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ABSTRACT

It is ghown that a great number of ph¥sical objects with lo-
calized energy are described by theories with the same mathema-—
tical struciure: the energy is the sum of two terms -~ one is a
nonconvex functional of field variables and sther is a gquedratic
functional in their gradients. The following examples are consi-
dered: bending of rods, dimples in shells, vapcr bubbles in a
liguid, necking, solitary waves, elementary particles, disloca-
tions.

I¥TRODUCTICON

There 1= a great number of physical objects in nature with
which it is possgible to associate energy, localized in space -
golitary waves, elementary particles, diglocations in crystal
lattice, vapor bubbles in liguid, domen wallg in magnetics etc.
There arises a question: what is the mathemstical structure of
the theory which makes it possible to describe such localized

congigurations in a natural way as regions of high field gradi-
ents, It is clear that such a theory should be nonlinesr. This
question is deeply connected with the problem of nonlinear gene-
raligation of Maxwell's electrodynamics, where charges perform
as localized states with a Ffinite energy (cf.[1]). We kmow a
number of theories of localized states (for golitens [2], par-
ticle~like solutions in field theory [ 3], different interfacial
boundaries | 4-6], dimples on shells [ 7], dislocations [8]). The
aim of the pregent paper is to draw attention to the fact that
all theories suggested have common ensrgy siructure: energy is
the sum of a nonconvex functional of field variables and a qua-
dratic functional in their gradients. Usually, the density of
the energy contains two terms: nonconvex function of field vari-
able and g quadratic form in thelr derivatives. Some examples
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are considered here: rod bending, shell buckling, vapor bubbles,
necking, svlitons, dislocations, elementary particles.

Although almosgt all the above {exciuding rod bending) have
already been considered before such a unification and common out—
look throw additional light upon the subject. In particular, we
discover deep analogy between the dimple edge enexgy and the
energy of interfacisal tension.

ENERGETICAL STRUCTURE OF LOCALIZATION

In this parasgraph we deal with the main conception in g gim-
plified one-dimensienal situation.

Let us consider a scalar field u(x) , x changes in the
segment [—l, 1]. The energy of the field wu{x) has the fornm

[
E- \ Pwax (1)
-2
where F(u) is the energy density. If F(u) is strictly con-
vex, the energy E achieves ifs minimum on the singular mini-
mizing element.

If F(u) dis nonconvex, the number of minimiging elements can
be infinite.

For example funciion F(u) = Auz(u - 1)2 has two local mini-
mums uw =0 and u = 1 with the same values of the energy den-
gity F = 0., Then, all the minimizing elements have the next
structure: the segment [—1,1]isdevided on several intervals
and, at each of them, the funetion wu(x) hae a constant value:
0 or 1.

Let us add the term %‘ et (du/dx)2 to the energy density.
Then the jumps become energetically unprofitable because the
energy connected with a jump is infinite. Therefore all the
Jjumps are smoothed and so changed by continuous transition.

In this connection it ig interesting to investigate the
structure of the gtationary points of the erergy functional con-
gidered.

In order to exclude the influence of boundary poinis we put

Ee ) () + 48 (@2ax. (2)

We'll denote the 1imit values of function ulx) for x =+ eco

and X =— oo by u_ and u, respeciively, For definiteness,
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we now suppose that u_ < u,-.
Stationary points of the functional E (2) are the sclutions

of the eguation

SN} Py _ o (3)

d

as  du/ax® - O for |z|> oo from the equation (3) it follows
that the limit values wu_ and u,_ of the function wu(x) are
stationary points of the function F(u):

o ~

-'—_,_r-ﬁ = O,fDI u = u+, u=1u_ (4)
Further we shall use the terminolegy of the theory of phase

transitions, so we shall say that the system "is in phase state"

u, 1f u(x) = u, and u, - is the stationary point of F(u).

So, one can say with some degree of liberty, that in x =- &
the system is in u_—phase gtate and in x =+ o the gystem is
in u_ phase state, so the funciion wu(x) describes two-phase
state - the continueus transition from wu_ phase state to u
state (interfacial region).

Let us lower the order of the equation (3),mulfiplying it by

g% and integrating on =x , We obbtain

Fu) - 4 ¢ (EH% = n (5)

where h is a constant.
As %% 0 when |x|+ oo from the equation (5) it is seen

that the values of F in the points u_ and u_ are equal
to hj; so,they are identical
Flu ) = Plu) (&)

The equality (6) is highly notable. It shows thalt "coexsis-
tance™ is possible only between phases with equal values of ener-
gy. As it will be shown belew,the equality (6) appears to be an
analogy of the Gibbs condition [9] of chemical potentials equa-
lity in thermodynamic equilibrium (in the theory of phase fran-
gitions the role of energy density F(u) is played by a chemi~
cal potential).

Let us consider the structure of solutions for the functions
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F(u), represented in Fig, 1 a,b,c
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Functions F(u) la, and 1b are particular cases and PF(u) 1o
is & common one. Function F(u) 1a is a result of drawing the se-
cond local minimum of F(u) 1c down in -oe « Function F(u)
Tb  corresponds to the case of equal values of funciion Flu) 1c
in points of local minimum.

Let us consider only nontrivial solutions, i.e. solutions
with u(x}# Const.

We shall begin with case 1a, when function F(u) has a local
minimum in the point u = u, and a local maximum in the point
u = u*. From the equality (4) and the accepted condition ugu

u

it follows that alternatively u_ = u, and u =u, or u-= :)
and a, = u*, or wW_ = u* and u, = u*. The gecond variant is
impossible because of (6). The third one is also impossible: ac-
cording to (5) h = F(u,), so we have the inequality F(u) -~ h =
= F(u) - P(u,) &« 0, which is in contradition with the inequali~
ty % a"(%)z = F(u) ~ h > 0, The first variant cen be realized
and the type of the solution is presented in Fig. 2a.

