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Abstract We address the well-known limitation of the Huxley and Simmons 1971 (HS)
model. It is the statement that at physiological value of stiffness in the actomyosin complex,
the distribution of the myosin motors becomes microscopically uniform (all the motors are
either in pre- or post-power stroke conformation) after an infinitesimal displacement from
the stall (isometric contractions) conditions. Such uniform behavior at the fiber level would
generate a negative slope in the 7 — § relationship (in the nomenclature of the HS paper),
not observed experimentally. This negative slope means inhomogeneity of the macroscopic
sarcomere configuration, which is also not observed. To address this controversial prediction
of the HS theory, we explore the possibility that the slope of the 7> —§ curve is, in fact, positive
due to an interaction between neighboring cross-bridges. We show that such interaction can
potentially destabilize the uniform configurations (all pre or all post) by making the non-
uniform configurations energetically preferable. We argue that, despite the presence of other
factors, which can in principle also ensure the microscopic inhomogeneity of cross-bridge
configurations, the implied interaction is an important player in muscle mechanics.

1 Introduction

An isometrically constrained skeletal muscle reaches the stall conditions when it is fully
tetanized. This physiological regime is known as the state of isometric contractions. The
mechanical behavior in this state is usually studied by analyzing the response of a tetanized
muscle to abrupt mechanical perturbations [1-4]. From such tests, we now have a detailed
picture of the power stroke machinery responsible for the so-called fast force recovery: a
transient passive response that does not involve the detachment of myosin heads and the
attendant ATP consumption [5].

In the associated experiments, a muscle is held at the extremities (Ilength clamp or hard
device loading) in an appropriate physiological solution while being electro-stimulated.
Under these conditions, it actively generates a stall force (isometric tension) 7p, which
depends on sarcomere length £¢, see the schematic picture in Fig. 1a. The muscle is then short-
ened (or stretched) by a fixed amount, and the generated tension is measured. For instance,

4 e-mail: hudson.borja-da-rocha@college-de-france.fr (corresponding author)

Published online: 22 June 2021 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-021-01646-y&domain=pdf
http://orcid.org/0000-0001-9615-2022
mailto:hudson.borja-da-rocha@college-de-france.fr

683 Page 2 of 31 Eur. Phys. J. Plus (2021) 136:683

Ty T

>
>
> >

o 0 X
0 lo -

(a) (b)

Fig. 1 a Isometric tetanus: actively generated force Ty as a function of the reference length £(. b Quasi-
equilibrium states 7> reached from the stall state Ty by fast shortenings or stretches. Highlighted are the main
physiological regimes

if a (negative) displacement 8¢ = £ — £j is applied to a muscle, isometrically contracting at
length Z(’S, the tension first drops to the level 77 < Ty, but then recovers in a few millisecond
timescale to the higher level 75, see the schematic picture in Fig. 1b. A more detailed picture
of the actual experiment together with the available experimental measurements is shown in
Fig. 2a,b.

While the initial response 7 can be clearly attributed to elasticity of myosin heads (cross-
bridges) [3,6], the recovered tension 7> was shown to result from a conformational transition
inside actin-bound myosin heads. During this re-equilibration transition, some of the cross-
bridges switch (or fold) from pre- to post-power stroke state [5,7]. The resulting massive
conformational change is believed to be a purely mechanical process as it does not involve
the un-binding of myosin heads from actin filaments [8].

Since the homogeneous state of isometric contractions is a stable equilibrium for the whole
muscle fiber, the corresponding global elastic stiffness d 7> /d¢ should be positive, and this
is indeed what was observed in the pioneering experiments of Huxley and Simmons (HS)
[3], see Fig. 2b. They proposed a theoretical explanation for their measurements, arguing
that the elementary force-generating units contain at least two structural elements connected
in series [3]. The first one is an elastic spring responsible for generating the tension 77,
which can be modeled as Hookean. The second is a bi-stable power stroke element that can
be either in pre- or in post-power stroke position. HS modeled such element as a hard-spin
variable representing the angular position of the myosin head with respect to actin. To ensure
a collective response, individual myosin heads were assumed to be interacting non-locally,
through rigid actin and myosin filaments. The resulting model placed the thermomechanical
behavior of force-generating units (half-sarcomeres) in a chemo-mechanical framework with
pre- and post-power stroke conformations presented as chemical states. To obtain analytical
results, HS used the Kramers approximation, but their model was recently generalized to
account for the full-scale Langevin dynamics [9-12].

The hard-spin HS model with effectively paramagnetic-type mechanical interactions could
reproduce the experimentally measured tension 75 only if the stiffness of myosin heads was
underestimated. If the correct value (2.7+0.9 pN.nm’l, [6,13,14]) is used, the HS model
leads to the controversial prediction that the free energy of a half-sarcomere is a non-convex
function of strain, which means, in particular, that the effective stiffness in the physiological
stall force regime is negative [15-17], see Fig. 1b and Fig. 2b. Behind such non-convexity
is the insistence of the model on highly coherent mechanical response of interacting cross-
bridges, which essentially precludes mixing of pre- and post-power stroke conformations.
In other words, given the value of the environmental temperature, the assumed mean-field
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Fig. 2 a Fast transients in mechanical experiments on single muscle fibers. In response to the length step 6¢,
the tension first drops from 7T to 77 and then recovers a fraction of the initial tension, reaching the level 7.
b The recovered tension 75 as a function of the imposed stretch §¢. Solid curve shows the predictions of the
HS model with realistic parameters: @ = 10nm, kg = 2pN/nm, T = 277.15K, vg = 24.4pN [1,18]. Data
extracted from [19-21]

elastic interaction unambiguously points toward necessarily coherent response in the state of
isometric contractions (stall conditions) with all cross-bridges either in the pre-power stroke
or all in the post-power stroke conformation.

The non-positive-definiteness of the tangential elasticity in the constitutive model can
potentially trigger spatial inhomogeneity at the scale of the whole muscle fiber. In particular,
spatial inhomogeneity should be present in muscle fibers modeled as series connections of
half-sarcomeres [17,22]. Individual half-sarcomeres will be then either entirely in pre- or
post-power stroke configurations, which can be interpreted as a coexistence of pure phases.
Even though this would lead to a realistically flat 7> curve in the regime of isometric con-
tractions, the homogeneous (affine) configurations will be unstable which suggests that the
muscle fiber will be structurally highly inhomogeneous [17,22,23]. The fact, that such inho-
mogeneity of ‘muscle material’ has not been observed in experiments, stimulated theoretical
efforts to account for physical factors ensuring the mixing of the pre- and post-power stroke
configurations at the scale of individual half-sarcomeres.

Different mechanisms facilitating such mixing have been proposed in the literature. Efforts
to suppress the instability of an affine response have started with the 1996 paper of Huxley
and Tideswell (HT) [16], who suggested that the inter-mixing can be explained by the inher-
ent randomness encapsulated in the actomyosin machinery. More specifically, the authors
introduced the idea of a random attachment of the myosin motors along the actin monomer,
resulting in a statistical distribution of the attachment positions spread over almost half of the
actin diameter (5.5 nm). This assumption is realistic as the experiments involving electron
microscopy [24,25] and X-ray diffraction [5,26] reveal a much more complex geometrical
structure of the actomyosin complex than in the original HS model. Thus, myosin binds to
actin only in specific target zones, which are not commensurate with the spacing of myosin
heads. As aresult, different binding sites are reached at different angles [24,27]. As it was first
realized by HT [16], the implied quenched disorder will compromise the coherent response
in stall conditions. More recently, several other models addressed the same experimental data
and successfully reproduced the positive slope of the 7> curve, even though often without
placing emphasis on the quenched disorder incorporated to overcome the original limitation
of the HS model, see [28—-31] and the references therein. The implications of the presence
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Fig. 3 Half-sarcomere modeled as a parallel cluster of Huxley—Simmons units

of disorder in the myosin attachment positions have been recently studied systematically in
[32]. It was shown that having a structural disorder in the positions of myosin molecules
relative to attachment sites can effectively convexify the elastic response and therefore flat-
ten the 7> curve. The rather unexpected result obtained in [32] was that a realistic disorder
places a typical muscle system close to a thermodynamic critical point [15]. Despite these
fascinating predictions, the idea of the functionality of geometrical disorder in the otherwise
highly regular, crystal-type muscle architecture remains debatable. For instance, while the
HT model postulates a Gaussian disorder with a particular variance, the realistic value of
such temperature-like parameter is obscure; moreover, the actual statistical nature of the
implied geometrical frustration is unknown. It is then possible, but not certain, that the exist-
ing incommensuration is sufficient to ensure the positive slope of the 7 curve. The situation
is somewhat similar to the original question faced by HS, of whether the value of the ambient
temperature is sufficient to convexify their free energy.

