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ABSTRACT
We develop a mesoscopic model to study the plastic behavior of an amorphous material under cyclic loading. The model is depinning-
like and driven by a disordered thresholds dynamics that is coupled by long-range elastic interactions. We propose a simple protocol of
“glass preparation” that allows us to mimic thermalization at high temperatures as well as aging at vanishing temperature. Various levels of
glass stabilities (from brittle to ductile) can be achieved by tuning the aging duration. The aged glasses are then immersed into a quenched
disorder landscape and serve as initial configurations for various protocols of mechanical loading by shearing. The dependence of the plastic
behavior upon monotonous loading is recovered. The behavior under cyclic loading is studied for different ages and system sizes. The size
and age dependence of the irreversibility transition is discussed. A thorough characterization of the disorder-landscape is achieved through
the analysis of the transition graphs, which describe the plastic deformation pathways under athermal quasi-static shear. In particular, the
analysis of the stability ranges of the strongly connected components of the transition graphs reveals the emergence of a phase-separation like
process associated with the aging of the glass. Increasing the age and, hence, the stability of the initial glass results in a gradual break-up of the
landscape of dynamically accessible stable states into three distinct regions: one region centered around the initially prepared glass phase and
two additional regions characterized by well-separated ranges of positive and negative plastic strains, each of which is accessible only from
the initial glass phase by passing through the stress peak in the forward and backward, respectively, shearing directions.
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I. INTRODUCTION

Understanding the response of a disordered solid to an exter-
nally imposed forcing, such as stress or strain, is important in
order to characterize the transitions between rigid and flowing
states in a wide variety of soft matter systems. Examples for such
behavior include the jamming transition in granular materials,1 the
yielding transition in amorphous solids,2,3 and the depinning tran-
sition of a pinned elastic interface, such as flux-lines in type II
superconductors.4

The interplay between the deformation energy cost and gain,
as the disordered solid adapts to the imposed forcing by deforming,

gives rise to rich dynamics on a complex energy landscape. For small
loading, the response of the solid is largely elastic, characterized by
few plastic deformation events. However, as the loading is increased,
plastic deformations start to proliferate and eventually lead to yield-
ing and flow. The manner in which the transition to yielding occurs
has been found to strongly depend on the degree of initial annealing,
e.g., aging, of the sample.5–10

Over the last several years, a large body of experimental11–15

and numerical6,9,10,16–30 work has been carried out to understand the
nature of the yielding transition in amorphous solids. These results
reveal an intriguingly complex and dynamical spectrum of response
that, besides its dependence on the degree of annealing and the
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amount of loading, also shows dependence on history, system size,
and dimensionality.

Of special recent interest has been the response of amor-
phous solids to cyclic shear, in particular, under athermal qua-
sistatic (AQS) conditions.9,10,18,19,23,26,27,31 Experiments and simula-
tions show18,19,31–36 that for small oscillatory strain amplitudes, the
solid settles into a cyclic response after just a few driving cycles. As
the strain amplitude is increased, the transients to cyclic response
become increasingly longer, and multi-periodic response, i.e., cycles
that repeat every T > 1 driving periods, starts to emerge. This behav-
ior continues until a critical strain amplitude is reached, beyond
which cyclic response is no longer attainable and particles start
to diffuse across the sample. The transition from cyclic to diffu-
sive behavior has been found to be rather sharp and is called the
irreversibility transition.

At the same time, a cyclic response to periodic loading can also
be regarded as a form of memory that encodes information about
the forcing that produced the response.37 Such memory effects have
been observed experimentally as well as numerically in periodically
sheared amorphous solids, colloidal suspensions, as well as other
soft-condensed matter systems.15,32–34,38–41

Along with atomistic (AS) models of amorphous solids, spa-
tially coarse-grained mesoscopic elastoplastic models3 have been
introduced. Due to their conceptual simplicity, mesoscopic mod-
els are appealing both from a numerical as well as a theoretical
perspective. Initially, the main goal of these models was to capture
the response under monotonous loading by shear strain. However,
more recently, mesoscopic models have been constructed that study
the response under oscillatory shear.42,43 In order to be able to
realistically capture cyclic response, particularly key features of the
irreversibility transition, a prescription for replacing mesoscopic ele-
ments once they have yielded has to be provided. We will refer to
the available choices generated by a given replacement prescription
as the “landscape” of the mesoscopic model.

Of special interest are the two recently introduced elastoplastic
models that study the response under cyclic shear: The model by Liu
et al.42 assumes that mesoscopic elements that yielded are replaced
at random and hence irreversible, while the model of Khirallah
et al.43 is complementary in that it is fully deterministic—elements
that yielded are replaced by ones with identical, i.e., non-random,
yield stresses. The only source of randomness is the initial internal
stress configuration. Thus, in terms of the landscape terminology,
the model of Liu et al. has a totally random disorder-landscape, while
the one of Khirallah et al. is totally ordered. Despite these differ-
ences, both models nevertheless recover key features of the response
of amorphous solids to cyclic shear, such as the irreversibility tran-
sition and divergence of lengths of transients as the transition is
approached. Let us finally note that these types of mesoscopic mod-
els have been used as a starting point for developing even further
coarse-grained models, such as the recently introduced stochastic
mesostate models.44–46 These models also capture key features of
the irreversibility transition of amorphous solids under oscillatory
shear.

Here, we present a depinning-like mesoscopic elastoplastic
model with a quenched disorder landscape. Our model, therefore,
interpolates between the two types of landscapes considered before.
Specifically, the model we consider has two features: (i) a local yield-
ing protocol that allows us to mimic thermalization and aging, and

thereby to tune the history of our samples; (ii) the quenched dis-
ordered landscape that allows us to capture, in rather great detail,
the transients and the evolution to cyclic response in terms of the
localized plastic events.

As in previous works,42,43 we first focus on the stress response
under monotonous loading by an externally applied shear strain.
Our model recovers the brittle-to-ductile transition: as our initial
glass is increasingly aged better, the stress response exhibits a stress
peak that gets more pronounced with the duration of aging.

We next focus on the irreversibility transition under oscilla-
tory shear and its dependence on both the degree of annealing and
system size. We find that, for poorly and moderately aged (PA and
MA) samples, the transient times to cyclic response diverge as the
irreversibility transition is approached. In the case of poorly aged
samples, this divergence follows a power-law with an exponent that
is comparable with estimates obtained in recent studies.19,22,23,43

We finally turn to a more detailed comparison between the dis-
order landscape of mesoscopic and atomistic models. To this end,
we make use of the fact that the AQS dynamics of driven disor-
dered systems has a natural representation in terms of a transition
graph, the t-graph.39,41,47,48 The AQS dynamics is thereby encoded
into the topology of the t-graph and provides a unified setting within
which we can compare in great detail the properties of the disorder
landscapes underlying our mesoscopic and atomistic models.

We perform such comparisons by focusing on a particular
topological feature of the t-graph, its strongly connected components
(SCCs). An SCC is a collection of mechanically stable configurations,
actually elastic branches, which are connected in a bi-directional
manner by plastic deformation pathways: a pair of configurations
belongs to the same SCC if there is a deformation pathway that
leads from one to the other and back. Hence, the plastic events trig-
gered by transitions between states belonging to the same SCC are
mechanically reversible, while transitions connecting different SCCs
are irreversible.41 Any periodic response must necessarily be con-
fined to a single SCC, and therefore the size of the SCCs and their
dynamic accessibility is a limiting factor for the length of transients
and the cyclic strain amplitudes at which cyclic behavior can be
attained.41

We have organized the manuscript in two main sections and
sub-divided these into subsections. In Sec. II, we present the meso-
scopic elastoplastic model, its behavior under monotonous and
cyclic loading, and the dependence upon glass preparation. In
Sec. III, we present a characterization of the underlying disor-
der landscape of the model based on the use of transition graphs.
Throughout the two parts, when applicable, we also compare our
results qualitatively with atomistic simulations we have carried
out. We conclude with a discussion of our results. We conclude
this introduction by providing the plan of the paper along with a
summary of our main results.

We present in Sec. II A the mesoscopic model developed for
the present study. In Sec. II B, we detail the protocols of prepara-
tion that allow us to mimic annealing at high temperature and aging
at vanishing temperature, respectively. In Sec. II C, we show that
varying the level of aging allows us to recover upon monotonous
loading either a ductile response or a brittle one, where a stress peak
is followed by a softening branch. In Sec. II D, we focus on the
analysis of the irreversibility transition upon cyclic driving. In par-
ticular, we discuss the dependence of the transition on sample size
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and preparation by aging. The poorly aged glasses show a power-
law divergence of the transient time to cyclic response as the strain
amplitude approaches the irreversibility transition. We find that this
behavior changes qualitatively as the samples are aged better and
their sizes are sufficiently large. In this case, the irreversibility transi-
tion appears to be discontinuous. Cyclic response is attained rather
quickly for amplitudes below a critical strain, or not at all.

In Sec. III, a characterization of disorder landscape is given
with an emphasis on the prevalence of limit cycles. Our analy-
sis is based on the transition graphs, as recently proposed in the
context of atomistic simulations.39 The representation of Athermal
Quasi-Static (AQS) dynamics via t-graphs extracted from simula-
tions is introduced in Sec. III A. Their extraction from simulations
of sheared amorphous solids is presented in Sec. III B. The graph
topology and the crucial role of the strongly connected components
(SCCs) in the context of cyclic loading are discussed in Sec. III C. In
Sec. III D, we discuss the effect of glass preparation on the topolog-
ical properties of the t-graphs. In particular, we show the scale free
character of the size distribution of SCCs. In Sec. III E, we show that
in order to understand better the disorder landscape underlying the
differently aged glasses, one has to combine the topological proper-
ties of the t-graph with structural information, such as the stability
range of the SCCs. This combined information, as well as the study
of the evolution of the plastic strain, is discussed in Sec. III F, and
we report on an interesting age-induced symmetry breaking transi-
tion associated with a phase-separation-like process in the disorder
landscape.

Note that throughout the manuscript, we present qualitative
comparisons between results obtained from our mesoscopic and
atomistic simulations. Let us stress that our main aim in showing
such comparisons is not to reach a quantitative agreement. Rather,
our intention has been to use the molecular dynamic results as a
guide and a qualitative reference against which the different results
obtained in the present work are compared.

The paper concludes with a discussion followed by a series
of appendices. Methodological details of atomistic and mesoscopic
simulations are summarized in Appendixes A and B, respectively.
An estimate of the effective sizes of the atomistic and meso-
scopic simulations, in order to allow us to compare these, is given
in Appendix C. Finite-size effects on the stress response upon
monotonous loading are discussed in Appendix D. Details on the
properties of the catalogs used for assembling the transition graphs,
which were extracted from simulations of the atomistic model and
the mesoscopic models, are presented in Appendix E. A discussion
of the strip-like arrangement of SCCs on the plane of exit strains is
given in Appendix F, while in Appendix G, we provide a transition
graph perspective for the dependence of the irreversibility transition
on finite-size and aging of the glasses.

II. HISTORY DEPENDENCE OF A MESOSCOPIC
ELASTOPLASTIC MODEL UNDER CYCLIC LOADING
A. A mesoscopic elastoplastic model
with tunable glass preparation

We consider a scalar 2D lattice-based mesoscale elastoplastic
model. The physics of this class of models relies on the coupling
between a threshold dynamics and an elastic interaction induced by

the incremental local plastic slip that arises as a result of a mechan-
ical instability.3 We use here a variant of the model introduced in
Refs. 49–51. A detailed presentation is given in Appendix B. Here,
we give a brief introduction to the model and emphasize its novel
features, focusing on the properties of the stress landscape.