The solution wu(x) increases from the value wu_ = u, up to
the value wu, , which is defined by the equation F(u,) = Flu),
and then descreases to the value u, = u,. This solution has the
following physical meaning - the system &g a whole is in Uy -
phage state which corresponds to the local minimum of the energy.
The existance of the minimum lying nearby which is deeper (in
our case it is equal to —oo ) "gains over" part of the system
into the phase state with u ¢ u,; the last one is localized in

Space.
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Pig. 2

Function uf{x) ¢an be found from (%) by quadrature. In parti-
culer, for the function PF(u) = 3= - g= the solution u(x) is

expressed through elementary functicns

u =3 sech2§%l 7

We see from (7) that localized state has the width of ordertg.
This alsc follows from (2), because the sclution does not depend
on & after the change of veriables X —» /¢

Let us turnm now to case 1b. For the same reason as in case la
there axe no solutions joining the state wu, with u  and U,
with u' 3 there is a nontrivial scluticn with u_ = Uy,
U, = Vg and its qualitative structure is presented in Fig 2b.
This solution describes the following physical situation: at-o
the system is in ihe phase state 1wy, af + o the system is in
another phase state 1,4 and the funciion u(x) describes gra-
dusl transition from one phase io snother - the structure of in=-
texfacial boundary. The width of the boundary is of crder £
The investigated sclution u{x) can be expressed in terms of ele-

mentary functions for F(u) = %i a %~'

u = th—=

B

In case lc there is only one nontrivial solution: u_ = Uy,
u, = W, max w(x) = u,. It looks just the same as in case Ta. It
ig worth mentioning that the solution analysed does not depend

on the depth of the minimim in point u,,: the only important
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thing is that the value of F in point U,y should be less
than in point Uge

The solutions considered will have Tirite snergy if we regu-~
larize the energy functional (2) by subtraeecting the congtant h
from the energy demsity F (P(u ) = F(u,) = h).

Thus, we have obtained two scluiions: one of them iz monotcne
and the other is not. The first is usually called kink and the
second 1s known as a solitary wave. It can be demostrated.[B]

- that the firat is stable in the sense that it corresponds to the
minimum of the functional, but the second is unstable and corres-
ponde to the saddle point. Nevertheless the golitary wave solu-
tiens are of considerable interest, because they make ii possib-
le to calculate the minimal energy of the fluctuation, transform-
ing the system from one phase state to another.

Until now we investigated one-dimensional case which of couse
18 a model one. In situations of bhysical interest the enérgy

' usually depends on a number of Ffunctions =nd the solution is gel-
dom expressed in quadratures. Nevertheless the main conception
may be used for constructing a qualitative solution in multi-
dimensiond case as well,

ROD BENDING

The energy structure which we have described - nonconvex fun-
ctlon + higher derivatives can be observed in the theory of rods
and shells. Pirst we shall analize the theory of rods.

Let us consider the rod which is gtraight in the nondeformed
state, and let us load it axially. We asecume that the rod is de-
forming in one plame and that the symmetry of the cross-gecticn
ig such that no torsion occcurs. Hence, the kinematics of the rod
ean be deascribed with two functions - the components of the dig-
Placement vector., We denote the longitudinal displacement by
u(x), the transverse displacement by w(z); x is the length
of the axis line in nondeformed state {Fig. 3a).

The measure of rod extension ¥ and the measure of rod bend-
ing 8 are given by the formulas

2
¥ =8+ 12, g = ::g (8)

We do not mention restriciions here which make the uge of (8)
possible.




7

Fig. 3

The density of the rod elasgtic energy QP can be expresgsged
as a sum of the strain and bending energy:

2P - Bsyd + BI QY (9)

Eere E is Young's modulus, S and I are the area and the
inertis moment of a cross-secticn,
Let us introduce parameter ¢ through the equality

E?_= /s

Parameter £ has the dimension of length. Now we can rewrite the
expression for the energy density in the next form:

2
2@ /B = ($2 + J(EMH2)2 ;}'cfg‘g)z (10)

Let us asgsume that the boundary points of the rod are not
fixed. Then the finding of energy stationary points relative to
w(x) 1is equivalent to the same problem relative to & (x) =
= dw/dx; the energy depends on W through & and 49 /ax
only and we can construct admiazsible fumction w(x) , if we
know & (x).

So, we get

e /ms = (@ 10%)2 . £ &2




Now consider the rod under axisl ioad with a fixed linear lon-
gitudinal displacement wu = ax, a 1s a fixed negative constant
{(the rod ig compressed). Let us mention, that transverse displa=-
cemen} is free. We introduce new constant Bo by the formula

a = = % 93 and write down the energy density of the system +
censtraint in the form

L
29/85 = 7(0) + (&2, w(g) - CE N (1)

We see that the energy density contains two terms: NonconNvex
function F( §) * » Possesing two local minimums with equal va-
lues of F and the square of the first derivative of B (x).
The structure of solution on infinite interval has been in-
vestigated above. We consider now the cage of finite interwval,

The equilibrium rod configurations are the stationary points
of the functional
e

(@ ax + 000 - 1, B(5) (12)

o

where Mo and Ml are the moments applied to the rod ends,. No-

te that M, and My should not be equal. From (11) and (12)
we find

F(B) = 81(.{?'&9.-)2 +h’ ES(‘}%& X:Osl‘ =M0,1

It is obvious, that for zero moments the solution can be
written down in the form (Fig. 2b)

9 4
S
x(6) = 2¢ & L(org)n2 17 b
-VBElE |
The constant h, = 44 can be obtained from the condition

x( ‘H}} «-hg ) = 1, If the rod ig thin enough, that means £/ « | '

the integration limits in (12) can be referred to infinity. Then
the solubtion has the form

Box
eg = Bo'un. —i—é’

*) It should be nobed that for a>0 the function F(O) =

= (& + % 82 )2 is convex and the effect of localization is ab-
Bent .
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This solution describes the structure of the fin. When ¢ tends
to zero, the continucus solutions Qi 8«8« Uniformly converge
to the discontinuous seclution with the Jump

-8, =<0
6 -

o, x>0

If we calculate the energy we obtain %ESE@Z,

It is obvious that all the energy is concentrated in the fin, pe-
cause in the region with zero curvature the strain energy is also
equal to zero.

The kinemetic constraint Tor the function u(x), introduced
before, can be rezslized with the tielp of a simple physical model.,
Let us fasten to the points of the rod (with the help of hinges)
& great number of rigid fibres and, afier the rod is compreased,
we introduce fibres inside cylinders as is shown in Fig. 3c. The
fibres slide inside cylinders without friction. If the number of
fibres is big enough, we can describe such g situation using the
theory considered.