Local inter-mixing of the pre- and post-power stroke conformations inside a single half-
sarcomere can also be facilitated by an active process. As shown in [33], the presence of
correlated external excitations can generate positive active stiffness in the system, which
otherwise has negative passive stiffness. In particular, such ATP-induced stiffening can over-
come the negative stiffness of the original HS model, making the affine response of muscle
fibers stable. Under this hypothesis, the coherency of the mean-field-dominated configura-
tions can be broken because each element would be forced by active driving to stay away
from a single energy well. Note that the implied active mixing of cross-bridge conformations
is different from the passive ‘melting’ taking over at high temperatures. Active driving, how-
ever, is energetically costly as it requires incessant ATP consumption. Therefore, it is still
difficult to say how realistic is such stabilization scenario.

Given this uncertainty, it is natural to explore other possibilities for passive (rather than
active) stabilization of affine response of muscle fibers in stall conditions. With this aim in
view, we put forward in this paper a plausible hypothesis that the undesirable, highly coherent
mechanical response of muscle half-sarcomeres may be compromized by the destabilizing
short-range interaction between individual myosin heads. Such interaction would then com-
pete with the stabilizing long-range elastic effect of the apparently semirigid filaments. To
support this hypothesis, we recall in Sect. 2 some experimental observations and discuss
the physical mechanisms which may ensure the destabilizing character of the short-range
interaction between neighboring myosin heads.

To rationalize the effect of the destabilizing short-range interactions, we use the general
framework of the HS model. However, we now complement the mean-field interaction,
favoring uniformity of micro-configurations, by the short-range interactions favoring the
inter-mixing of pre- and post-power stroke states, see Fig.3. More specifically, we make
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the interaction of antiferromagnetic type between neighboring spins compete with the long-
range paramagnetic-type interaction introduced in the original HS model. The ensuing 1D
hard-spin model of a muscle half-sarcomere can be viewed as a version of the corresponding
Ising model where various short- and long-range interactions are allowed to compete. Such
competition can generate a rich repertoire of thermodynamic behaviors [34-38], and the
goal of this paper is to explore different alternatives in the context of muscle mechanics. An
additional complication is that the HS mean-field interaction makes the ensuing systems non-
additive, which leads to ensemble inequivalence. In particular, the isometric and the isotonic
mechanical responses will be necessarily different and would have to be treated separately
[35,39-41]. While the detailed nature of the postulated antiferromagnetic interactions still
remains debatable (see Sect. 2 for details), we take in this paper a position that the quantitative
consequences of the new hypothesis must be explored before any judgment of its relevance
for the theory muscle contractions can be made.

We show that if the antiferromagnetic short-range interactions are sufficiently strong,
the HS-type coherent single-state response can be indeed compromised. It is replaced by
a non-HS response with cross-bridges in pre- and post-power stroke configurations finely
mixed. Moreover, we show that in such regimes, the cross-bridges necessarily form a regular
interdigitated pattern. The macroscopically homogeneous response of a muscle fiber is then
recovered at the expense of the individual half-sarcomeres becoming maximally inhomoge-
neous.

One can say that the presence of short-range interaction is responsible for the emergence
of a new energy well which stabilizes in this model the physiological state of isometric
contractions. In addition to the coherent pre- and post-power stroke configurations anticipated
by the original HS theory, the augmented model, accounting for short-range interactions,
predicts the stability of configurations with pre- and post-power stroke cross-bridges finely
mixed. In this new ‘phase,’ the overall stiffness of a half-sarcomere is positive, which suggests
that it may be adequately representing the physiological state of isometric contractions. The
macroscopically homogeneous response is then stabilized passively, in contradistinction with
active stabilization studied in [33].

We observe that additional energy wells (chemical states), different from the ones describ-
ing pre- and post-power stroke conformations, are sometimes introduced phenomenologically
in chemo-mechanical models to ensure that the 75(§¢) curve is sufficiently flat around the
stall state, see, for instance, [42] and the references cited therein. Instead, in the model with
short-range antiferromagnetic interactions, the third energy well emerges directly from a
micromodel without additional phenomenological assumptions.

The three-state systems of this type, which would be usually represented by a Potts model
[43,44], are characterized by a tricritical point separating the line of first- and second-order
transitions. In our two-well microscopic model, where the third well appears after statistical
averaging, the tricritical point arises as well, strongly influencing the corresponding equilib-
rium phase diagram. In addition to the ‘coherent’ bi-stable phase predicted by the original HS
theory and the ‘melted’ phase appearing at high temperatures, such a phase diagram shows the
existence of a domain with configurations of the antiferromagnetic type containing both pre-
and post-power stroke cross-bridges. Acquiring such configurations may be physiologically
beneficial for the system, which can then anticipate the necessity of either ultrafast contrac-
tion (global switching to post-power stroke state) or ultrafast stretching (global switching
to pre-power stroke state). Moreover, we argue that a living system may benefit from being
posed near such a singular point.

The paper is organized as follows. Section 2 discusses the feasible mechanisms behind
the antiferromagnetic short-range interactions affecting neighboring myosin heads. The aug-
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mented HS model of a half-sarcomere is introduced in Sect. 3, where we study its behavior at
zero temperature. Section 4 considers finite temperature effects and constructs the equilibrium
phase diagram for the system in a hard device. The system in a soft device is studied in Sect.
5, where we also discuss the origin of the ensemble non-equivalence. We then specify in Sect.
6 the order parameters and study spatial correlations. The case study of two half-sarcomeres
in series is presented in Sect. 7. Finally, in Sect. 8§, we summarize our results.

2 Short-range interactions between neighboring myosin heads

We now turn to the physiological motivation for the introduction of the interacting heads
hypothesis. Recall first that 150-nm-long myosin II molecules can be viewed as narrow rods,
each ending with two 10-15-nm globular domains (heads). The heads form projections and
play the role of the enzymatic active sites, the ATPases, which are activated by six adjacent
actin filaments to produce muscular force and movement. Instead, the myosin tails self-
associate to form the backbones of thick filaments. The resulting rod packing is parallel with
each crown (myosin head pairs) closely located to (and therefore elastically interacting with)
several tails of the neighboring myosin molecules. The myosin II filaments arrangement is
such that the crowns form 2D helical lattices. The individual helices are arranged with a
14.3-nm separation between crowns and a 42.9-nm helical repeat [45], see Fig. 4a.

Since the conformational change inside myosin heads produces an extension of the order
of ~ 10 nm [46], the size of the working stroke is comparable to the distance between
consecutive myosin heads along the helix. Therefore, whether a particular myosin head
is in pre- or post-power stroke position may influence its neighbors’ state, and the local
patterning may be at least partially guided by such interaction. Depending on their spatial
configurations, the two successive crowns can potentially interact either directly (sterically)
or indirectly through the adjacent tropomyosin—troponin regulatory units [47] or through
other environmental proteins [48].

The short-range interaction between the crowns may involve first and second heads. It is
known, for instance, that the regularly organized helical myosin head structures can be thought
as stabilized by head-to-head interactions, however, the role of the second head in the dimeric
myosin II molecule remains enigmatic. For instance, there is a range of experimental results
suggesting negative cooperativity between the two heads, which implies that binding of one
head to actin inhibits binding of the other [49]. The two heads may then form an asymmetric
structure with the overall dimension along the helix comparable with the distance between
neighboring crowns [50]. Thus, if one of the heads in the contracting state is oriented almost
perpendicular to the fiber axis, the partner head would be stretched axially [51].

In Fig. 4a,b, we show the schematic 3D configuration of the crowns and illustrate the
model reduction approach employed in the derivation of the simplest HS model. The reduced
model shown in Fig. 4c introduces an effective cross-bridge as collective representation
of several laterally separated crowns. Each ‘collective’ myosin head is interacting with a
similarly schematized actin filament, representing six separate real active filaments. Such
model neglects the presence of two myosin heads and does not resolve the actual spatial
configuration of the neighboring crowns. While this model accounts for the elastic interaction
between the effective cross-bridges and the rigid filaments, it clearly underestimates the
possibility of the geometrically allowed short-range interaction between the neighboring
effective cross-bridges.

Spatial configuration of contracting half-sarcomeres can be also influenced by the elastic
coupling between myosin heads along the compliant myofilament lattice [29,47,52-55]. The
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Fig. 4 a Arrangement of the myosin crowns on the cylindrical surface of the myosin backbone. b Coaxial
helices on flattened cylinder with emphasized pairs of myosin heads. ¢ HS stylized model of a half-sarcomere
with each cross-bridge effectively representing three myosin crowns. The corresponding actin backbone is an
effective representation of the six actin (thin) filaments comprising the matching stereotypical units for each
thick filament

presence of such elastic interaction would imply that cross-bridges do not operate indepen-
dently while generating force [56-58]. In [20], a continuum extension of the HS model was
proposed in which the compliance of the thick and thin filaments was actually taken into
account. This model was further developed in [54], where the authors explicitly argued that
‘the local behavior of one myosin head must depend on the of neighboring attachment sites.’
The effects of stochasticity in this model were studied in [56].

More recently, a discrete model dealing with an array of motors and also accounting for
compliance of discretized myofilaments was considered in [59]. A minimal representation
of this discrete model of a half-sarcomere, where N effective cross-bridges are protruding
periodically from an elastic backbone and are bound to a rigid actin filament, is shown in
Fig. 5. In mechanical terms, it can be viewed a mass—spring chain containing N nodes that
are linked to an elastic (Winkler) foundation. Neglecting the conformational bi-stability, one
can assume that springs are linear with the reference length a = L/N, where L is the length
scale of a half-sarcomere. Such model was probably first introduced by De Gennes in his
pioneering study of the mechanical response of two-stranded DNA [60].