We consider a square grid of N ×N cells of size a × a. The
model is scalar so that we account for one and only one shear
direction, along which we can shear the system forward (FW) and
backward (BW). We assume a uniform shear modulus μ. Each indi-
vidual cell (i, j) is characterized by a stack of local elastic branches
indexed by a variable ℓ, each of which relates the local stress σij to the
local strain εij, as shown in Fig. 1. The stability of each such local elas-
tic branch ℓ is limited by two bounds: a maximum stress threshold
σ+ij,ℓ and a minimum stress threshold −σ−ij,ℓ. Note that in order to ease
notation, whenever no explicit reference to a particular branch num-
ber ℓ is made, we will omit it in the following. The two thresholds σ+ij
and σ−ij are drawn from a random distribution with support in R+

so as to ensure −σ−ij < σ+ij , i.e., the existence of a stability domain for
the cell (i, j). Whenever the local stress σij overcomes one of the two
bounds, the cell experiences a plastic event and its stability domain is
shifted to a neighboring elastic branch. Since the cell is surrounded
by other cells and can be seen as an Eshelby inclusion within an elas-
tic matrix,52 this plastic event induces a stress redistribution in the
system so that other cells can get destabilized.

Details about the implementation and the driving of the model
are given in Appendix B, but we summarize below the main novel
features of the present model with respect to the previous variants
presented in Refs. 49 and 51:

Bidirectionality—Since cyclic loading (in addition to a simple
monotonous loading) is considered here, two local thresholds are
defined instead of only one for each cell: one threshold σ+ij in the
forward direction and the other one σ−ij in the backward direction.

Annealed vs quenched disorder—In the case of a monotonous
loading, every time a cell experiences a plastic deformation, its
threshold is renewed. Independently of the particular method

FIG. 1. Local elastic branches associated with a cell (i, j). Each elastic branch ℓ

is characterized by a pair of stress thresholds σ±ij,ℓ and a plastic strain ε pl
ij,ℓ, which

prescribe the behavior of the local stress σ ij under elastic strain ε el
ij = εij − ε pl

ij , as
shown for the branch labeled ℓ in the figure. When the stress reaches the upper
or lower stress threshold, a transition to the corresponding neighboring branches,
ℓ ± 1 occurs. The current stress state of the cell is denoted by a red filled sym-
bol on the elastic branch ℓ. This allows us to define the local plastic strengths
x+ij = σ+ij − σij and x−ij = σ−ij + σij , which give the distance to threshold in the for-
ward and backward directions, respectively. The slopes of the local branches are
identical and equal to 2μ.
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chosen to draw random thresholds, the quenched character of the
disorder is automatically obtained since a unique value of the thresh-
old σ±ij,ℓ is assigned to each triplet (i, j, εpl

ij ). The possibility of back
and forth motions requires more care in the definition of the thresh-
old disorder. Here, when performing cyclic loading tests, we use a
quenched disorder. In practice, we resort to a counter-based random
number generator (see Ref. 54 for a pedagogical introduction) to
assign efficiently a unique pair of random thresholds to each triplet
without having to store the full sequence in memory.

Preparation of the system before cyclic loading—The struc-
ture and the mechanical behavior of glasses do depend on their
thermo-mechanical history. In order to account for this prepara-
tion dependence in mesoscopic elastoplastic models, one usually
specifies a particular distribution of local thresholds and/or inter-
nal stress in the initial configuration.5,53 In contrast to atomistic
simulations, these distributions do not derive from a well-defined
quench protocol but have to be introduced by hand. Here, we pro-
pose two simplistic protocols of preparation allowing us to mimic
(i) an instant quench from a high temperature liquid and (ii) aging
at vanishing temperature. Although they are un-realistic caricatures
of actual glass preparations, the combination of these two protocols
allow us to tune continuously the state of the system from a very dis-
ordered fresh soft glass to a very aged hard glass in a (statistically)
reproducible way.

B. Glass preparation: Mimicking instant
quench and aging

As explained earlier, the present model is stress based and relies
on threshold dynamics: plasticity sets in at cell (i, j), if and only if the
local stress overcomes one of the two thresholds in the positive or
negative shear directions: σij > σ+ij or σij < −σ−ij . Despite the absence
of an explicit energy landscape, which would allow us to equili-
brate the system at finite temperature and to subsequently perform a
quench to zero temperature,54 it is possible to implement two limit-
cases of glass preparation: instant quench from a high temperature
liquid and aging at vanishing temperature, respectively.

1. Instant quench of a high temperature liquid
At a high temperature, the local energy barriers associated with

the stress thresholds are very low with respect to the available ther-
mal energy so that, in the T →∞ limit, all plastic rearrangements

are equally probable. We then define a thermal step by selecting a site
uniformly in space at random and choosing one of the two directions
with probability 1/2. The chosen site, thus, experiences a plastic slip
and jumps onto a new elastic branch, which is characterized by two
new plastic thresholds. Next, the stress field is updated to account
for the stress redistribution. The stress redistribution can make some
other sites mechanically unstable and thereby induce an avalanche.
Updates are then performed until the avalanche stops and the system
is stable again. The system is subjected in this manner to a sequence
of thermal steps until it reaches a stationary state. In Fig. 2(a), we
show, for different system sizes N, how the mean stress-threshold σ+
of our samples evolves with the number of thermal steps. We see that
when plotted against the average number of thermal steps per site,
the curves for the different sizes collapse and σ+ reaches a station-
ary value rather quickly, after about 4–5 thermal events per site. The
inset of the figure shows the corresponding evolution of the stan-
dard deviations δσ+, δσ, and δx+ of the stress-threshold, the internal
stress, and the plastic strength, respectively. When plotted against
the average number of thermal steps per site, we find again little size
dependence. In Fig. 2(b), we show the stationary distributions of the
stress-thresholds, internal stress, and local plastic strengths for our
N = 64 sample.

2. Aging at vanishing temperature
We now turn to the other limit, namely aging at very low

temperature, T → 0. In the framework of activated behavior, the
activity at low temperature is restricted to overcoming the lowest
barriers. Moreover, in the limit of vanishing temperature, the lowest
barrier becomes dominant. We define an extremal aging step as fol-
lows: recall that for each site (i, j) its plastic strength in the positive
and negative directions are given as x+ij = σ+ij − σij and x−ij = σij + σ−ij ,
respectively. We identify the site and direction with lowest plastic
strength and let it experience a local slip so that stresses are redis-
tributed, and new stress thresholds are assigned to the yielded site.
As in the case of the “thermal” procedure with randomly selected
sites, a stability check is performed after each slip. If one or more
sites get unstable, they are updated in turn and with the most unsta-
ble sites updated first, as explained before. The procedure is iterated
until the avalanche triggered by the initial extremal step termi-
nates. Then, the next site and direction of lowest plastic strength is
identified and allowed to slip.

FIG. 2. Glass preparation—mimicking
instant quench from high T: (a) evolution
of the mean stress-threshold σ+ with the
number of (random) thermalization steps
per site and for system sizes N = 16, 32,
and 64. The inset shows the same evo-
lution for the standard deviations of the
stress thresholds δσ+, internal stresses
δσ, and local plastic strength δx+. (b)
Stationary distributions of the fields σ,
σ+, and x+ for N = 64.
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The present “aging” procedure is thus similar to the “thermal”
procedure, differing only in the choice of the initial site to be slipped:
in the case of “aging” an extremal site is selected for slip, i.e., the cell
and direction with least plastic strength, while in the thermal case
the selection of site and direction is random. This difference drasti-
cally alters the dynamics, since it induces a systematic statistical bias.
When a site yields, it acquires a new pair of thresholds. The latter are
drawn from a prescribed distribution. However, in the framework
of the aging procedure, this takes place at an extremal site, which
is characterized by a very low plastic strength (either in the posi-
tive or in the negative direction). We thus get a typical exhaustion
phenomenon: low thresholds get replaced by “normal” ones. This
systematic bias induces a drift in the threshold distributions and thus
a systematic plastic hardening.49,55

Starting from an initial state corresponding to the inherent state
obtained from a “high temperature liquid,” as described in Sec. II B 1,
we thus “age” the system by slipping a number of least stable sites.
As shown in Fig. 3(a), we observe a logarithmic growth of the mean
thresholds σ+ with the number of aging steps. Again, the dependence
of this evolution on system size becomes negligible when we con-
sider the average number of aging steps per site, instead of the total
number of steps. We find that after about 103 aging steps per site, the
mean threshold doubles in value.

The inset of the figure shows the evolution of the standard devi-
ation of the stress-threshold, internal stress, and plastic strength. The
standard deviation of thresholds shows a slow decrease (about 20%
over 103 aging steps per site). Together with the doubling of the
mean thresholds over the same range of 103 steps, this corresponds
to a significant narrowing of the threshold distributions upon aging.

Interestingly, after a fast decrease in the early stage of the aging
protocol (less than one aging step per site), the standard deviation of
internal stress remains almost constant upon aging. In recent studies
on the dependence of plastic behavior of amorphous solids on glass
preparation,6,53 the width of the stress fluctuation distribution has
been used as a proxy for the level of stability of the amorphous solids

while keeping the value of the plastic threshold constant (actually
uniform). We get here a different situation: an increase in the mean
threshold and stability of the stress fluctuations upon aging. A way
to reconcile these contrasting observations is to consider the fluc-
tuations of the local plastic strength x± = σ± ∓ σ and to note that
in the case of uniform thresholds the standard deviation of plas-
tic strength equals that of internal stress δx± = δσ. Upon aging, we
indeed observe a continuous decrease of δx± that gets halved after
about 103 aging steps per site.

In Fig. 3(b), we display distributions of the stress thresholds σ+
for our N = 64 samples, which were either not aged at all (thermal),
or aged at 0.8, 15, and 150 aging steps per site, for N = 64. These
aging levels have been indicated by the appropriately colored circles
on the graph showing the evolution of mean stress-thresholds with
aging in panel (a). Henceforth, we will refer to these levels of aging
as poorly aged (PA), moderately aged (MA), and well-aged (WA).

The effect of our aging procedure is dramatic: it opens a grow-
ing gap in the distribution of stress-thresholds σ+. In spirit, we
recover here a phenomenology that is close to that of ultrastable
glasses obtained via swap Monte Carlo methods.56 The opening of a
gap will induce a perfect elastic behavior over a finite range of strains
that contrasts with the quasi-elastic behavior (short elastic branches
punctuated by plastic events) typically observed in less equilibrated
glasses.

C. Monotonous loading: Dependence
on thermal history

Depending on glass preparation, the stress–strain curves show
either a monotonous behavior up to a plateau or exhibit a stress
peak followed by a softening branch that slowly approaches the stress
plateau at a steady-state stress Σss. The existence of a stress peak is
usually associated with shear-banding behavior.

In Sec. II B, we proposed a glass preparation proto-
col for our mesoscopic model that mimics aging at vanishing

FIG. 3. Glass preparation—low temperature aging: (a) evolution of the mean stress-threshold σ+ with the number of aging steps per site and for system sizes N = 16, 32,
and 64. The inset of the figure shows the evolution of the standard deviation of local stress δσ, thresholds δσ±, and plastic strength δx for N = 64. (b) Distributions of the
stress-thresholds for an N = 64 sample, that has not been aged at all (thermal), or aged with an average number of 0.8 (PA), 15 (MA), and 150 (WA) aging steps per site,
corresponding to a poorly, moderately, and well-aged glasses, respectively. The highlighted and color-coded circles in the main plot of (a) indicate the aging stages at which
these samples were prepared to be subjected to cyclic shear.
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temperature. While tuning an aging duration is very different from
tuning a quench rate from the liquid state, both methods allow
us to transit continuously from a soft/poorly equilibrated glass to
a hard/well equilibrated glass. Our protocol actually allows us to
obtain in this way very different glassy states. In Fig. 4, we show
stress–strain curves corresponding to a poorly aged, a medium-aged,
and well-aged glass, aged at an average of 0.8, 15, 150 number of steps
per site. The system size is N = 32, and the curves were obtained by
averaging over 500 realizations. While the poorly aged glass does
not exhibit a stress peak, such a peak emerges and becomes more
pronounced as the samples are aged more. Thus, by tuning the
duration of aging, we are able to transit from a poorly aged to a
well-aged glass. We checked that all curves do converge to the same
stress plateau for large enough shear strains. More details on the
size dependence of these stress–strain curves are shown in Fig. 14 of
Appendix D.

