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Abstract The response of spatially extended systems to a force leading their steady state
out of equilibrium is strongly affected by the presence of disorder. We focus on the mean
velocity induced by a constant force applied on one-dimensional interfaces. In the absence
of disorder, the velocity is linear in the force. In the presence of disorder, it is widely admit-
ted, as well as experimentally and numerically verified, that the velocity presents a stretched
exponential dependence in the force (the so-called ‘creep law’), which is out of reach of linear
response, or more generically of direct perturbative expansions at small force. In dimension
one, there is no exact analytical derivation of such a law, even from a theoretical physical
point of view. We propose an effective model with two degrees of freedom, constructed from
the full spatially extended model, that captures many aspects of the creep phenomenology. It
provides a justification of the creep law form of the velocity–force characteristics, in a qua-
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Driven Interfaces: From Flow to Creep Through… 1395

sistatic approximation. It allows, moreover, to capture the non-trivial effects of short-range
correlations in the disorder, which govern the low-temperature asymptotics. It enables us to
establish a phase diagram where the creep law manifests itself in the vicinity of the origin in
the force–system-size–temperature coordinates. Conjointly, we characterise the crossover
between the creep regime and a linear-response regime that arises due to finite system
size.

Keywords Disordered systems · Non-equilibrium dynamics · Creep law · Non-linear
response · Kardar–Parisi–Zhang universality class

1 Introduction

Disorder can radically affect the behaviour of physical phenomena. An archetypal class of
systems is given by extended elastic objects (lines or manifolds) which fluctuate in an hetero-
geneous medium [1]. Examples range from interfaces in magnetic or ferroic [2] materials,
vortices in superconductors [3] to solid membranes in chemical or biological liquids, and
fronts in liquid crystals [4,5]. In the absence of disorder, the geometry and dynamical proper-
ties of such systems are in general resulting froma simple interplay between elastic constraints
and thermal noise. The addition of disorder (impurities, quenched inhomogeneities, space–
time noise) can alter the geometry of the interface, by changing it from flat to rough, or by
modifying its fractal dimension in scale-invariant systems [6]. For models in the Kardar–
Parisi–Zhang class (KPZ) class [7] the disorder transforms the diffusive spatial fluctuations
of a line into superdiffusive ones (see [8–12] for reviews).

We are interested in the non-equilibrium motion induced by an external drive applied
to such systems with quenched disorder. In the disorder-free situation, Ohm’s linear law
[13] between the observed average velocity and the applied force yields a simple linear
response. In the presence of disorder, the situation is more complex; the so-called ‘creep
law’ is an example of velocity–force characteristics for which linear response does not hold,
even in the very small force limit. It is described by a stretched-exponential velocity–force
relation of the form v( f )∼e− f −μ

(where we set scaling parameters to 1) depending on the
creep exponent μ > 0, which is non-analytic at zero force f = 0. It was derived in the
context of dislocations in disordered media [14,15] and motion of vortex lines [16–18], and
gave rise to a number of studies, ranging from the initial scaling and renormalization-group
(RG) analysis [7,19], to equilibrium [20] and non-equilibrium functional RG (FRG) studies
[21,22], and, in the picture of successive activation events, to the study of the distribution of
energy barriers [23] and of activation times [24,25]. Numerical studies confirm its validity
for one-dimensional (1D) interfaces [26–29] (see [30] for a review), and experimental results
for driven domain walls in ultrathin magnetic layers [31] are compatible with a stretched
exponential velocity–force relation with a creep exponent μ = 1/4.

Several questions yet remain to be clarified. The first class of questions pertains to the
derivation of the law itself: RG analysis in dimension one is known to be non-convergent, and
FRG approaches are valid perturbatively in dimension 4 − ε far from dimension 1 (ε � 1).
Different power-counting scaling arguments lead to different values of the creep exponent μ
(as we detail in Sect. 2.4). The second class of questions is related to the understanding of
the finite-size regime: one indeed expects that for a finite system, the linear response should
be valid at very low forces; this rises the question of how to depict the crossover between this
linear regime and the creep law. More generically, we aim at constructing a phase diagram in
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1396 E. Agoritsas et al.

the three coordinates (force, inverse of system size, temperature) provided by the parameters
of interest, which would depict criticality around its origin and specify the characteristic
scales of the creep regime.

In this article, we construct an effectivemodel describing themotion of the driven interface
at fixed lengthscale. It allows us to recover the creep law and to extend the description of the
dynamics from low forces to larger forces, and to characterise the crossover between creep
and linear response in finite systems in the very small force regime. Previous approaches
have dealt with ‘zero-dimensional’ toy models where a particle with one degree of freedom
moves in a 1D random potential [25,32,33]. However, the distribution of such a random
potential that would summarise the effect of the disorder experienced by the full segment
of the interface would prove very delicate to describe in our system of interest. Indeed, an
important issue of driven systems with one degree of freedom is that very large barriers
always block the motion, making the extreme statistics of the disorder play an essential
role. In contrast, the cost of the elastic deformations allowed in higher dimensions allows to
counterbalance large inhomogeneities in the environment: deepwells in the disorder potential
cannot pin the interface beyond the (unbounded) energetic cost of the elastic deformations
that they would impose as the interface moves—thus rendering the dynamics of the system
less sensitive to the extremes of the disorder distribution. The effectivemodel that we propose
has two degrees of freedom which allow to capture in a minimalist way such competition
between elasticity and disorder.

We now summarise our findings, before providing their derivation in the next sections.
We establish a phase diagram in the force–system-size–temperature coordinates (see Fig.
1) that describes the regimes where the velocity–force dependence is of the creep type
or of the flow type. The creep law itself appears in the critical region of the diagram, in
the low-force, low-temperature and large-system size regime. Physically, the creep regime
holds in regions where a specific form of scale invariance holds (relevant observables scal-
ing simply with all parameters), while the flow regime appears whenever the system-size
is too small for such scaling to hold. Our results complement previous numerical and
phenomenological studies on the scalings of the driven interface [29,30,34]: we are able
to analyse the role of finite system size (complementing [35]), but we cannot probe the
depinning regime that was examined in those studies, which is out of reach of our effec-
tive model reduction. The novelty of our approach lies also in the methodology that we
propose, which provides a well-defined procedure, solving in particular a power-counting
dilemma for the scaling arguments: we device an effective model for the driven interface
at fixed scale and propose saddle-point point argument at small forces which justifies why
only one out of two possible power-counting arguments (either on the Hamiltonian or on
the free energy) yields the correct creep exponent. We detail how a mean first passage
time (MFPT) description allows to handle non-equilibrium issues within an equilibrium
settings. Then, from the combination of those tools, we are able to extend the creep law
and we describe the crossover from the finite-system size very small velocity regime to the
creep law. Most importantly, we take into account the role of finite disorder correlations at
short-range [11,36–39] which are essential to understand the low-temperature asymptotics,
and in particular to identify the characteristic energy and characteristic force of the creep
law.

The article is organised as follows: we precise the model and known results in Sect. 2.
We review the particle toy-model (with one degree of freedom) in Sect. 3 as it serves as a
basis to our analysis. In Sect. 4, we describe the effective model with two degrees of freedom
and explain how it provides a useful framework to understand the creep law. In Sect. 5, we
use this description to analyse the crossover from creep to linear response at small forces in

123

Author's personal copy



Driven Interfaces: From Flow to Creep Through… 1397

Fig. 1 (Left) phase diagram of the regimes of velocity–force dependence. Coordinates are the inverse reduced
system size Lc/L , the reduced temperature T/Tc and the reduced force f/ fc. The creep law holds in a region
in the vicinity of the origin. The manifold of equation f/ fc = (Lc/L)4/3 (in red) separates the creep regime
from the flow regime where finite system size hinders the scale invariance leading to the creep law, and
induces instead a linear response velocity–force characteristic. Above this manifold, the motion is dominated
by forward motion in the direction of the drive while, below, both the forward and backward motions play
a comparable role. The manifold in blue (equation given by (67)) separates the regime of system size where
a Brownian scaling of free-energy ensures the validity of the creep law form (for large enough L) from a
regime not govern by the creep law. It provides an upper bound to the validity of the scaling analysis. The
manifold in green (equation given by (69)) separates the regimes of force where, similarly, a Brownian scaling
of free-energy holds or not, when, respectively, the typical interface length governing the motion is larger or
smaller than the Larkin length. It provides an upper bound to the validity of the scaling analysis. The results
are derived in Sects. 5.2 and 5.3 together with the expressions of the characteristic length Lc, the characteristic
temperature Tc and the characteristic force fc in terms of the model parameters (see also Table 1). Most of the
recent advances on exact characterisations of the distribution of free-energy in KPZ (reviewed, e.g., in [10,12])
are restricted to uncorrelated disorder, i.e., lie in the T � Tc region, far from the creep regime. (Right) zoom
of the resulting domains in the vicinity of the origin (Color figure online)

finite systems. We finally discuss our results in Sect. 6 and present perspectives in Sect. 7.
Our exposition is self-contained; the reader familiar with the subject can read in Sect. 2.3 the
definition of the tilted KPZ problem and directly jump to Sect. 4 for the analysis the effective
model derived from it. Table 1 summarises the notations.

2 Model and Questions

We present in this section the model of 1D interface that we consider, recalling its known
phenomenology in Sect. 2.1.Wedescribe the correspondence, in the non-driven case, between
the equilibrium distribution of the position of the interface and the directed polymer in Sect.
2.2, motivated by understanding the fluctuations of the interface at fixed length tf—a crucial
step for our scaling analysis and that has a natural formulation in the directed polymer
language. We then construct in Sect. 2.3 a variation of the equilibrium problem in which the
interface is subjected to a tilted random potential but also to boundary conditions forbidding
the development of a non-zero velocity state, and that we will use as a starting point in
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1398 E. Agoritsas et al.

Table 1 Table of parameters and notations

Variables Signification Expression Eq./Fig./§

Coordinates y Transverse coordinate

t Longitudinal coordinate

τ Physical time Fig. 2

tf Interface segment length

yi, yf Starting and arrival points

Model c Elastic constant (1)

parameters D Disorder strength (2)

T Temperature §2.1

ξ Disorder correlation length (2)

f Driving force (1)

γ Friction coefficient (1)

L Total interface length §5.1

Thermodynamic W f
V Partition function (15)

quantities F f
V Free energy (16)

F̄ f
V Disorder free energy (36)

Observables v̄( f ) Steady-state velocity (52), (59)

τ̄1( f ) Mean first passage time (38), (50–51)

Effective γ̃ Effective friction 1
2 tfγ (35)

parameters T̃ Effective temperature T (35)

Characteristic Tc Characteristic temperature (ξcD)1/3 (43)

parameters Lc Larkin length (at low T ) [c2ξ5/D]1/3 (61)

fc Characteristic force [D2/(cξ7)]1/3 (53)

Uc Characteristic barrier (gTc/T )3/4Tc (53), (70)

Fc Critical depinning force Fig. 2

Finite-ξ D̃ Disorder free-energy strength D̃ = gcD/T (42–43), (64)

parameters g Fudging parameter Solution of (66) (66)

Lopt Optimal length (cD̃)1/4 f −3/4 (54)

Lc T -dependent Larkin length T 5/(cD2g5) (63)

fL Max. force until Lopt( f ) = L (cD̃)1/3L−4/3 (55)

fL Max. force until Lopt( f ) = Lc D̃7/(c5D4) (68)

γ̄ Fudging exponent ∈ { 32 , 6} (66)

our approach in the following sections. Finally, to motivate our study, we compare in Sect.
2.4 different power-counting arguments presented in the literature either at the Hamiltonian
or at the free-energy level, which do not lead to the same result and call for a detailed
analysis.
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Driven Interfaces: From Flow to Creep Through… 1399