To assess the nature of the effective nearest neighbor (NN) interaction between the nodes,
we can reduce the ‘double chain’ model shown in Fig. 5 to a “single chain’ minimal model. To
this end, we introduce the displacements of the nodes u; and write the energy of the system
in the form

N+1

1 N K (U —uj_ 2 1
_ i Ui— 2
E(u)_NE E(ia ) +N, u;, ey

(SIS

=1

I
LR
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Fig. 5 A schematic mechanical model of a thick filament as an array of interacting linear springs coupled
to a Winkler foundation. The cross-bridges are represented by linear springs with common elasticity . Each
cross-bridge interacts elastically with each of its neighbors via a linear spring with modulus «

where « is the stiffness of the horizontal springs and p is the (shear) modulus of the vertical
(leaf) springs. While the first term in Eq. (1) describes the compliance of the filaments,
the second term represents the elasticity of the individual cross-bridges. We note that for
simplicity, the thick filament is assumed to be rigid.

In the limit @ — 0 and N — oo, the discrete model (1) can be approximated by the
continuum model with energy

L
E(u) = / (fw2 + ﬁuz) dx, ®)
o \2 2
where x € (0, L) is the spatial coordinate, u(x) is the horizontal displacement field, and
w(x) = dyu(x) is the continuum strain field. We can assume that the system is subjected to

isometric loading (hard device) with the total displacement prescribed fOL wdx =d.

To rewrite the energy (2) in terms of the local strain field w only, we can follow [61] and
define the characteristic (indicator) function §, : x — {0, 1} suchthatforx < y:&,(x) =1,
and for x > y : &,(x) = 0. If we then assume for determinacy that u(0) = —d/2, and
u(L) = d/2, we can write

2

L L L d
/ putdx = M/ U E()w(y)dy — 5] dx
0 0 0 (3)
2

L L 1
= M/ [/ (éa(y)w(y) - Ew(y)) dy] dx
0 0

Then, noticing that fOL (&) — %) (&c(2) — %) dx = % — max{x, y} + %(x +y), we can
rewrite the energy (2) in the form

L L L
E(w):/ /cwzdx—i-u/ / K (x, Yw@)w(y)dxdy )
0 0 0

where K (x, y) = £ — max{x, y} + %(x + ) is the interaction kernel, which is defined on
the square domain [0, L] x [0, L].

In Fig. 6, we illustrate the structure of the kernel function K (x, y) showing its behavior
along the x — y diagonal direction. Note that K (x, y) > 0 for small values of |x — y|, which
is the range corresponding to short-range interactions. Therefore, the configurations with
w(x) and w(y) having alternating signs at neighboring points x and y will have lower energy
E vis a vis the configurations with locally homogeneous strain. As a result, the system
with the energy (4) will be driven toward configurations with locally alternating strains
(w > 0 for stretching and w < 0 for compression). Such configurations can be interpreted
as having antiferromagnetic order [62]. In the presence of nonlinear terms in the energy
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Fig. 6 The dependence of the A K (;p7 y)
kernel function K (x, y) on x — y.

For |x — y| < L/2, we observe L/4
antiferromagnetic-type behavior

with K >0 xr—y

—L/At+

describing conformational change (power stroke), the underlying effective antiferromagnetic-
type short-range elastic interaction between neighboring nods (describing myosin heads) can
be expected to facilitate the formation of fine mixtures of cross-bridges in pre- and post-power
stroke configurations.

We can conclude that the account of steric effects and filament extensibility can, in princi-
ple, bias the relative displacements of the neighboring cross-bridges toward non-uniformity
[54,58]. Such interactions make the local conformational state of an attached myosin head
affected by the conformational state of the neighboring heads. Moreover, it is known [61] that
the account of the antiferromagnetic interaction can make the coherent configurations with
larger averaged spacing energetically less preferable than the ‘closed packed’ interdigitated
configurations with pre- and post-power stroke cross-bridges periodically patterned at the
smallest available scale.

Consider now the issue of conformational homogeneity in the mechanical response of
single half-sarcomeres. It is well known that in isometrically contracting muscle myofibrils,
the cross-bridges move through the reversible power stroke asynchronously and assume, at
any moment in time and any given location, both conformations [63—66]. In particular, there
is evidence that at the steady-state plateau of isometric tetanus, see Fig. 1a, the individual
myosin motors are in different conformations, which is sometimes interpreted as a ‘state of
disorder.” However, the cross-bridges can potentially get synchronized spatially and tem-
porarily in response to very rapid stretches or slacks and, in this sense, the fast force recovery
is sometimes interpreted, in accordance with HS theory, as a disorder-to-order transition [66].

In any case, such interpretations remain qualitative since the usual mechanical and struc-
tural measurements at the single half-sarcomere level address populations of myosin motors.
This makes it difficult to follow the change in conformation of individual cross-bridges and
quantify the process of stress-induced spatial synchronization [6]. Still, specially designed
X-ray experiments can provide at least some access to the spatial distribution of the myosin
motors. For instance, one can use for this purpose the width of the third-order myosin-based
meridional reflection (M3 reflection) as it can be related to the number of myosin motors
in the pre-power stroke state. Moreover, the splitting of the M3 reflection can be linked to
the distance between the two arrays of myosin motors in pre- and post-power stroke states
[67]. Based on these and other experimental approaches, it was suggested that while at loads
closer to stall conditions myosin motors are broadly distributed, at lower loads they proceed
through the stroke almost collectively [68,69].

Such measurements, however, still provide information only about the homogenized state.
If, for instance, the averaged observed state in the quenched configuration is between pre-
and post-power stroke, they do not reveal the actual geometrical (ordered) pattern behind
this averaged behavior.

To summarize, the assumption of the original HS model that individual myosin heads
interact only through the thick filament, modeled as a rigid backbone, does not allow one
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to make any conclusions about the spatial organization of pre- and post-power stroke cross-
bridges inside a single half-sarcomere. To quantify the conjectured self-organization of the
closely interacting myosin heads into alternating conformational patterns, it is necessary to
go beyond the class of HS-type mean-field models and account explicitly for short-range
interactions between neighboring cross-bridges. Such in silico modeling will allow one to
make quantitative predictions which are needed to either confirm or reject the hypothesis of
antiferromagnetic-type nearest neighbor interactions.

3 The model of a half-sarcomere

Following HS, we model a half-sarcomere as a collection of N interacting cross-bridges,
but we supplement the mean-field interaction introduced of HS by a competing short-range
interaction.

The energy of non-interacting cross-bridges can be written as

N
Y VX,

wherei = 1,..., N and V (X;) is a double-well energy of a single cross-bridge, see Fig. 3.
We assume for analytical simplicity that the two conformational positions of the myosin head
are represented by the hard-spin variable X; so that in the pre-power stroke state X; = 0, and
in the post-power stroke state X; = —a, where a is the amount by which the myosin head
pulls the actin during the power stroke. We set that V (X;) = (a + X;) Vp which shows that the
pre-power stroke conformation has higher energy than the post-power stroke conformation
with the energy bias equal to Vp (in the units of force), see Fig. 7. Despite the overall passive
(ATP indifferent) nature of the HS model, the parameter V has an active origin as it is
ultimately responsible for the generation of the tension 7y in the stall state (state of isometric
contractions).

In the HS model, each cross-bridge is connected to a common rigid backbone through an
elastic spring ko placed in series with a bi-stable unit. The backbone is characterized by a
single variable Y, and the corresponding interaction energy is of mean-field type

N Ko
2
D5 =X
L
where ko > 0 is a parameter stabilizing homogeneous distribution of cross-bridge configu-
rations.