Comparison with atomistic simulations—In the inset of Fig. 4,
we show for reference two stress–strain curves obtained by atom-
istic simulations under athermal quasi-static shear for a slow and
fast quench, respectively. The details of the simulations are pro-
vided in Appendix A. The slow quench curve shows a distinct stress
peak, while apart from fluctuations, the fast quench curve is almost
monotonous. Due to computational time limitations, it is difficult to
obtain strongly contrasting quenches and consequently stress–strain
curves when using molecular dynamics for the glass preparation.
The recently developed swap Monte Carlo methods give access to
a wider range of glass preparation although they are more restrictive
with respect to the nature of the model glasses.56

Let us emphasize that it has not been attempted here to adjust
the parameters of the elastoplastic model to quantitatively reproduce

FIG. 4. Stress–strain curves upon monotonous loading. The main figures shows
the stress–strain curves obtained for a mesoscopic glasses of size N = 32, aged
at an average number of 0.8 (poorly aged PA), 15 (moderately aged MA), and
150 (well-aged WA) aging steps per site. The moderately and well-aged glasses
show a stress peak followed by a softening branch that crosses over into a stress
plateau. The triangles mark the strain amplitudes where the probability to find cyclic
response under symmetric oscillatory shear is still larger than 2% (refer to Sec. II D
for details). The dotted vertical lines terminating with small circles mark the range
of strains sampled by the transition graphs discussed in Sec. III. The inset shows
the corresponding curves obtained from simulations of 2D atomistic glasses that
were quenched from a high temperature liquid state at a fast and slow rate (refer
to Appendix A for simulation details).

the stress–strain curve obtained by atomistic simulations. Rather,
our goal is to compare generic features, such as the brittle to ductile
transition under monotonous loading, and how the behavior upon
cyclic loading depends on the soft/hard nature of a glass. Recent
analyses of coarse-graining atomistic simulation to be used to feed
mesoscopic elastoplastic models with realistic parameters can be
found in Ref. 57.

D. Cyclic driving: Limit cycles
In this section, we consider the irreversibility transition and, in

particular, the response to cyclic shear of our poorly aged (PA) and
moderately aged (MA) mesoscopic glasses whose preparation was
described in Sec. II B. The well-aged (WA) mesoscopic glasses yield
a response to cyclic shear that is qualitatively similar to that of the
(MA) glasses and will therefore not be considered in this section.

1. Irreversibility transition
When subjected to cyclic shear loading, amorphous solids

tend to either evolve into periodic response or reach a diffusive
regime depending on the value of the amplitude εamp of the load-
ing cycles. This transition presents typical features of a critical
transition. In particular, power-law divergence of the number τ of
loading cycles to reach the periodic response below the transition,
as well as the power law dependence of the diffusivity above the
transition have been observed both for atomistic and mesoscopic
models.9,10,18,19,23,26,27,31 The features of the irreversibility transition
depend on glass preparation.9,10,29,30 Figure 5 shows the response of
an N = 32 sample of a poorly aged mesoscopic glass to cyclic shear
at strain amplitude below, panel (a), and above, panel (b), of the
irreversibility transition. In the former case, a cyclic response was
obtained after τ = 158 cycles, while for the latter, cyclic response was
still absent after 104 driving cycles. The main plots show the evo-
lution of stress and strain over the last 30 cycles, each of which have
been color-coded in increasing shades of red, as indicated by the leg-
end in (a). The lower insets show a detail from the main plot, while
the upper insets show the evolution of the difference of stresses at the
beginning of two consecutive driving cycles. Below the irreversibility
transition, panel (a), this stress difference eventually vanishes (after
τ = 158) while above the transition in panel (b) it keeps showing
finite fluctuations at least until τ = 104. In the following, we show
results for the size dependence of the irreversibility transition in
our PA and MA mesoscopic glasses. Specifically, we consider sys-
tems of size N = 16(7500), 32(3000), 64(400), where the numbers
in parenthesis indicate the number of realizations used to obtain our
results.

We first focus on the poorly aged (PA) systems. Figure 6 shows
the mean success-rate psucc, i.e., the fraction of PA systems (cir-
cles) within our ensemble of realizations that reach a limit cycle
when subject to a given number τmax of symmetric loading cycles
at amplitude εamp: 0→ εamp → 0→ −εamp → 0. The different colors
correspond to the system sizes, as indicated in the legend of the
figure. For system sizes N = 16, 32, and 64, we used a cut-off of
τmax = 104 driving cycles so that if cyclic response had not been
established at that point we considered the run to be unsuccessful.
A clear transition can be observed between a low amplitude regime
with convergence to a limit cycle and a high amplitude regime
with no limit cycle. The transition between these two regimes gets
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FIG. 5. Response of the N = 32 poorly aged glass to cyclic shear at a strain amplitude below (a) and above (b) the irreversibility transitions by Δε = 5 × 10−3. The main
panels show the evolution of the stress–strain curve over the last 30 cycles with each subsequent cycle colored in a darker shade of red, as indicated in the legend. The
insets to the lower right show a detail of this evolution. The insets in the upper left show the stroboscopic stress difference, obtained by taking the difference in stress at the
beginning of two consecutive cycles, using the same coloring for the last 30 cycles. In (a), cyclic response is attained after a transient of τ = 158 cycles, while in (b), such a
response is still not obtained after 104 cycles.

increasingly sharper with system size. A clear size dependence is
also observed in the location of the transition that tends to occur at
lower strain amplitudes for larger systems. The size effect exhibited
by our poorly aged glasses is all the more striking as it turns out to be
completely absent in the response to monotonous loading, and only
weakly present in the case of our moderately and well-aged glasses
(Fig. 14 in Appendix D).

For each size N, we estimate the strain εirr(N) at which the irre-
versibility transition occurs, as the loading amplitude such that 50%
of the realizations reach a limit cycle, i.e., psucc = 1/2, as indicated by
the pink horizontal line in Fig. 6. The inset of Fig. 6 shows the size
and aging dependence of εirr(N) for N = 16, 32, and 64 for the PA,

FIG. 6. Success rate psucc of the convergence to a limit cycle under cyclic shearing
at amplitude εamp. Shown are results for ensembles of poorly aged (circles) and
moderately aged (diamond) glasses with system sizes N = 16 (red), 32 (blue),
and 64 (green). Intersections with the dashed horizontal line indicate strain ampli-
tudes where the probability of finding a limit-cycle is 1/2. Inset: The plot of strain
amplitudes εirr at which psucc = 1/2 against 1/N2 for the poorly, moderately, and
well-aged glasses, PA, MA, and WA.

MA, and WA glasses. We see that for a given degree of aging, εirr(N)
decreases with increasing system size. Moreover, a dependence of
εirr on aging at fixed system size is clearly visible, in particular, for
the larger sizes N = 32 and 64. At these sizes, the MA glasses have
slightly larger εirr than the PA ones, while the WA glasses have over-
all larger values of εirr for all system sizes considered. The behavior
of εirr with aging is consistent with atomistic simulations of cycli-
cally sheared amorphous solids that show that the strain marking the
onset of the irreversibility transition is largely independent of aging
for sufficiently poorly aged samples, but that it starts to increase as
the samples are better aged.9,10

We turn next to the response of our moderately aged (MA)
glasses to cyclic shear. The diamond symbols in Fig. 6 show the frac-
tion psucc of MA glasses in our ensembles of realizations that reach a
limit cycle when subject to cyclic loading of amplitude εamp. Sim-
ilarly to the poorly aged samples, as the system size is increased,
the irreversibility transition exhibits an increasingly sharper decline
of the success-rate from one to zero. However, for a given system
size, the rapid fall-off of the success rate in the MA glasses occurs at
consistently larger strain values than for the PA glasses, which is in
agreement with the behavior of εirr discussed earlier.

2. Transient regime and limit cycles
Another feature of the irreversibility transition is the diver-

gence of the duration of the transient regime: atomistic simulations
show that the number of loading cycles needed to reach the limit
cycles diverges as a power-law according to τ(εamp)∝ ∣εirr − εamp∣

−α,
as shown in Refs. 19, 22, 23, and 43.

In Fig. 7(a), we plot τ(εamp) against ∣εirr(N) − εamp∣ for our
poorly aged glasses and different system sizes N. Here, εirr(N) is
the loading amplitude at which half of the realizations reach limit
cycle, as defined previously. Once again, a significant size effect
is observed: for a given ∣εirr(N) − εamp∣, the larger the system size,
the shorter the transient regime. An indicative power-law behav-
ior of exponent α = 2.8 is plotted as a dashed line. We see that the
results obtained for N = 16, 32, and 64 are reasonably consistent with
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FIG. 7. Convergence to limit cycles of
poorly aged (PA) glasses: (a) Duration
τ of transients vs relative cycle ampli-
tude ∣εirr − εamp∣, where εirr is the system
size dependent strain amplitude where
the success-rate psucc of cyclic response
is 1/2, cf. Fig. 6. The dashed line is a
power-law with exponent 2.8 and serves
as a guide to the eye. (b) The period T of
the cyclic response in units of the num-
ber of driving cycles for the poorly aged
samples at different system sizes. The
dashed line is a power-law with exponent
1.5 and serves as a guide to the eye.

this trend over roughly one decade for the larger samples. Note
that the value α = 2.8 is close to the estimate of α ≈ 2.7, recently
reported in Ref. 43, as well as α ≈ 2.6, which was obtained using
atomistic simulations by Regev et al.19,23 It is also close to the value
α ≈ 2.66 obtained by Corté et al.33 for a simplified model of interact-
ing particles under flow. The saturation observed for large values of
τ(εamp) naturally stems from the hard limit associated with the finite
number of loading cycles τmax = 104 that we used in our numerical
simulations for N = 16, 32, and N = 64.

In Fig. 7(b), we also plot the period of the limit cycle T(εamp)

against ∣εirr(N) − εamp∣ for our poorly aged glasses and different
system sizes N. As already observed in Ref. 43, we see that the
limit cycles get more and more complex, with an increasing period
when the amplitude εamp of the cyclic loading approaches the irre-
versibility transition εirr. For illustrative purposes, we show that the
fast increase of the period is consistent with a power law behavior
T(εamp)∝ ∣εirr(N) − εamp∣

−β with β = 1.5 plotted as a dashed line in
Fig. 7(b).

In Fig. 8, we show the same observables τ(εamp) and T(εamp)

close to the irreversibility transition, now for the moderately aged
glasses. For small systems sizes (N = 16, 32), we again observe a
diverging trend in the transient duration and the limit cycles period.
It appears actually that the larger the system size, the narrower
the range of amplitudes over which this diverging behavior holds.
Another behavior gradually becomes dominant: for large system
sizes, a limit cycle is reached after just a few loading cycles, and

the response is mainly elastic. Moreover, as can be seen for the
N = 64 glass in Figs. 6 and 8, the transition to irreversibility is rather
abrupt and discontinuous. The system either reaches a T = 1 cyclic
response rather quickly or not. These findings are consistent with
results reported in the literature, e.g., the work by Bhaumik et al.10

where the authors consider simulations of a 3D amorphous solid
subject to cyclic shear. Figure S5(a) of in their paper’s supplement
shows the evolution of the transient for a well-aged sample by mon-
itoring the average potential energy per particle. Depending on the
shear amplitude, the transient is either very short or a cyclic response
is not attained at all. Appendix G contains additional details on the
dependence of the irreversibility transition on system size and aging
of our mesoscopic glasses, which is complemented by the results of
the transition graph description of the disorder landscape and which
we turn next to.

III. CHARACTERIZATION OF THE DISORDER
LANDSCAPE VIA TRANSITION GRAPHS

In order to characterize better the disorder landscape under-
lying our mesoscopic model, we turn next to the transition graph
(t-graph) representation of the dynamics under AQS shear.58 As
was shown recently,39,41 such t-graphs can be extracted from
atomistic simulations of sheared amorphous solids. Features of
the AQS dynamics, such as yielding and return point memory,
are thereby encoded in the topology of the t-graph.39,41,47 Thus,

FIG. 8. Convergence to limit cycles of
moderately aged (MA) glasses: (a) Dura-
tion τ of transients vs relative cycle
amplitude ∣εirr − εamp∣, where εirr is the
system size dependent strain amplitude
where the success-rate psucc of cyclic
response is 1/2, cf. Fig. 6 (inset). (b) The
period T of the cyclic response in units of
the number of driving cycles for the mod-
erately aged samples at different system
sizes.
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t-graphs provide useful information about the underlying disorder
landscape. At the same time, the representation of AQS dynamics via
t-graphs extracted from simulations provides a unified framework
within which we can compare the dynamics of atomistic as well as
mesoscopic models in a rather direct and comprehensive manner.