Fig. 2 (Left) trajectory of an interface y(t, τ ) of length tf at fixed physical time τ. The longitudinal spatial
coordinate t of the interface can be understood as “growth time” coordinate of a directed polymer. The interface,
described by the evolution equation (1), is subjected to a force field f which induces a mean velocity v( f )
of the average interface position. The total system length along direction t is denoted L . (Right) schematic
representation of the velocity–force characteristic v( f ). At zero temperature (dashed blue) the interface
remains pinned until the depinning transition at a force Fc. At non-zero temperature (purple continuous line),
the initial regime at f � Fc is very slow and obeys the creep law (3). At f = Fc the T = 0 characteristic
is rounded by temperature. At large force f � Fc the temperature and disorder play no role and the velocity
becomes linear in f (Color figure online)

2.1 Dynamics

We denote by τ the (physical) time of the interface and introduce as described in Fig. 2 a
τ -dependent position y(t, τ ) of the interface, of longitudinal coordinate t. Its evolution is
described by the overdamped Langevin equation

γ ∂τ y(t, τ ) = c∂2t y − ∂yV (t, y(t, τ )) + f + η(t, τ ), (1)

where c is the elastic constant, γ is the friction coefficient and f is the driving force. Thermal
fluctuations at temperature T are described by the centred white noise η(t, τ ) of correlations
〈η(t ′, τ ′)η(t, τ )〉 = 2γ T δ(t ′−t)δ(τ ′−τ).Wehave set Boltzmann’s constant to kB = 1.The
disorder V (t, y) has a Gaussian distribution of zero mean and correlations fully described
by its two-point function

V (t ′, y′)V (t, y) = Dδ(t ′ − t)Rξ (y
′ − y). (2)

Longitudinal correlations in the direction t are absent while transverse correlations are
describedbya function Rξ (y) scaling as Rξ (y) = 1

ξ
R̂1(y/ξ) andnormalised as

∫
R
dyRξ (y) =

1. More specifically, the correlator Rξ (y) is a “smooth delta” describing short-range corre-
lations at scale ξ, that tends to a Dirac delta as ξ goes to zero. The strength of disorder is
described by the parameter D. Such type of quenched disorder belongs to the ‘random bond’
class.

The driving force f induces a motion of the interface, characterised by its mean velocity
v( f ). The linear response fails for an infinite interface even in the small-force regime, and
instead of a velocity proportional to f one observes the ‘creep law’
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1400 E. Agoritsas et al.

v( f ) ∼
f →0

e
−Uc

T

( fc
f

)μ

with μ = 1

4
. (3)

This is the stretched exponential behaviour, already mentioned in the introduction, of creep
exponentμ, characteristic energy scaleUc and characteristic force fc. It is valid in the regime
of low forces compared to the depinning critical force Fc and of low temperatures compared
to the effective barrier Uc( fc/ f )1/4 (see Fig. 2, Right). The characteristic parameters fc
and Uc are usually identified numerically or by a fitting procedure; in this article, we derive
an expression of fc and Uc in terms of the model parameters c, D, ξ valid in the low-
temperature limit of the 1D interface (see Sect. 4.3), including a non-trivial temperature
dependence. The behaviour (3) has been verified experimentally for interfaces in magnetic
materials on several decades of velocities [31] and tested numerically with success [27–30]. It
was originally predicted in other dimensionalities in the description of the motion of vortices
in randommaterials (modelling for instance vortices in type-II superconductors), using either
scaling [14,18] or perturbative FRG arguments in an expansion around spatial dimension 4,
first used within an equilibrium frame [20] and then extended out of equilibrium [21].

2.2 Zero Driving Force: Correspondence with the Directed Polymer

Wefirst consider the equilibrium case at zero driving force f = 0,which has been extensively
studied (see [9–11] for reviews). The Langevin equation becomes

γ ∂τ y(t, τ ) = c∂2t y − ∂yV (t, y(t, τ )) + η(t, τ ). (4)

At fixed disorder V, the system eventually reaches an equilibrium steady state in the long-
time limit: the non-normalised weight of a segment of interface y(t)0≤t≤tf of length tf is

e− 1
T HV [y], where the Hamiltonian HV [y] reads

HV [y] =
∫

dt
[ c

2
(∂t y)

2 + V (t, y(t))
]
, (5)

where the boundaries of the integral are determined by the domain of definition of y(t). The
Boltzmann equilibrium form of this steady state can directly be read from the equation of
evolution (4) that one can rewrite as

γ ∂τ y(t, τ ) = −δHV [y(·, τ )]
δy(t, τ )

+ η(t, τ ), (6)

allowing to recognise an overdamped Langevin dynamics of force term deriving from the
Hamiltonian (5). One can explicitly check from the functional Fokker–Planck equation asso-
ciated to (4):

γ ∂τP[y(·), τ ] =
∫

dt
δ

δy(t)

{
δHV [y]
δy(t)

P[y, τ ] + T
δP[y, τ ]

δy(t)

}

, (7)

that the distribution
Peq[y] ∝ e− 1

T HV [y], (8)

is a zero-probability-current steady-state solution (hence an equilibrium one)

0 =
∫

dt
δ

δy(t)

{ δHV [y]
δy(t)

Peq[y] + T
δPeq[y]
δy(t)

︸ ︷︷ ︸
=0

}
. (9)
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Driven Interfaces: From Flow to Creep Through… 1401

Spatial boundary conditions then determine how the Boltzmann weight comes into play
when defining probability distributions; a well-understood situation is that of the continuous
directed polymer, where the interface y(t) is attached at its extremities in t = 0 and tf
(adopting so-called point-to-point configurations, see Fig. 2, left). The equilibrium weight at
temperature T of realisations of the interface starting from (0, yi) and arriving in (tf, yf) in
a random potential V (t, y) is the weight WV (tf, yf|0, yi) defined by the path integral:

WV (tf, yf|0, yi) =
∫ y(tf)=yf

y(0)=yi
Dy(t) exp

{
− 1

T

∫ tf

0
dt

[ c

2
(∂t y)

2 + V (t, y(t))
]}

. (10)

For instance, at fixed length tf and fixed initial position yi, the probability density of interfaces
arriving in yf isWV (tf, yf|0, yi)/

∫
d ỹWV (tf, ỹ|0, yi). The statistical properties of the ‘par-

tition function’ (10) have been the subject of extensive studies, as the continuous directed
polymer belongs to the KPZ [7] universality class of models (see [8–12] for reviews). A
noticeable fact is that the directed polymer free energy

FV (tf, yf|0, yi) = −T logWV (tf, yf|0, yi) , (11)

verifies the KPZ equation [19] with sharp-wedge initial condition: denoting for short
FV (t, y) = FV (t, y|0, yi) one has

∂t FV (t, y) = T

2c
∂2y FV (t, y) − 1

2c

[
∂y FV (t, y)

]2 + V (t, y). (12)

Wewill present and/or derive its useful symmetries for our study when needed (see Appendix
1 and also [40] for a systematic study of KPZ symmetries). Note that a proper mathematical
definition of (10) as an expectation over Brownian bridges [41] and the passage to the KPZ
equation (12) through the application of Itō’s lemma requires the appropriate removal of
(ξ → 0)-diverging constants ∝ Rξ (0) (see [42] for a pedagogical introduction).

2.3 The Tilted Directed Polymer: Equilibrium at Non-zero f

The original dynamics of the driven interface (1) at non-zero driving force f can also be
rewritten in a form similar to (6)

γ ∂τ y(t, τ ) = −δH f
V [y(·, τ )]
δy(t, τ )

+ η(t, τ ), (13)

as an overdamped Langevin equation with forces deriving from a tilted Hamiltonian

H f
V [y] ≡

∫
dt

[ c

2
(∂t y)

2 + V (t, y(t)) − f y(t)
]
. (14)

One can still write a Boltzmann equilibrium distribution Peq[y] ∝ e− 1
T H f

V [y] which is a zero-
probability-current solution to the steady-state functional Fokker–Planck equation, similarly
to what we observed in (9) (with HV 
→ H f

V ). However, it describes the steady state of
the system only in situations where the dynamics is reversible. In the presence of the drive
f, such an equilibrium can only be reached with appropriate spatial boundary conditions,
for instance for a (half-)bounded system with one wall (−∞ < y(t, τ ) < Ywall for f >

0, Ywall < y(t, τ ) < ∞ for f < 0) or two walls (Y−
wall < y(t, τ ) < Y+

wall).
Such boundary conditions block the motion of the interface and make average velocity

v( f ) equal to zero; consequently, in the large time limit, they cannot depict the steady state of
the non-equilibrium driven interface. However, as we will argue in Sect. 4, the distribution of
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1402 E. Agoritsas et al.

point-to-point interfaces in this f �= 0 equilibrium settings still provides an effective model
for the non-equilibrium quasistatic motion of the driven interface. To construct this effective
model, the central quantity that we will use is the weight of a trajectory starting from (0, yi)
and arriving in (tf, yf) in a tilted random potential V f(t, y) ≡ V (t, y) − f y:

W f
V (tf, yf) =

∫ y(tf)=yf

y(0)=yi
Dy(t) exp

{
− 1

T

∫ tf

0
dt

[ c

2
(∂t y)

2 + V (t, y(t)) − f y(t)
]}

. (15)

The path integral is performed over the interface configurations respecting the equilibrium
boundary conditions with one or two walls. Similarly to (11) we define a tilted free energy

F f
V (tf, yf|0, yi) = −T logW f

V (tf, yf|0, yi) , (16)

in which one can precisely identify the contributions scaling differently from each other, as
we detail in 4.2.

2.4 Issues Occurring When Scaling the Hamiltonian

Before describing the symmetries of the above introduced models, we discuss the scaling
arguments based on the Hamiltonian (14) that are usually put forward to derive the creep law
in an formal way, and how they can present an inconsistency. In standard heuristic arguments
on the scaling properties of the Hamiltonian (see [28] for a review), it is assumed that the
fluctuations of a segment of length L of the interface scale according to y(t) ∼ Lζ with
ζ the roughness exponent of the interface. Accordingly, the elastic, disorder and driving
contributions to the tilted Hamiltonian (14) scale respectively as

Hel[y] =
∫ L

0
dt

c

2
(∂t y)

2 ∼ L2ζ−1 f 0, (17)

Hdis[y] =
∫ L

0
dt V (t, y(t)) ∼ L

1−ζ
2 f 0, (18)

H f
V [y] = −

∫ L

0
dt f y(t) ∼ L1+ζ f, (19)

where for the disorder contribution (18) one uses V (Lt̂, Lζ ŷ)
(d)= L−(1+ζ )/2V (t̂, ŷ) (the

symbol
(d)= meaning that the scaling holds in distribution). Matching the elastic and driving

contributions (17) and (19) gives the scaling of the optimal interface length Lopt displaced
at a force f

L2ζ−1 f 0 ∼ L1+ζ f ⇒ L = Lopt ∼ f − 1
2−ζ . (20)

In this argument, it is then asserted that the average velocity scales as the inverse of the
Arrhenius time to cross an energetic barrier, itself scaling as one of the contributions (17–19)
to the Hamiltonian. Using either Hel or Hforce yields by definition of Lopt the same result

v( f ) ∼ e− 1
T f −μ

with μ = −1 + 2ζ

2 − ζ
. (21)

This expression of the creep exponent μ matches for d = 1 the generic result known in
dimension d:μ = 2−d+2ζ

2−ζ
(see [28] for a review). Substituting the KPZ roughness exponent

ζKPZ = 2/3, one finally obtains the expected creep exponent μ = 1/4.
Nevertheless, this power-counting procedure lacks a proper justification, and in fact

presents an inconsistency. The roughness exponent that it would imply is incorrect; indeed,
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Driven Interfaces: From Flow to Creep Through… 1403

matching the elastic and disorder contributions (17) and (18) yields 2ζ − 1 = (1 − ζ )/2
hence ζ = ζF ≡ 3

5 . This is the so-called Flory exponent of the Hamiltonian, different from
the exact value ζKPZ which characterises the geometrical fluctuation of the 1D interface at
large scales. Besides, even if one decides to impose the value ζ = ζKPZ and that one tries to
find Lopt by matching the disorder contribution (18) (instead of the elastic one) to the driving
contributions (19), one gets

L
1−ζ
2 f 0 ∼ L1+ζ f ⇒ L = Lopt∼ f − 2

1+3ζ , (22)

which would yield incorrectly Lopt ∼ f −5/7 and μ = 1
7 .