In addition to this interaction, we assume that each element also interacts harmonically
with its nearest neighbors through the energy term

Nk
Z %(Xtﬂ O

i
where «; is the corresponding linear stiffness. The various potential sources of such short-
range interaction were discussed in detail in Sect. 2. In particular, we showed there that to
adequately account for compliance of the filaments and to produce the anticipated destabi-
lizing effect on the homogeneous distribution of cross-bridges, such short-range interaction
should be of antiferromagnetic type. This means that the parameter «; should be negative.
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(a) (b)
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Fig. 7 a Schematics showing two neighboring cross-bridges in different conformational states, b Huxley—
Simmons (HS) model of a single cross-bridge. The two conformational states of the myosin head are repre-
sented by the spin variable x, while the lump elasticity of the whole cross-bridge is represented by the parabolic
potential acting on the continuous variable y

Finally, we assume that the whole half-sarcomere is loaded through an elastic spring with
stiffness k y > 0, representing the combined elasticities of actin and myosin filaments. When
the system is loaded in a hard device, an imposed displacement Z is applied to the external
spring giving the contribution to the energy

N Kf
Lz — )2
ZZM( )

To non-dimensionalize the problem, we define the reference length a and normalize the
spatial variables accordingly: x; = X;/a, y = Y/a and z = Z /a. Note that now the variable
x; takes values 0 and -1 for the pre- and post-power stroke, respectively. Using koa” as the
scale of the energy, we obtain in dimensionless variables

N
E(x,y.0 =) [(1 +xi)vo + %(y —xi)’ + %’(xm —x)’ + A7f<z - y>2] NE)
1
where vg = Vp/(koa) is the non-dimensional energy bias. We consider periodic boundary
conditions: xy4+1 = x1, however, in the thermodynamic limit N — oo; the choice of this
type of boundary conditions becomes irrelevant [44,70]. The ensuing problem contains two
dimensionless parameters A; = k' /ko and A ¢ =« /(Nko).
To reveal the main effect, it is sufficient to analyze the system at zero temperature. To obtain
the ground state, we first eliminate y using the condition d £ /dy = 0, which is equivalent to

Arz 1
= i 6
Y=y P Na Ay 2 ©

i

The relaxed energy is of Ising form with both mean-field and short-range interactions:

K
E(xi,z) = “ON inxj —-AJ inxi+1 - h(Z)in +¢(2). 7
i,j i i
where 1/K =1+ Ay and
Arz 1 N)\fz2
h(z) = — A =, = ———— + Nuo.
() A, vo+As+ 5 c(z) 2(1+7\f)+ vo

Since this energy is quadratic in z at a given x;, the minimization over x; reduces to the choice
among a finite number of parabolas.
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Depending on the values of A; and A ¢, the global minima correspond to either pure phases,
with all cross-bridges synchronized in the same conformational state (pre- or post-power
stroke), or to a mixed phase with lattice-scale oscillations between the two conformational
states. At a not too negative value of Ay, the energy minimizing phase is ferromagnetic with
pre- or post-power stroke state dominating depending on whether the system is stretched
or compressed. At sufficiently negative Ay, when destabilizing short-range interactions are
strong, the unstressed system can also be in an antiferromagnetic state when neighboring
cross-bridges are in opposite conformational states.

The phase diagram, revealing the structure of the ground state in the unstressed state, is
presented in Fig. 8a. The boundary separates the antiferromagnetic (mixed) and ferromagnetic
(pure) ground states. We assumed here, for simplicity, that the unstressed state describes the
stall condition and also arbitrarily set that in this state, the distribution of pre- and post-power
strokes cross-bridges is 50-50 ! We therefore have the stall state at z = zg = (141/A FIvo—
1/2 where post- and pre-power stroke conformations have the same energy. Note thatat z = zo

the energies of pure and mixed configurations become equal if 1/A; = —4(1 4+ Ar). At
1
Ay < —————
TT A+

the equilibrium configuration in stall conditions is mixed, while it is coherent (all cross-
bridges are either pre- or post-power stroke) otherwise. In the limiting case A y — oo, when
cross-bridges interact only at short-range, the transition occurs at Ay = 0. In the other limiting
case Ay — 0, the crossover between ferromagnetic and antiferromagnetic phases takes place
atAy = —1/4.

We now compare the energies of different spatial distributions x; at z = zg. In the FM
phase, any of the mixed configurations will have higher energy than one of the pure con-
figurations Ejixeq(z = 20) > Epure(z = z0), while in the AFM phase Eyixeq(z = 20) <
E pure(z = z0). Here, E . can be taken as the energy of a configuration with either all pre-
or all post-power stroke cross-bridges because at z = zo they are equal.

In Fig. 8b(ii, iv), we show the energies of local and global minimizers E(z) corresponding
to mixed (alternating pre- and post-power stroke states) and pure (fully synchronized) con-
figurations that are parameterized by z. The corresponding branches of tension—elongation
curves t = d E /dz are shown in Fig. 8b(i,iii).

It is interesting that in the tension curves 8b(i, iii), different metastable branches are
uniquely characterized by the total amount of spins in either pre- or post-power stroke,
which means that from developed tension alone we cannot distinguish spatial organization.
To this end, we need to turn to the energy function. The reason comes directly from the energy
(7) where all z related terms are in /& and ¢, which means that both short- and long-range
terms (J and Ay, respectively) are z insensitive, and only the average ‘magnetization’ ), x;
interacts with the loading device. However, ultimately the choice of the most stable branch
is dictated by the energy.

We also note that in the ferromagnetic phase, the macroscopic stiffness in the stall state is
equal to minus infinity. In the antiferromagnetic phase, the transition between the two pure
states is smoothed, but the stiffness in the stall state remains to be equal to minus infinity.
This means that the formal ‘stabilization’ of this state is impossible at zero temperature.

To summarize, the analysis of the zero temperature system shows that due to the mean-field
nature of ferromagnetic interactions, the preferred behavior is coherent with fully relaxed

1 While it would have been more realistic to assume that this ratio is around 70-30 [71], we have chosen to
present our results only in the most simple setting that can be easily corrected by the appropriate adjustment
of the parameter vy.
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Fig. 8 a Zero temperature phase diagram for a half-sarcomere in the stall state z = zg. b Energy and
tension of a system of N = 4 cross-bridges. The thick solid line represents the global minimum of the
energy (ground state), while the dashed line represents the local energy minima (metastable states). In i—ii,
we illustrate the ferromagnetic (FM) part of the phase diagram (corresponding to Ay = 1, A; = 0), and in
iii-iv, the antiferromagnetic (AFM) part (corresponding to A y = 1,A; = —0.5). In b, each metastable branch
is associated with a particular micro-configuration, which is illustrated in the right column. The ‘up/down’
arrows represent pre/post-power stroke states

energy remaining non-convex and the corresponding stiffness taking negative values. Adding
sufficiently strong short-range antiferromagnetic interactions partially convexifies the relaxed
energy; however, negative stiffness persists.

4 Equilibrium response
To study the equilibrium response of the system at finite temperature 6, we need to compute

its free energy. The partition function in the hard device ensemble (controlled displacement)
is,

28,2 = / dy Y e PEUD,
{x}

where the summation is over x; = {0, —1} for all x;; we also use the standard notation
B = koa?/kgh, where kp is the Boltzmann constant. Since > xl.z = — ), xi, we can write
Z(B,2) = / dye PN¢DD 248, y), ®)

2
where ¢(y, z) = 7\2—~f(z — y)2 + vo + y? and the function Zy (B, y) is the partition function
for an Ising ring [70]:

Z0(B.y) =D exp| B Y xixie1 +BH Y x|, ©)
{x} i i

where J/ = Ay and H(y) = A; + y + 1/2 — vg. The equilibrium behavior of this system
without short-range interactions (A; = 0) was studied in [10].
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Fig. 9 Different solutions of the
self-consistency condition (14)
correspond to interactions of
different curves with an inclined
straight line. In Phase I, there are
three solutions (two energy
minima, two symmetric ground
states), in Phases II and III, there
are five solutions (three energy

—1 K -

minima with either one or two ( | | | |
symmetric) ground states), and in -1 -08 -0.6 =04 -0.2 0
Phase 1V, the solution is unique Y

(single energy minimum which is
also the ground state)

To compute Zp(B, y) we can use the transfer matrix method [35,72]. The idea is to
represent this partition function as a product of equal matrices [44,70]. Consider the matrix

| _sn
e 2

T = : (10)

(e@” eﬂ(J—H)>

Then, Z9 = Tr(T"), and since T is real and symmetric, it can be diagonalized with the
eigenvalues

Mp=e [coshh + V/sinh? 7 + e*ﬂj] , )

where h = g(H — J). Using the invariance of the trace, we obtain Zp = )\Ilv + )\9’ .
If we now assume that A; > A; and take the thermodynamic limit N — oo, we obtain
Zy~ )\Ilv [1 + (’)(e_O‘N)] , where o = log(A1/A2) is a positive constant. Using the Laplace
method, we finally obtain

Z(8,2) ~ min { PO\ (1)} (12)
y
The free energy density is F(8, z) = — Niﬂ log Z(B, z). In the thermodynamic limit, we can
write
Ar : )
Fp.zy) = L— P ++ 5+ 5
2 2 B (13)

— %log |:cosh gy + \/e_ﬂ)‘/ + sinh? g()’)j| .

where g(y) = g(y 4+ 1/2 — vp). By solving a transcendental equation 4.7 (8, z, y)/dy = 0,
we obtain the self-consistency relation y, = ¥ (B, z, ys) illustrated in Fig. 9 with the function
Y (y«) known explicitly

1 Ve PN +sinhg(y)
2 e=PM csch g(y) +sinhg(y)

l1’(13,Zvy)=?\f(z—y)—%+ (14)
As we show in Fig. 9, the equation (14) may have more than one solution, which reflects the
non-convexity of the partial free energy F (g, z, y) The parametric dependence of this energy
is illustrated in Fig. 10 for the stall state with z = z¢. Four different phases can be identified
on the plane (Ay, 1/8). The zero temperature phase diagram shown in Fig. 8a corresponds to
the first-order transition boundary separating Phases II and III and is represented in Fig. 10
by its section at Ay = 1.
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Fig. 10 a Phase diagram for the system in the hard device with z = z¢. Parameters: Ay = 1, vp = 0. The
transition between Phases I and IV is continuous (bold solid line) down to the tricritical point TCP, where it
becomes first-order (dashed line). The dotted lines are spinodal boundaries. The different phases are illustrated
in the right column, where we show the dependence of the partial free energy F on the internal variable y

In the domain with low temperature and dominating mean-field interactions, we observe
Phase I. In this phase, two pure states coexist, but at any instant of time, all cross-bridges
are either in pre- or post-power stroke conformations. In other words, in stall conditions,
the system in Phase I randomly switches between these two states. Each of these transi-
tions takes place coherently, with all cross-bridges changing their state cooperatively. In the
high-temperature domain and still dominating mean-field interactions, we observe Phase
IV, where all cross-bridges switch randomly and independently between pre- or post-power
stroke conformations. Phase IV is separated from Phase I by a second-order phase transition,
analogous to the usual order—disorder transition in magnetics.