A. AQS transition graphs
To fix ideas, we consider first the sheared amorphous solid in

an atomistic setting. Under AQS conditions, a given mechanically
stable particle configuration can be sheared in the positive and neg-
ative direction until a mechanical instability occurs. Denoting by ε±
the critical values of the external shear strain at which the instabil-
ity sets in, for shear strains between ε− and ε+, the configuration of
particles deforms smoothly and reversibly in response to the applied
shear strain. These sets of mechanically stable particle configurations
constitute an elastic branch of the system, which we simply refer to
as a mesostate.39 We will use capital letters to label mesostates and
denote the critical strain values of a mesostate A by ε±[A]. When
ε = ε+[A] (or ε = ε−[A]), a fast relaxation to a new mechanically sta-
ble particle configuration occurs. This particle configuration must
necessarily be part of another mesostate, i.e., belong to a different
elastic branch, say B. Thus, the instability at ε = ε+[A] triggers a
transition from mesostate A to B. A similar transition occurs when
ε = ε−[A]. The transition between mesostates can therefore be rep-
resented in terms of a directed graph, the AQS transition graph or
simply t-graph. The vertices of the t-graph are the mesostates, while
from each mesostate, we have two outgoing transitions that consti-
tute the directed edges of the graph. We shall denote the transitions
when ε = ε+[A] or ε = ε−[A] as the U-, respectively, D-transition out
of A. We will refer to the states that these transitions lead to as UA
and DA.

The t-graph, along with the critical strains ε±[A] associated
with each mesostate, forms a complete representation of the AQS
dynamics under arbitrary shearing protocols.47 Given an initial
mesostate A and a shear protocol, the sequence of mesostates vis-
ited can be read off by following the corresponding U- and D-edges,
while checking each time whether the critical strains needed to
trigger the transition have been exceeded or not.

Note that since UA and DA are mesostates reached from A,
their stability ranges must contain the strains ε±[A] at which these
transitions were triggered, i.e., we have the AQS conditions47

ε−[DA] < ε−[A] < ε+[DA],

ε−[UA] < ε+[A] < ε+[UA].
(1)

Consequently, ε+[A] < ε+[UA] < ε+[U2A] < ⋅ ⋅ ⋅, and thus the
upper critical strains are monotonously increasing with repeated
U-transitions. An analogous result holds for the lower strain
threshold under D-transitions. An immediate consequence of
this observation is that the sub t-graphs, which are obtained by
considering only transitions under U (or D), are necessarily acyclic,
i.e., they cannot contain any cycles. Thus, any cyclic behavior must
arise from an interplay of the U- and D-transitions.

B. Catalog acquisition and t -graphs from simulations
The numerical algorithm of extracting t-graphs from simula-

tions of sheared amorphous solids has been described in detail in the

supplementary material of Ref. 39. Here, we will sketch out the main
idea. We start with an initial configuration that is part of a mesostate
O, which we call the reference state. We assign to O the generation
number g = 0. Next, we execute the U- and D-mesostate transitions
out of O, leading to the mesostates UO and DO, and we assign these
to generation g = 1. Every time we reach a new mesostate, we com-
pare it to the catalog of mesostates we have obtained so far to see
whether it has been encountered before. If not, we add it to our
catalog. By proceeding generation by generation, we acquire in this
manner a catalog of mesostates: each mesostate A is assigned an
ID, its critical strains ε±[A] and the IDs of the mesostates it tran-
sits into under a U- or D-transitions are determined. The t-graph
is then assembled from such catalogs. In our mesoscopic models,
each mesostate corresponds to a configuration of the local elastic
branches associated with each of the cells. The event based nature
of their simulations facilitates the identification of mesostates and
their transitions.

We obtain catalogs from ten realizations each of the N = 32
poorly, moderately, and well-aged glasses, as described in Sec. III A.
Tables I, II, and V (in Appendix E) detail various properties, such
as the number of generations and mesostates contained in them.
The ranges of strains that these catalogs sample are indicated in
Fig. 4, showing how far these catalogs reach out in strain rela-
tive to the yield strain under monotonous loading. In addition, we
produced ten catalogs from samples of an ultra-stable glass aged
by an average of 4 × 103 steps per-site. For comparison purposes,
we also extracted catalogs from our atomistic simulations, using a
set of 8 soft and 30 moderately hard reference configurations, that
were obtained via fast and slow quenches from a high-temperature
liquid. The description of these atomistic catalogs is given
in Appendix E.

Figure 9 shows sample t-graphs from each of the four sets
of samples: fast quenched atomistic glass (AS Fast No. 4), slow
quenched atomistic glass (AS Slow No. 2), poorly aged mesoscopic
glass (Meso PA No. 1), and the moderately aged mesoscopic glass
(Meso MA No. 4). The numbers specify the particular realization of
the glass, as listed in Tables I, II, VII, and VIII. The placement of
the vertices of the graph is arbitrary. The mesostate corresponding
to the initially prepared glass, i.e., the reference state, is indicated
by the large vertex in red and labeled O. Note the general tree-
like structures in all four t-graphs that appear to be qualitatively
similar, despite the different underlying model (atomistic vs meso-
scopic) and also the different degrees of glass preparation. The color
of each vertex indicates the SCC that it belongs to, as we discuss
in Sec. III C.

A note of caution when comparing simulations of atomistic
and mesoscopic models is in order. As we argue in Appendix C,
our atomistic simulations correspond to an elastoplastic model
with size approximately between N = 5 and 10. Thus, our atom-
istic simulations involve systems of smaller size and possibly suf-
fer more from finite-size effects. Moreover, the way the atom-
istic systems have been aged is different from the aging proto-
col used for our mesoscopic systems. All of these features make
detailed comparisons difficult and we want to stress again that our
main aim in presenting our mesoscopic model is not to quan-
titatively reproduce the results of atomistic simulations. We will
return to this point when comparing the SCC size distributions
in Sec. III D.
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FIG. 9. Transition-graph representation of the AQS dynamics and thermal history—atomistic (AS) vs mesoscopic (Meso) models. Excerpts of transition graphs extracted
from atomistic [(a) and (b)] and N = 32 mesoscopic glasses [(c) and (d)] with different thermal histories: [(a) and (c)] poorly aged/fast quenched and [(b) and (d)] moderately
aged/slow quenched. The color of each vertex indicates the strongly connected component (SCC) of the graph that it belongs to (refer to text for details) and the initial
mesostate of the prepared glass has been marked with a larger red vertex labeled O. Vertices belonging to SCCs of size less than 10 have been colored in light gray.

C. AQS graph topology and strongly connected
components (SCCs)

We will probe the topology of the t-graphs more deeply by
focusing on their SCCs to which any cyclic response must be con-
fined,41 as we explain now. Two mesostates A and B are connected,
if on the t-graph there is a directed path of U- and D-transitions that
leads from A to B. Physically, this implies that there is some shearing
protocol that, when applied to A, gives rise to a deformation pathway
terminating in B. We say that two mesostates A and B are mutually
reachable, if there is a deformation pathway from A to B as well as
one from B to A. Mutual reachability is an equivalence relation (in
particular, if the pairs A, B and B, C are mutually reachable, so must
be the pair A, C). Therefore, the vertices of the t-graph can be parti-
tioned into equivalence classes under mutual reachability and these
classes form its SCCs.59 Numerical details on how to extract SCCs
from t-graphs have been provided in Ref. 41.

By construction, transitions between any two mesostates
belonging to different SCCs are irreversible: there may be a defor-
mation pathway from one to the other, but not back, since otherwise
the pair of states would have been mutually reachable. Thus, mutual
reachability also partitions the set of transitions between mesostates
into reversible ones, i.e., those connecting a pair of mesostates within
the same SCC, and irreversible ones, where the two mesostates
must belong to different SCCs. Any periodic and hence reversible
response to some shear protocol must therefore be confined to
a single SCC. The SCCs are thus the “containers” of reversible
behavior.41

D. Comparison of the poorly and moderately
aged catalogs

Tables I and II show the properties of the ten catalogs with
N = 32, which were obtained by taking the poorly and moderately
aged mesoscopic glasses as reference states. The second column lists
the number of generations gcomp up to which all outgoing mesostate
transitions were identified. Thus, gcomp = 39 means that we have
identified every mesostate that can be reached from the reference
configuration by a sequence of 39 U− and D-transitions. Next, N0
and NSCC list the number of mesostates and SCCs contained in the
catalog. The last row of each table provides the cumulative totals.
We will discuss the results shown in the last four columns later in
this section.

SCC size distributions—In Fig. 10, we compare the size distri-
bution of the SCCs found in these catalogs. The blue boxes and
black circles show the size distribution of SCCs extracted from all
ten catalogs of the N = 32 mesoscopic glasses. All curves are nor-
malized but have been vertically offset for clarity. Observe that
the size distributions are broad and that the moderately aged cat-
alogs contain larger SCCs. Nevertheless, power-law fits using the
method of Clauset et al.60 yield a comparable power-law exponent
of about 2.3 ± 0.3 for both distributions.61 For comparison pur-
poses, we also show the SCC size distributions obtained from our
atomistic simulations under slow and fast quench, labeled as AS
slow (triangles) and AS fast (diamonds), corresponding to moder-
ately and poorly aged glasses. These catalogs reveal similarly broad
distributions, with the moderately aged catalogs containing again
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TABLE I. Properties of the ten catalogs obtained from poorly aged (PA) glasses of the mesoscopic model with N = 32. The
catalogs are labeled by their run number, as given in the first column, while gcomp identifies the generation up to which all
outgoing mesostate transitions have been identified. The number of mesostates and SCCs found in the catalog are given by
N0 and NSCC, respectively. The last four columns provide statistics about limit-cycles under symmetric cyclic shear contained
in the catalog: the number ncycles of limit-cycles found, the number N supp

SCC of SCCs that support at least one limit-cycle, the

size smax
suppSCC of the largest SCC supporting a limit-cycle, and the number n maxSCC

cycles of limit-cycles contained in the largest
supporting SCC (refer to text for details). The last row is a cumulative total over the entries in the corresponding columns.

Run gcomp N0 NSCC ncycles N supp
SCC smax

suppSCC n maxSCC
cycles

1 35 26 093 5 817 21 631 4 598 91 97
2 35 59 281 11 084 44 902 8 579 175 84
3 35 28 418 5 963 23 956 4 261 128 116
4 35 131 100 29 478 123 341 24 215 106 104
5 35 48 832 10 374 52 900 9 474 73 67
6 35 89 710 22 955 101 298 21 130 132 116
7 35 46 049 11 498 36 801 9 301 139 124
8 35 145 281 43 409 133 984 34 033 104 67
9 35 52 641 12 854 56 017 11 595 148 124
10 35 49 355 10 155 47 003 7 377 115 153

ALL n/a 676 760 163 587 641 833 134 563 n/a 1052

TABLE II. Properties of the ten catalogs obtained from moderately aged (MA) glasses of the N = 32 mesoscopic model. A
brief summary of the quantities listed is given in the caption of Table I, while further details are provided in the text.

Run gcomp N0 NSCC ncycles N supp
SCC smax

suppSCC n maxSCC
cycles

1 39 46 059 8 148 3510 857 269 7
2 39 36 279 8 164 1732 363 451 11
3 39 130 733 33 324 3933 1148 542 129
4 39 19 344 4 244 1659 490 207 3
5 39 147 476 49 335 989 437 133 2
6 39 64 096 11 678 1731 643 166 2
7 39 117 680 30 721 6189 1809 244 58
8 39 64 693 12 657 5317 1219 651 179
9 39 118 964 33 857 3067 1143 141 12
10 39 91 758 26 814 8516 2011 201 127

ALL n/a 837 082 218 942 36 643 10 120 n/a 530

larger SCCs, while the fitted power-law exponents 2.7 ± 0.3 are
comparable.

