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ABSTRACT 

 

 

Molecular static simulations have been performed to study the interaction between a single 

dislocation and a substitutional Al solute atom in a pure crystal of Ni. When the Al solute is 

situated at intermediate distance from the slip plane, we find that both edge and screw 

dislocations experiment a non-negligible binding energy. We show that for such length scale the 

description of the elasticity theory can be improved by taking into account the spreading of 

dislocation cores via the Peierls-Nabarro model.  

 

1. Introduction  

 

The mechanical behaviour of metallic alloyed materials is largely caused by the interactions 

between dislocations and solute atoms. Foreign atoms play the role of obstacles to the 

dislocations motion and at finite temperatures segregate on dislocation forming Cottrell 

atmospheres. These atomic processes lead to phenomenon as solid solution hardening, 

heterogeneous precipitation, static or dynamic ageing and impact the yield stress of the alloy. 

Therefore, understanding the interaction between solute atoms and dislocation is an important 

issue in materials science. One of the most recent ways to examine this problem quantitatively is 

to perform atomistic simulations [1, 2]. Empirical potential based on Embedded Atom Method 

(EAM) have been found to be reliable to model dislocation in Face Centered Cubic (fcc) metals 

[1]. Recently, the role played by the screw dislocation segments have been addressed and it has 

been shown that for a certain model alloy, i.e. Ni(Al) the pinning strength by solutes situated in 

the vicinity of the core are of same order as for the edge dislocation [2, 3]. On the other hand 

most of the metal macroscopic behaviors involve collective evolution of dislocations and make 

atomistic simulations no more tractable. It is therefore interesting to tentatively model the 

dislocation solute interactions via a continuum elastic theory [4, 5, 6] to check its range of 

validity and to provide a relevant description of it that may serve at larger scale as for instance 

into the dislocation dynamics simulations. 

 

2. Atomic Simulations  

 

We perform molecular static (MS) relaxations in pure Ni to study the geometry of perfect 

isolated edge and screw dislocation (see Fig. 1). The calculations are done using EAM potentials 

supplied by [7] that gives a good description of the Ni(Al) alloy properties. The simulation cell is 
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oriented so as that the horizontal Z planes are the  slip plane of the fcc lattice while the Y 

direction corresponds to the dislocation line ( , screw dislocation Burgers vector). The 

X direction is orthogonal to Z and Y and points at the dislocation motion ( , edge 

dislocation Burgers vector). The simulation box sizes along the directions X, Y, Z are 

100×30×50 Å and 80×20×80 Å for the edge and the screw dislocation respectively. Periodic 

boundary conditions are imposed along X and Y while free surface conditions are applied to the 

atoms in the upper and lower Z surfaces [1, 2, 3]. The relaxed crystal structure of a single perfect 

dislocation is shown in Fig. 1 through an analysis of the Burgers vector density of both edge and 

screw component lying in the slip plane. As expected in Nickel, the full dislocation dissociates 

into 2 Shockley partials with  and   Burgers vectors separated by a stacking 

fault region. The core of each partial is far from being compact and spreads in the glide plane 

over a finite width ξ. The dissociation distance  between partials as well the partial core widths 

are found larger for the edge dislocation than for the screw. 

 

 
Figure 1. Densities of Burgers vectors with respect to the glide direction in the slip plane: (a) 

edge dislocation, (b) screw dislocation. The symbols represent the simulation data while the 

curves are their fits on Peierls-Nabarro displacement field. 

 

In a second time, we carried out the same MS simulations except that a single isolated Al atom is 

placed in a simulation cell of pure Ni. Then an external applied shear stress is produced by 

imposing extra forces to the atoms in the upper and lower Z surfaces making the dislocation 

glide toward the obstacle. At each relaxation step a gradient algorithm forces the dislocation to 

explore its minimum potential energy path. The interaction energy is recorded for all relative 

distances between the dislocation and the Al solute atom situated at the third  plane from 

the glide plane for both dislocations (see Fig. 2). The minimum distance between the solute and 

the dislocation cores is thus about  and corresponds to two and a half of the inter-plane 

distance along the  direction. As expected, the compressive zones, above the glide plane for 

the edge dislocation and alternate for each partial of the screw dislocation, are repulsive for the 