The kinematic constraint, of course, is significant for the
appearance of localized states. It is well known that the Euler's
rod has no such states. The reason is that functicn u(x) , which
wag fixed in considered model, varies and has to be found in the
case of Euler's yod. It tunes in order to minimize the energy and
"softens" the nonconvexity of the strain enexgy, making localized
states impossible. The classical problem without constraints can
be solved in exact way and the energy minimum is realized at the
golution

e,
u = «--DJ:Q:"L for 904.\&"-

with the energy ]/8 Egﬁq{’/ and W= 4 (g‘o > nx ___.-

w=-Lfrx - M_l 6)5% for 9"\]_"{,“
with the energy é:ES (9b-*35§ q%gL and the last one bi-
furcates from the trivial fizst one at &, = JE,T%% . We gee
that in both cases the localization is absent. That is algso true
for the constrained rods with &/1 ~ 1.

In the follewing example, kinematic constraint has not been
put from the "outside", but appears in a natural way from the
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geometrical features of the congtruction.

DIMPLES ON SHELLS

The energy structure, considered above, can be found in shellg
theory. We show that the strain énergy and the bending energy
correspond to nonconvex and differen
tively. The suggested analogy intrody
the structure of the dimple boundary.

Let us write down the expression fo
8ity of a shell, To simplify,
sphere with radius R

tial parts of energy, respec~
ces the problem of finding

r the elastic energy den-
Wwe consider a shell which is a
in nondelformed siate.

It's gection accross a meridian is pPresented in Fig,
zero value of the angular meridianal coordinate o cory
to the vertical dixection, & bein
direction.

4a, The

esponds
& increased in the clockwise

(wse-cosotﬁ"

y )
L4
& /
i@
—— _—_—d*_ _____
=4
_.____.—.OZ_._._ — —

Let us suppose that the deformation ig rotationally symmetric.
AS a function, characterizing deformed state of the shell, it is

convenient to take 9‘6%) » where § - is the angle between the
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horigontal direction and the tangential direction to the deform-
ed middle surface, & can be used as a Lagrange coordinate of
the meridian points {see Fig. 4a). By our condition, the angleB
increases when the tangential line rotates clockwise.

If the meridian deformation is nonextensional,the function §{l)
will be the only cheracterisiic of deformation that we need (up
to rigid rotation). If the meridian is subject to exfensions we
need ancther function o characterize the deformation; fox guch
function we chooge the horisental component of displacement di=
vided by R , ufel) . It is a simple task to calculate the gtra-
ins ¥ and X,‘ and the curvature varistiona Ak and A k'i
of the meridian and of the parallel, respectively, in terms of

p{d)and ul(eo ):

= e——p————

211 oA

u' - cog B  + cogol |
\0}'"— coE () S K“ _
1, g/ 15100 - sind (13)
Akz'ﬁ(ed”; k=g BiN o

opime indicates differentiation with reapect to o .
The elastic energy of the shell & is given by the formula

& - & Pdo
":t‘ELLR:L (14)

A-y*

D=

L .
{K’%X}»f AVYY, + 1&_2 (_mcj-+ s+ 2V Ak Arb]g;m

where h is the shell thickness, ¥ - is Poisson's ratio, E
is Young's modulus.

The 1imits of integration depend on the shell geometry and the-
ir values are not important for us. We assume for simplicity that
—dp4 e oy ((clo~1).Ome can think thet the deformatlon is clus-

ed by a consentrated force,applied at the shell's pole.

The expression (14) is far from being simple. Let us try te
gimplify it. We shall show that for a deformation state localiz-
ed in the neighbourhood of an angle o, , the expression (14)
can be changed by:

2 (48N ]
QP - -TEhR‘?Im + & (m :lsmo{* (15)




The dimensionless bParameter § is defined by the equality

el k’?"/lik‘i (q-.‘\)’-) . The functions wu( o} and B‘("Q satisfy
the nonholonomic congtrgint

u!' = cosf - cos ol (16)

If we "remove" the prime in (16), i.e, if we et uw = cos § -

- CO0S Ay , We obtain the familiar energy with the function ®(§ ),
shown in Fig. 4b. The derivative in (16) changes to some extent
the character of the nonconvexity; however, as it will be geen
below, localized states st1ll appear o be possible,

Wie give now a proof of formulae (15), (16). In
state, the functions to be found u{ o) ang
distance of order ¢
parameter E"‘

the localized
6 (d\) vary at the
» hence after the differentiation the large

appears, so we can investigate the Tunctional (15)
by the variational-assymptotic method [10].

Let us fix the function 9(0() and look for the function ulex ).
In accordance with the general scheme of the variational

—aggynp—
totic method, we keep in the ener

gy the main terms, containing
u(al), and the main interacting terms between u( ) and B(OQ
As u' >>u , we have

- .__Eng? 1
T =51 COSEQ

(u'? - 2u'{cos § - cos o ))

Varying u', we obtain the equality (16),

Denoting the gsolution of the equation (16) by U, , we pre-
sent u(el) in the form

o T (17
wheie Wy« U, . Substituting the expression (17) into (14) ana
keeping the main terms, confaining g

1+ end the main interacting
terms, we get

. t i
2 u u
- EbR -V _ 1 2 _2unu 1 s el .
LP —-—1_\?1[0—7—05 Bu{ t_.0°1 +2vy o5 g 1o o(_,] (ig)
gin dx—

The second term in (18) may be omitted in comparison with the

third term, because, u.'l >> 9y o Varying u,, we fingd
T

. __ 9%
cogg

S1h oy (19)




Substituting again (17) into (14}, we see that the main ferm
in the strain energy coincides with the first term in (15). The
proof is finished by omitting 1 in the expression for & k (be-
cause of ©/>>1{ ) as well as A k, in comparison with %/ (be-
cause of §7 >> k).

Now we turn to the analysis of formulae (15) and (16}. We
guppose that the width of the localized atate is far less than
oy s B0 the localized state is placed far from the shell's

pele. In this case we can consider of as a formal variable,
changing at the whole axis: -oe < dl4oo, So we can find the loca-
lized states by locking for gtaticnary points of the functional

i 2

1:3[_‘.}_2.?_. + ‘69'(%3)lsin o, a o (20)
sin“ol, .

- oo
with the Functions u(d) and 5&(00 gsubject to the consiraint
(16).