Note the presence of a finite-size cut-off around SCC sizes
of about 30 and 100 for the mesoscopic PA and MA catalogs,
respectively. The SCC size distributions obtained from the atomistic
simulations do not feature such a cut-off. In Appendix C, we argue
that the mesoscopic equivalent size N corresponding to our atom-
istic simulations is approximately between N = 4 and N = 10. Thus,
the atomistic samples are in effect smaller. Figure 13 of Appendix C
shows the corresponding SCC size distributions when we compare
the atomistic simulations with the size distributions obtained from
N = 8 mesoscopic catalogs. While still there, the finite-size cut-off
appears to be less prominent in the distributions of the mesoscopic
models, particularly for the MA samples. We think that the sup-
pression of the cut-off is a finite-size effect. In fact, among the eight

AS fast catalogs there are considerable fluctuations in the size smax
of the largest SCC found in each of them. Ordered from small-
est to largest, we find smax = 106, 243, 244, 259, 379, 413, 458, and
929. Among these, the smallest value smax = 106 is realized in cat-
alog No. 4, whose transition graph is shown in Fig. 9, while the
largest value smax = 929 is observed in catalog No. 2, whose tran-
sition graph is given in Fig. 1(b) of Ref. 41. In fact, we checked
for AS fast that the data points for the largest SCC sizes in Fig. 10
are singletons corresponding to the largest SCCs found in the
catalogs.

Note that while the t-graphs and SCC size distributions
obtained from our mesoscopic and atomistic model are qualitatively
similar, the dependence of these on the degree of aging is rather
weak. In other words, the topology of the t-graphs alone does not
appear to contain features that are directly linked to the different
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FIG. 10. Statistics of SCCs vs thermal history—Comparison of the SCC size dis-
tributions obtained from simulations of the atomistic (AS) and N = 32 mesoscopic
models (Meso) and distinguished by the extent of aging they have been subjected
to moderately aged, labeled as Meso MA and AS slow, and poorly aged, labeled
as Meso PA and AS fast, respectively. The dashed lines are power-law fits to the
data, which were obtained using a common lower SCC size cut-off of sSCC = 4.
Curves have been vertically offset for clarity.

amount of aging these samples have been subjected to. As we will
show next, the effect of aging on the samples reveals itself when
we combine the topological features of the t-graphs with additional
physical properties, such as the prevalence of cycles, the strain sta-
bility ranges and plastic strains associated with the mesostates and
their SCCs.

Prevalence of cycles—We next turn to the population of cycles in
our catalogs. We are again interested in cycles that can be traversed
under a symmetric cyclic shear protocol: 0→ εamp → −εamp → 0 with
some shear amplitude εamp. We consider every mesostate in our
catalog that is stable at zero strain and apply this cyclic shear pro-
tocol, checking whether a cyclic response has set in or not. The
column labeled ncycles of Tables I and II lists the total number of dis-
tinct cycles found in our catalogs obtained from our moderately and
poorly aged mesoscopic glasses. We find that the poorly aged cata-
logs contain a significantly larger number of cycles although the total
number of mesostates in these catalogs is comparable (836 082 and
676 760 mesostates, respectively).

As we have noted before, the mesostates forming a cyclic
response must all be confined to a single SCC, i.e., a cycle cannot tra-
verse multiple SCCs. We, therefore, ask next how the cycles found in
the catalogs are distributed across the available SCCs. In particular,
we ask for the number of SCCs that support at least one symmetric
cycle, which we define as N supp

SCC and list in Tables I and II. For ease of
comparison, we have put together in Table III the cumulative totals
listed in the last lines of these tables along with the corresponding
data from our atomistic simulations.

Starting with the mesoscopic glasses, there is again a stark
contrast between catalogs obtained from poorly aged (PA) and mod-
erately aged (MA) samples (first two rows of Table III). In the MA
glasses, the symmetric cycles are contained in a relatively small frac-
tion of SCCs (10 120 out of a total of 218 942 available ones), while
for the poorly aged catalogs, a large fraction of SCCs supports at least
one such cycle (134 563 SCCs that support symmetric cycles out of
a total of 163 587). From Tables I and II, we see that this is true also

TABLE III. Comparison of the cumulative totals of the number of mesostates N0,
SCCs NSCC, and SCCs that support symmetric cycles N supp

SCC . The top two rows show
data for the poorly aged (PA) and moderately aged (MA) mesoscopic glasses. The
bottom two rows compare these quantities for the fast and slow cooled atomistic
glasses. Refer to text for further details and Tables VII and VIII in Appendix E for the
sample-by-sample characterization of the atomistic catalogs.

Catalogs N0 NSCC N supp
SCC

Meso PA 676 760 163 587 134 563
Meso MA 837 082 218 942 10 120
AS fast 459 508 210 864 10 933
AS slow 555 332 244 334 5 863

for the individual catalogs. It is thus apparent that in the moderately
aged catalogs a relatively small fraction of SCCs support most of the
cycles found, while in the poorly aged catalogs, the opposite is the
case and almost every SCC supports at least one cycle. A similar,
albeit less pronounced behavior is seen also in our atomistic simu-
lations, cf. the last two rows of Table III. Note that the cumulative
data for poorly aged (moderately aged) initial states have been sam-
pled from 8(30) catalogs (Tables VII and VIII in Appendix E) so
that it is hard to compare the overall number of cycles. Neverthe-
less, we observe also in our atomistic simulations that the number of
cycle supporting SCCs in the poorly annealed catalogs appears to be
disproportionally larger.

We finally consider the largest SCCs that support symmetric
cycles, comparing their sizes smax

suppSCC and the number of cycles they
contain n maxSCC

cycles . These numbers are shown in the last column of
Tables I and II. Again, we find contrasting behavior. The largest cycle
supporting SCCs found in the moderately aged catalogs are gener-
ally larger than those in the poorly aged ones, but despite this, they
contain fewer cycles.

E. The disorder landscape: SCCs and SCC exit strains
Our results for the prevalence of symmetric cycles can be sum-

marized as follows: while the poorly aged catalogs contain a large
number of such cycles that are distributed across a large number of
SCCs of various sizes, we find that the opposite is true for the cata-
logs obtained from the moderately aged samples. For the latter, the
number of symmetric cycles contained is far less and these cycles are
confined to a small subset of available SCCs.

In order to understand better the difference of the disorder
landscape arising from moderately aged and poorly aged samples,
we coarse-grain the t-graph to the level of SCCs, since—as we have
shown—any cyclic response must be confined to a single SCC. Every
SCC has at least one outgoing U- and one outgoing D-transition.
Let us denote the states from which these outgoing transitions orig-
inate as the U- and D-exits of the SCC. Suppose now that the SCC
has only one U- and one D-exit and denote the threshold strains
triggering these exiting transitions as E±SCC. Consequently, given any
mesostate A belonging to that SCC and applying strains confined
to the interval E−SCC < ε < E+SCC, the resulting sequence of mesostates
must remain confined to the SCC. This follows from the observation
made before, namely that for any mesostate A, ε+[A] < ε+[UA] and
ε−[DA] < ε−[A].
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In the case of multiple U- or D-exits from an SCC, we define
E+SCC and E−SCC as the largest, respectively, lowest, strain trigger-
ing the outgoing transitions. It actually turns out that for the SCCs
considered in our catalogs only a very small fraction of SCCs have
multiple U- or D-exits.62 Therefore, assuming that each SCC has
exactly one outgoing U- and D-transition, consequently in order
for the SCC to support cyclic response under the strain protocol
0→ εamp → −εamp → 0 ⋅ ⋅ ⋅, we must require that E+SCC > ε amp and
E−SCC < −ε amp. In particular, this implies that

E
−
SCC < 0 < E

+
SCC. (2)

Distinguishing the SCCs by (i) their size and (ii) whether they
support a symmetric cycle or not, we now ask how these SCCs
are scattered in the plane spanned by E−SCC and E+SCC. Panels (a)
and (b) of Fig. 11 show the SCC scatter plots obtained from single

catalogs of our atomistic poorly aged and moderately aged sam-
ples, while panels (c) and (d) show the same for catalogs obtained
from our mesoscopic poorly aged and moderately aged N = 32 sam-
ples. Panels (e) and (f) show SCC scatter plots obtained from even
further aged mesoscopic samples, with an average of 150 and 4000
aging steps per site, respectively (details of these catalogs are pro-
vided in Appendix E). In each panel of the figure, the number
indicates the particular sample from which the data shown came
from. The size of the symbols represent the size of the SCCs, as
indicated in the legend, while the boxed symbol shape indicates that
the SCC actually supports a limit-cycle, as determined by inspecting
our catalogs. The highlighted upper left quadrant of each plot cor-
responds to the region where the inequality (2) holds. Since this is
the region where any SCC that supports cyclic response under sym-
metric oscillatory shear must be located, we will refer to it as the
cycle-quadrant.

FIG. 11. The coarse-grained disorder-landscape, atomistic vs mesoscopic models, and the effect of aging – The six panels show the scatter plots of the SCCs found
in catalogs obtained from atomistic (first column) and our N = 32 mesoscopic simulations (second and third columns). Panels (e) and (f) depict the disorder landscape
extracted from increasingly better-aged samples of the mesoscopic model. Each symbol represents an SCC, while the size and color correspond to the size of the SCC
and the average plastic strain εpl of the mesostates constituting that SCC. Each SCC has at least one U- and one D-transition that leads to another SCC, and we denote by
E±SCC the threshold strains to trigger these transitions. As explained in the text, taking the extremes of these exit strains, the corresponding interval (E−SCC, E+SCC) provides a
range of strain values over which the system will be trapped in that SCC. These strains are used as coordinates for placing the SCC in the plot. Box-shaped symbols indicate
that the SCC supports at least one cycle under symmetric cyclic shearing. The area shaded in red in panels (d) and (e) indicates where cycle supporting SCCs would have
to be located if they were to contain cycles at strain amplitudes beyond the onset of the irreversibility transition, as obtained from the inset of Fig. 6. For panels (c) and (f),
this region lies outside the plot window. The diagonal dashed lines corresponds to the average SCC strain range of Eq. (F1), estimated as E+SCC − E−SCC = Σ ss/μ, where
Σss is the steady-state stress under monotonous strain loading. Refer to text for further details.
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We start with a comparison of the poorly aged (PA) and mod-
erately aged (MA) SCC scatter plots obtained from our atomistic
and mesoscopic glasses [panels (a)–(d)]. Comparing the catalogs
obtained from the PA samples [panels (a) and (c)] with those of the
MA samples [panel (b) and (d)], we see that in all cases the cycle sup-
porting SCCs (boxes) are indeed confined to the cycle-quadrant, i.e.,
the highlighted region in the top left part of the figure, as they should.
Moreover, note the relative sparsity of cycle-supporting SCCs in the
atomistic (b) and mesoscopic (d) MA samples, when compared with
their poorly aged counterparts, panels (a) and (c). This is consistent
with our earlier observation, namely that relative to the poorly aged
samples, in the MA catalogs only a small fraction of SCCs actually
support symmetric cycles.

Plotting the SCCs against their exit strains (E−SCC, E+SCC) also
visualizes possible correlations in the locations of cycle supporting
SCCs. For the poorly aged samples, panels (a) and (c), these SCCs
fill out the cycle-quadrant rather uniformly and the extent to which
this region is filled seems to be limited mainly by the size of the cat-
alog we have sampled, i.e., the number of generations we tracked.63

This is in contrast to the case of the moderately aged samples, pan-
els (b) and (d): not only are there fewer SCCs in the cycle-quadrant,
but these SCCs tend to cluster around its boundaries, E+SCC = 0 and
E−SCC = 0, thereby implying that these SCCs can only support cycles
with low amplitudes of a symmetrical shear protocol. In fact, for
the mesoscopic samples, we find that the scarcity of SCCs within
the cycle-quadrant and their clustering near its boundary becomes
even more pronounced when the samples are aged more, as shown
in the SCC scatter plots of panels (e) and (f) that were generated
from samples that underwent 150 and 4000 aging steps per site,
respectively.