At low temperatures and strong short-range antiferromagnetic interactions, we observe
the appearance of Phases II and III, where in addition to pure states, there is also a mixed state
where neighboring cross-bridges have different conformations. In Phase II, the mixed state
is metastable, and the equilibrium states are the pure ones, while in Phase III, the equilibrium
state is the mixed one. Phases II and III are separated by the line of first-order phase transition,
which meets the second-order phase transitions line separating Phases I and III at a tricritical
point.

To summarize, when the short-range interactions are sufficiently strong and the tempera-
ture is sufficiently low, we observe a new feature in the system’s behavior: An antiferromag-
netic state becomes stable in the stall regime z = zo (our Phase III). In other low-temperature
Phases I and II, the stall state must necessarily involve random coherent conformational
changes involving all cross-bridges simultaneously. At high temperatures, the paramagnetic
phase dominates where all cross-bridges fluctuate randomly and independently over the
whole energy landscape with neither pre- or post-power stroke stated clearly discernible.
We have seen that by increasing Ay in the positive direction, we effectively decrease the
temperature by favoring cooperativity and effectively destabilizing the homogeneous state at
Z = zo. Instead, by increasing A; in the negative direction, we disfavor coherent fluctuations
between pure states at z = zo and stabilize instead non-fluctuating macroscopically homo-
geneous state, which we later show to be microscopically a fine lattice-scale mixture of pre-
and post-power stroke conformations.

‘We now turn to the parametric behavior of the equilibrium free energy F(z) = F(z, y«(2)).
Knowing this energy, one can also compute the equilibrium tension #(z) = dF(z)/dz =

@ Springer



683  Page 16 of 31 Eur. Phys. J. Plus (2021) 136:683

o .
0.2 1077 1072
L1 0.1F i, I I 51 V-
0L ] 0- .
0.5 0.5 0.5 0.5 ——
toof 1t o) 1t o |t o/
~0.5 : ~0.5 ‘ ~0.5 ‘ ~0.5 L—
101 -1 0 1 -1 0 1 -1 0 1
z— 2z z—zp zZ— 29 zZ— 29
() (b) (©) (d)

Fig. 11 The equilibrium free (Helmholtz) energy—strain relation in the hard device and the corresponding
tension—strain relation. a Phase I: A\; = 0, 8 = 50; b Phase II: A\; = —0.1, B = 50; ¢ Phase III: A; = —0.25,
B = 50;and d Phase IV: A; = —0.25, B = 8. Other parameters: A y = 1 and vy = 0. Solid curves correspond
to ground states. With dotted lines, we show for convenience the unstable equilibria which have nothing to do
with the equilibrium response but provide information about the energy barriers

dF(z, y+(2))/dz = 0F(z, y+(2))/0z = Ay (z2—y«(2)), where we temporarily omitted depen-
dence on S. The behavior of the functions F(z) and 7(z) in different phases is illustrated in
Fig. 11. Note that in (a) and (b) (Phases I and II), the free energy is non-convex at z = 2o,
and the corresponding stiffness is negative. Instead, in (c) and (d) (Phases III and IV), the
stall state is associated with the point of convexity of the equilibrium energy, and the corre-
sponding stiffness is positive. However, if in Phase IV we deal with entropic stabilization at
the expense of an identifiable conformational state, in Phase III, we encounter macroscopic
homogeneity with the perfect antiferromagnetic order where each cross-bridge maintains its
conformation with one half of them being in pre- and another half in post-power stroke state.

To obtain an analytical expression for the line of critical points (and ultimately for the
tricritical point where it ends) on the phase diagram shown in Fig. 10, we can build around
it a polynomial, Landau-type expansion [70,73].

To define an order parameter, we recall that, according to (6), the average value of the
microscopic spin variable (x) = N~! 3", x; is related to the macroscopic variable y through

the relation (x) = (Ayy1)y—Ayrz.Since E(x; =0, z9) = E(x; = —1, z0), in stall conditions
7z = zo the fraction of post-power stroke elements should be equal to the fraction of pre-
power stroke elements, which suggests that < x > (8, zo) = —1/2. Then, the natural order

parameter is ¢ = 2(x) + 1, or equivalently, ¢ = 2(Ar41)y — 2Arz + 1. It now represents
the fraction of elements in either conformation, meaning that with ¢ = 1 all units are in the
pre-power stroke, and with ¢ = —1 in the post-power stroke configuration. Finally, ¢ = 0
means that there are equal number of elements in both conformations.

The marginal free energy at z = zo can be now written in terms of ¢

L I (RS A S A A
(ﬁ’d’)_z(v”z) M VRIS

15)
- l log |:cosh ﬂ7¢ \/eﬁ?\f + sinh? MJ )

B TS TESY!
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Fig. 12 a Phase diagram in the hard device with z = zo. Second-order transitions are shown by a solid
bold line, first-order phase transitions by a dashed bold line. The dotted lines indicate the locations of the
two representative sections shown in b and c¢. b First-order phase transition, A; = —0.12. Thin solid lines
correspond to metastable states, dash-dotted line—to unstable states; ¢ second-order phase transition, A; =
—0.05. The dash-dotted line corresponds to unstable states

The corresponding self-consistency relation expressed in terms of ¢, takes the form

sinh m

—BA 1 2 /3‘]5*
\/e B ]+S]nh m

¢ = (16)

In Fig. 12 b and ¢, we show the behavior of the function ¢, (8) around the lines of first-
and second-order phase transitions (critical points), respectively, shown in Fig. 12a. Our goal
now is to capture the line of second-order phase transitions separating Phases I and I'V. To
this end, it is sufficient to perform the Taylor expansion of the free-energy Eq. (15) around
¢ = 0. We obtain the expression F(B, ) = ag + arp* + asp* where

PRI ik

_ ! : _ 17
ap > vo + 3 + oy 8 s (17a)
1 3 (3ePr — 1
a = 4— p =P (e ) . (17b)
32(1 + Ay) (1 +Ap)Ve PN 6144(1 + A p)* e FAs

The approximate self-consistency relation d F/d¢ = 0 gives either ¢ = 0 or

68 — 24\ + DV e PN
B3 (3efr —1)

¢ =F4(1+A\p) (18)

The critical inverse temperature is implicitly given by relation 4(1 4+ A p)ve=FeAr) = B,
which corresponds to a; = 0. In the limit A; — 0, we obtain . = 4(1 + Ay).

To locate the tricritical point (TCP) where the second-order phase transition becomes the
first-order phase transition, we need to use the sixth-order expansion in the order parameter
F B, 9) =ap + ard?* + asp* + agp® where the additional coefficient is

B (30ePN — 4502870 — 1)
2949120+ e=PNs

The tricritical point can be linked to the vanishing of the second- and fourth-order terms
in the expansion. Therefore, we obtain two equations B = 4(1 + A f)e_/s}‘/ /2 and

e PM/2 = /3. Their solution can be found explicitly Brcp = 4(1 + Af)\/g and

ag 19)
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Ajrcp = —log3/4(1 + )\f)\/g. Finally, the location of the line of first-order transitions
(Maxwell line) can be obtained by solving the equation F(8,¢ = 0) = F(B, ¢ = ¢.),

where
—as + /ai —3mag
+ .

3ag

¢ = (20)
The obtained analytical relations allow one, for instance, to estimate the minimal level of
antiferromagnetic short-range interactions, which is necessary to ensure the stabilization of
the macroscopically homogeneous configuration of cross-bridges in the stall state.

In our previous work [15,32], we argued that the peculiarity of muscles mechanical
response in the state of isometric contractions can be linked to the presence in the HS-
type models of muscle contraction of a critical point located in roughly the same range of
parameters. Here, we see that the appearance of an additional parameter Ay, which scales the
non-HS, short-range interactions, turns such a critical point into a critical line that ends in a
tricritical point. The additional degeneracy of the system around such TCP can lead to new
physical effects that may be physiologically advantageous and deserve a special study.

5 Ensemble inequivalence

Due to the presence in this system of long-range interactions, the phase diagrams corre-
sponding to the cases of hard (isometric) and soft (isotonic) loading conditions may differ
[74].