At f = 0, for the determination of the roughness exponent ζ, the origin of that problem
has been elucidated in [11]: in fact one cannot assume that y(t) typically scales with the same
exponent at all lengthscales, as was done in (17–19). This is seen for instance by the result that
the roughness function B(tf), which describes the variance of the endpoint fluctuations for
an interface of length tf scales with different roughness exponents in the tf → ∞ and tf → 0
regimes. At our knowledge, at the moment, there is no direct and exact way of adapting the
rescaling of the Hamiltonian in order to understand these scalings and/or to obtain the correct
value of ζ. It was in fact shown in [11] that a different scaling analysis, based on the scaling
of the free energy at fixed lengthscale is required to derive the value of ζKPZ = 2/3.

On the other hand, a different approach consists in performing this power-counting argu-
ment not at the Hamiltonian but at the free-energy level [18] (see [43] for a review) and this
time it yields the correct value for the roughness exponent ζ and for the creep one. Such
argument however relies on several hypotheses, namely (i) that the cost in free energy due
to the driving force is linear in f, which is not obvious since linear response does not yield
the correct velocity, (ii) that the power-counting analysis does yield the correct scales for
the low- f regime and (iii) that the low-temperature asymptotics is well-defined—which is
non-trivial because already in the f = 0 case such asymptotics crucially depends on having
ξ > 0 [11,36–39]. We do not detail this argument here, because the construction we propose
in this article will provide a justification to the above hypotheses.

The standard heuristic procedures described above present an arbitrariness, that we aim
at clarifying. To proceed, we first consider in the next section the more simple 0D system of
a particle driven in a 1D random potential, and then define in Sect. 4 an effective description
of the interface at a fixed scale, consisting in two degrees of freedom instead of a continuum,
which still allows to derive the creep law and an extension of it that we present in Sect. 5.

3 A Warming Up: The Particle in a 1D Random Potential

The case of a single particle of position y(τ ) ∈ R in an arbitrary potential V (y) and subjected
to a driving force f > 0 (see Fig. 3) has been be solved [32,33,44,45] owing to its 1D
geometry. The non-equilibrium steady state of the Fokker–Planck equation associated to the
Langevin equation

γ ∂τ y(τ ) = −∂yV (y(τ )) + f + η(τ), (23)

can be obtained exactly [45]. Le Doussal and Vinokur [32] and Scheidl [33] have used this
knowledge of the steady state to determine the mean velocity v( f ) = ∂τ 〈y(τ )〉 in the steady
state as

1

v( f )
= γ

T

∫ +∞

0
dya

〈
exp

{

− 1

T

[
V f (yb) − V f (ya + yb)

]
} 〉

←→yb
, (24)
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Fig. 3 The tilted potential V f(y) in which a particle of position y(τ ) diffuses according to the Langevin
equation (23). Its mean velocity v( f ) at large times can be deduced from the exact expression (26) of the mean

first passage time between points 0 and Y, which averages the Arrhenius transition times Z f
V (y′′)/Z f

V (y′)
between two comparison points y′′ < y′ such that y′′ < y′ < Y and y′′ > 0

where 〈. . .〉←→y denotes the translational average 〈O(y)〉←→y = limY→∞ 1
Y

∫ Y
0 dyO(y), and

V f(y) = V (y) − f y is the tilted potential. This expression is valid for an arbitrary potential
V, and the translational average in (24) is expected to play the role of an averaging over V,

for a random potential V of distribution invariant by translation along direction y.
Moreover, Gorokhov and Blatter [43] have given an elucidation of the relation (24) in

terms of a MFPT problem that we detail here, as it lies at the basis of the determination of
the creep law for the interface that we propose in Sect. 4. Consider a particle starting from
y = 0 and denote by τ1(Y ) the MFPT of the particle at a point Y > 0 (we assume f > 0 so
that the particle drifts towards positive y). In a given potential V, the MFPT τ1(Y ; V ) can
again be determined exactly [43,46] (see Fig. 3) and reads

τ1(Y ; V ) = γ

T

∫ Y

0
dy′

∫ y′

−∞
dy′′e− 1

T [V f(y′′)−V f(y′)] (25)

= γ

T

∫ Y

0
dy′

∫ y′

−∞
dy′′ Z

f
V (y′′)

Z f
V (y′)

, (26)

where Z f
V (y) = e− 1

T V f(y) is the tilted Boltzmann–Gibbs weight of the configuration y.

Note that interestingly, τ1(Y ; V ) is expressed in (26) by means of the tilted weight Z f
V (y),

although the non-equilibrium steady state of the particle is not proportional to thisweight. The
expression (26) is exact, as the solution of the Pontryagin equation [47] verified by theMFPT
τ1(Y ; V ) (see [43] for a pedagogical exposition). We observe that in the low-temperature
limit T → 0, the form (25) yields by saddle-point asymptotics the expected Arrhenius (i.e.,
Kramers) behaviour of the MFPT by selecting the highest barrier of the tilted potential V f

situated before the arrival point Y :

τ1(Y ; V ) ∼
T→0

e
1
T 
V f(Y ) 
V f(Y ) = max

0<y′<Y
−∞<y′′<y′

[
V f(y′) − V f(y′′)

]
. (27)

We emphasise however that the expression of the precise pre-exponential factor is non-
trivially depending on the non-equilibrium nature of the steady-state [46,48]. Nevertheless,
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an advantage of the MFPT approach is that the expression (27), in the low temperature limit
and at exponential order, would be the same as in equilibrium settings. This observation
proves useful below when extending the study to systems with a larger number of degrees of
freedom.

The relations (25–27) were obtained for an arbitrary potential V . We now assume that the
potential V is a disorder which verifies a translational invariance in distribution. Averaging
the expression (26) over disorder and separating the contribution of the drive f, one gets:

τ1(Y ; V ) = γ

T

∫ Y

0
dy′

∫ y′

−∞
dy′′e

1
T f (y′′−y′)

depends only on y≡y′′−y′
︷ ︸︸ ︷

e− 1
T [V (y′′)−V (y′)] (28)

= γ

T

∫ Y

0
dy′

∫ 0

−∞
dye

1
T f y e− 1

T [V (y′+y)−V (y′)] (29)

= γ

T

∫ Y

0
dy′

∫ 0

−∞
dye

1
T f y e− 1

T [V (y)−V (0)] (30)

= γ

T
Y

∫ 0

−∞
dye− 1

T [V f(y)−V f(0)]. (31)

One thus obtains that, as expected, the average MFPT τ1(Y ; V ) is proportional to the length
Y of the interval to travel. This allows to define consistently the mean velocity from v( f ) =

Y
τ1(y; V )

as follows

1

v( f )
= γ

T

∫ 0

−∞
dye− 1

T [V f(y)−V f(0)]. (32)

One recovers the expression (24) when the distribution of the disorder is invariant by trans-
lation along direction y.

The approach using the exact solutions (24) or (25) has not been extended to systems with
more than one degree of freedom; however, the reasoning leading to the low-temperature
limit (27) can be adapted to systems with more degrees of freedom, as we detail in the next
sections. Especially useful is the fact that such low-temperature approaches can be handled
in or out of equilibrium by the use of a saddle-point analysis.

4 The Creep Law from an Effective Description of the Driven Interface

We design and study in this section an effective model aimed at capturing the behaviour at
small force of the driven interface, reducing for a fixed length tf its infinite number of degrees
of freedom to only two degrees of freedom. The physical idea behind the effective model is
that it allows to take into account (i) the effects of elasticity and (ii) the quasi 1D motion
of the interface centre of mass, along two orthogonal reduced coordinates. By comparing
its behaviour for all available lengths tf, and optimising over tf, we obtain by scaling its
velocity–force dependence in a creep law form. We define the model in Sect. 4.1, study
in Sect. 4.2 how the MFPT procedure developed in the previous section for one degree of
freedom generalises to two degrees of freedom . We study its scaling properties in Sect. 4.3
and derive the creep law for the effective model in Sect. 4.4 .
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4.1 Effective Model

We focus on the problem of the non-equilibrium motion of the interface in a quasi-static
approximation: at fixed length tf, we assume that the extremities yi(τ ) and yf(τ ) of the
interface follow a Langevin dynamics where the force derives from a potential given by the
f �= 0 equilibrium point-to-point free energy F f

V (tf, yf|0, yi) defined in Sect. 2.3 in Eq.
(16). In this approach, the dynamics of the interface is thus reduced to the dynamics of a
“particle” of coordinates given by the extremities (yi, yf) of the interface

γ̃ ∂τ yi(τ ) = −∂yiF
f
V (tf, yf|0, yi) +

√
2γ̃ T̃ η̃i(τ ), (33)

γ̃ ∂τ yf(τ ) = −∂yfF
f
V (tf, yf|0, yi) +

√
2γ̃ T̃ η̃f(τ ), (34)

with effective friction γ̃ and temperature T̃ . Here the noises η̃i(τ ) and η̃f(τ ) are assumed to
be independent Gaussian white noises of unit variance. They contribute to the equations of
motion as thermal noises of effective temperature T̃ .

We expect this approximation, where the interface extremities follow an overdamped gra-
dient dynamics with thermal noise, to be valid in the limit of small mean velocity v( f ),
hence of small force f. The underlying quasistatic hypothesis is that the global motion of
the original interface is slow enough for the distribution of its extremities to remain well
approximated by the f �= 0 equilibrium one. Such model reduction is expected to be valid
when there is a large time-scale separation between slow degrees of freedom (governing the
average motion) and fast degrees of freedom (describing short-living fluctuations), a separa-
tion which one expects to be present for the driven 1D interface in the f → 0 asymptotics
(equivalent to the v( f ) → 0 asymptotics). If this holds, then the effective dynamics (33–34)
is a good candidate to determine v( f ) since it indeed possesses as a steady state the f �= 0
equilibrium one of free energy given by F f

V (tf, yf|0, yi). Furthermore, even if the steady-
state of the effective dynamics has zero mean velocity, the velocity of the interface can be
estimated from the determination of a MFPT, irrespective of whether the steady state is in
or out of equilibrium, as we argued in Sect. 3 for the particle and as we generalise in Sect.
4.2. The MFPT will prove much easier to analyse for our effective model with two degrees
of freedom than for the full 1D interface.

The effective temperature T̃ and friction γ̃ , which fix the time scale, can be determined
by comparing the full dynamics (1) to the effective one (33–34), in the absence of disorder
(see Appendix 1). One finds

T̃ = T, γ̃ = 1

2
tfγ. (35)

The second relation yields the correct dimension for γ̃ and expresses that the damping of
the polymer endpoints dynamics grows with their separation tf, as physically expected for
a segment of the interface of length tf driven in its disordered environment. Note also that
in this situation without disorder and for the choice (35) for the effective parameters, the
effective model is exact in the sense that it yields the same steady-state distribution for the
extremities as the complete model, as we detail in Appendix 1.

