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2D Bravais lattices. A 2D simple lattice is an infinite
and discrete set of points given by

L(ei) =
{
x ∈ R2 : x = viei, v

i ∈ Z, i = 1, 2
}
, (1)

where the two independent vectors {ei} in R2 are the lat-
tice basis (sum over repeated indices is understood). The
metric C = (Cij) of the basis {ei} is a 2 × 2 symmetric
positive-definite real matrix with elements Cij = ei · ej .
The collection of all such metric matrices C forms the
3D cone Sym>(R2), defined by the conditions C11 > 0
and C2

12 < C11C22, within the space R3 with coordinates
C11, C12, C22.

Two bases {ei} and {ẽi} generate the same lattice if
and only if [1, 3, 6]

ẽj = mijei with m = (mij) ∈ GL(2,Z). (2)

Here GL(2,Z) denotes the group of 2× 2 invertible ma-
trices with entries in Z and determinant ±1, which plays
the role of full symmetry group of 2D simple lattices
[1, 3, 5, 7]. When (2) holds, the metrics of the associated
bases are related by

C̃ = mTCm, (3)

where mT is the transpose of m
This gives a natural action of GL(2,Z) on Sym>(R2)

[1, 6].
Given any lattice basis ei, the finite subgroup of

GL(2, Z) collecting the matrices m which leave the cor-
responding metric invariant under the action (3)

L({e}) =
{
m ∈ GL(2,Z) : mijei = Qej ,Q ∈ O(2)

}
=
{
m ∈ GL(2,Z) : mTCm = C

}
,

(4)

is called a ‘lattice group’. It gives an arithmetic represen-
tation of the point-group symmetry of the corresponding
lattice [1, 6].

When a lattice undergoes a deformation, its basis is
locally transformed by the deformation gradient tensor
F = ∇y (see main text).

Complex representation. The upper complex half-
plane is the set H = {x + iy ∈ C, y > 0}. A complex

representation of the cone Sym>(R2) is provided by as-
sociating to any metric C the complex number [2, 4]

ẑ(C) =
C12

C11
+ i

√
detC

C11
∈ H , (5)

whereby ẑ(C) = ẑ(C′) if and only if C and C′ are pro-
portional. This means that (5) puts H in a one-to-one cor-
respondence with the hyperboloid S̄ym>(R2) of positive-
definite symmetric 2 × 2 with determinant 1. The 2 × 2
deformation gradient F can be now identified through
the following four real parameters : the rotation angle
entering the polar decomposition F = RU, the positive
scalar detC = (detF)2, and the real and imaginary parts
of the complex number ẑ(C) ∈ H, with C = FTF.

The action of GL(2,Z) on S̄ym>(R2) generates the ac-
tion on H given by

m(z) =

{
Γm(z) if detm = 1

Γm̄(γ(z)) if detm = −1,
(6)

where Γm(z) =
(
m22z+m12

)/(
m21z+m11

)
is the (Moe-

bius) linear fractional transformation, γ(z) = −z̄, and m̄
has matrix elements m̄1i = m1i, m̄2i = −m2i, for i = 1, 2
[8, 10]. The action (6) of GL(2,Z) on H gives rise [2, 10]
to the Dedekind tessellation of H, shown in Fig. 1 of the
main text. It distinguishes all the GL(2,Z)-related copies
of the fundamental domain

D = {z ∈ H : |z| ≥ 1, 0 ≤ Re(z) ≤ 1
2}. (7)

The points in the interior of D correspond via (4)-(5) to
metrics (and thus lattices) with trivial symmetry, while
points on the boundary ∂D correspond to metrics pos-
sessing nontrivial symmetries. In detail [5, 6], rectangu-
lar lattices are points on the imaginary axis, while ‘fat’
and ‘skinny’ rhombic lattices correspond respectively to
points z ∈ ∂D such that |z| = 1 and Re(z) = 1/2. Finally,
the two vertices of ∂D in z = i and z = 1

2 +
√

3
2 i = eiπ/3

are respectively associated to a square and a hexagonal
lattice metric.

Polynomial potential [5]. The general sixth order po-
lynomial potential with hexagonal symmetry and requi-
red smoothness on the boundaries of the periodicity do-
main can be written as a linear combination of 10 linearly
independent vectors ψi. Since detC already has the re-
quired invariance, three basis vectors may be respectively



2

detC, its square and its cube, the others are chosen as
functions of invariants Ii defined in the main text. A sui-
table choice for the functions ψi is :

ψ1 = I1
4 I2 −

41 I2
3

99
+

7 I1 I2 I3
66

+
I3

2

1056
,

ψ2 = I1
2 I2

2 − 65 I2
3

99
+
I1 I2 I3

11
+
I3

2

264
,

ψ3 =
4 I2

3

11
+ I1

3 I3 −
8 I1 I2 I3

11
+

17 I3
2

528
,

ψ4 =
9 I1

5

2
− 4 I1

3 I2 + I1 I2
2 − I2 I3

48
, (8)

ψ5 = 48 I1
5 − 24 I1

3 I2 + I1
2 I3,

ψ6 = 21 I1
4 − 5 I2

2 + I1 I3,

ψ7 = −5 I1
3

2
+ I1 I2 −

I3
48
,

(9)

and we obtain

f(C) = h(detC) +

7∑
i=1

βiψi

(
C

det1/2 C

)
. (10)

Values of βi can be chosen to ensure that around the glo-
bal minimum the function f(C) has a desired symmetry.
For instance, to ensure square symmetry one can choose
β1 = − 1

4 , β3 = 1, β2 = β4 = β5 = β6 = β7 = 0. For
hexagonal symmetry one can take β1 = 4, β3 = 1 and
β2 = β4 = β5 = β6 = β7 = 0.