The finitness of the functional I involve the conditicns
/=0, 4> 0 when |d|-= o0 . So, according to (16),
cosf}‘dzim = cosol, and we have‘a‘dzimz-io{*“ Thig
means, that the lccaligzed state has the form of & circular edge
(Flg. 4¢) and can be considered in the first approximstion as an
isometric deformation of the sphere: the upper spherical segment
is reflected with regards to the horizontal plane. This fully
coincides with the theory of shell dimples due to A.Pogorelov[?]

A gualitative form of the dependance of 5 wupon o is presen-
ted in Fig. 44.

In order to obtain the edge energy as function of the parame-
ters ¢ and of, , it is convenient Yo make a change of variab-
les u = u, B> ¢, d—> L using the formulae u = &%,
8=c & , of = bx. The values of the constants a and b
are choosen in a special way o make the integrand of (20) in-
dependent on ¢ and oly and the constraint (16) independent
on ¢ and oly in the limit of small Ky . It is easy to find
that we have to set

a:bo(i cosdy » b = ,3_17_5(_%*:_

Under this choice of the values of the constants the minil-
mal value I of the functicnal T will be equal to
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. 5
D= e, Vagd, cos o, I, olp) (21)
where I.(oly) is the minimal value of the functional

+ =0 .
ne | @ @@ (22)

gsubject tc the constraint

a3 _ 1 (cos B ) (23)
0{3;' GOB ol .
The constraint (23) in the limit oly - D y corresponding to
shallew shells, takes the form, independent of Ay
E-la-H (24)

Tending also oy to zero in (21) and taking into consideration
(14}, (45), we obtain the final expression for the edge energy:

& = o e® g7’ 1, (0)

The equivalent expression was obtained in other terms in the pio-
neer work by A.Pogorelov [71

The width of the localization region has in terms of %he angle
variables the order of g ~ % In the terms of arc lenth of the
meridian the corresponding order is RVE ~ W

This analysis makes it possidble to get the next corrections
for the energy with respect to e + To perform this we have to
calculete the lower limit of the functional {(22), when the con-
straint containg the first correction term with respect to K

E-30-H g ol (-8 (25)

Let us find the order of maegnitude of the energy correction
term. Presenting the sclution in the form u = u, +u,,

where u,, U, - the Solution of our problem for Gy = 0, and
Uy << ug, Gy <8, we get
+ oo B- 9 9
dUp dty 2,,09,,2 .
I.’ = I‘](O) + S E(UDU.T + = E—)dx +S (u1+(E-1-) JEx —w inf (26)

—o Vi ‘9‘1

i~

+o0




where 10, and 9,1 satisfy the linearized restrictions (25)

- 2 2
du, = - 9091 ‘i’ﬁ‘ O{* (1 - %) (27
El

The Buler's egquatlons for the varlational problem (22}, (24)
have the form

_ 4 dg |
2'{10 = .a_il . )\90— d‘xz 0 (28)
fere A ig a Lagrangean multiplier for the constraint (24). Be-
cause of (28),the first integral in (26) does not depend upen u,
and 94 H

2

.- \ M oy + B,
- 8 =c ol (29)

S }\ ol ¢
—wa
Therefore the problem of finding uy and 91 comes to the mini-
mization of the second integral in {(26) subject %o the constralnt
(27)+ It is convenient to meke the change of variables: u, =o(* Uy
9= oi,. Gz_Then there appears the multiplier o{‘* in front of the
second integral in {26), though in the constraint (27) parameter
o{y disappears, Hence the problem of determining wu, and §,
doeg rnot contain the small parameter and the second integral in
{26) has the order O(f . Thus, when {, is sufficiently small
the function I, (o{,,) has the asymptotic form

Iy (d\«-\ = 1.(0) + co{i'

According to (29) the constant ¢ can be found after we =mcive
the problem (22), (24), correspending to case of, = 0.

Let us estimate the error of the expression g2 @'z for bend-
ing energy. Because of §'= °‘* d.e/d:c %w@ the replacement of
( 8 - 1) by 47 brings us to error of order & cl,,E in compari-
gon with unity {(we note that the integral of the term, linear on
g!, vanishes), The same error is due to omitting the bending
energy of the parallel ( A k, )2, The quantity € oy X nas the ore
der of hR/r , Where r 1is the digtance between the fin and the
ghell axis. So, our expression ig admigsible if ¥ = hR .

The position of the localized state (of the fin) can be deter-
mined by the procedure, suggested by Pogorelov['?]: we have ifo




8 to be small enough
For the messures of gtrain
sions

in the boundary-layer which appears.

and bending we have simplified expres

-~ T ?) = U1 _ 1 / _ 1 9“&
Y =u *2(9“’( )X», o’ "k'ﬁ(e'o» Ak1‘ﬁ‘"ﬁ’.{‘~
For the integral it ig possibl

e to take again the infinity
limits, It ig convenient to intyo

duce functien ¥ instead of
G(JB: 0 = ol + Y . Therefore the energy is given by the formuls
oo

& =7 ELR? 3 | ot Calep (oY Log (a2 4y

Here & is determined by ¢2 = n2/1sg2
for simplicity, Caleculation of th
ving of the system of two ordi

u(el) and W(g)

5 We have also put Vo
¢ energy comes now to the 501~
nary differentigl equations for

uniformly distributed nermal log

d p. The botentiagl energy due
to the load p ig given by

olg

A= fp-pRBS singo( sinf dof
v

For simplieit

¥ we limit ourselves with the case of shallow shell
(cto << {),

For this cagse let us introduce

the new qQuartity @ (r) by
the formulae

gin § o ¢ + %), g0 cos § ~ ~-%( e + %)2

and also
z L8
{ ~ ‘oL = "- _g...'i‘ —
Here r{ol) =R ginogl = o ~ 1g radial ¢ylindrical coordinate,
Prime denotes differentiation wilth regpect to r « It 1s clear

that 2 (z) = - W'(z), where W(zr) ig vertical deplacement of
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the shell. The problem of determining equilibrium configuration
comes to the finding of the extremum of energy functional
o 5 g /
_ _Eh (wd L nn2  2YuX 2, 2Yes8
I-,]__y,_g[(h’ B SR §(g FLE 228 )x
0

2 2
. a&%.ill pE-( ¢ + 5 ar (30)

where r, = 7{ %p)s The trivial equilibrium state is given bj a
constant radial and vanishing tangentisl displacement:

_.__P_U'"’ LE =0

To investigate other states of equilibrium i1t is convenient o
put uw = ug +W , e=¢ + € . In terms of new variables u(r),
® (r) = § (r)% the energy can be rewritten in the forms

h\)—[ (i _525—3 2S(§l‘+%){ﬁ' +\)%);_3_dr+
e o3 o o
+ --h2 S%’.’i rodr + g 55(%—1«‘% Yoar + 2——-————1 S r2dr  (31)
1oR° ) v ANE) " 2BHR ) -
where we have extended the upper integral limit to infinity,assum-
ing that buckling is concentrated near the pole and boundary ef-
fects are not essential.

