
existing semi-empirical procedures used by practitioners (e.g., cohesive models of fracture, quasi-continuum
models in elasticity, etc.). In the other cases, entirely new approximate theories have been advanced (e.g., a
theory of phase transitions with surface energy combined with a possibility of a discontinuity in the gradients).

In conclusion we mention several limitations of our approach. First, the proposed methodology is not
fully formalized and its implementation depends on the detailed knowledge of the minimizers of the original
functional, which is seldom readily available. Then, even if successful, the method delivers only a particular
approximate theory, which may well coexist in applications with other equivalent theories. In those cases
one needs to find additional criteria which would justify the use of a given theory in the physical problem of
interest. The main problem, however, is that �-convergence deals with the global minima while in applications
the situations are plentiful when the energy landscape is rather rugged and it is the knowledge of the local
minima which is crucial.
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Appendix

A.1 We prove the second inequality in (69), namely that

lim
j

min

⎧
⎨

⎩

1∫

0

(
W (v)

ε j
+ ε j |v′|2

)
dt :

∫ 1

0
vdt = λ j

⎫
⎬

⎭ = lim
j

min

{
cW ,

1

2
W ′′(1)

(1 − λ j )
2

ε j

}
.

We first note that

m j := min

⎧
⎨

⎩

1∫

0

(
W (v)

ε j
+ ε j |v′|2

)
dt :

1∫

0

vdt = λ j

⎫
⎬

⎭

≤ W (λ j )

ε j
= 1

2
W ′′(1)

(1 − λ j )
2

ε j
+ o

(
(1 − λ j )

2

ε j

)
(83)

by testing with v = λ j , This shows that if (1 − λ j )
2 << ε j then lim j m j = 0 as desired. Conversely, let

(1 − λ j )
2 ≥ Cε j (84)

for some C > 0. Note that in this case we can construct a sequence of the form

v̂ j (t) = u

(
t − t j

ε j

)
,
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where u is a solution of the optimal profile problem

min

⎧
⎨

⎩

+∞∫

−∞
(W (u)+ |u′|2)dt : u(±∞) = ±1

⎫
⎬

⎭ = cW ,

and t j are suitable translations in order to match the integral constraint, such that lim j
1
ε j

F
λ j
ε j (̂v j ) = cW . By

this computation and (83), we then get

lim
j

m j ≤ lim
j

min

{
cW ,

1

2
W ′′(1)

(1 − λ j )
2

ε j

}
.

To prove the converse inequality, consider v j a minimizer for m j . If lim j inf v j ≤ −1 then there exit points
x−

j , x+
j such that lim j v j (x

±
j ) = ±1, and then

lim
j

m j ≥ lim inf
j

∣∣∣∣∣∣∣∣

x+
j∫

x−
j

(
W (v j )

ε j
+ ε j |v′

j |2
)

dt

∣∣∣∣∣∣∣∣
≥ lim inf

j

∣∣∣∣∣∣∣∣

x+
j∫

x−
j

√
W (v j )|v′

j |dt

∣∣∣∣∣∣∣∣
= cW .

If otherwise, lim j inf v j ≥ C > −1 then for fixed η > 0 we have

|{v j < 1 − η}| ≤ ε

Cη

1∫

0

(
W (v j )

ε j
+ ε j |v′

j |2
)

dt ≤ ε
cW

Cη
, (85)

where Cη = min{W (s) : C ≤ s ≤ 1 − η}. Note moreover that it is not restrictive to suppose that v j < 1 + η.
Let cη = o(1) as η → 0 be such that W (z) ≥ 1

2 (W
′′(1) − cη)(1 − z)2 on [1 − η, 1 + η]; then, by Jensen’s

inequality and (84)

lim
j

m j ≥ lim
j

∫

{v j>1−η}

W (v j )

ε j
dt ≥ lim

j

1

2
(W ′′(1)− cη)

1

ε j
(1 − λ j + O(ε))2

≥ lim
j

1

2
(W ′′(1)− cη)

1

ε j
(1 − λ j )

2.

Letting η → 0 we have the desired inequality.

A.2 We sketch here the proofs for the equivalence statements in Example 9.7.

(a) After noting that the domain of the �-limit at order 1 consists of functions in BV (�; {−1, 1}) we remark
that

�- lim
ε→0

Gε − min W

ε
≥ H , (86)

where H is the lower-semicontinuous envelope of

H(u) =
∫

S(u)

g(u+, u−)dHn−1

defined on piecewise-constant functions. From the relaxation theory for those functionals (see, e.g., [12,17,18]),
we deduce that the conditions on g imply that H(u) = H(u) = cW Hn−1(S(u)) if u ∈ BV (�; {−1, 1}), which
gives the liminf inequality. Finally, we note that a recovery sequence for such u is simply given by uε = u.
(b) As for (a) we can use the same relaxation argument, taking now

H(u) = 2
√

C
∫

�

√
W (u)|Du|dx +

∫

S(u)

g(u+, u−)dHn−1.



60 A. Braides, L. Truskinovsky

(c) We can follow the argument in A.1 above. The condition of equivalence at scale ε is then that

cW = min

⎧
⎨

⎩

+∞∫

−∞
(W0(u)+ C |u′|2)dt +

∑

S(u)

g(u+, u−) : u(±∞) = ±1 or ∓ 1

⎫
⎬

⎭ ,

which is implied by the conditions assumed.
(d) As in (c) we may use the argument in A.1, provided that

cW = min

⎧
⎪⎨

⎪⎩

∫

R+(u)

(
1

2
W ′′(1)(u − 1)2 + ε2C |u′|2

)
dt

+
∫

R−(u)

(
1

2
W ′′(−1)(u + 1)2 + ε2C |u′|2

)
dt +

∑

S(u)

g(u+, u−) : u(±∞) = ±1 or ∓ 1

⎫
⎪⎬

⎪⎭
,

where the infimum is taken over all u ∈ SBV (R) such that |u| ≥ T and u− ≤ −T and u+ ≥ T (or the
converse) on S(u), and R±(u) = {±u ≥ T }.
Note that if we set

gT,C (u, v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(u, v) if u ≤ −T and v ≥ T or the converse

2
√

C
∣∣∣
∫ v

u
|s − 1|ds

∣∣∣ if u, v ≥ T

2
√

C
∣∣∣
∫ v

u
|s + 1|ds

∣∣∣ if u, v ≤ T

+∞ otherwise,

then the above condition can be equivalently expressed as

cW = min

{
N∑

i=1

gT,C (zi , zi−1) : z0 = ±1, zN = ∓1, N ∈ N

}
;

i.e., that the subadditive envelope of gT,C computed in (−1, 1) and (1,−1) is cW (see [14]).
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