Potential based on the Klein invariant. There exists
a unique complex function holomorphic on H, known as
the Klein invariant J(z), with the following properties
[8, 10] : it is periodic under the action (6)1 of SL(2,Z) on
H ; it is one-to-one between the fundamental domain D
and H ∪ R ; it diverges when Im z → +∞, with a simple
pole at infinity ; it attains respectively the values 0 and
1 at the vertices z = eiπ/3 and z = i of D. Then one
shows that J assumes real values at the boundary ∂D of
D, and that J diverges also when z approaches a rational
point on the real axis. The Fourier expansion of j(z) ≡
1728J(z) [12, 13] starts as j(τ) = 1/q+ 744 + 196884 q+
21493760 q2 +864299970 q3 +20245856256 q4 + . . . , where
q = exp(2πiτ). Mathematica lists up to 600 terms of such
an expansion, which has all integers among its Fourier
coefficients [8]. We have used the first 25 of these [9] in
the implementation of J for our numerical simulations.

The simplest family of GL(2,Z)-invariant energy func-
tions based on J can be constructed by considering po-
tentials proportional to |J(z)−J(z0)|2 with the reference
minimizer z0 on the boundary of D. The particularly re-
levant cases correspond to minimizers centered on either
of the two maximally-symmetric points z0 = i (square) or
z0 = eiπ/3 (hexagonal) on the boundary D : these are the
only stationary points of J forced by modular invariance
[8]. More precisely, J satisfies J(z) = J(i) +O(z − i)2 as
z → i, and J(z) = J(ρ) +O(z − eiπ/3)3 as z → eiπ/3. In

these two instances, to ensure a correct positive-definite
behavior of linear elasticity in the vicinity of either the
minimizer i or eiπ/3 one must then consider potentials
which are functions of

(
|J(z)−J(i)|2

)1/2
= |J(z)−1| for

square lattices (z0 = i), and of
(
|J(z)− J(eiπ/3)|2

)1/3
=

|J(z)|2/3 for hexagonal lattices (z0 = eiπ/3). These sim-
plest energies are used in our numerical simulations ; the
drawback of this choice is the fact that for z0 = i the
energy proportional to |J(z)− J(z0)|2 imposes isotropic
elastic moduli on a square lattice.

Numerical implementation. We divide the physical
space into finite elements and reduce the space of admis-
sible deformations to compatible piece-wise-affine map-
pings. We obtain a deformable 2D network whose dis-
crete nodes x have integer valued coordinates. With each
node we associate a deformed cell defined by the basis
vectors ea(x), where a = 1, 2. The elastic energy of a cell
is assumed to be a function of the metric tensor C(x)
with components Cab = ea · eb.

More precisely, the reference body Ω is discretized
into triangular finite elements and we use linear trian-
gular shape functions Nij(x) to represent the displace-
ment field u(x) = uijNij(x), where uij denote values of
displacement at node ij. The discrete deformation gra-
dient is then given by ∇y = 1 + uij ⊗ ∇Nij . To mini-
mize the energy functional W =

∫
Ω
f we use a variant of

conjugate gradient optimization known as the L-BFGS
algorithm [11]. This algorithm identifies solutions of the
equilibrium equations 0 = ∂W/∂uij =

∫
Ω
P∇Nij , where

P = ∂f/∂∇y, reachable through overdamped dynamics.
We use hard device boundary conditions, i.e. the posi-
tions of surface nodes are calculated using the affine de-
formation with ∇y = const.

We wrote our own Finite Element code in C++ and did
not use commercial packages. We used the termination
threshold 10−14 in our energy minimization algorithm.
At a fixed strain increment and system size the results
were fully reproducible. At different system sizes the re-
sults remain qualitatively similar : at the critical value of
loading parameter, two slip systems are always activated
for the square crystal, whereas we observe the activation
of a single initial plastic mechanism for the triangular
crystal.

In Figures 1 and 2 we present examples of our nume-
rical simulations illustrating in detail two phenomena of
interest : stages of the initial collective nucleation pro-
cess and relaxation of the dislocation structure after the
removal of the loading.

Supplemental movies. Collective dislocation nuclea-
tion modeled by the gradient flow in the configurational
space following the loss of stability of a homogeneous
state at a critical load. Movie S1 : square lattice. Movie
S2 : triangular lattice. Dots represent the metric tensor
C/(detC)1/2 in different finite elements. Dots are color-
coded according to their energy level : red-high and blue-
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Figure 1. Strain-stress relation for the square crystal : black
line is the Cauchy stress for the homogeneous state ; brown
line describes the numerical solution during and right after the
dislocation nucleation event. Insets : The dislocation configu-
ration as it evolves during the different stages of the nucleation
event (A-F).

(a) (b)

Figure 2. Relaxation involving dislocation annihilation upon
removal of the applied strain : (a) dislocation configuration
right after the nucleation event , (b) the configuration shown
in (a) after the relaxation with open boundary conditions.
Note the resultant formation of steps on the free boundaries.

low. Green lines represent the simple shear paths imposed

by the loading device.

Movie S3 : We illustrate separately the elementary
mechanism of dislocation annihilation (square lattice) in
the configuration space (right) and in the physical space
(left). In both right and left panels, color-code shows the
level of the Cauchy stress σxy : red-high and blue-low.
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