Suppose our half-sarcomere is loaded isotonically (in a soft device) by an applied force
with dimensionless value 1 = T /kga. We may then neglect the external spring « f and write
the corresponding total energy as

N
1 A
G, y, 0 =) (1 +x)vo+ > —xi)’ + g(xiﬂ —x;)* —1y. 1)

1

The partition function takes the form

Z(B, 1) = fdyze—ﬂG(Xi,.\ut)_

{x}

The corresponding Gibbs free energy, G(8,t) = —(1/(NB)log Z(B, t), can be again com-
puted semi-explicitly in the thermodynamic limit N — oo. Using the combination of a
transfer matrix approach and a Laplace method, we obtain

g(ys)
B

where g(yy) = g(y* + 1/2 — vp), and y, is the solution of a transcendental equation

2 1 -
G(p.0 ==ty o+ 5+ E25 — o [cosh §0) /e 4 sinh? g(y*)} 22

- 1 PN sinhg(y.) Ve PM + sinh? g(y,)
L=

23
2 2¢PNs sinh? g(y,) +2 3)

The parametric behavior of the marginal free energy G(B, y, t) in the stall conditions
t = 0 is illustrated in Fig. 13. We again observe the same four major regimes, I, II, III
and IV, which have the same meaning as in the case of hard device ensemble. However, the

@ Springer



Eur. Phys. J. Plus (2021) 136:683 Page 19 of 31 683

T T 02F T g 02F T B
OFe [ 7 I 111
G 01 g 01
ok NS i n
-1 0 1 -1 0 1
Ay 02 ] y—1/2 y—1/2
0.2 F f B 0.2F I H
II v
04l : 1 G o1 g 01
- oF
0k | +H | |
1 | -1 1 -
0.1 0.2 01/2 ! 01/2 !
v — _
1//3 Y Yy

Fig.13 aPhase diagram for the system in the soft device at# = 0. Parameters: A y = 1, vg = 0. The transition
between the Phases I and IV is continuous (bold solid line) down to the tricritical point TCP, where it becomes
first-order (dashed line). The dotted lines are spinodal boundaries. The different phases are illustrated in the
right column where we show the dependence of the partial free energy G on the internal variable y

location of the boundary between phases and the position of the tricritical point are now
different, see Fig. 13a. In Phase III, we observe that the phase minimizing Gibbs free energy
is antiferromagnetic with pre- and post-power stroke conformations of cross-bridges finely
interdigitated (see below). We also see that in this phase, the macroscopically homogeneous
configuration stabilizes the stall state corresponding to the minimum (rather than maximum)
of the energy.

As in the hard device ensemble, the parameter A plays the major role in the behavior of
the system, which we illustrate by showing in Fig. 14 the equilibrium free energy and the
force—elongation relation. One can see that in Phases I and II, the stall state is represented
by the macroscopic mixture of two pure states with all cross-bridges occupying coherently
either pre- or post-power stroke configuration. Instead, in Phases III and IV, the stall state is
homogeneous, and cross-bridges in different conformations are microscopically mixed. The
difference again is that in Phase IV, each cross-bridge is fluctuating independently between
two conformational states, while in Phase III, neighboring cross-bridges are always in dif-
ferent conformations that are fixed in time.

Similarly to the case of the hard device, we can analytically find the location of the line
of critical points separating Phases I and IV and determine the position of the tricritical
point, see Fig. 13a. To define the order parameter in the soft device case, we observe that the
equilibrium of the system with respect to the variable y implies y = t + N ! DX Itis
then natural to define the order parameter again as ¢ = 2(x) + 1, which in the soft device
case gives, ¢ =2y + 1 —t.

We again assume, for simplicity, vgp = 0 and focus on the stall state r = 0. We can then
write the partial Gibbs free energy in the form

¢* 1 B \/,m B
+—ﬂlog|:cosh4+ e J + sinh ik (24)

1
G(B.9) = 3t 3
The corresponding self-consistency relation defining the equilibrium value of the order
parameter reads,

ok Bex
sinh e

x = .
\/e*/”‘f + sinh? ﬁ%

¢ (25)
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Fig. 14 The equilibrium free (Gibbs) energy—strain relation in the soft device and the corresponding tension—
strain relation. a Phase I: A; = 0, 8 = 50; b Phase II: Ay = —0.2, 8 = 50; ¢ Phase IIl: A; = —0.4, B = 50;
and d Phase IV: Aj = —0.2, B = 4. Other parameters: vy = 0. Solid curves correspond to ground states, and
dotted lines show some other stable and unstable equilibria

Near the second-order phase transition, we can expand the free energy G for small ¢ in Taylor
series. Leaving only the first terms, we obtain G(8, ¢) = ag + a2¢2 + a4¢4 where

1 10g (\/ e—BAJ + 1) 1 ,3 /33 (361'3}\/ _ 1) (26 )
apg =< — ) = - — ——/———, 4 = —————F——. a
73 B *T 3 Ve P Gldav/e Pr

The critical inverse temperature, ., is such that the second-order term in the expansion
vanishes, and hence, it must solve the equation 32+ e—PcAs = 88.. In the limit case, where
Ay — 0, we obtain B, = 4 which agrees with the corresponding expression in the hard
device ensemble when Ay = 0.

To locate the tricritical point (TCP), we need to extend our Landau-type expansion to the
the sixth-order. We obtain G (8, ¢) = ag + a2¢* + asdp* + as¢® where the new coefficient is

B (30ePrs — 4502PN — 1)
2949120+ e—FNs

Putting to zero the second and the fourth term in this expansion, we obtain two equations
B = 4e PN/2and e PM/2 = /3. The tricritical point (TCP) is then located at B¢ p = 4+/3
and Ajrcp = —log3/4+/3. The first-order transition line is obtained by requiring that
G(B, ¢ =0) =G(B. ¢ = ¢s), where

—aq + ,/af — 3arag
+

3ag

(©2))

¢*:

. (28)

We can now build the full phase diagram in the 3D space (A;, Ay, ). Phases III and IV
with ¢ = 0 can be then shown separated from Phases I and IT where ¢ # 0, see Fig. 15. We
assume that the system is in the stall state which means z = z¢ in the hard device and t = 0
in the soft device ensemble.

In the phase diagram in Fig. 15a, the plane Ay = 0 describes the soft device ensemble,
while any other plane Ay = const > 0 corresponds to ensembles with different rigidities
of the hard device. The (blue) surface separates the domain of stability of Phases III and IV
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Fig. 15 a Phase diagram in the 3D space (Aj, A f ,B*]) for the case of hard device (colored surface, dark
blue—second-order phase transition, light blue—first-order phase transition). The soft device phase diagram
is shown by a transparent vertical cylindrical surface, b section of both phase diagrams in a. For the case of a
hard device, we fixed the value of parameter A F= 1

from the domain of stability of Phases I and II. In this representation, the phase boundary
evolves with rigidity Ay producing one parametric family of ensembles. A comparison of
the sections Ay = 0 (soft) and Ay = 1 (typical hard) is presented in Fig. 15b showing,
for instance, that the location of the tricritical points in these two ensembles is different.
Since for each half-sarcomere, the value of the lump elasticity A ; may vary with perpetual
re-configuring of the surrounding effective matrix, the location of the actual tricritical point
can be considered as floating.

The presence, in the phase diagram of the system, of the two closely located critical
lines that terminate in the two tricritical points may contribute to the system’s ability to
perform robustly and might be, in this sense, functional. Previously we have shown that
such double criticality may actualize in the system of muscle cross-bridges due to quenched
disorder [32]. Here, we neglect the quenched disorder, which, of course, also contributes to
the destabilization of the coherent response and focus instead on steric antiferromagnetic
interaction as the main factor preventing strongly cooperative response. The importance of
the fact that the near-criticality condition is achieved in both soft and hard device ensembles
almost concomitantly stems from the mixed nature of the loading conditions experienced by
a single half-sarcomere. We recall that muscle architecture involves both parallel and series
connections. Parallel elements respond to a common displacement (hard device, Helmholtz
ensemble), while series structures sense a common force (soft device, Gibbs ensemble).
The dominance of long-range interactions induces different collective behavior in force- and
length-controlled ensembles, and to ensure the robustness of the response under a broad range
of mechanical stimuli, the system can benefit from being poised in the vicinity of both types
of critical regimes.

Note also that throughout this paper, we have been assuming that the stiffness Ay = ks /N
is a size-independent constant. Therefore, we implicitly assumed that k 4 ~ N. We recall that
the (macroscopic) stiffness « ¢ represents elastic filaments which support a parallel bundle of
N cross-bridges. An alternative assumption would be that filaments are not stiffer than cross-
bridges and therefore « y is N independent, see, for instance, [32]. In this case, Ay ~ 1/N,
and the number of cross-bridges N becomes a control parameter in the phase diagram. This
means that an active control of the number of attached myosin heads could induce a structural
change in the overall mechanical response of the system. For instance, it was shown that the
fraction of myosin motors attached in the OFF state (heads folded back toward the M-line)
depends on the thick filament stress [75]. The time course of the change in conformation of
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the population of myosin motors in a half-sarcomere was also traced by quick freezing of a
single muscle fiber and by using cryo-EM [76]. Such modulation of the number of attached
cross-bridges may be an indication of an active control; however, the theoretical exploration
of this idea will not be pursued in this paper.