Thus, panels (a)–(d) reveal that the SCC scatter plots obtained
from our mesoscopic model are qualitatively very similar to their
atomistic counterparts: our mesoscopic model captures rather well
the difference of the samples due to their aging as well the spatial
distribution of the SCCs in the plane of exit strains (E−SCC, E+SCC).

Before proceeding, we should note that there are sample-to-
sample fluctuations in the scatter plots obtained from the individual
glasses. This is also apparent in the variation of catalog properties
listed in Tables I and II, as well as in the tables for the other catalogs
given in Appendix E. In particular, the spatial population of SCCs in
the cycle-quadrant varies from sample to sample. Moreover, within
a given sample, the populations of SCCs in the (E−SCC, E+SCC)-plane
does not perfectly display the statistical E±SCC → −E

∓
SCC symmetry

that arises under interchange of the forward and reverse shearing
directions, even though the number of SCCs shown in these plots
are rather large. Nevertheless, the features we have been discussing
so far and in the following are typical and appear to be robust from
sample to sample. Appendix F contains a discussion of the strip-
like arrangement of the SCCs in the plain of exit strains, which is
highly pronounced in the case of the atomistic samples, as well as
the better-aged mesoscopic ones.

F. The disorder landscape: Dependence
of plastic strains on aging

Having established that the SCC scatter plots are a good proxy
to probe topological features of the disorder landscape, we next look
more closely at the effect of aging on our mesoscopic glasses. Panels

(c)–(f) of Fig. 11 show SCC scatter plots obtained from increasingly
better aged samples of our mesoscopic glass which—apart from the
PA, MA, and WA samples we considered so far—now includes also
an ultra-aged (UA) glass, obtained from a treatment with 4000 aging
steps per site. The properties of the 10 catalogs extracted from these
glasses are listed in Table VI of Appendix E.

Note that the moderately aged (MA), well-aged (WA), and
ultra-aged (UA) samples each display distinct outlier SCCs in the
cyclic quadrant. For the MA sample, these SCCs are located around
(E−SCC, E+SCC) = (−0.05, 0.05), while for the WA samples, these are
found at larger strains. These SCCs turn out to be formed by
mesostates that can be reached from the initially prepared glass by
strain deformation protocols that do not go beyond the stress-peak
and hence do not suffer the subsequent large stress-drop.

To understand why with increased aging the cyclic quadrant
becomes less densely populated by SCCs and why these tend to clus-
ter near its boundaries, we consider next the plastic strains. Recall
that with each mesostate A we associate an elastic branch in the
stress–strain plane. In the case of our mesoscopic model, this branch
is by construction linear and the plastic strain εpl

[A] associated with
the branch is the (extrapolated) value of the strain where the stress
vanishes. By averaging over the plastic strains of the mesostates that
belong to an SCC, we obtain a coarse-grained plastic strain for each
SCC. The colors of the plot symbols shown in Fig. 11 represent the
plastic strains of the SCCs, as indicated by the color table legends.
Note that for the mesoscopic samples, panels (c)–(f), we have color-
coded the same range of plastic strains. Thus, the shift of colors
toward blue and red as the samples get better aged indicates that the
magnitudes of typical plastic strains increase with aging.

Moreover, we see that the distribution of plastic strains across
SCCs is strikingly different for the differently aged samples. The
well- and ultra-aged samples reveal a clear bi-modal distribution of
plastic strains, characterized by very few SCCs that have vanishing
plastic strains.64 For the poorly aged sample [panel (c)], the distribu-
tion of plastic strains appears to be unimodal, with a large number of
SCCs, particularly those in the cycle quadrant, having plastic strains
of very small magnitude.

To understand better the segregation of SCCs by plastic strain,
we turn to the mesostates and their deformation histories. Given
a mesostate A, we consider the deformation path that leads to
it from the initially prepared glass state O. In particular, we are
interested in mesostates whose deformation path experiences the
stress-peaks and subsequent stress-drops that are encountered dur-
ing monotonous shearing in the forward or backward direction.
We distinguish such states by whether the stress-drop in the for-
ward or backward direction was experienced first, and call these FW,
respectively, BW mesostates. In Fig. 12(a), we plot for each level
of aging (MA, WA, or UA) the plastic strain distribution extracted
from the elastic branches associated with the FW mesostates found
in all ten catalogs. We do the same for BW mesostates. For each
level of aging, we have thus two distributions of plastic strains: one
associated with FW and the other associated with BW mesostates.
We see that these distributions are peaked and the location of the
peaks move away from each other as the samples are better aged.
This can also be seen in the inset of Fig. 12(a) where we plot the
averages of these distributions against the aging level. The bars
accompanying each symbol indicate the standard deviation of these
distributions.

J. Chem. Phys. 157, 174504 (2022); doi: 10.1063/5.0102669 157, 174504-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 12. (a) Distribution of plastic strains of mesostates whose deformation paths have passed through the forward (FW) or backward (BW) stress peak. The distributions
were extracted from all moderately, well-, and ultra-aged catalogs aged, respectively, by 15 (MA), 150 (WA), and 4000 (UA) aging steps per site, and are labeled by circle-,
diamond-, and square-shaped plotting symbols. Each color refers to a different choice of aging and whether the FW or BW stress peak was encountered first, as indicated
in the legend. The inset shows the evolution of the mean values of the FW (red symbols) and BW (blue symbols) plastic strain distributions. The standard deviation of the
distributions is indicated by the black bars. (b) and (c) Sample strain and stress deformation path for a mesostate A from the WA sample No. 8, which experiences the FW
stress peak first. A is reached from the well-aged glass by undergoing 15U-transitions followed by 25D-transitions. The x-axis indices the sequence of transitions while the
black and red circles on the y-axis indicate the strains, panel (b), and stresses, panel (c), at which the transitions occur. The vertical blue lines indicate the extents of each
of the elastic branches of the mesostates encountered along the deformation path from O to A. The FW stress drop of ΔΣ ≈ 0.4 occurs during the U-transition at g = 7, as
visible in panel (c). The green diamonds in panel (b) mark the plastic strains associated with the elastic branches visited. Refer to the text for further details.

Panels (b) and (c) of Fig. 12 show the deformation path of one
particular FW mesostate A from the WA catalog. In both panels, the
horizontal axis labels the mesostate transitions starting from the ini-
tial glass state O and leading to A. Panel (b) shows the evolution of
strain, while (c) depicts the evolution of stress. Black and red cir-
cles mark the values at which each transition occurs, respectively,
indicating whether the transition happened as a result of a strain
increase (black) or decrease (red). The blue vertical lines indicated
the extent in strain (b) and stress (c) for each of the elastic branches
associated with the mesostates encountered along the deformation
path.

The protocol of applied strain that leads from O to A has
an initial segment where the strain is monotonously increased to
about ε = 0.08 (black dashed horizontal line), giving rise to 15 U-
transitions. Subsequently, the strain is monotonously decreased to
about zero (red dashed horizontal line) over 25 D-transitions. The
large FW stress drop of ΔΣ ≈ 0.4 is seen to occur at step g = 7, while
the strain is still increasing. The green curve superimposed in panel
(b) shows the plastic strain associated with each of the mesostate
elastic branches along the deformation path. We see that the stress-
drop at step g = 7 is accompanied by a large increase in the plastic
strain. As we keep on increasing the driving strain, the plastic strain
continues to increase with g, though much more slowly. Remark-
ably, once we start decreasing the strain again, the plastic strain does
not change appreciably. This shows that the changes in plastic strain
accrued as a result of experiencing the stress drop are subsequently
very difficult to undo, since even a monotonous and prolonged

decrease of strain does not seem to change the plastic strain value
very much.

We verified that for the better aged glasses, MA, WA, and UA,
that all mesostates with an appreciable plastic strain have a defor-
mation history that experiences the stress drop. We thus are able to
link the bi-modal nature of the SCC plastic strain distribution to the
passage through the corresponding stress peak that is then accom-
panied by a stress-drop, as demonstrated in Fig. 12(b) (see also the
t-graph excerpts shown in Fig. 15 of Appendix E, where transitions
accompanied by larger stress drops have been marked). The better
the aging, the larger the stress drops, and hence the larger the jumps
in plastic strain, and the more separated are the peaks of the FW and
BW distributions.

More importantly, as the evolution of plastic strains in
Fig. 12(b) clearly shows, these gains in plastic strain due to the expe-
rienced stress drop are apparently very hard to undo by subsequently
shearing in the reverse direction. We find that under shearing in
the reverse direction the sample has now been significantly softened,
i.e., it has become more plastic (the last five transitions from g = 35
to 40 happen at nearly constant strain), indicating a rejuvenation
of the sample.28 Thus for the well-aged and ultra-well-aged samples
the diagonal E−SCC + E+SCC = 0 divides the plane of exit strains into an
upper and lower half. SCCs located in the upper (lower) half of the
plot are SCCs whose mesostates were reached by passing through
the forward (reverse) stress peak. This is also consistent with the
excerpts from the corresponding transition graphs shown in Fig. 15
of Appendix E.
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IV. DISCUSSION

We have introduced a depinning-like mesoscopic model of
amorphous plasticity characterized by a tunable aging and embed-
ded in a quenched disorder landscape. When driven by an exter-
nally applied shear, the model recovers many phenomena exhibited
by sheared amorphous solids: a brittle-to-ductile transition under
monotonous strain loading, as well as an irreversibility transition
under symmetric oscillatory shear, i.e., of the form 0→ εamp → 0
→ −εamp → 0, and its dependence on the extent the sample has been
aged.

We find that the irreversibility transition exhibits a strong
dependence on system size as well as on the extent of prior aging of
our mesoscopic glasses. Close to the transition, poorly aged systems
show a power-law behavior for both the duration of the transient
(number of loading cycles needed to reach the limit cycle) and the
mean period of the cyclic response (measured in units of the number
of driving cycles). Moreover, with increasing system size, the strain
value at which the irreversibility transition occurs seems to converge
to a well-defined value in the infinite system size limit.

In the case of the better aged samples, we find that cyclic
response under oscillatory shear emerges after only a few loading
cycles. The dependence on system size is more pronounced in this
case. Samples of small size exhibit a cyclic response containing many
plastic events and this response continues up to strain amplitudes
at which the system would have yielded under monotonous shear
loading. However, as the sample size increases, the cyclic response
becomes more elastic and the range of strain amplitudes at which
it is exhibited shrinks. Changing the system size in our moder-
ately and well-aged samples allows us to gradually transition from
a cyclic response whose phenomenology is characteristic of poorly
aged glasses to one where this cyclic response is dominantly elastic
at larger sizes.

In order to better understand the dependence of the dynam-
ics of our mesoscopic model on the prior aging, we turned next
to the study of the transition graphs (t-graphs) that capture the
transitions between accessible elastic branches via plastic events.
The topology of the t-graphs encodes the dynamics under arbitrary
shear loading protocols and thus provides a complementary tool
to characterize the disorder landscapes underlying our differently
aged systems. We considered a particular topological quantity char-
acterizing the t-graphs, its strongly connected components (SCCs),
since any cyclic response has to be confined to a single SCCs. The
size distribution of SCCs sampled from both atomistic and meso-
scopic simulations of differently aged samples all follow a power-law
with an exponent that varies little with the extent of aging but is
slightly smaller for the mesoscopic systems than for the atomistic
ones.

A closer inspection that also takes into account physical prop-
erties associated with the SCCs, in particular their range of stability
and typical plastic strains, turns out to be extremely informative. We
find that the sample age induces a gradual phase separation between
domains of stability centered either on the initial state or at a finite
positive or negative plastic strain. The complex age-dependence of
the interplay between the amplitude of the center of the domain and
the width of the stability ranges has important consequences on the
accessibility of limit cycles depending on the particular parameters
of the cycling protocols.