4.2 Mean First Passage Time (MFPT)

In Sect. 3 for the single particle in a disordered 1D potential, we could deduce the expression
of its mean velocity from the exact expression of the MFPT for the Langevin equation (23),
which has one degree of freedom. Here we are considering the effective coupled Langevin
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Fig. 4 (Left) schematic representation (at large ξ ) of the effective potential F f
V (tf, yf|0, yi) seen by the two

extremities yi(τ ) and yf(τ ) in their quasi-static effective Langevin dynamics (33–34), at fixed lengthscale
tf = yf(τ ) − yi(τ ). As seen from (36), the effective potential is a disordered tilted parabola, which drives
the extremities along the direction of growing centre of mass ȳ = yf+yi

2 while the distance δy = yf − yi
remains confined. The effective motion of the two degrees of freedom yi(τ ) and yf(τ ) is thus well described
by a quasi 1D motion along direction ȳ. As explained in Sect. 4.2, the evaluation of the mean velocity v( f ) of
the interface is translated into finding the MFPT between the starting point (0, 0) (purple dot) and the arrival
line defined by ȳ = Y (red line). In the low temperature regime, it is governed by the ‘instanton’ trajectory
(or ‘reaction path’) joining this starting point and the arrival line, and which runs at the bottom of the tilted
parabola. As described in Sect. 4.3, the evaluation of v( f ) is performed by optimising over tf: this implies
that the effective potential is meaningful w.r.t. the creep problem only for a specific force-dependent value
t�f ( f ) of the interface length, which induces an f -dependent effective potential. (Right) cuts of the effective
potential at fixed ȳ as a function of δy (top) and at fixed δy as a function of ȳ (bottom) (Color figure online)

dynamics (33–34) describing two degrees of freedom coupled by the effective potential
F f
V (tf, yf|0, yi). In that case, no exact expression is available, and we have to rely on a

low-temperature asymptotics to estimate theMFPT. To do so, one starts from a novel decom-
position of the free energy, obtained in Appendix 1 by use of the statistical tilt symmetry
(STS) verified at non-zero force: we read from (A.87) that

F f
V (tf, yf|0, yi) = c

2tf
(yf − yi)

2 − f tf
2

(yf + yi) + F̄ f
V (tf, yf|0, yi) + const (tf) . (36)

Thefirst termacts as a confiningpotentialwhich ensures that yi(τ ) and yf(τ ) remain close. The
second term drives the centre of mass 1

2 [yf(τ ) + yi(τ )] at non-zero velocity, and establishes
that the driving force f affects the free energy by a linear contribution. The third term,
statistically invariant by a common translation of yi and yf (see Appendix 1), plays the role
of an effective disorder [11,39]. The last constant term, independent of yi and yf, plays no
role in the motion. We thus argue that, in the long-time limit τ → ∞, the dynamics of this
effective system is quasi 1D along the direction of growing centre of mass, at the bottom of
a tilted parabolic potential (as illustrated on Fig. 4).
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From this insight, we can now extend to the interface the reasoning exposed in Sect. 3 for
the particle. We first remark that different choices of boundary conditions for the interface
will lead in the long-time limit either to an equilibrium steady state (e.g., in presence of
confining walls) or to a non-equilibrium one (for periodic or free boundaries); Nonetheless,
in those two settings, the MFPT problems have the same exponential behaviour in the low-
temperature limit as long as they are dominated by trajectories which remain far from the
possible boundaries. This observation gives support to the use, for the study of the interface
non-equilibrium velocity, of the f �= 0 equilibrium free-energy (36) defined in Sect. 2.3.

Let us now specify in detail the effective MFPT problem that we will analyse in order
to evaluate v( f ). The procedure consists in evaluating the typical duration taken by the
interface to travel a distance Y in a fixed disorder V . The statistical invariance of V along
the longitudinal direction (t axis) ensures that all points run at the same average velocity, so
that the average velocity of an interface segment of length tf is given by the velocity of its
extremities yf and yi. In the effective description, one thus has to evaluate the tf-dependent
MFPT τ1(tf, Y ; V ) to start from (yi, yf) = (0, 0) and to arrive on a line determined by
1
2 (yi + yf) = Y, with Y > 0 (see Fig. 4), in the disorder-dependent effective potential (36).
As in the case of the particle (Sect. 3), the velocity at a scale tf will be evaluated as the average
over the disorder of Y/τ1(tf, Y ; V ).

TheMFPT τ1(tf, Y ; V ) is governed by the dominant trajectory (or ‘instanton’, or ‘reaction
path’) between the starting point and the arrival line (Fig. 4), that arises, in the low-temperature
regime, from the weak-noise Freidlin–Wentzell theory [49], or from the equivalent Wentzel–
Kramers–Brillouin semi-classical theory [46], all yielding Kramer’s escape rate [50]. Since
the effective potential confines the trajectories at the bottom of the parabola depicted in Fig. 4,
we argue that this instanton is quasi 1D. It controls the MFPT τ1(tf, Y ; V ) by the Arrhenius
time which is obtained at dominant order in the low-temperature limit from the largest barrier
to cross along the instanton. The natural coordinates are the centre of mass ȳ and the endpoint
difference δy, defined as

ȳ = yf + yi
2

, δy = yf − yi. (37)

The largest barrier along the instanton starts from a minimum (ȳ′′, δy′′) and ends in a sad-
dle point (y′, δy′) of (36) at the top of the barrier (the top of the barrier is located at local
maximum along the instanton, which lies itself at a saddle of the effective potential). Gener-
alising the MFPT expression for the particle (27) by replacing the difference of 1D potential
[V f(y′) − V f(y′′)] by the difference of effective potential (36) between the 2D coordinates
(ȳ′′, δy′′) and (y′, δy′), the passage time writes

τ1 (tf, Y ; V ) ∼ γ̃

T
e
− 1

T

{
c
2tf

[(δy′′)2−(δy′)2]− f tf(ȳ′′−ȳ′)
}

× e− 1
T

{
F̄ f
V (tf, ȳ′′+δy′′/2|0, ȳ′′−δy′′/2)−F̄ f

V (tf, ȳ′+δy′/2|0, ȳ′−δy′/2)
}
. (38)

The first line contains the parabolic and tilted part of the potential (36) corresponding respec-
tively to the elasticity and to the driving force. The second line is the effective disorder
induced by the disordered free-energy F̄ f

V ,which, at fixed tf, is invariant by translation along
direction y (see Appendix 1). This expression is the starting point of our analysis of the creep
law and will allow us to justify the scaling procedure used in the literature for its standard
derivation.

The expression (38) is valid only at the exponential order and cannot be used to identify
a prefactor proportional to the distance Y, at least not in the same way as it was done
for the particle in Eq. (31) after averaging over disorder. However, since (i) the effective

123

Author's personal copy



Driven Interfaces: From Flow to Creep Through… 1409

MFPT problem is quasi 1D and (ii) the effective disorder F̄ f
V is invariant in distribution

by translation along the transverse direction y, one obtains immediately that the disorder
average of τ1(tf, Y ; V ) is as expected proportional to Y at large enough Y. (For instance, for
integer Y, one can split the interval [0, Y ] into Y segments of length 1 and remark that the
dominant endpoint on the arrival line of every segment is close to δy = 0. This transforms the
global MFPT problem into Y successiveMFPT problems having the same disorder-averaged
passage time thanks to (ii).) We will thus denote simply by τ1(tf; V ) the MFPT τ1(tf, 1; V )

for Y = 1, to which one can thus restrict, and evaluate the velocity using 1/τ1( f ; V ).

Hence, we consider the expression (38) as an estimator of the inverse velocity and we
proceed in the next section to the study of its scaling properties and to the optimisation over
the polymer length tf. Note that in terms of the coordinates (yi, yf) describing the polymer
extremities, one has

τ1 (tf; V ) ∼ γ̃

T
e
− 1

T

{
c
2tf

[(y′′
f −y′′

i )2−(y′
f−y′

i )
2]− 1

2 f tf[(y′′
f +y′′

i )−(y′
f+y′

i )]
}

× e− 1
T

{
F̄ f
V (tf, y′′

f |0, y′′
i )−F̄ f

V (tf, y′
f|0, y′

i )
}
. (39)

This expression can be interpreted as the MFPT for a passage problem for the original
interface, assuming that the free-energy cost of the drive f is proportional to f (see Sect.
II.A.4 in [3]), an hypothesis which is in fact justified in our approach by the f -STS derived
in Appendix 1.

4.3 Scaling Analysis of the Tilted Free-Energy

The procedure to analyse the velocity–force dependence is the following: at fixed drive f,
one will identify the optimal length of interface tf that dominates the motion, starting from
the MFPT expression (39). Since one performs an average over the disordered potential V,

one has the freedom to rescale the directions y and t in order to facilitate the scaling analysis,
for instance as

y = a ŷ, t = bt̂ . (40)

As we now explain, there is a peculiar choice of the scaling parameters a and b that allows
one to study the low force regime. The elastic (parabolic) and the force contribution to (39)
rescale upon (40) in an obvious way. The rescaling of the disordered free-energy contribution
F̄ f
V is more complex but it is precisely the key point to comprehend, since this contribution

summarises the effect of fluctuations due to disorder at all scales smaller than tf.
The large-tf limit controls the small-velocity regime as will later be checked self-

consistently: one will thus first analyse the scaling properties of the tilted free-energy (36)
in this limit, keeping track of the disorder correlation length ξ introduced in (2). The most
simple case is that of the uncorrelated disorder (ξ = 0): in this case, the large-tf distribution
of F̄ f

V is the same as a Brownian motion in direction y, up to a cutoff y ∼ t2/3f , and of
amplitude cD/T (see [9,19] at f = 0; see also Appendix 1 where (A.88) gives the result at
f �= 0). This means that upon the rescaling (40), one has

F̄ f
V (tf, yf|0, yi; ξ = 0)

(d)= a
1
2
( cD

T

) 1
2 F̂ f

V̂

(
t̂f, ŷf|0, ŷi; ξ = 0

)
[for tf → ∞] , (41)

where F̂ f

V̂
is the disorder free energy for a polymer with an elastic constant c = 1, a

temperature T = 1 and a disorder V̂ of amplitude D = 1. However, and this is one of the
main results of this article, the low-temperature asymptotics used in the creep analysis cannot
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merely emerge from the ξ = 0 case. Indeed, the amplitude cD/T would diverge as T → 0,
rendering the MFPT analysis impossible. Instead, one has to rely on a free-energy scaling
analysis with a short-range correlated disorder (recalling the definition (2), this corresponds
to ξ > 0) [11,36–39]. Then, no exact result is known for the full distribution of F̄ f

V in the
large-tf asymptotic, but it has been shown that upon the rescaling (40), and for |yi − yf| � ξ,

one has, instead of (41):

F̄ f
V (tf, yf|0, yi; ξ)

(d)= a
1
2 D̃

1
2 F̂ f

V̂

(
t̂f, ŷf|0, ŷi; ξ/a

)
[tf → ∞] , (42)

where D̃ is the “amplitude” of the disorder free energy two-point correlator [11,38,51] at
large tf. There is no exact expression for D̃ as a function of the parameters {c, D, T, ξ}, but
the high- and low-temperature asymptotics are known:

D̃
T�Tc∼ cD

T
, D̃

T�Tc∼ cD

Tc
with Tc = (ξcD)

1
3 . (43)

Here, Tc is a characteristic temperature that separates these two asymptotic regimes, and D̃
presents a smooth crossover between them, predicted analytically using a variational scheme
[37,39] and observed numerically [38,52]. The meaning of the characteristic temperature Tc
is that it separates a regime T � Tc where the role of ξ can be mostly ignored from a regime
T � Tc where on the contrary ξ plays a major role while the temperature T disappears from
the free energy distribution. The quantitative analysis of the crossover between the high- and
low-temperature regimes (43) is discussed in Sect. 5.3. For the moment, we will simply use
the fact that the amplitude D̃ retains the dependence in ξ of the disorder free-energy, which
manifests itself at scales much larger than ξ itself [11,38,51]. This fact has been used in those
references to analyse the static ( f = 0) fluctuations of the interface, and we analyse in this
article its consequences for the driven interface ( f > 0).