In order to determine the structure of the energy we use the
simplifying assumption going back to von Karman and Tsien [?T]:
the deflection is vertical, i.e. parallel to the sgxis of symmet-
ry. Such an assumpticn can be regarded as a kinematic resiriction.
Karman-Tsien assumption is incorrect, because of doubling the
Euler critical lcad [12}. Hevertheless we think it to be instruc-
tive to clarify the energy structure and to obtain st least qua-
litative results.

Thus, setting u=0 in (31), we find

2 { (@ eret)dr

2
=.1272 is small parameter and
12R

%l Nt L5 \??',.12 321
-+ % + Eﬂ—Tﬁg-—— b o
2 RE 2E
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is nonconvex function of ¥, » Parametrized with the load T .

It can be seen that the Snergy has a familiay structure, con-
talning nonconvex algebraic term gng quadratic term in derivativ-
€3. "Kink"-gplution Corresponds %o g dimple with edge far from
the shell axig: the“solitary wave-golution corresponds to a dim-
Ple in the vieinity of the ghell pole,

The method of dimple edge energy caleulation can be generaliz.
ed in a natyra] way for nonspherical shellg as well,

INTERFACIAL BOUNDAR TES

In the theory of rods ang shells the bending energy, which
contains second derivatives of field variablesg, ig important in
& number of broblems, so the necessity of the including it into
the Gnergy expression ig commonly accepted, Alternatively, the
theory of interfacial boundaries, which we are going to congider,
seems to be the only example of esgentiagl application of the mg-~
terial models with highenr derivatives,

In classicg] theory of heterophase equilibrium surfaces of ma-
terial characteristics discontinnitieg deviding the coexisting
phases are introduced. It is suggested, that g surface of discon-
tinuity Possesey some energy. The surface position in gpace is
¢onsidered as an additional independent degree of freedom, Alter-
native way of Teasoning,introduced for the first time by van der
Waals [4], considers interfacinl boundary as a thin layer of son-
tinuous change of parameters. In order to describe such g layer
van der Waals used the weskly nonloeal model of continuum with
the mass density of free energy of the Fform:

8P (e, v¢T)=¢gF (8,T) + L e2 (go) (33)

where € ig the mess density, T ig the temperature, £ is g
small parameter. For onephagse liguids < ?f(eff> is a convex
function of € , =0 the second term in (33) appears to be non-
eagential, If the liquid exists in two different pPhase states,
the function g F(eT) has 2 convex branches, determined, gene-
raly Speaking, on g noninteracting infervals of the g vari_‘—
able. Van der waals was the first who Suggested to uge Single
nonconvex function Q F(?{f) on the whole interval of denpiti-
eg. For example, in the cage of van der waals! gasg (liquid),
F( € , T) has the form
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Mg,D-= J} (T} - a @ -RT 1n(é- - b) (34)

where a, b, R - axe positive constants. Qualitative appearance
of the Function P (34) - when temperature is sufficiently
small - ig shown in Fig. 5.

F

Piga 5

Van der Waals' theory contains all the ingredients of the
clags of thecries being considered: nonconvexity + high deriva-
tives,

The states of heterophase equilibrium in the domain V under
a fixed external pressure p can be found from the equality of
variations of free energy and the work of external pregsure:

v cgrg ,m+ EOHav <-psV (35)
N;
Here it is supposed that the temperature T js also fixed.
Tt is seen from (35) that equilibriui states are the station-
ary points of the functional

Hg‘? .T3+ +iel(vg3]<hf (36)

We call the function v‘(g » Py T) = F(Q, T) + p/pchemical po-
potentisl®). For e liquid with function F(Q, T), shown in

¥) Tnie fumotion has mesning of nonequilibrium chemical po-
tential; usually its equilibrium analog: (p, T )=
= mén. (&, by T) is named "chemical potential®.
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Fig. 5, it can be find such P = p* that the chemical potentiagl
r‘L (2, p*, 7) woulg have two local mirnimums on Q with equal
values of Vw :

P"( g-&' p¥, T) = rL( Q** s P*, T) = f-to

I¥ is convinient 1o change the functional. (36), subtracting
the constant ’v{oM » Where N ig the masgs, contained in the
volume V , N = SV 8 dv. In the cagse of unbounded volume vV = R”
the integral

§5 [ S (e, pxT) ~Mo)+ L gr (ve)"] o

€s Qy  or €,y at infinity,
If the density deperds on the single coordinate AL4=X  the

tional
S [g(}u(g, Py 1) - o) b (S22 g (37)

©

S ¢ 290" P*, (P + -g—) \

g=§'ﬁ,gﬁ¥
and correspond to the egquality of bressures and chemical boten~
tialg in coexieting phages.
How we turn to sphexrieal equilibriun configuzations, being
the stationary points of the functional
ke -

4 & [g(rc( €, p, T) - Jo 3 + ;—('%i]rzdr (38)

For the convergency of the integral (38) we put r(o = /»4- (e, ,P}'T‘)
where €_ = (),

It is interesting to consgider the stationary reintg of the
functional (38) for all positive values of external bresgure p .,
There can be defined three singular valueg °of p : lower criti-
cal pressure Py, critical bressure Py and upper critical
Pregsure Py Py < Py € By« They are determineg by following



conditionsg: for bp < p; ‘the function t«, (€, py, T) has the
only minimum (at the point Q_,‘), for p = by it appears an addi-

tional stationary point €y for p> p; the function

H,(Q s Py T) has two local minima at the points Q, and €,, ,
foxr p = p, the values of at the points %y and Sxx are
equal, H£9*§< ﬂ(?ﬂ)for D > Pyy 2and the local minimum €y
dissappears for p > p, (Fig. 6a-g).