solute while the tensile zones are attractive since Al impurities dilate the Ni matrix. The 

attractive and repulsive peaks are clearly associated with the positions of the partials. At such 

distance the maximum interaction energy is found to be -  for the edge dislocation while 

it is twice smaller for the screw. In case of the screw dislocation, the maximum binding energy is 

greatly increase by the modulus effect. From the results reported in Fig. 2, we can expect the 

segregation of solutes forming Cottrell atmospheres of different shapes for each dislocation 

character: below the glide plane for the edge dislocation, above the leading partial and below the 

trailing one for screw segments. Therefore, the interaction between screw dislocation and solute 
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atoms even at such length scale can not be neglected and the screw segments may as well 

participate in ageing phenomenon or solid solution hardening. 

 

Table 1. Physical constants calculated from Ni(Al) EAM empirical potential.  
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GPa 
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246 147 125 -1,87 -1,31 -1,28 242 0,27 2,1 28,4 12,6 4,5 3,8 

 

3. Elasticity Theory  

 

The linear continuum elastic theory has shown to be reliable to describe the interaction energy 

between defects and dislocations as long as deformations are small, i.e. far enough from the 

dislocation core [4, 5, 6]. Considering at same time size and modulus misfits, the binding energy 

between a dislocation and a single defect reads as follows [1]:   

 

,     (1) 

 

where P and are the hydrostatic pressure and the stress field created by the dislocation at the 

solute position,  is the atomic volume in the matrix,  the solute relaxation volume, c the 

solute concentration and  is the compliance tensor expressed in this study via isotropic 

constant (see Tab. 1). Since a substitutional Al atom in fcc Ni does not break the cubic symmetry 

of the lattice it is not required to account for tetragonal distortion effect. For our isotropic 

elasticity calculations, we use the Young’s modulus  and the Poisson coefficient  obtained by 

the Voigt average. Taking full account of the periodic boundary conditions as well as the 

dissociation of dislocation we carried out the computations of types [8]: (i) Volterra dislocation 

with compact core, (ii) Peierls-Nabarro (PN) dislocation with an extended core region. 

 

 
Figure 2. The binding energy between one Al solute atom and a dislocation against the 

distance between the dislocation and the obstacle in the glide direction: (a) edge dislocation, (b) 

screw dislocation. The solute is situated in the third  planes above (filled symbols) or below 

(open symbols) the glide plane. The curves correspond to analytical treatments: Volterra 

dislocation (dashed line) and Peierls-Nabarro dislocation (full line).  

 

In Fig. 2, the predicted elasticity results are found to be in fairly good agreement with the 

atomistic results. However, several discrepancies need to be pointed out. Due to the singularity 
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of its elastic field, the results given by Volterra dislocation systematically overestimate the 

interacting energy just above or below the core positions of the partials [5]. On the other hand, 

we note that the interaction energy dependency described by a PN dislocation gives a better 

agreement with the simulation data. Indeed, the PN description of a spreaded core is closer from 

the burgers density profile of the dislocation (see Fig.1). We also remark an overestimation of 

the interaction energy for the edge dislocation when the solute is situated around the stacking 

fault region. This seems consistent since the elasticity solutions do not address, in the present 

study the solute–stacking fault interaction. To improve the transfer from the atomic scale to a 

continuous theory we emphasize that some improvements of the model would be required as the 

nonlinear, anisotropic nature of the dislocation-defect interaction as well as the stacking fault 

elastic field. Despite of simplified assumptions, the PN model has the great merit of providing an 

analytical nonlinear elastic model of the dislocation core. However at smaller length scales, 

nearby of the dislocation core, linear elastic theory breaks down and the PN model calculations 

deviate from our atomistic calculations. 

 

4. Conclusions 

 

The aim of the present paper was to extend the comparison between the atomistic computations 

and elastic theory in the case of a single substitutional solute atom and dislocations in a fcc alloy. 

For an impurity situated at intermediate distance from the glide plane, we found that the binding 

energy of the screw dislocation is twice smaller than the edge one. Another issue of the present 

paper was to tentatively apply analytical models to compute the binding energy. It has been 

shown that the elasticity theory manages to predict qualitatively the interaction energy and that 

these predictions can be improved by accounting for the spreading of the dislocation core. 
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