Our findings have also implications for memory formation
in amorphous solids. Cyclic response under oscillatory shear can
encode information and thus form a “memory” about the forcing
that caused the response.37 Viewed within the framework of the
t-graphs any periodic response must be confined to one of its SCCs.
Thus, the evolution under oscillatory shear is primarily a search for
a confining SCC. In fact, such SCCs not only contain the cycle form-
ing the cyclic response, but a hierarchy of nested cycles, one of which
forms the cyclic response. A hierarchical organization of cycles is
typically associated with return point memory.39,41,47 In particular,
the size of an SCC, i.e., the number of configurations they contain,
can be regarded as a proxy for memory capacity.41

Since we find that the distribution of SCC sizes is broad, irre-
spective of the thermal histories of the glasses from which these
distributions were sampled, this suggest a high memory capacity
even for well-aged glasses. However, a closer look at the stability
ranges of the SCCs found in these glasses reveals that only the poorly
aged samples have a large abundance of SCCs that can support sym-
metric cyclic shearing protocols. Contrastingly, in the case of the
well-aged glasses, very few SCCs support cyclic response to such
oscillatory shear protocols. We find that those that do are char-
acterized by loading/driving histories that did not experience the
stress-peak and subsequent stress drop. Consequently, their cyclic
response is largely elastic and confined to few and relatively small
SCCs.

On the other hand, loading histories in which a stress peak and
subsequent stress drop are encountered invariably give rise to reju-
venation of the sample, which is also accompanied by a jump of the
plastic strain to non-zero values. As a result, a large number of SCCs
become dynamically accessible. However, due to the jumps in plas-
tic strain, these SCCs will only support cyclic response to oscillatory
shear if the shear strain is centered on the value of their plastic strain.

Having demonstrated that our mesoscopic model reproduces
key features of amorphous solids under variable athermal quasistatic
loading, we conclude with a discussion of possible directions for
future research. Compared to atomistic models, the computational
cost of simulation of mesoscale models is rather low, allowing us
to perform extensive numerical computations as well as probing
system sizes not accessible to atomistic simulations. In this con-
text, it would be nice to understand better the complex interplay
between finite-size effects and the degree of aging that we have
observed under oscillatory shear. In the same vein, a detailed sta-
tistical analysis of the spatial structure and correlations of sites that
undergo plastic activity will be of interest both near the yielding
transition and also in the evolution of the transients toward cyclic
response under oscillatory shear. In this context, it would be rele-
vant to understand how the spatial structure of sites of plastic activity
associated with transitions within an SCC correlates with the size
of the SCC and its stability range. In fact, one can regard the set
of such active sites as a fingerprint of its SCC and ask how this set
changes under transitions to neighboring SCCs, thereby defining an
overlap function between SCCs. Since SCCs are containers of peri-
odic response, the strength of such overlaps will have implications
for memory formation. Strong overlaps would imply that similar
cyclic responses can be realized in neighboring SCCs. At the same
time, such overlaps can also be used to characterize in greater detail
the topology of the disorder landscape and its possible hierarchical
organization.
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APPENDIX A: ATOMISTIC SIMULATIONS

Atomistic simulations were performed on a two-dimensional
binary system with N = 1024 particles of two sizes, where half the
particles are 1.4 times larger than the other half. We used a two-body
radially symmetric interaction introduced in Ref. 65 and used in
Ref. 19, employing the same units of temperature and time discussed

there. The initial sample is prepared by first simulating the system at
a high temperature in a liquid state and then quenching the liquid
to zero temperature. We used two different preparation protocols
to obtain soft and hard glasses. To obtain a soft glass, starting from
T = 1 we equilibrated the system for t = 20 simulation time units
and then reduced the temperature to T = 0.1 and equilibrated for
another t = 50. To obtain a hard glass, starting from T = 1 we cooled
the system to T = 0.1 in steps of ΔT = 0.025, where at each step the
system was equilibrated for t = 10. Once an initial solid sample was
prepared, it was sheared quasistatically using a standard AQS proto-
col: at each strain step, the system is sheared using the Lees–Edwards
boundary conditions66 such that the total strain increases by 10−4.
Immediately after strain is applied, the energy is minimized using
the FIRE minimization algorithm.67

APPENDIX B: MESOSCOPIC SIMULATIONS

We consider a scalar 2D lattice-based mesoscale elastoplastic
model. The physics of this class of models relies on the coupling
between a threshold dynamics and an elastic interaction induced by
the incremental local plastic slip that arises as a result of a mechanical
instability.3

More specifically, we consider a square grid of N ×N cells of
size a × a. The model is scalar, so that we account for one and only
one shear direction, along which we can shear the system forward
and backward. We assume a uniform shear modulus μ. Each indi-
vidual cell (i, j) is characterized by a stack of local elastic branches
indexed by a variable ℓ, each of which relates the local stress σij to the
local strain εij, as shown in Fig. 1. The stability of each such local elas-
tic branch ℓ is limited by two bounds: a maximum stress threshold
σ+ij,ℓ and a minimum stress threshold −σ−ij,ℓ. Note that in order to ease
notation, whenever no explicit reference to a particular branch num-
ber ℓ is made, we will omit it in the following. The two thresholds σ+ij
and σ−ij are drawn from a random distribution with support in R+ so
as to ensure −σ−ij < σ+ij , i.e., the existence of a stability domain for the
cell (i, j).

In the present model, the local stress σij experienced by the cell
(i, j) originates from two distinct contributions: a global stress Σ due
to the external loading, and an internal stress associated with the
interactions with other cells, so that σij = Σ + σ int

ij . The latter contri-
bution fluctuates spatially and is by definition of zero average so that
we have σint

ij = 0, and therefore σij = Σ. Here, A denotes the spatial
average of the observable A.

Due to the external loading and the stress interactions, the local
stress σij is in general non-zero so that the amount of (external) stress
that needs to be applied in order to reach one of the boundaries of
the elastic branch is not a priori equal to the stress thresholds σ+ij , σ−ij .
Instead, it is given by the local plastic strengths in the positive and
negative directions, which we define as x+ij = σ+ij − σij and x−ij = σij

+ σ−ij , respectively. Note that for a mechanically stable configura-
tion we require that −σ−ij < σij < σ+ij so that the quantities x±ij must
be positive in that case.

The separation Δε between two neighboring local elastic
branches that belong to a given cell (i, j) defines the local plastic
strain ε pl

ij,ℓ experienced by the cell after the local stress has reached
threshold in one or the other direction.
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Stress interaction—Local plastic strains are generated within an
elastic matrix (the other cells of the lattice). This incompatibility
induces an internal Eshelby stress field of quadrupolar symmetry.52

Since we assume homogeneous elasticity, the elastic response to a
unit plastic slip can be computed once and for all. The internal stress
thus directly arises from the convolution of the field of plastic strain
with the Green function of Eshelby stresses. The latter is computed
from the discrete Fourier transform of the analytical solution in the
reciprocal space. Details on the implementation and a discussion can
be found in Refs. 49 and 68.

The typical stress drop associated with a rearrangement of
plastic strain Δε is of order μΔε. For the sake of comparisons
with atomistic simulations, we consider here μ = 10, a typical value
observed in Lennard-Jones binary model glasses.19,68

Random landscape—The stress thresholds are drawn from a
random distribution P(σ±). Here, we consider a Weibull distribu-
tion of parameters λ = 1.0, k = 2.0, where λ and k are constants in the
cumulative density function given by 1 − e−(σ

±/λ)k
. The plastic strain

increment Δε = ε pl
ij,ℓ+1 − ε pl

ij,ℓ between two neighbor elastic branches
ℓ and ℓ + 1 is also a random variable, cf. Fig. 1. We choose it to be
correlated with the two plastic thresholds associated with the tran-
sition ℓ→ ℓ + 1, i.e., σ+ij,ℓ in the forward direction and σ−ij,ℓ+1 in the
backward direction. More specifically, we choose Δε from a uniform
distribution in [0, Δεmax] with Δεmax = η(σ+ij,ℓ + σ−ij,ℓ+1)/(2μ), where
η is a tunable parameter. Note that the parameter η thus controls
the strength of the elastic interaction:49,69 the larger η, the larger the
short range stress kicks that trigger the avalanche, but also the larger
the amplitude of the mechanical noise arising from the small posi-
tive and negative contributions of the long range stress interaction.
We have set η = 1 in our simulations.

Nature of disorder—In the following, we will consider two dif-
ferent cases: (i) an annealed disorder where after a plastic slip new
values of the thresholds σ+ij , σ−ij are computed in the absence of any
memory; (ii) a quenched disorder, as a result of which the stress
landscape of any given cell remains fixed so that the very same elastic
branches are revisited in the course of a back and forth motion.

The landscape with quenched disorder is implemented through
the use of a counter-based random number generator (CRNG)70 so
that the value of a threshold at the local elastic branch ℓ only depends
on the index ℓ of that branch and on a previously defined key κ. In
this way, the access to, say, σ+ℓ = fκ(ℓ) requires just a simple call to
the generator without the need of storing a full sequence of random
numbers.

In the following, we will use an annealed disorder throughout
the glass preparation step and a quenched disorder throughout the
quasi-static shear driving steps. More specifically, we first “fabricate”
our glasses using a two-step process, which mimics a thermalization
step at high T and a subsequent aging step at vanishing tempera-
ture. We control the degree of aging of our glasses in this manner.
Further details are given in Sec. II B. At the end of this preparation
protocol, the different fields (thresholds in the forward/backward
directions σ±ij and internal stress σij) are stored; the plastic strain
field is reinitialized at zero and this initial configuration is inserted as
the slice of index ℓ = 0 of a stack of quenched disorder thresholds at
each cell (i, j). This quenched configuration is then used to perform
mechanical loading.

Driving—Two kinds of mechanical loading are considered in
this study: monotonous shear loading and cyclic loading. In both

cases, the driving is strain controlled and changed quasi-statically.
The elementary steps consist in (i) identifying the first site71 (i∗, j∗),
which becomes unstable in the shear loading direction, i.e., the
extremal site; (ii) incrementing the external strain ε up to the point
where the extremal site (i∗, j∗) becomes unstable; (iii) incrementing
the plastic strain of (i∗, j∗) by Δε to trigger the transition ℓ→ ℓ ± 1 to
the next elastic branch by the instability (plastification); (iv) updat-
ing the internal stresses of all sites; (v) identifying any site that has
in turn become unstable due to the internal stress update, plastifying
these sites as well, updating the internal stress, etc., until the end of
the avalanche, i.e., until all sites have become stable again; (vi) repeat
steps (i)–(v) as needed.

Avalanches—The precise treatment of step (v), i.e., the
avalanche, deserves more detail. Once a list of unstable sites has been
identified, the question remains about the order in which these sites
will be updated. Indeed, since the elastic interaction can induce both
positive and negative stress kicks, an unstable site can be healed and
get stable again after another one has been plastified and the result-
ing internal stresses at the other sites have been updated, steps (iii)
and (iv). Hence, the order of the updates matters. The effect of the
ordering of updates on the dynamical properties has been recently
discussed by Ferrero and Jagla.72 Some of us opted for a synchronous
update:51 all unstable sites are plastified simultaneously in parallel;
the internal stress is updated afterward; after this first sweep, a new
configuration is reached, a stability test is performed, if all sites are
stable, the avalanche is over, otherwise a new list of unstable sites
is identified and the process is iterated until a stable configuration
is reached. Here we make a different choice and perform a sequen-
tial update: the most unstable site, i.e., the extremal site, is updated
first (plastic slip followed by an update of the associated elastic stress
field) and we repeat this procedure until all sites become stable again.
This choice of updating protocol happens to be very close to the
extremal driving proposed in Ref. 55.

APPENDIX C: ESTIMATING THE MESOSCOPIC
EQUIVALENT OF THE SIZE OF ATOMISTIC
SIMULATIONS

Although our goal is not to quantitatively map the elasto-
plastic model onto atomistic simulations, we must ensure that the

FIG. 13. Comparison of the SCC distribution obtained from the atomistic simula-
tions with those obtained from a mesoscopic model with compatible system size
N = 8. Shown are the distributions for poorly and medium-aged glasses.
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disordered landscape statistics are comparable between the two
types of models. From this point of view, being able to estimate
the number of simulated elements of the mesoscopic model, i.e.,
the system’s number of degrees of freedom, is essential for a rea-
sonable comparison that takes also into account possible finite-size
effects.