- @ ¢ OF ©

&<P<RL‘ P=Pu P>Pu

. . Il ’ L

Although the integrands in {38) and (2) distinguish by the
multiplier 12, the stationary points of (38) and {(2) are simi-
lar. So, we have:
for p < p; there is onephase state g(r)-_-g*
for p; £ P <L Py there is nontrivial staitionary point with
gog= Q*)ﬁg°= 9(0) > 9*

(nucleus of vapour)
for p, €D <« Py there is nontrivial stationary point with
Cee=8 , 9, « <,
{iiquid nucleus)
for B> Py there is onephase state S(¥)=Q,,
To show that we need %o investigate the equation

2t 1. Ldfe L 248
Fle(ppd]- €228
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0

With the natural boundary conditions deQ /dr r=g = 48 /dr r= o O

Because d2g /drz‘u,= O as well, the equation (39) yields
"‘b[(}i.(g, Py ) = o) /2€ =0 for = 00 . It can be
seen, that this condition connects §  and p:

e aF =
g%—gng

We have to omit the investigation of (39) go ag the demonstrg..
tion of solutions instability Pecause of Yestricted Paper volume;
Tor details see r13, 14]. We note only that integration of (39)
gives

p(0) = p(oe) = S e (40)
[+]

where p(r) = Q% mF/ag l?=2ll‘) . For states, localizeg near r =§ ,
the equation (40) ig similar %o the Laplace fornulg

2(0) - ploe ) = &F (41)

From (40) and (41) one can find the expression for interrg-
cial tensjon

It is obvious that the existence of interfacial surface fen~
sion is a manifestation of norhydrostatic nature of stress ten-
sor. It can be shown that the equation (39) ig Just an integral
of the standard tengor equation of elagtic equilibrinm [13]. We
have to omit the discussion becaume it needs too much technic
of nonlocal continuum mechanics (gee [13~Té]).

NECKING IN FIBERS

If a long polymeric or metallic Tiber is stretched along the
axis, a gimple homogeneous extension may evolve into a nonhomo-
geneous state in which the fiber thins down in one or more
short reglons, i.e, necks appear.
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gquite different physical processes, neverthelegss we suppose that
the first appearemce of the neck is due to nonconvexity of the
energy.

Tet us consider a circular slender cylindrical rod, having ra=~
d5us a and length 1 in initial nondeformed state. We assume
that the deformation can be expressed in terms of the radial dis-
placement u(x) and the displacement W{x) along the axis:

N A
=z +Wx), r=x1+ulx), b-9

Here =x, I, 9 are cyllndrlcal Lagranglan coordinates in the re-
ference configuration and x, % 9 - coordinates of the rod
points in deformed state; digplacement wu(x) appears to be dimen-
sionless.

Components of the strain tensor 8“ depend ozn r, u, ut, W',
thus the density of the elastic enexgy can be thought as a known
function of r, u, u', W'. Averaging the energy along the cross-
section, we obtain

DPu, v, W) = g:Eé S ¥(r, w, v, Wvar

& o

We suppose, that one end of the rod is Tastened: w(0} =
Ww{0) = O, the other end is loaded with a tensile force I, and

the lateral suxface is free.
Then the equilibrium configurations are the stationary points

of the functional 3

%@ (u, ut, Widx - TW(1) = BYP (u, u'y, W)~ PW']dx (42)
0 0

Tt is obvious that in order to find stationary points with
respect to W' we have to minimize the integrand in (42) with
W', We denote through P (u, uv') the function

<E {(u, ut} = mln( P (u, u', W) - "}
3o we need now to find the stationary point of the functional

S @ {u, ut)dx

1}

with respect to functions u(x), u{0) =
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It is reasonable to suggest the following approximation for

P (u, ur)
P, ur) = pu) ¢ gt 2
where F(u) = P (u, 0), In linear elagticity
P (u, ur, wr) .—.%(211 + W) 4 rt.(auz + W1y 4 jff r4,u'2 (43)

Here N\ and Ff are the Lame's moduli. We see that the function
F{u) is convex, sv the localization is absent. To obtain the Qe-
sired effect we need to consider nonlinear elasiie material. The
situation, studied above is reached, if the energy V( &€y ) and
the load P are such that the function F(u) has two local mi-
nima. The formation of the "nueleus" of the new phase in a homo-
geneous state u(x) = Uex 18 possible when the values of ¥ in
Stationary pointg Uy and u,, are different ang Flu,) < Flu,,)
for wu,<wug,. Such configurations are characterized by the re-
glon of order where the radius of the rod will be less than
Vs

Let us rote, that the considered model Predicts the first un-
stable stage of neck formation,afterwards another physical mechse
nisms come forward (plasticity for metals), which make such gz
gimplified conservative model inadequate.,

The ideg of taking inte consideration nonconvex functiong
F(u) 1is due to Ericksen [18], higher derivatives were introdu-
ced recently by Coleman [19]. Autman [26], investigating bifureg-
tions of the trivial solution, obtained an analog of the upper
eritical load fox this problem.

SOLITOS

The énalogy between solitons and nuclei of g new bhase is not
sufficiently complete because the featuresg which characterize
solitons are essentially connected with dynamics, Nevertheless
in the theory of solitons we meet +he Same giructure of energy.
To make this clear, we consigder the well-known Eorteweg-de Vries
equation [2] describing, for instance, surface water waveg

?t + 6"]"]!( + V,ux:O
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After the change of variables q==%§ it obtains the variational
structure

\’?xt + 69, L?xx ‘*‘Wxxw =0

with the Lagrangian funetion YZfl

N ST A

Po Find the stationary solubtions, moving with the gonsbant speed
¢ (we take ¢ > ©0) W =7V(x - ct) we have to solve the equa-
tion with the Lagrangian function

1

o 3, w2 .0 2
j\ = VX + chi + =V

2 XX

The lzst one can bhe rewritfen in ferms of u= VX

= T 1,2 e den® - w2
A= T + 5.5, F(u) = zcu” - u
We see, that N nas again just the same structure as we have
discuased sbove with the function F{u) presented in Fig. la.

DISLOCATIONS

Let us consider the infinite cubic atomic lattice. We can
chift stoms of half--space along the crystal plane at a distance
‘b (lattice parametexr). It is obvious thai the displaced lattice
will coincide with itself so our transformation is a symmetry.
Lasume now that we shift only part of the half-gpace. Then a dis-
location appear - a region of transition from the domain, where
displacement takes place to the domain where éisplacement is ab-
sent. We denote by u(x) relative displacement of atoms on both
sides of the sliding plane. The elasfic energy of digtortion of
the upper and lower atom rcws ig due to interaction of both sides
along the =zliding plane. It is clear that this iz a periodic fun-
ction of displacement u(x) with pericd D .