6 Antiferromagnetic order

Note that the order parameter ¢, which is the mechanical analog of magnetization, cannot
differentiate between Phases I and Il when ¢ 7~ 0 and Il and IV when ¢p = 0. Finer features of
the local spin distribution can be captured if we introduce parameter distinguishing between
ferromagnetic and antiferromagnetic spins’ arrangements.

We recall that in magnetism, the system is antiferromagnetic if it is energetically favorable
for neighboring spins to align in opposite directions. In the simplest antiferromagnets, the
crystal may be divided into two sublattices, A and B, so that if the spins occupying one
sublattice point one way, those occupying the other point the opposite way so that the spins
of nearest-neighbor atoms are always antiparallel [77,78]. Since the net magnetization is
equal to zero in such a state, the order parameter ¢ cannot distinguish between paramagnetic
(our Phase I'V) and antiferromagnetic (our Phase III) phases.

To obtain an approximate picture of the transition to antiferromagnetic behavior, we
employ a two-sublattice mean-field approximation [34,38,79]. We first introduce the con-
ventional spin variable s; = 2x; + 1, so that s; = %1, and then distinguish magnetizations
in different sublattices introducing ¢, = (sica) = (2/N) ZieA si, and ¢p = (szjep) =
(2/N) Zie p Si. Then, the staggered magnetization can be defined as ¢; = (¢ — ¢»)/2,
while ¢ = (¢4 + ¢p)/2.

If we express the Hamiltonian (7) in terms of the spin variables, s; = %1, the relaxed
energy can be written as,

1 A
E(Si,z)z—m ;Sisj_ZIZSiSiJrl_h(Z)lZSi‘f‘f(Z) (29)

2Apz —1 1 Vo )\J’ f()=27\fz(1+1) 1 ) 1 Ay

T414Ap) 4 2 2 204+Ap) 4 ?_8(1+7\f)+7'

1
This energy can be subdivided into two lattices (A and B), and in the mean-field approxima-
tion, we can express the values of spins on the corresponding sublattices as ¢4, + Sica B,
where ¢, 5, are the average values and the fluctuations 5;c4 p are considered to be small.
Then, we obtain the approximate Hamiltonian

Hns = > (Pa +Sica + b+ Ficn) (Ga +5jea + ¢ + Fjen)
iJj

C8N(1+Ap)

AJ - - . N
-7 D (@a+3Fica+ by +Sicn)(@a + Fjea + by + 5jen) (30)
<i,j>
—h(2) Y (@a+3Fica) —h(@) Y (@b +Sicp) + f(2),
i€A ieB
where the notation < i, j > indicates thati and j are nearest neighbors. We neglect quadratic
terms in the fluctuation, and then, the problem is posed for s;c4 p, by substituting S;ca, p =
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Fig. 16 a Phase diagram of a model mean-field system in a hard device showing the boundary separating
domains with different patterning of spins (representing pre- and post-power stroke configurations of the
myosin heads). In the paramagnetic (PM) domain, spins are disordered; in the antiferromagnetic (AFM)
domain, spins are ordered (interdigitated). The loading parameter is fixed at z = 26 b Staggered magnetization
¢s as a function of the non-dimensional temperature 1/8. ¢ Order parameters for the AFM phase ¢, ; as
functions of 1/8. Other parameters: Ay = —0.5

SicA.B — Pa.b>
Hng = Neprda®s +ha@) Y si+hp(2) Y si +c(2), (31)
icA ieB

where

1/ 1
Jopr = ~ 2A
e 4<Af+1+ ’)

is the effective (mean-field) coupling, which depends on both short- and long-range inter-
actions. The loading-dependent effective fields are h,(z) = —¢pJepr — hy(2) and hp(z) =
_¢a Jeff - hs (Z)’ with

2Apz—1 1 vy Ay

_7+7.

h(z) = L2~ 4 2
@ Wtap T4 272

. ... . NA ¢z2 . . ...
Finally, the additive constant is c(z) = Z(Tf{f) + Nvg. Using the self-consistency conditions
Gab =< D ;ca g Si >, we obtain the nonlinear algebraic equations for ¢ 5:

1 _
=5 > sieae” TS = tanh B(Jopdp + hy)
m. .
$p=2— ) sicpe P70 = tanh BUerra + he)
Znf
where Z,,r = 2N e=NBJesr¢abs (cosh Bh, cosh ,Bh;,)N/2 . The system (32) has a unique solu-
tion ¢, = ¢p = 0 for B < By = —1/Jerr and acquires two additional nonzero solu-
tions for 8 > By. The analog of stall state in this mean-field problem is z = z3 =

(1 4+1/Af)(vo — Ay) — 1/2. The phase diagram at z = zj) is presented in Fig. 16 where we
set for simplicity that vp =0 and Ay = 1.

Since we neglected the crucial long-range interactions in our system due to myosin back-
bones and treated the steric short-range interactions only at the mean-field level, the resulting
phase diagram in Fig. 16a is too oversimplified to capture our four Phases I, II, IIl and I'V. The
only division which can be illustrated in this way is between the paramagnetic (PM) Phase
IV and antiferromagnetic (AFM) Phase III. The corresponding line on the plane (A, 1/8)
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clearly shows that the AFM phase is favored by low temperatures and strong negativity of
the coupling constant A ;.

To reveal the antiferromagnetic ordering emerging in Phases II and III, we can also char-
acterize the two-point correlation function directly G(i, i + j) = (x;x;) — (x;)(x;) in the
hard device ensemble by using again the transfer matrix method. Following [70], we write

1
—BE(xi.y,2) .
/ dy {E} e Xi
X

1 - :
=z / dye Mo Z T Z [TX1X2 Topxy o Ty Xi Ty ]
Xi XN

Note that the matrix >, Ty, x%; Txx,, can be equivalently written as A = TXT,

(xi)

(33)

where X = ((0) _01> and therefore (x;) = %f dy e=NBeO-D Tr(XTVN), However,

T = ST'S™!, where T is a diagonal matrix with eigenvalues, given by Eq. (11). Then,
(xi) = % [ dy e~ NPeO D Tr[§™1X 8§ (T7)N]. We can explicitly compute the eigenvectors

of T, V4 = (a+, 1), where a4 = eﬂTj[— sinh i &+ ve=B7 +sinh? h],s0 S = <a1+ al_ ),

and
_BJ
_ sinh & _ 1 e 2
— E) —BJ 2 2 —BJ
D (Xll X12> = 24/sinh _h};:je B 2 émh h+e=h ) (34)
X22 X22 e 2 sinh 2 1

2+/sinh? hte—H7 2+/sinh? hte=87 2
Then, using Laplace method and the fact that limy_, oo (A2 /A DN = 0, we obtain
sinh i 1

(xi)=x11 = ——F/—— <. (35)
' 2/sinh2h + e B 2
The two-point correlation function can be compute similarly. Note first that
1 . .
wix) = < / dy e VPOO T [(STIX ) (1) (57X $) 1)V | (36)

Again, in the limit N — oo, we obtain (x;x;) = X121 + x12x21 (?\2/?\1)j , which allows us
to finally write

Glii+)) = buixg) — (i) () = e (32)]

1 |:cosh h— eﬁj+sinh2h]j (37)

T 4+4ePT sinh k| cogh h+«/e*f”+sinh2 h

Here, h = g(y* +1/2 —vp), and y, is given by (14). To illustrate (37), it is convenient to use
the spin variables s; = £1 defined by 2x; = s; — 1. In Fig. 17, we show the function G (j) =
Gy, (i,i+ j) =4 Gy, (i,i + j) which clearly distinguished between the ferromagnetic (FM)
and antiferromagnetic (AFM) phases; note that we do not attempt here to directly associate
these regimes with the phases defined in Fig. 10.

To summarize, we have shown if short-range steric interactions between cross-bridges of
antiferromagnetic type are sufficiently strong, then the state of isometric contractions is not
only mechanically stable in the sense that it has positive stiffness, but it is also ordered in
the way that exactly half of the cross-bridges is in pre-power stroke state and another half
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(@ (b) (c)

Fig. 17 Two-point correlation function in different phases for the model system, see Fig. 16a. The loading
parameter is fixed at z = zg. Other parameters: (a) 8 = 20, Ay = 0.1 PM-phase; (b) 8 = 10,A; = —0.2
PM-phase; and (c) B = 20, A; = —0.5 AFM-phase

Fig. 18 Schematic HlyOﬁbI'll
representation of a single

sarcomere. Inset illustrates the
equivalent mechanical model:
two half-sarcomeres connected in
series

in the post-power stroke state; moreover, the conformation states oscillate at lattice scale so
that both confirmations are effectively present at any location inside a half-sarcomere.

7 Two half-sarcomeres

In this section, we show how the presence of antiferromagnetic short-range interactions
allows the system to avoid instability developing into macroscopic inhomogeneity. One can
say that to maintain homogeneity at the macroscale, such system chooses to be maximally
inhomogeneous at the microscopic scale.