The first step of the rescaling procedure is to fix a in (40) so as to ensure that the elastic
and the disorder free-energy contributions in (36) scale with the same prefactor: one finds

a =
( D̃

c2

) 1
3
b

2
3 , (44)

implying the following scaling in distribution

F f
V (tf, yf|0, yi; ξ)

(d)=
( D̃2b

c

) 1
3
[ (ŷf − ŷi)2

2t̂f
+ F̂ f

V̂

(
t̂f, ŷf|0, ŷi; ξ

a

) ]

−
( D̃

c2

) 1
3
b

5
3 f

t̂f
2

(
ŷf + ŷi

)
. (45)

We observe that the KPZ roughness exponent ζ = 2
3 appears naturally through the rescaling

(44), which matches by power counting the elastic and disorder scaling exponents [19]. In
fact, in the absence of driving force f, the asymptotic expression of the roughness function of
the interface can be inferred from a saddle-point argument at large tf [11] using the rescaling
(44) at f = 0. One main result of the present article is that this argument can be adapted and
generalised to determine at f > 0 the mean velocity of the driven interface.

To do so, in the presence of the driving force f, the second step of the scaling analysis is
to choose the rescaling factor b in (40) so as to match the prefactors of the force-dependent
and the force-independent contributions to (45): one finds

b = (cD̃)
1
4 f − 3

4 , (46)
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and this yields (still in the large tf limit):

F f
V (tf, yf|0, yi; ξ)

(d)= f − 1
4

( D̃3

c

) 1
4
[ (ŷf − ŷi)2

2t̂f
+ F̂ f

V̂

(
t̂f, ŷf|0, ŷi; ξ

a

)
− t̂f

2

(
ŷf + ŷi

) ]
.

(47)
Upon this choice, one now has

a =
( D̃

c f

) 1
2
, (48)

as obtained from (44) and (46). The force dependence is in fact fully contained in the common
prefactor∝ f −1/4 in the large tf limit, as we now justify. The explicit dependence in f of F̂ f

V̂
is removed upon disorder averaging, since f appears only through the transformed disorder
(A.86), which one can translate along direction y at any fixed tf in order to absorb the
dependence in f without changing its distribution (see Appendix 1). The last dependence
in f is through the rescaled disordered correlation length ξ/a where a is given by (48); in the
small f regime, the rescaled correlation length ξ/a goes to zero since a ∼ f −1/2 and this
dependence in f can be dismissed as one thus recovers for F̂ f

V̂
an uncorrelated disorder. We

emphasise that, however, the original correlation length ξ still remains present in the problem
through the amplitude D̃ [11,37].

At low enough f, we have thus obtained that the landscape of potential (47) seen by the
effective degrees of freedom yi and yf, once rescaled by (44) and (46), depends in the driving
force only through its overall prefactor f −1/4. This means that the rescaled locations ŷ′

f,i and
ŷ′′
f,i of the minimum and the saddle of the Arrhenius barrier of the MFPT problem exposed in

Sect. 4.2 do not depend on the force f. This property, explicitly constructed in our approach,
justifies the often stated argument that all barriers of the creep problem scale in the same
way in ∝ f −1/4. In particular, this implies that if other barriers of height comparable to the
dominant one contribute to the MFPT, they do not affect its scaling form.

We furthermore observe that, crucially, the rescaled effective potential (47) is at a rescaled
force equal to 1, implying also that the backward barrier (between the saddle and theminimum
reached after crossing the saddle) is much higher than the forward barrier, the non-rescaled
difference being of order ∝ f −1/4. This justifies consistently that we neglect the backward
motion in comparison to the forward motion in the evaluation of the velocity (see Fig. 5, left
and Sect. 5 for a situation where the backward motion plays a role).

4.4 Scaling of the Mean First Passage Time and the Creep Law

One can now evaluate the disorder-averagedMFPT τ̄1( f ) of the interface by integrating (39)
over every possible length tf ∈ [0, L] of an interface segment, assuming that L � Lc with
Lc the lengthscale above which the Brownian rescaling (42) is valid (Lc will be identified
later on as the ‘Larkin length’, see Sect. 5.3). Using the rescaling (47), one has

τ̄1( f )
(L>Lc)= 1

L

∫ L

0
dtf τ1(tf; V ) = 1

L

∫ Lc

0
dtf τ1(tf; V ) + 1

L

∫ L

Lc

dtf τ1(tf; V ) (49)

(L�Lc)∼ 1

L̂

∫ L̂

L̂c

dt̂f EV̂ e
− 1

T f − 1
4
[
D̃3
c

] 1
4
{

(ŷ′′f −ŷ′′i )2−(ŷ′f−ŷ′i )2
2t̂f

−t̂f
(ŷ′′f +ŷ′′i )−(ŷ′f+ŷ′i )

2

+F̂ f

V̂
(t̂f, ŷ′′

f |0, ŷ′′
i ; ξ/a)−F̂ f

V̂
(t̂f, ŷ′

f|0, ŷ′
i ; ξ/a)

}

, (50)
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Fig. 5 (Left) schematic representation of the rescaled free-energy barriers corresponding to the forward and
backward motion in the effective model. The contribution 
F̂�

1 represents the elastic and disorder part of

(56), while f
fL


F̂�
2 represents the contribution arising from the driving force. The scaling of those barriers

is that of the low-force regime 0 < f � fL , where the optimal length displaced by the driving force is of
the order of the system size L . The difference between the forward and backward fluxes yields the expression
(59) for the average velocity in this low-force regime. (Right) mean velocity v( f ) (in log scale) as a function
of f −1/4: in dashed purple, the infinite system-size creep law (52); in continuous red line, the extended creep
law (59) crossing between the pure stretched exponential behaviour (52) and the linear behaviour, expansion
of (59) at small forces, represented in blue dotted line. The bending of the extended creep law v( f ) (purple
continuous line) at small values of f −1/4 corresponds to having taken into account the backward flux (second
line of (59)). Parameters are D̃ = 1, c = 1, T = 1, L = 100, 
F�

1 = 4, 
F�
2 = 0.4 (Color figure online)

where EV̂ is another notation for the disorder average. In this expression ŷ′
f,i and ŷ′′

f,i are,
as we discussed above, the f -independent but t̂f-dependent locations of the extremities of
the dominant barrier of the rescaled MFPT problem. The form (50) of the velocity is thus
amenable to a saddle-point estimation in the low-force limit f → 0: in that limit, the integral
is dominated by the maximum of the exponent. Since all the dimensioned parameters have
been factored out in this exponent, the saddle-point is reached at a value t̂�f of t̂f which is
independent of the dimensioned parameters of the problem, and in particular independent of
f. We emphasise that this construction requires the system to be large enough (L � Lc) in
order that (i) the KPZ scaling (44) is meaningful for a large range of segment length tf, (ii) we
can neglect the contribution of tf ∈ [0, Lc] in the MFPT, so we can self-consistently assume
that the saddle point is reached at t̂�f ∈ [L̂c, L̂]. We refer to Sect. 5.3 for the corresponding
regime of validity. We finally obtain

τ̄1( f ) ∼ EV̂ e
− 1

T f − 1
4
[
D̃3
c

] 1
4
{

(ŷ′′f −ŷ′′i )2−(ŷ′f−ŷ′i )2
2t̂�f

−t̂�f
(ŷ′′f +ŷ′′i )−(ŷ′f+ŷ′i )

2

+F̂ f

V̂
(t̂�f , ŷ′′

f |0, ŷ′′
i ; ξ/a)−F̂ f

V̂
(t̂�f , ŷ′

f|0, ŷ′
i ; ξ/a)

}

, (51)

where the ŷ′
f,i and ŷ′′

f,i are evaluated in t̂f = t̂�f . This last step of the scaling analysis justifies
why a naive power-counting argument on the free energy yields the correct creep exponent
μ = 1/4: it is because setting the three contributions of the free-energy to the same scale
allows to perform a saddle-point analysis at f → 0, as we have presented.

The stretched exponential scaling in f holds for all V . We assume that the distribution
of MFPT is peaked enough in the effective model so that 1/τ1( f ; V ) ∼ 1/τ̄1( f ) (see [53]
for a study of self-averaging in the large size-limit and see [54] for a generic study of the
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distribution of activation times). One finally obtains the creep form of the mean velocity

v( f ) ∼ e
−Uc

T

( fc
f

) 1
4

F̂�

, (52)

where 
F̂� is a numerical factor given by the (positive) adimensioned difference of free-
energy between the minimum and the saddle, evaluated at t̂f = t̂�f as appearing in (51). One
identifies the creep exponent μ = 1

4 . We emphasise here one important aspect of the creep
phenomenology: the relation (52) can be read as an corresponding to an Arrhenius waiting
time with an effective barrierUc ( fc/ f )1/4 which diverges as f → 0. In our description, this
arises from a fine-tuned rescaling of the MFPT where we used the distributional properties
of the free energy (arising from those of the disorder), i.e., not reasoning at a fixed realisation
of the disorder V .

By direct identification between (51) and (52), one reads that the characteristic energy
Uc and characteristic force fc are related by U 4

c fc = D̃3/c. This relation does not fix their
expressions. To do so, one can for instance impose that fc does not depend on temperature
(whichmakes the analysismore simple, but the results do not depend on this arbitrary choice).
However, the temperature dependence of D̃ is not known exactly: it crosses over from a high-
temperature to a low-temperature regime which are both well-understood (see Eq.(43)), but
the crossover itself has only be determined through variational and numerical approaches
[11,37]. In the low-temperature regime T � Tc we are interested in, one has D̃ ∼ cD

Tc
, thus

implying

Uc = Tc
(43)= (ξcD)

1
3 , fc = D̃3

cT 4
c

=
( D2

cξ7

) 1
3

[T � Tc] . (53)

One also remarks that, comingback to the f -dependent variable t instead of f -independent
t̂� through the scalings (40) and (46) one obtains the optimal lengthscale at which the creep
motion occurs:

Lopt( f ) = (cD̃)
1
4 f − 3

4 . (54)

It diverges as f → 0, justifying self-consistently the study of the large tf limit in order to
understand the low-force regime. This scaling has been numerically verified in the recent
study [34], where the Lopt( f ) is found to play the role of a cut-off length in the distribution
of avalanche sizes in the motion of the driven interface.

5 Finite-Size Analysis and Phase Diagram of the Flow and Creep Regimes

We now detail how the effective-model approach can be used to extend the regime of forces
that one can describe quantitatively from the standard creep regime to lower and larger
forces. We first discuss the correction of the creep law when taking into account finite-size
effects, which are responsible of a crossover between the usual creep regime and a linear-
response Ohmic regime at very small forces. Then we construct the phase diagram for the
low temperature limit andwe discuss the additional temperature-dependent corrections. Last,
we discuss how the creep law can be modified at intermediate forces.

5.1 Derivation of the Finite-Size Behaviour in the f → 0 Asymptotics

Observing the form of the creep law (52), one remarks that the function v( f ) is non-analytic
in zero: a Taylor expansion of v( f ) for f around 0 yields 0 at any order. In particular, a
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linear response regime where v( f ) would be linear in f is absent. As we now discuss, these
features follow from the hypothesis made that the system is infinite. From the expression
(54) we indeed read that the optimal portion of interface Lopt( f ) to move under the drive f
can take any arbitrarily large value as the force goes to zero.