The equilibrium distribution of displacement u(x) cen be
found frem the equaiion, suggested by Peierls|B|:

b

2% E <
- S d—:;%—dg + 31%': = singgi {44)

-n
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where § is exterior tangential stregs along the sliding plane,

w = §T1$E7§;7, G 1s shear modulus, Vv is Poisson's ratio,

The integral in the 1.h.s. of (44) is due to long-range elastic
interaction of a distorted region with the other part of the crys-
tal. The r.h,s., is related with nonlinear interaction of rows of
atoms, which is sz short Fange and ig localized

in the vieinity of
the siiding plane.

The analysis of the equation (44) shows that we have again the
same energetical structure: algebraic term connected with perio-
dic (noncenvex) interaction energy and elastic energy,

repregent-
e¢d by nonlocal term.,

Contrary to the exXamples examined above,
here we meet for the first time a strong nenlocality, therefore
Euler's equation appears tc bhe integro=-differential,

The simplest nontrivial solution of (44), the kink, (in the
case of vanishing load)was given by FPeierls [Eﬂ:

n =2 arctgX
W x

The size of the dislocation core{of the energy localization) is

of order

When §+(Q there is s familiar nongtable solution of "gpli-

tary wave" type [221, which corresponds tg the pair of disipea-
tions with oppogite Bigns

u = H"J%‘ (arctgL'r:LVl—- - arctng'“l-) + 2—%%

w b
where 2”==§Q§ is the distance between dislocations. The parame-

ter is related with the exterior lcad sinb = ZIS , WE
have, also, M = 22/cosh , =® /sin B . The solution col-
lapses if cos&ra O, When § = G/2% spontanesus formation of

dislocation pair takes pPlace. Thiz stress value correspond to the

theoretical shear regidity and appeare to be an analog of the
upper critical load. We note, that the application of the criti-
cal shear stress comes to metastability of the trivial configura-

tlon, thus we can interpret this solution as s mucleus of a
phase”,

"new

The equation (44) permits us 4o describe in a qualitative man-
ner the structure of the dislocation core. Being integrodifferen—
tial i% is too compliceted to analyze. Therefore there have been
aftempts to restzict to considerations with only weak nonlocali-
ty. The most succesafull ia the model of Frienmkel zng Kontorova
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[233. In their model the equilibrium configurations are extre-
mgls of the functional {(for = 0):

R
2
auy2 _ b _ 27 W
\ (HE) 5;g-(1 coss—) dx
—on
where 1 = E /2 E dis Young's modulus. The Euler's
G ’ : .
equation coincides with the well-known Sin-Gordon equation., Kink
solution in the framework of this model can be expressed through
the elementary functions
y T Tx

G (e = - —

glg— + —g) = expl 1)
Thig is not the place to discuss the advantages of the considered
models of disloccstions. We have to peint, however, that there is
ancther interpretaticn of the Frienkel-Kontorova model which is
related with the concept of a kink on a dislocation line {Eéland,
of course, with the analogous behavior of this objects,

ELEMENTARY PARTICLES
It ig well-known that the equations of electrostatic scalar
field can be obtained from the variational equation

s&.f\. av = 0 (45)
N

where _l\-;'@\ﬂq‘ s @ is a field variable. Particles are connect-
ed with singular solutions: spherical solution of (45) is given
by Y~4/V where r is radial coordinate. The energy of the
congidered singular solutions is infinite thus there arise appa-
rent difficulties in physical interpretations of such solutions.
One way to overcome this is to add the term.Wf(qﬁ to the Lag-
rangian, We can't achieve success trying to preserve linear equa-
tions, i.e. taking V = mz\{L ; the solutions continue to be gin-
gular: @~ %exp (-myr)} though "long range" action gives place to
"short range" actlon. To obtain particle-like solutions with fi-
nite energy we need to add an essentially nonlinear term, for ex-
ample, V = LQ‘?-C\.?_ ¥, 1 A8 we know vgolitary wave" like solutions
are unstable, so the problem can not be solved in this way and
there have been attempis to construct models of elementary parti-
cles in terms of high order tensor fields {j]. Nevertheless the
model of mscalar field theory with the Lagrangians, similar to
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A= (I 4 (9 a*) » are widely used for qualitative consgi-
derations of such Phenomena as spontansous symmetry breasking.

MECHANISM OF PHASE TRANSFORMATION

We have begun with considering of the function F(u) having
local minima., However, from the presented examples it ism clear
that F{u) usually depends on some parameter p and obtains lo-
¢zl minima only under special values of p , As » rule, energy
Tuncticnal has the Tollowing structure

£

I = S Flu)dx -+pS udx

ot a

The function P,(u, p) = F(u) + peu has the above property if
the condition of the convexlty of F(u) is violated and the de-
rivative dEF?/du2 changes its sign twice *).

The most typical dependence of ﬂ(“’P} on the parmmeter p
iz the following, We have three different intervals on p axis:
D <P B 2P < Pys P> D When p « Py the function has the
only minimum, at p = Py there appears the additional stationa-
ry point. In the interval Py 4P < p, the function"“l (vu,p) has
already two local minima and their depths are equalized at D=D,
where pl <Px < Pye Wher p> p, we have again only one statio-
nary point, the second vanishes at P =Py The seguence of trans-
formatione of the functionl{ (u,p) (Pig. 6) can be characterized
in terms of cusp catastrophe. In mechanies the quantities P,
and P,, are called upper and lower critical loads respectively,
in thermodynamics they are called spinodal pointa,

We come to the following phyéical picture, If p « Pl the
system can be found only in the phase state Uyue When p = p
there appears another phase state Uyy Which is unstable. After
P > p,; the newly formed phase becomes stable with respect to in-
finitesimal disturbances, being unetable with respect to finite
disturbances. Such states are called mefastable. Absolute mini-
mum iz achieved at u = Uy Up to the value of p = Pi» when the
energies of phases become equal. The subsequent increasging of p
leads to the shallowing of the minimum, corresponding to u = Uy

*J This' let us formulate the mein conception in the corncise
Porm: nonconvexity + higher derivatives.
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and it vanishes at p = By It is cbvious that after p » By the
only u = u,, phase can exist.