So far, we have been dealing with a single half-sarcomere behavior, which is the basic unit
of contraction. Even having non-convex elastic energy and negative stiffness, such a unit is
still stable in a hard device. This case’s instability comes when more than one element with
non-convex energies is loaded in a hard device while being arranged in series. Even if the
system includes only two units like this, they do not need to deform in an affine way and can
accept instead different deformational states.

This is an important issue since muscle fiber is often represented as a series of connections
of half-sarcomeres. It has been shown that if the energy of individual half-sarcomeres is non-
convex, such association breaks into macroscopic islands of either fully pre- or fully post-
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Fig. 19 Mechanical response of the system consisting of two half-sarcomere units connected in series with
each half-sarcomere represented by infinite number of cross-bridges (thermodynamic limit). Solid curves show
the equilibrium tension—elongation curves; the insets illustrate the associated configurations of cross-bridges.
Parameters:avg =0, 8 =5, ?\f = 1 and A; = 0 (no short-range interactions). b vyp = 0, g = 25, ?\f =1
and A; = —0.25 (strong antiferromagnetic short-range interactions)

power stroked half-sarcomeres [17,22]. Such instability would be prevented if the energy of
a half-sarcomere is convexified in the stall configuration. As we have shown in the previous
sections, such convexification occurs when the system is either in Phase IV or Phase I1I. It has
been already known to Huxley that the first option is not viable in view of insufficiently high
reduced temperature in physiological conditions. That is why we consider below the only
low-temperature option when the destabilizing steric short-range interactions are sufficiently
strong, and the physiological system is in Phase III.

To illustrate the disappearance of the macroscopic instability in this case, it is sufficient
to consider the simplest system with only two half-sarcomeres connected in series. Such
system can be viewed as a prototypical description of a single sarcomere, see Fig. 18. Exper-
iments suggest that in stall conditions, each sarcomere contains a macroscopically (but not
necessarily microscopically) uniform mixture of pre- and post-power stroke cross-bridges
[64].

Suppose that each half-sarcomere is equilibrated independently at the microscale and
therefore behaves at the macroscale according to the elastic constitutive relation generated
by the free energy F (8, z), see (13). We can then write the equilibrium energy of the whole
system loaded in a hard device in the form

Fa(B.z,z21) = F(B,z1) + F(B.z — 21)- (38)

where z is the macroscopic controlling parameter. The extra variable z; can be eliminated
using the equilibrium condition d F (8, z1)/dz1 = 0F (B, z — z1)/0dz1. Substituting the equi-
librium value z; (8, z) into (38), we obtain the function 7> (8, z) = F»(B, z, 21(B, z,)) and
construct the equilibrium force—elongation relation 7 (8, z) = dF2(B, z)/dz. It would be also
of interest to compute for each half-sarcomere, the fraction of cross-bridges in either pre- or
post-power stroke conformations. For half-sarcomeres 1 and 2, respectively, it will be given
by the functions

G12(B.2) =2Ar + Dy 2(B.2) —2A 2z + 1 (39)

where the function y, (8, z) is given by (14).

InFig. 19 and Fig. 20, we compare the response of two half-sarcomeres in series depending
on whether their constitutive response follows the one from Phase I, see Fig. 19a or Phase
111, see Fig. 19b.

If short-range interactions are of ferromagnetic type, and the individual subsystems are
in Phase I, we observe that while the effective stiffness in the stall state z = zq is positive,
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Fig. 20 Strain response of the ‘local’ order parameters for the system of two half-sarcomeres connected
in series. The colored curves show ¢1 and ¢, are the order parameter of the individual half-sarcomeres.
Parameters: a: vg = 0, 8 = 5,A¢ = 1 and A; = 0 (no short-range interactions); bvg =0, 8 =25, A = 1
and A; = —0.25 (strong antiferromagnetic short-range interactions)

see Fig. 19a, the macro-state is non-affine with ¢; and ¢, taking different values. This means
that the two half-sarcomeres in series have different internal structures that are both pure:
One is fully in pre-power stroke state, and another one is fully in post-power stroke state, see
Fig. 20a.

If instead, the short-range interactions are of antiferromagnetic type and the individual
half-sarcomeres are in Phase III, the whole sarcomere (in stall conditions) has positive stift-
ness, see Fig. 19b, and its macro-configuration is affine with the order parameters ¢; and ¢,
taking the same value, see Fig. 20b. This means that the two half-sarcomeres in series have
the same internal structure, which is, however, micro-inhomogeneous, with cross-bridges
equally divided between pre- and post-power stroke conformations.

Outside a neighborhood of the stall state, the system with ferromagnetic -type short-range
interactions is microscopically homogeneous with all half-sarcomeres occupying the same
pure state. Instead, the system with antiferromagnetic-type interactions develops two zones
of non-affine behavior where one of the two half-sarcomeres is in a pure state, while the other
one is in a mixed state.

This simplified description can be immediately extended to cover the case of N half-
sarcomeres connected in series. In the case of dominating antiferromagnetic interactions, the
stall state will remain mechanically stable, macroscopically homogeneous and microscop-
ically inhomogeneous. Outside the stall state’s immediate vicinity, there will be different
regimes with a variable number of coexisting half-sarcomeres in a pure and mixed state.
The overall macroscopic force—elongation curve will then be wavy with an overall slightly
positive average slope as observed in experiments. In the limit N — oo, we obtain weak
convergence to an apparently stress—strain curve whose local microscopic derivative is nev-
ertheless different from its macroscopic (averaged) value.

8 Conclusions

We presented a mathematical model describing the passive mechanical response of tetanized
muscle fibers. Itis relevant for analyzing experiments involving fast mechanical perturbations
imposed on the state of isometric contractions. The observed overall homogeneity of the
macroscopic response in these conditions was previously shown to contradict the microscopic
prediction of the classical HS model and its more recent generalizations [1]. According to
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this model the slope of the force—length curve should be negative and the cross-bridges inside
single half-sarcomeres must be necessarily either all in pre- or all in post-power stroke states.

The standard HS-type model assumes that the bi-stable nature of myosin heads can be
modeled by spin variables and that inside a single half-sarcomere, the myosin cross-bridges
are arranged in parallel [5,46]. This parallel structure is responsible for mean-field-type
interaction among different cross-bridges, which forces them to act synchronously. To com-
promise the coherent response of such parallel bundles, we proposed to move beyond the
HS framework [15] and introduce into the model the antiferromagnetic mechanical inter-
actions between neighboring cross-bridges. We then studied the competition between these
destabilizing short-range interactions and the stabilizing long-range interactions of HS.

We showed that while an increase in the strength of the ferromagnetic short-range inter-
actions (A; > 0) would have the same effect as a decrease in temperature, leaving the
overall qualitative behavior of HS unchanged, the presence of antiferromagnetic interactions
(A < 0) drastically changes the qualitative behavior of the system. The main effect is that
by tuning the parameter A; < 0, one can introduce a new energy well corresponding to the
stall state and, in this way, stabilize the state of isometric contractions. At a fixed strength
of long-range interactions (fixed A ), the phase diagram in (8, A;) space shows a line of
second-order phase transition which expands the critical regime found in [15] at A; = O.

The proposed model shows that to make a macroscopically homogeneous response pos-
sible, the system must be microscopically inhomogeneous. Micro-inhomogeneity, achieved
by activating short-range interactions of antiferromagnetic type, takes the form of periodic
interdigitated patterns with neighboring sarcomeres taking alternatively either pre- or post-
power stroke conformations. Such patterns replace the highly coherent micro-homogeneous
mechanical response favored by the original HS model. The predicted micro-inhomogeneity
may be beneficial as it breaks the coherency of the response and facilitates the swift tran-
sition to either fully pre- or fully post-power stroke configuration in response to external
excitation. We also argue that evolution could use short-range interactions to tune the muscle
machinery to perform near the conditions of ‘double criticality,” where both the Helmholtz
and the Gibbs free energies are singular. Such design would be highly functional given that
elementary force-producing units usually perform in a mixed soft—hard loading conditions.

We have shown that the proposed hypothesis of the ‘interacting neighbors’ questions the
stability of the uniform equilibrium (micro)configurations of half-sarcomeres only in the
case when they respond to the mechanical perturbation analyzed in the classical HS paper.
More theoretical studies are needed to evaluate how it would also affect the general kinetic
response of muscle myofibrils in both passive and active phases. Another challenge is to
assess how the micro-inhomogeneous nature of the response would influence the ability of
the motors to use the chemical energy of the ATP. In the HS-type models, this energy can
be linked to the value of vy, which may be then affected by the presence of short-range
interactions. Yet another important factor to be included in future studies is the complex
3D arrangements of myosin fibers and the presence of an elaborate 3D architecture linking
individual cross-bridges not only through thick and thin filaments but also, effectively, through
M- and Z-disks. Only by surviving such more realistic tests in fully comprehensive settings
can the hypothesis of antiferromagnetic short-range interaction gain acceptance in the muscle
mechanics community.
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