For a finite system of size L , this can of course not hold. In fact, for low enough forces
f � fL with fL defined as

Lopt ( fL) ≡ L i.e., fL = (cD̃)
1
3 L− 4

3 , (55)

the saddle-point asymptotics thatwe have derived in the previous section is not valid anymore,
because the solution t̂�f would correspond to an optimal portion of the interface Lopt( f ) larger
than the system size L . To evaluate correctly the mean velocity v( f ), one first has to take
into account that the rescaling parameter b in (45) saturates to b = L for f < fL , instead
of taking the value b = Lopt( f ) as in (46). A second change to take into account is that,
as a consequence, the barriers of the problem do not all scale in the same way anymore,
meaning that the mean slope of the rescaled landscape of potential is not equal to one as in
(47): instead, one now has

F f
V (tf, yf|0, yi; ξ)

(d)=
( D̃2L

c

) 1
3
{[ (ŷf − ŷi)2

2t̂f
+ F̂ f

V̂

(
t̂f, ŷf|0, ŷi; ξ

a

) ]
− f

fL

t̂f
2

(
ŷf + ŷi

)
}

,

(56)

with a = ( D̃
c2

)
1
3 L

2
3 as read from (44). The rescaled force thus reads f

fL
instead of 1 as in

eqrefeq:scalingFfall; hence, at fixed system size L , the rescaled force goes to zero as f goes
to zero, meaning that one cannot neglect the backward motion as we did in Sect. 4.3. The
mean velocity can then be estimated by the flux difference between the forward and backward
inverse average waiting times. Denoting as on Fig. 5 the rescaled free-energy barrier of the
forward (resp. backward) motion by 
F̂�

1 − f
fL


F̂�
2 (resp. 
F̂�

1 + f
fL


F̂�
2 ), one gets

v( f ) ≈ e
− 1

T

( D̃2L

c

) 1
3
[

F�

1 − f
fL


F�
2

]

− e
− 1

T

( D̃2L

c

) 1
3
[

F�

1 + f
fL


F�
2

]

, (57)

for forces f < fL , whereas at f > fL taking into account the backward contributions mod-
ifies (52) as follows (with 
F̂� = 
F�

1 − 
F�
2 ):

v( f ) ≈ e
− 1

T

( D̃2Lopt( f )

c

) 1
3
[

F�

1 − 
F�
2

]

− e
− 1

T

( D̃2Lopt( f )

c

) 1
3
[

F�

1 + 
F�
2

]

.

(58)
This finally yields the predictions:

v( f ) ≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e
− 1

T

( D̃2L

c

) 1
3

F�

1
sinh

[
1
T

f
fL

(
D̃2L
c

) 1
3

F�

2

] (
f � fL

)
,

e
− 1

T
f − 1

4

( D̃3

c

) 1
4

F�

1
sinh

[
1
T f − 1

4

(
D̃3

c

) 1
4

F�

2

] (
f � fL

)
.

(59)

The second line takes into account the backwards flow and yields at dominant order the creep
law (52) in the low- f regime. We illustrate on Fig. 5 (right) how this extended creep law
crosses over between the standard stretched exponential behaviour and the linear behaviour
if v( f ) at small values of f that arises from an expansion of (59) around f = 0. Note that
in (57) we have not made explicit the pre-exponential factors which are the same for the two
terms of the difference, as they stem from the same barrier (see Fig. 5, left). This ensures
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0

0

CreepFlow Corrections
to creep

KPZ scalings
– Creep

Lc/L1

f/fc

Lopt = L

Lopt = Lc

Lc = L

Creep
Flow

Not Brownian

Not Brownian

Fig. 6 (Left) illustration of the criteria determining the phase diagram: Lopt( f ) has to be larger than the
temperature-dependent Larkin length Lc and smaller than system size L for the scaling analysis to yield the
creep law. These two conditions are translated into a self-consistent condition fL < f < fL on the force
for the creep regime to hold. (Right) corresponding phase diagram in the (Lc/L , f/ fc) place in the T → 0
asymptotics. See Fig. 1 for the full diagram including the behaviour at T > 0

in particular that the f → 0 limit of (59) is zero. Besides, the apparent singular behaviour
is due to the abrupt transition between the Lopt = L and the Lopt ∼ f −3/4 regimes as f
decreases, but is of course in fact smooth.

The generic form with a hyperbolic sine in the velocity–force behaviour (59) is not new,
as it is obtained by taking into account the forward and backward Arrhenius contributions
over an energy barrier when quantifying such a thermally-assisted flux flow (TAFF) [55].
Such a crossover from creep to flow at very small driving forces has actually been observed
experimentally in [35] by Kim and coauthors for ferromagnetic domain walls; within the
interpretation of a dimensional crossover, the domain wall was treated in the flow regime as a
particle in 1D randompotential (see also [56] for the influence of system size on conductivity).
The novelty that we bring is thus twofold: on the one hand we derive the prediction (59) from
our effective model, rather than assuming an ad hoc 1D potential; on the other hand we obtain
the explicit scaling of its parameters with the constants of interface model, in particular in
the low-temperature asymptotics, together with a study of its regime of validity as exposed
in the following subsections. We mention furthermore than such a generic crossover has also
implications for the phase diagram of type-II superconductors, as pointed out for instance
in [57], since magnetic vortices can be described as elastic lines embedded in a disordered
environment (but a 3D embedding space, instead of the 2D one we are considering).

5.2 Creep and Flow Regimes in the Zero-Temperature Asymptotics

Let us now establish the phase diagram represented on Figs. 1 and 6. We first focus in this
subsection on the low-temperature asymptotics. The crossover line between the creep regime
and the flow regime is given by the equation L = Lopt( f ) (with Lopt( f ) given by (54)), that
one can rewrite as

L = (cD̃)
1
4 ( fc)

− 3
4

( fc
f

) 3
4 = T 5

c

cD2

( fc
f

) 3
4
, (60)

where we used the low-temperature behaviour (53) of fc = [D2/(cξ7)]1/3 and of D̃. This
suggests to define a typical lengthscale:

Lc = T 5
c

cD2 =
(c2ξ5

D

) 1
3
, (61)
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allowing to write the equation for the crossover in a adimensioned form as

fc
f

=
( L

Lc

) 4
3
. (62)

The relation (61) separates the flow and creep regimes depicted in Figs. 1 and 6. For fc/ f �
(L/Lc)

4/3 the system is large enough for the global rescaling described in Sect. 4.3 to
hold: the motion occurs by a succession of avalanches of size governed by Lopt( f ). For
fc/ f � (L/Lc)

4/3 this avalanche size is larger than the system size, and takes instead a size
of the order of the system. The velocity then takes a linear form given by the low- f expansion
of (59) at f � fL : the motion is a flow motion.

Note that, actually, Lc is the low-temperature limit of theLarkin lengthLc. In our approach,
we will use that Lc represents the lengthscale above which the Brownian rescaling is valid,
as already hinted just before (50). Historically, the Larkin length was introduced by Larkin
and Ovchinnikov [58] to describe the typical lengthscale of the geometrical fluctuations of
driven vortices in type-II superconductors (see [3] for a review). It is also found to control
the scale at which cusp singularity govern the renormalized disorder correlator in the FRG
description of randommanifold in dimension 4−ε (see [20–22]).We focus on its temperature
dependence and its role in our 1D problem in the next subsection.

It is appealing to identify fc with the critical depinning force Fc of the depinning transition
(Fig. 2) but we have no argument in this favour, except if the creep energy barrier can be
related to the unique energy barrier observed numerically and experimentally to describe
the regime of force around the depinning [29,59,60]. In our case, we can only affirm that
fc represents the typical intrinsic energy density (along both transverse and longitudinal
direction) of the interface which opposes to the constant drive. We also emphasise that our
results complement previous numerical and phenomenological works on the driven interface
[29,30] and on their detailed scaling.

5.3 Analysis of the Scaling in Temperature

Last, we discuss how finite temperature affects the description of the phase diagram. We first
note that the Arrhenius low-temperature asymptotics regime T � Uc ( fc/ f )1/4 read from
(52) leaves room for a finite-temperature analysis of the dependency of the scales, thanks to
the large factor ( fc/ f )1/4 (for f � fc). In [11] was derived the expression of a T -dependent
Larkin length

Lc = T 5

cD2 g
−5, (63)

where g is a dimensionless (“fudging”) parameter depending on c, D, T, ξ, denoted f in
[11], that distinguishes between a low-temperature (T � Tc) regime and a high-temperature
regime (T � Tc). The fudging parameter depends on the constants of the problem only
through T/Tc. At low T, one has g ∼ T/Tc and Lc becomes the length Lc defined in (61)
and used to adimensionalize L in the phase diagram. At high T, one has g → 1 and the
observables, such as Lc, do not depend on ξ anymore (one recovers the standard ξ = 0 KPZ
scalings). Physically, this means that at high temperature the typical energy scale is fixed by
the temperature T,whereas in the T → 0 limit where the thermal fluctuations are suppressed,
it is the disorder which fixes the typical energy scale to Tc = (ξcD)1/3. The relation between
D̃ and g is

D̃ = g
cD

T
, (64)
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which is compatible with the asymptotic behaviour (43). The crossover between the low- and
high-temperature regimes is not known analytically, but several numerical, variational and
scaling arguments were presented in [11] supporting the fact that g interpolates smoothly
between those two regimes. In particular, it was shown that the value g ∈ [0, 1] is directly
related to the parameter governing of the full replica-symmetry-breaking of a Gaussian vari-
ational approach [37].

For the problem of interest, the length Lc is essential to delineate (i) the regime L � Lc

where the Brownian scaling that we have used for the scaling (42) of the disorder free-energy
F̄ is valid, from (ii) the regime L � Lc where it is not. At zero force, the line L = Lc which
separates those two regimes corresponds to the equation

T

Tc
= 1

g

( L

Lc

) 1
5
, (65)

This curvewas obtained from an approximate equation obeyed by g (derived in [11]): depend-
ing on the approximation scheme, one has

gγ̄ =
( T

Tc

)γ̄

(1 − g) with γ̄ ∈ { 3
2 , 6

}
, (66)

where we have omitted a dimensionless numerical prefactor that can be incorporated in the
definition of Tc without loss of generality. The choice between the two possible exponents
γ̄ = 6 and γ̄ = 3

2 affects the shape of the crossover but does not affect the dominant
asymptotic behaviour of g in the low- and high-temperature regimes. From (65), simple
algebra allows to transform (66) into an equation for the characteristic line L = Lc separating

the Brownian and non-Brownian regimes in the plane
(
Lc
L , T

Tc

)
of the phase diagram. One

obtains:

T

Tc
= 1 − ( Lc

L

) γ̄
5

( Lc
L

) 1
5

. (67)

The region f > 0 can be studied in our approach for the regime of low forces where the
quasistatic approach validating the effective model holds. Thanks to the modified f -STS, the
effective potential (36) is decomposed into a linear contribution in f and a (distributionally)
f -independent disorder, whose Brownian scaling at large tf is still governed by the condition
L � Lc with the same f -independent Lc. In this regime of force, the demarcation between
the Brownian and non-Brownian regime thus extends to the region f > 0, as depicted in Fig.
1. For larger forces, closer to the regime of the depinning transition, it is known numerically
that roughness exponent ζ differs from 2

3 and one has to resort to other approaches [29,30]
in order to describe scaling regimes that our effective model does not encompass.