If we increase 7p, the phase traznaformation from state wu, to
the state 1., will occur. We shall consider the process of
phase transformation in some detail., Let us assume that the sys-
tem is in homogeneoug state u =u, when D <« Py e After p > Py
it appesrs additional ability to jump into anothex phase, though,
in the absence of fluctuations the transformation into 1,
phase can cccur only after we go beyond the upper critical load
p,» iee. after the state u, becomes unsbtable (strategy of maxi-
mal delay), Classical thermodynamics, assuming fluctuations, ac-
cept as a transformation prsssure the value p = p,, which cor-
responds to the equality of phasesrenergies (Maxwell's strategy).

Let us turn now to continuum , characteriged by the function
u(x)e It is obvious that simultaneoug transformation of all par-
ticles from one state to another is enegretically unfavorable:
the necessity to overcome the energetical barrier causes signifi-
cant energy losges. It seems that this fact was understood for
the first time in connection with the investigation of phase
transitions, fthough analegous ideas can be met in the theory of
diglocations., The transformation from one phase state to another
realizes through the formation of critical nuclel - the localized
states of the new phase. Corrssponding nonhomogeneous solifon
configurations can be modeled by the saddle point of the energy
functional.Such solutions of the Euler's equations describe the
minimal epergy of fluctuatiorn, which transforms the system from
metastable state to the stable state. Critical nuclel apparently
unstable: the suberitical nuclei hsve gz tendecy to collaps while
for the owvercritical nuclei the forgoing growth is energetically
favoerable: such growing nuclei provide the transformation of the
gystem into the new phase state.

Criticsl nuelei corregspond to the localized solutions of “mo=-
1litary wave" type. It can be shown that by use of suggested ana-
logy we can describe on equal groundg such different processes as
the formation of vapour bubbles in overheated liquid, the forma-
tion of dimples on shells under pressure, the formebtion of dislo-
cations in stressed crystal etc. We shall limit ourselves with:
a) liguid~vapour transition, b) shells buckling.

In the theory of liquid-vapour itransformation the specific vo-

lume V corresponds to variable u, F 1isg specific free energy,
ru =~ i specific Gibbs'! energy or chemical potential, parameter
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P coincides with the exterior bressure. The analysisz of the
structure of critical nuclej.EG, 15] provides the following pic-
ture of transformation. When p <.p1 only one phase 1 ¢ vapour)
is stable and there are ne nontrivial solutions of oux variation-
2l problem. When Plé P< py there appears metastable phase 2
(liquid) and we have nontrivial solutions of "zo0litary wave® type
Gorreeponding to vapour nuclei in iiquid phase. Phase 1 stay sta~-
ble and corresponds to the abgolute minimum, When D = p, the in-
different equilibrium liguid-vapour with flat interfacial bounga-
ry (kink solution) is possible thus the transition from the phase
1 to the phase 2 occurs through the formation of the critical au-
cleus of infinite radious. When Py <= P < Py, vhase 2 becomes pe~

tastable, In this interval of pressure nontrivial "
solutions

solitary wave®

that model I1igui@ bubbles in vapour are possible., Effec-
tive bubble"radious“so as the snergy of cxitical nu
to zero wvalue when pregsure increases from P
Tke value of Pressure p = p

cleus diminish
=p, top = Py,
2 Corresponds to the state of absolu-~
te instability of phase 1. After p » P, eonly phase 2 iz stable
and nontrivial solutiong are zbgent.

Thus, phase transformation is possible in th

¢ following intey-
val:

Py <P < Py Having calculated for all of these bressures
the energy of the critical nucleus we can estimate the degree of
stability of the equilibrium states.

Let us turn now to the dimple formation on the shell under the
compressive exterior Pressure p . The dependence of the deflec~
tion on the load is Presented in Fig. 7. When P> py there ex-
ists buckled equilibrium state, which differs significently from
homogeneously deformed initial state, When p = Py both equilib-

rium states have the =ame energy and at p = P, ‘the initial sta-
te becomes absolutely unstable,

P
A

Pu. [ ] C o=

DEFALECTION
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The pregsure Py ig called the upper critical lcad and il can
be caleculated in a standard way from the linear theory (see[ES]).
In the literature on elastic stability it is usually assumed

that, when the lvad p irncreases its valus, the system evolve

to the buckled states through the OCABC parth {Fig. 7) and when
p decreasesg ~ through the CBDEF parth. As we have already
geen, the most important are not upper and lower critical loads

tut rather p = p,: the loss of stability occurs not after p = j I

but after p = p, (see also [121).

The egtimation of the lower critical load p; so as the P,
seems to be one of the most important problems in the theoxry of
shells, The analogy of the buckling phenomens with the process
of nuceabtion makes it possible to suggest the following buckling
procedure. The transition to the buckled state is poasible when
Py < P <Dy and ccours through the formation of the critlical un-
cleus 1.e. the dimple, corresponding te the saddle point of the
energy functional. The energy of such dimple characterize the
energetical level of finite disturbances bringing out of the ini-
tial state of equilibrium, If we have p ~ p, Uthe estimation of
the "eritical" energy can be made by use of Pogorelov's theory.
The equilibrium configuraiions corresponding to reflection of
soms spherical segment appear to be unsteble, thus dimples with
the overcritical radius continue to grow and suberitical dimples
vanishes. This coincides with the picture of phase transition in
liquid and we obtain analogy between the dimple edge energy and
the energy of the interfacial tension. This analogy permits to
suggest the new understanding of upper and lower critical lecads
and to yield the investigation of degree of stability to the prob-
lem of saddle points of the energy functional.

CONCLUDING REMARKES
The examples presented above show the identity of the mathema-

tigal siructure of the energy functional leasding to the localiza-
tion of the energy in quite different physical situations. The
wain conception concerning energy structure can be repeated in a

concige form: nonconvexity + higher derivatives. If the ensrgy
of homogeneous states has a number of minima, then the equilibri-
um configuration is not uvnigue. Regularization can be achieved by
the introduction to the funectiongl of additional ilerms with the

derivatives [26}; in all of our examples this was done according
+p the additional reasons of physical characier. The existance of
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higher derivatives in the equations e
Pearance of states with iocalized ene
ted the following bropogal:

[T Vo o s TR I, Y M B o

quilibrium leads to +he ap—

rgy. Thus it can be formula-
if a abnconvexity appear, then

one

nustlook for higher derivatives,
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