In a similar way (see Fig. 6), Lc governs the regime of force in which Lopt( f ) is large
enough for the Brownian scaling of the free energy to hold. Defining from Lopt( fL) = Lc,

a Larkin force as

fL = D̃7

c5D4
= c2D3

(T/g)7
or equivalently

fL
fc

=
(
g
Tc
T

)7
, (68)

one has that the Brownian rescaling holds only in the f < fL regime. The corresponding
regimes are depicted at T → 0 on Fig. 6 and for all T > 0 on Fig. 1, where the green
manifold defined by the condition Lopt( f ) = Lc is equivalently described by the equation
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T

Tc
= 1 − ( f

fc

) γ̄
7

( f
fc

) 1
7

, (69)

that follows from (66).
Finally, we examine the finite-T dependence of Uc implied by our analysis. The low-

temperature expression (53) of Uc and fc was deduced by direct identification between (51)
and (52) in the T � Tc regime. It can be extended at finite temperature: fixing fc to its
temperature-independent expression (53), one obtains, by introducing the fudging parameter
g, the following expressions

Uc =
(
g
Tc
T

) 3
4
Tc , fc =

( D2

cξ7

) 1
3
, (70)

which we expect to be valid in the Arrhenius low-temperature regime (reading from (52):
T � Uc ( fc/ f )1/4). In the limit of T � Tc, g ∼ T/Tc we recover the relation Uc = Tc of
(53). The next order a small temperature expansion yields the following correction for Uc:

Uc =
(
1 − 3

4γ̄

T

Tc

)
Tc + O

(
T−2) . (71)

We emphasise that the temperature dependence ofUc depends on the definition of the charac-
teristic force fc,whichwe have chosen in (70) to be temperature-independent. This prediction
still needs to be reconciled to the numerical results plotted in Fig. 3(b) of [27], where the effec-
tive energy barrier has however been evaluated by identifying fc with the zero-temperature
critical depinning force Fc.We also we note, importantly, that the Arrhenius low-temperature
criterion T � Uc ( fc/ f )1/4 for the instanton analysis to be valid, is, from (70), equivalent
to

f

fc
� g3

(Tc
T

)7
i.e., from(68) : f � g−4 fL, (72)

which means that it is always satisfied when the mandatory condition f � fL for the
Brownian scaling to hold is satisfied. We used here that the fudging parameter verifies g ≤ 1
at all temperatures. In otherwords, the low-temperature assumption for the low-noise analysis
of the effective model to be valid is always satisfied as long as the condition Lopt( f ) � Lc,

that guarantees the creep scaling, is verified.

5.4 Departure from the Creep Behaviour at Intermediate Forces

Although the effective model is expected to be valid in the quasi-static regime only, we can
study the first correction that it brings to the pure creep regime at intermediate forces. The
scaling analysis shows that the effectiveArrhenius barrier∝ Uc( f/ fc)−1/4 actually decreases
as the force increases (at f > fL ), implying that the backward contribution to the flow (the
negative term of (58)) becomes more and more important as f increases. Such phenomenon
is a consequence of the elasticity of the extended interface, that determines the scaling of
the effective barrier, and does not occur for instance in the dynamics of a driven particle in a
random potential (Sect. 3). The correction to the pure creep law is illustrated on Fig. 5 (right):
it induces a bending of the v̄( f ) characteristics, actually compatible with the experimental
measurement of [31].

Numerical studies and experimental measurements on ferromagnetic domain walls
[29,60–62] have reported an intermediate affine (‘TAFF’-like) regime succeeding to the
creep regime at intermediate forces. It would be interesting to compare such a regime to the

123

Author's personal copy



Driven Interfaces: From Flow to Creep Through… 1419

correction to the creep regime due to the backward flow (59) (at f > fL ). The experimental
and numerical data of the above mentioned works are shown to be compatible with a law

v̄( f ) ∝ e−Uc
T

[
( f/ fc)

− 1
4 −1

]
, (73)

i.e., with an effective barrier ∝ [
( f/ fc)−

1
4 − 1

]
that vanishes at f = fc. We argue that

in the intermediate force regime the contribution of the backward flow are not negligible
anymore: it would be interesting to determine whether the experimental evidence are indeed
compatible with those contributions, by comparingmeasurements to (59) (at f > fL ) instead
of (73). Note that both (59) and (73) describe an affine dependence of the velocity in f in
the intermediate regime force f � fc, that is observed experimentally, but their origin is
different.

6 Discussion

Non-linear response laws correspond in our context to a glassy behaviour where metastable
states are organised in a hierarchical manner [63]. Phenomenological approaches can be
problematic: as we have exposed in Sect. 2.4, naive power counting arguments can lead to
wrong results. A remedy in such situations can be to derive effective models. A tentative
approach for the elastic line would be to consider a free-energy density of the driven line: for
transverse fluctuations y at a scale L , onewould have to combine elastic, disorder and driving

contributions, giving: F(y, L) = y2L−2 + y
1
2 L−1 − f y (setting to simplify all coefficients

to one). Choosing a power-law scaling y = Lζ and equating the three terms yields the KPZ
roughness exponents ζKPZ = 2/3 together with the optimal driven length Lopt ∼ f −3/4.

This description with one effective degree of freedom y can however in no way constitute an
effective model for the motion of the centre of mass y of the interface, since the parabolic
contribution ∝ y2 would confine it, forbidding any long-time stationary driven regime with
non-zero velocity.

In contrast, the effective model we have defined in Sect. 4.1 (see Fig. 4) presents two
effective degrees of freedom: the extremities yi and yf of a segment of length tf of the interface,
or alternatively its centre of mass ȳ and the relative displacement δy. Having this second
degree of freedom δy, orthogonal to ȳ, now allows to include the parabolic contribution
∝ δy2 needed to encode the elasticity, without precluding the motion of the centre of mass
(see Fig. 4). A first advantage of this effective model is that it was constructed explicitly
from the original interface model, and that its contribution ∝ f y describing the effect of the
force is derived through a generalisation of the STS (Appendix 1). This result is non-trivial
in the sense that if linear response fails for the velocity, there is no reason a priori that it
would hold for the free energy, as is usually assumed in scaling arguments. Besides, the
presence of the degree of freedom δy, orthogonal to the centre of mass ȳ, implies that the
motion along direction ȳ is not blocked by the highest barrier; on the contrary, the motion
can bypass those highest barriers by going through saddle points (here one considers the
low-temperature regime picture described in Sect. 4.2, where the motion is dominated by the
instanton). It corresponds for the original interface to the role of large elastic deformations,
that become too costly might the interface be locally pinned by a strong fluctuation of the
randompotential. Furthermore, the disordered contribution to the free-energywas also proven
to be translationally invariant in distribution—which, as we discussed, justifies the existence
of a velocity at large time. As a second advantage, the effective model is amenable to a
large-tf scaling analysis that corresponds to the low-force asymptotics. The power-counting

123

Author's personal copy



1420 E. Agoritsas et al.

result is thus justified by a saddle-point analysis at large tf of our effective model (Sect. 4.3),
extending the equilibrium saddle-point analysis of [11].

Another advantage of the effective model we put forward is that it allows a complete
scaling analysis, even in the presence of short-range correlations at a scale ξ in the disorder.
Indeed, after rescaling, the free-energy becomes (47) where the dependence in the parame-
ters is gathered into a single prefactor, apart from disorder correlations which are rescaled

to an effective lengthscale ξ/a = ξ/( D̃
c f )

1/2. In the small force limit f → 0, this effective

lengthscale goes to zero, and the disorder free-energy F̂ in (47) becomes the uncorrelated
(ξ = 0) one. The dependence in the original correlation length ξ is absorbed in the com-
mon prefactor to all terms of (47), through the constant D̃ [11,37,38]. This global scaling
properties support that, as often informally stated, all barriers of the creep problem scale in
the same way proportionally to f −1/4. It would be interesting to relate such picture to the
one of a single energy barrier recently shown in [60] to correctly describe the velocity–force
dependence beyond the creep regime, in experimental and numerical results.

We can make the connection between our results and a special regime of the KPZ fluctua-
tions, using that at ξ = 0 results more precise than the Brownian scaling (42) at tf → ∞ are
available. Indeed, at ξ = 0 the disorder free-energy scales as follows ([41,64,65], see [10]
for a review):

F̄V (tf, yf|0, yi)
(d)=

( D̃2

c
tf
) 1

3A2

(
(yf − yi) /

[ (
D̃/c2

)1/3
t2/3f

])
, (74)

where A2 is the Airy2 process and D̃ = cD
T . We thus have that upon the rescaling (40) with

the choice (44)

F̄V (tf, yf|0, yi)
(d)=

( D̃2b

c
t̂f
) 1

3A2
( [

ŷf − ŷi
]
/t̂2/3f

)
. (75)

Finally, upon the same rescaling (46) as in the Brownian case for the scale of time b as a
function of the force f, we obtain that (47) becomes

F f
V (tf, yf|0, yi) = f − 1

4

( D̃3

c

) 1
4
[(

ŷf − ŷi
)2

2t̂f
+t̂

1
3
f A2

( [
ŷf − ŷi

]
/t̂2/3f

)− t̂f
2

(
ŷf + ŷi

) ]
, (76)

a form where the dependence in the physical parameters has been absorbed in a unique
prefactor. The rest of the analysis presented in Sect. 4.3 remains formally valid: the saddle-
point asymptotics in the low-force limit f → 0 remains dominated by optimal values for
ŷi, ŷf, t̂f which do not depend on the parameters, and the generic form of the creep law
(52) is also recovered. The issue is that the scaling in distribution (74) has been shown to
be valid only in the strict ξ = 0 case, which corresponds to the regime T � Tc of our
settings. It has been however evidenced numerically in [51] that (74) remains valid at finite
ξ for |yf − yi| � ξ, provided D̃ is replaced by its finite-ξ counterpart as in (42–43), in the
equilibrium f = 0 case. Our analysis thus provides motivation to study the extension of (74)
to the finite-ξ case in further details, since, if valid, it remains compatible with the scaling of
the creep law at f �= 0.

Besides, the results we have presented are complementary to previous studies of elastic
interfaces in random media with long-range elasticity [66,67]. We can define the ratio �0 =
D1/2/c, which allows to rewrite the finite-size coordinate of the phase diagram (Fig. 1) as
Lc/L = (ξ/�0)

2/3ξ/L . (Note that�0 is not in general a length, unless one chooses a system
of units in which the transverse and longitudinal directions have same dimensions—which
is of course the case for the interface, but not in the directed-polymer or KPZ description).
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Then, at fixed ξ and fixed L , the critical region at small Lc/L , where the creep law holds,
corresponds to the large �0 asymptotics (i.e., ‘strong pinning’: as seen from the expression
of �0, disorder dominates elasticity), while the asymptotics at small Lc/L , outside of the
creep regime, corresponds to ‘weak pinning’ (see [58] for strong and weak pinning in type-II
superconductors, and the review [68]).

Last, we emphasise that our analysis of the stationary velocity of the effective model in its
non-equilibrium steady state wasmade possible through aMFPT argument. As we discussed,
it allowed us to obtain v̄( f ) within boundary conditions that would induce an equilibrium
steady-state, but through the determination of a non-stationary MFPT. Although powerful
(since it transforms a non-reversible problem into a reversible one), such reasoning will fail
at large force, and another approach should be developed to understand this regime. We also
note that other types of effective models have been used in the context of interfaces with
long-range elasticity [67] and it would be interesting to establish connections to the results.

7 Conclusion

7.1 Summary

The derivation of the velocity–force dependence relies on the combination of three distinct
limits: (i) low temperature T, (ii) large system size L , and (iii) small forces f.The understand-
ing of the characteristic scales defining those limits in our construction has allowed us to grasp
the validity range of the creep regime and to identify how it is modified at intermediate forces.

The low-temperature assumption allows for the Arrhenius MFPT expression (38) based
on the instanton description. It is valid in the limit where the temperature T is very small in
comparison to the effective barrier Uc ( fc/ f )1/4. Because of large prefactor ∝ ( fc/ f )1/4 at
f � fc, the domain of validity of the instanton description extends much beyond the naive
regime T � Uc (which reads T � Tc at low temperature), allowing in particular to study in
a well defined way the dependence of the scale Uc as T varies. Increasing the temperature
modifies the geometrical fluctuations of the polymer—-both their amplitude (related to D̃) and
their characteristic lengthscales (such as Lc)—with a temperature dependence parametrised
by the fudging parameter g as presented in Sect. 5.3. This affects the scaling of the Larkin

lengthLc: at low temperature we haveLc ≈ Lc ∼ T 5
c

cD2 ,whereas in the opposite limit T � Tc

we have Lc ∼ T 5

cD2 [11]. This has allowed us to determine, in the (Lc/L , T/Tc) plane,
the region where the Brownian scaling of the free energy holds. To characterise higher
temperatures (T ∼ Uc ( fc/ f )1/4) where the Arrhenius description breaks down, one would
need to take into account the contributions of the fluctuations around the instanton and of the
other transition paths (for instance through Morse theory [69,70]).

Within the validity range of theArrhenius and instanton description, the system size should
be sufficiently large (L � Lc) so that theMFPTexpression (50) is dominatedby theBrownian
scaling of the disorder free energy and the KPZ scaling of the geometrical fluctuations
(y(tf)2 ∼ t4/3f ). For systems smaller than the Larkin length (L < Lc), the Brownian scaling
of the free-energy is not valid any more. This implies that our study of the creep regime
breaks down and that the sub-Larkin scalings of the geometrical fluctuations y(tf)2 ∼ t2ζf
with ζ �= 2

3 will affect the free-energy rescalings. In this regime, the value of the roughness
exponent is actually unknown from an analytical point of view, but it has been evaluated to
be larger than 1 [11,52].
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The first implication of the small force assumption is that the f → 0 asymptotics cor-
responds to the v( f ) → 0 asymptotic, allowing for the quasistatic approximation. We have
explicitly implemented the latter in our effective model (34) by using the static free energy
(see Sect. 4.1). Although the STS for the static free energy at finite force remains valid at an
arbitrary large force (see Appendix 1), its use for the effective model is self-consistent only
in the f → 0 asymptotics. The second implication of considering this asymptotics is that,
after performing the Brownian rescaling (42) allowed by L > Lc, it is possible to perform
a saddle-point argument for the MFPT (51) and to infer from it the steady-state velocity
(52). The validity range of the creep regime is thus restricted to Lc < Lopt( f ) < L with
Lopt( f ) ∼ f −3/4. Decreasing the force, one eventually reaches Lopt( fL) ≡ L and observes
the finite-size crossover discussed in Sect. 5.1. Increasing the force, Lopt( f ) decreases and
when one reaches Lopt( fmax) ≡ Lc the Brownian scaling (42) cannot be used anymore to
rescale the free energy in theMFPT expression (50). At low temperature we have fmax = fc,
confining the creep regime at most to forces f ∈ [ fL , fc], whose scalings are known only
to numerical prefactors that we cannot access in our approach. The third implication is that
in the small force regime, since the effective barrier Uc ( fc/ f )1/4 increases as f → 0, one
can neglect the backward flow compared to the forward flow, as discussed in Sect. 5.4: the
negative contribution to (58) is negligible compared to the positive one, which yields the pure
creep law (52).

7.2 Perspective

We have proposed and studied a two-degrees-of-freedom effective model describing the
motion of a driven 1D elastic line in a disordered random medium. Through a MFPT study
and a saddle-point argument at small driving force, we provided a detailed derivation of the
creep law [see (51), (52) and (70)], and we used our proposed analysis to understand the
crossover from the creep law to the linear response regime that one expects at very small
forces for finite systems (see (59)). We established the phase diagram which describes this
crossover together with the critical region where the creep law is valid.

Extensions of the approach we have described could be interesting to understand the
dynamics and jump statistics of driven vortices in superconductors presenting dislocation
planes (experiments of [71]), in relation to the recent theoretical work of [72]. Other exper-
iments (this time for interfaces in magnetic materials [60,62]) are compatible with a TAFF
at intermediate driving force (below the depinning force, but beyond the creep regime). It
would be worth trying to extend our analysis to this regime of force, but it would require
to incorporate a roughness different from ζKPZ = 2

3 . The existence of three flow regimes
in the velocity–force characteristics (at finite size L � Lopt described in this article; the
intermediate force TAFF; and the large-force “fast flow” regime at f � fc) also rises the
question of whether and, if so, how those regimes are connected. Mathematical aspects are
also worth investigating: an effective model with one degree of freedom, quadratic elasticity
and Brownian disorder corresponds to the Brox diffusion, see [73]. The extension to two
degrees of freedom and the inclusion of a driving field might allow to reach temperatures
beyond the zero-noise limit that we had to restrict to.

Our analysis relies on the decomposition of the free-energy into contributions which
rescale in a simple manner; in one dimension, the existence of this decomposition is related
to theAiry process which describes the large tf behaviour of the directed-polymer free-energy
scaling. In two dimensions, numerical simulations provide evidences supporting the existence
of a corresponding universal process [74,75], the scaling of which supposedly controlling
the low-force regime. More complex descriptions are sometimes required to understand the
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dynamics of magnetic domain walls, including an internal phase which plays the role of a
hidden internal degree of freedom [76–78]. The role of disorder in the dynamics of such
systems is poorly understood, either in the field-driven or the current-driven cases, excepted
in 0D toy models; a generalisation of the approach we have presented could be instructive.
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Appendix 1: Statistical Tilt Symmetry at f �= 0

We derive in this appendix a form of the STS, which allows to decompose the point-to-point
free energy into the sumof a deterministic contribution and of disorder-dependent one, which,
in distribution, is invariant by translation along direction y. We first recall the known result
at zero force before deriving a novel STS at f �= 0.

A Reminder: The Zero Force STS ( f = 0)

In the zero force situation, the linear change of coordinates y(t) = ỹ(t) + yi + yf−yi
tf

t allows
to relate the weight of trajectories starting in (0, yi) and arriving in (tf, yf) (see Fig.2) to
those starting in (0, 0) and arriving in (tf, 0) in a translated disorder. One directly reads from
(15) (with f = 0) that

WV (tf, yf|0, yi) = e
− c

T
(yf−yi)

2

2tf WT tf
yf,iV

(tf, 0|0, 0) , (A.77)

where the translated disorder T tf
yf,iV is defined as

T tf
yf,iV (t, ỹ) ≡ V

(
t, ỹ + yi + yf−yi

tf
t
)
. (A.78)

This remark enables to decompose the free energy FV (tf, yf|0, yi)= −T logWV (tf, yf|0, yi)
as

FV (tf, yf|0, yi) = FV≡0 (tf, yf − yi) + F̄V (tf, yf|0, yi) , (A.79)

where

FV≡0 (tf, yf − yi) = Fth (tf, yf − yi) + T

2
log

2πT t

c
, (A.80)

Fth (tf, yf − yi) = c
(yf − yi)2

2tf
. (A.81)

Hence, F̄V (tf, yf|0, yi) is invariant by translation in distribution, as we indeed observe that
it is depending on yi and yf only through T tf

yf,iV .

F̄V (tf, yf|0, yi) = −T logWT tf
yf,iV

(tf, 0|0, 0) . (A.82)
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The Non-zero Force STS ( f �= 0)

In the non-zero force situation, the key observation is that there exists a f -dependent trans-
formation of the directed polymer trajectories

y(t) = ỹ(t) + yi + yf − yi
tf

t + f

2c
t (tf − t) , (A.83)

which, remarkably, implies a f -STS generalising (A.79):

W f
V (tf, yf|0, yi) = exp

{
− 1

T

[
c
(yf − yi)2

2tf
− f

2
tf (yf + yi)− f 2

24c
t3f

]}
WT tf, f

yf,i V
(tf, 0|0, 0) .

(A.84)
The result is obtained by coming back to the path-integral definition of the f -dependent point-
to-point partition function (15), and taking care of the boundary terms. The key observation
in the computation is to recognise the following total derivative

(2c(yf − yi) + f tf(tf − 2t))

2tf
∂t ỹ(t)− f ỹ(t) = ∂t

[ f tf(tf − 2t) + 2c(yf − yi)

2tf
ỹ(t)

]
, (A.85)

for the terms linear in ỹ(t) after the change of variable (A.84). The translated disorder T tf, f
yf,i V f

is defined as
T tf, f
yf,i V (t, ỹ) ≡ V

(
t, ỹ + yi + yf−yi

tf
t + f

2c t (tf − t)
)
. (A.86)

Note importantly that if the translated disorder (A.86) depends on the force through a f -
dependent change of coordinate, the partition function on the right hand side of (A.84) is
however the one at zero force. This enables to decompose the free energy F f

V (t, y) as

F f
V (tf, yf|0, yi) = Fth (tf, yf − yi) − f tf

2
(yf + yi)

− f 2

24c
t3f + F̄ f

V (tf, yf|0, yi) + T

2
log

2πT t

c
, (A.87)

where
F̄ f
V (tf, yf|0, yi) = −T logWT tf, f

yf,i V
(tf, 0|0, 0) . (A.88)

For uncorrelated disorder (ξ = 0) this implies in particular that at large tf the distribution
of F̄ f

V (tf, yf|0, yi) adopts the Airy2 scaling [10] and goes to the distribution of a Brownian
motion of coordinate yf − yi at infinite tf (this corresponds to the steady state of the KPZ
equation [19]). For correlated disorder (ξ > 0), the picture is slightly changed at large tf:
the steady state is not distributed as a Brownian anymore but scales similarly (as long as
yf − yi � ξ ) with a different ξ -dependent amplitude D̃ [11,52] [see Eq. (42) in the main
text].

Appendix 2: Effective Temperature T̃ and Friction γ̃ in the Absence of
Disorder

In this Appendix, we determine the relation between the original friction γ and temperature T
of the interface dynamics (1) and the ones γ̃ and T̃ of the effective model (33–34), in the
absence of disorder (V ≡ 0). Starting by the original dynamics, one averages (1) over thermal
fluctuations and taking the long-time limit, one gets
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v( f )
∣
∣
V≡0 = f

γ
. (B.89)

Changing to the reference frame of the centre of mass, one recognises that y(t, τ ) − f
γ
τ

obeys the Edwards–Wilkinson equation, whose steady state is Gaussian, implying that

〈
[y (tf) − y(0)]2

〉∣∣
V≡0 = T

c
tf. (B.90)

On the other hand, the effective equations (33–34) are written as follows in the absence
of disorder, as seen from the expression (A.87) of the tilted free energy:

γ̃ ∂τ yi(τ ) = + c
yf − yi

tf
+ 1

2
f tf +

√
2γ̃ T̃ η̃i(τ ), (B.91)

γ̃ ∂τ yf(τ ) = −c
yf − yi

tf
+ 1

2
f tf +

√
2γ̃ T̃ η̃f(τ ). (B.92)

Summing these equations, averaging over thermal noise and imposing that both yi(τ ) and
yi(τ ) move at an average velocity v( f )|V≡0 at large times, one gets 2γ̃ v( f )|V≡0 = f tf;
hence, comparing to (B.89), one obtains

γ̃ = 1

2
tfγ. (B.93)

Note that to get this result, we relaxed the conditions (walls) that would enforce the model to
reach a zero-velocity equilibrium steady state at large times. However, a MFPT analysis in
such conditions would also yield the result (B.93) for the velocity in a finite window of the
system far from the walls. Subtracting now (B.91) and (B.92) one obtains a closed equation
for δy(τ ) = yf(τ ) − yi(τ ) in the absence of disorder:

γ̃ ∂τ δy(τ ) = −2
c

tf
δy(τ ) +

√
4γ̃ T̃ η̃1, (B.94)

where η̃1 is a white noise of unit variance. The force term of this Langevin equation
derives from the energy c

tf
(δy)2 and the noise term has temperature 2T̃ . This shows that

the steady-state distribution of δy is Gaussian ∝ exp
[
− c

2T̃ tf
(δy)2

]
. This implies in turn that

〈(δy)2〉|V≡0 = 〈[yf − yi]2〉|V≡0 = T̃
c tf. Finally, comparing to (B.90) one obtains that the

temperatures of the original and of the effective models are equal:

T̃ = T . (B.95)

To summarise, in the absence of disorder, the effective model with friction (B.93) and tem-
perature (B.95) presents the same velocity and the same Gaussian end-point distribution as
the original dynamics. We assume that this correspondence between original and effective
parameters also holds in the presence of disorder.
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