To estimate the equivalent number of simulated elements, one
must first determine the element size of the elastoplastic model
below which the mechanical description is unresolved. This size
corresponds to an upper limit of the characteristic plastic rearrange-
ment size. Several experimental approaches have been performed to
estimate the size of rearrangements ranging from direct observations
in colloidal systems73 to indirect estimations from strain rate sensi-
tivity analysis in metallic glasses.74 In all of these cases, the results
show that plastic rearrangement cores contain a few dozen particles,
so that the overall sizes of these cores range from about two to three
particle diameters.

The determination of this length scale in atomistic simula-
tions poses several difficulties. First, the presence of avalanches
makes it challenging to identify the individual rearrangements.
Second, there is no method yet to spatially distinguish between
the non-linear and non-affine elastically strained zones from the
non-reversible plastic responses. Finally, another complication
arises from the fact that the same zone can contain several slip

TABLE IV. Properties of the ten catalogs obtained from the mesoscopic N = 8 poorly
aged and moderately aged reference configurations, shown in the left and right table,
respectively. Refer to the caption of Table I for the description of the columns.

Run gcomp N0 NSCC

1 35 154 630 45 402
2 35 88 933 22 904
3 35 53 179 15 172
4 35 72 471 21 710
5 35 121 168 33 327
6 35 26 003 5610
7 35 45 376 11 676
8 35 74 215 20 657
9 35 66 648 15 469
10 35 31 616 7 181

ALL n/a 734 239 199 108

Run gcomp N0 NSCC

1 44 74 274 17 668
2 44 74 301 18 749
3 44 54 534 12 360
4 44 148 645 39 763
5 44 113 394 26 659
6 44 246 908 76 190
7 39 341 077 99 587
8 44 25 234 4 347
9 44 163 766 38 098
10 44 154 641 33 074

ALL n/a 1 396 774 366 495

directions in a realistic particle system,75,76 resulting in an effec-
tive higher density of potential rearrangements than that of a
scalar description. Several approaches have been implemented to
deal with these difficulties. They rely on the analysis of long-
range elastic fields,75,77 the quantitative calibration of elastoplastic
models,57 the calculation of the spatial extension of rearrange-
ments,78 the strain’s spatial correlations,79,80 and the reproduction
of the mechanical response from the spatial density of barriers.68

These approaches, particularly those using a two-dimensional sys-
tem under AQS loading like ours, lead to a consistent estimate of the
linear size of plastic rearrangements lying between three and seven
particle diameters. For our atomistic system containing 1024 atoms,
these bounds lead to an equivalent mesoscopic system size between
N = 5 and 10.

We conclude this section with a comparison of the SCC
distributions obtained from our atomistic simulations with those
obtained from catalogs of its mesoscopic size-equivalent with
N = 8. The properties of our N = 8 mesoscopic catalogs are given in
Table IV. The distributions are broad, and a prominent size cut-off
at largest SCC sizes is now less prominent for the mesoscopic dis-
tributions when compared with the SCC size distributions obtained
from the N = 32 mesoscopic catalogs, as shown in Fig. 10.

APPENDIX D: UNIFORM SHEAR
OF MESOSCOPIC GLASS

Figure 14 shows the dependence of stress under monotonous
strain loading on system size and aging. Different colors correspond
to different system sizes, as indicated in the legend, while the line
shapes correspond to the different degrees of aging. The curves have
been obtained at various extent of aging and for systems of size
N = 16(4000), 32(1600), 64(750), where the numbers in parenthe-
sis indicate the number of realizations used to obtain our results.
While the poorly aged samples (PA with 0.8 aging steps per site)
show no discernible size-dependence, with increasing amount of
aging a rather weak system size dependence emerges, particularly
near the stress peak, as shown in the inset.

FIG. 14. Stress–strain curves upon monotonous loading for various system sizes
and thermal histories. The inset shows a blow-up of the region near the stress
peak. The ultra-aged (UA) glass is not shown to improve visibility.
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APPENDIX E: CATALOGS EXTRACTED FROM
SIMULATIONS OF THE ATOMISTIC MODEL
AND THE MESOSCOPIC MODEL WITH WELL-AGED
REFERENCE CONFIGURATIONS

In addition to Tables I and II in the main text, which describe
the properties of catalogs extracted from moderately and poorly aged
glasses of our mesoscopic model with N = 32, we also list here the
properties of (i) two increasingly better-aged mesoscopic catalogs,
prepared from glasses subjected to 150 and 4000 aging steps per
site, which we will refer to as the well-aged (WA) and ultra-aged
(UA) glasses, respectively, and (ii) atomistic catalogs obtained from
8 poorly aged and 30 well-aged reference configurations. The aging
of the atomistic glasses is controlled by the rate of quenching to
zero temperature from a high temperature liquid, as described in
Appendix A. We refer to these as fast (AS Fast) and slowly (AS Slow)
quenched atomistic glasses, respectively.

Figure 15 shows an excerpt of the transition graph extracted
from samples of sample No. 8 of our WA glass [panel (a)] and sam-
ple No. 3 of the ultra-stable UA glass [panel (b)]. The number of
mesostates displayed in the t-graph excerpts shown are 1665 and

4610, respectively. We have obtained the graphs shown in Fig. 9 of
the main text as well as in Fig. 15 by starting out in the reference
configuration and following SCCs and the transitions between them
until at least 1500 mesostates have been collected. For every SCC
reached in this way, we also added the remaining mesostates belong-
ing to that SCC so that the total number of vertices constituting the
graph excerpt is typically larger than 1500. The number of SCCs
shown in the excerpts of the two graphs in Fig. 15 are 216 (WA)
and 19 (UA). The sizes of SCCs seen in the WA excerpt are small
(sSCC ≤ 56), while the UA excerpt has three very large SCC with sizes
sSCC = 3173, 1271, and 82, shown in pink, yellow, and green, respec-
tively. These findings are consistent with the SCC scatter plots shown
in panels (e) and (f) of Fig. 11. We believe that the emergence of the
giant SCCs in the ultra-stable sample is a finite-size effect.

The stress–strain curves of the well-aged samples under uni-
form shear exhibit large stress changes across the yielding transition.
For the WA and UA samples shown in Fig. 15, the magnitude of
these stress-jumps under shear in the forward and reverse direc-
tions are ΔΣ = 0.46, 0.45 for the WA glass and ΔΣ = 0.62, 0.70
for the ultra-stable UA glass. In the graphs shown in Fig. 15,
we have highlighted transitions that involve stress-jumps with a

TABLE V. Properties of the ten catalogs obtained from the N = 32 well-aged (WA) reference configurations aged at 150 aging
steps per site of our mesoscopic model. Refer to the caption of Table I for the description of the columns.

Run gcomp N0 NSCC ncycles nsuppSCC smax
suppSCC n maxsuppSCC

cycles

1 39 79 565 25 151 130 44 60 50
2 39 91 201 27 337 60 33 475 1
3 39 114 686 36 931 305 14 300 219
4 39 124 298 33 459 525 107 344 32
5 39 38 629 13 207 685 181 419 12
6 39 64 475 13 240 1388 606 127 7
7 39 26 421 6 677 115 45 38 12
8 39 80 317 37 092 122 65 56 50
9 39 68 154 17 009 43 5 26 38
10 39 84 064 34 515 66 2 88 42

ALL n/a 771 810 244 618 3439 1102 n/a 463

TABLE VI. Properties of the ten catalogs obtained from the N = 32 ultra-aged (UA) reference configurations aged at 4000
aging steps per site of our mesoscopic model. Refer to the caption of Table I for the description of the columns.

Run gcomp N0 NSCC ncycles nsuppSCC smax
suppSCC n maxsuppSCC

cycles

1 45 24 999 2 714 162 57 433 1
2 45 22 443 1 758 486 114 625 72
3 45 25 541 1 834 468 79 3173 43
4 45 28 065 5 796 205 77 703 5
5 45 77 224 24 002 94 51 168 8
6 45 19 225 1 643 314 107 2489 4
7 45 17 750 1 394 300 104 1292 1
8 45 15 036 1 066 681 107 1428 35
9 45 68 780 14 479 94 54 60 2
10 45 17 118 1 129 911 161 1467 93

ALL n/a 316 181 55 815 3715 911 n/a 264
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TABLE VII. Properties of the eight catalogs obtained from poorly aged (fast quench) reference configurations of our atomistic
model. Refer to the caption of Table I for the description of the columns.

Run gcomp N0 NSCC ncycles N supp
SCC smax

suppSCC n maxSCC
cycles

1 40 57 638 24 123 4650 1617 929 215
2 43 56 158 27 733 4515 1451 413 217
3 37 55 658 24 119 5380 1305 106 9
4 36 55 057 24 931 6972 1901 244 255
5 41 57 602 27 645 3297 834 458 396
6 35 53 114 27 939 4694 1453 259 244
7 41 65 842 29 580 4323 1185 379 253
8 45 58 439 24 794 5068 1187 234 235
ALL n/a 459 508 210 864 38 899 10 933 n/a 1824

TABLE VIII. Properties of the 30 catalogs obtained from well-aged (slow quench) references configurations of our atomistic
model. Refer to the caption of Table I for the description of the columns.

Run gcomp N0 NSCC ncycles N supp
SCC smax

suppSCC n maxSCC
cycles

1 37 21 105 11 892 908 118 642 285
2 39 16 416 7 202 797 211 196 148
3 34 13 894 5 774 1101 264 503 135
4 34 13 710 5 188 874 246 328 153
5 37 18 417 10 118 552 140 371 120
6 40 17 618 6 659 1660 275 718 302
7 31 21 250 10 511 1373 371 330 64
8 37 20 940 8 876 907 349 802 170
9 43 18 145 8 578 664 26 980 78
10 34 16 847 6 895 793 200 334 33
11 32 13 849 7 535 766 201 521 178
12 40 17 723 7 326 1200 233 356 148
13 36 19 814 10 441 465 106 343 193
14 41 22 248 8 824 1132 220 513 251
15 35 14 288 7 221 727 123 377 199
16 39 20 930 7 124 1562 257 2688 712
17 42 15 207 4 769 1884 252 1017 375
18 42 20 779 7 891 1719 271 1232 583
19 35 16 019 7 276 712 186 729 263
20 39 17 477 6 786 765 169 1489 307
21 37 22 784 11 117 447 78 486 226
22 38 17 773 6 717 473 96 853 181
23 34 18 273 7 791 549 180 118 48
24 42 24 157 8 904 1099 256 451 102
25 37 14 743 4 966 1092 207 1199 274
26 39 19 295 9 505 664 192 383 89
27 36 19 070 9 547 873 301 518 146
28 39 23 452 10 941 786 105 892 172
29 42 18 683 8 289 822 89 833 341
30 39 20 426 9 671 1493 141 963 883
ALL n/a 555 332 244 334 28 859 5863 n/a 7159

magnitude of at least 0.1 by fat black (U-transition) and red arrows
(D-transition). Despite the relatively low threshold value chosen for
these jumps, only very few transitions in the two graphs shown
experience large stress changes. Note that for both the WA and
UA samples, the transitions involving the large stress-jumps under

forward and reverse shear tend to partition the graph into two halves
(at least to the resolution of the number of vertices shown). This
effect is even more dramatic for the ultra-stable glass sample where
the transitions with large stress jumps immediately leads to giant
SCCs.
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FIG. 15. Excerpts of transition graphs extracted from well-aged (WA) and ultra-well-aged (UA) mesoscopic glasses with N = 32. Refer to text for further details.

APPENDIX F: ARRANGEMENT OF SCCs
ON THE PLANE OF EXIT STRAINS E±SCC

We discuss the spatial arrangement of SCCs along a strip-like
region in the (E−SCC, E+SCC), which is clearly evident for the atomistic
systems as well as the WA and UA mesoscopic samples in the SCC
scatter plots of Fig. 11. The diagonal dashed line in each of the plots
corresponds to

ΔE SCC = E
+
SCC − E

−
SCC. (F1)

As one would expect, the larger the strain range ΔE SCC over
which mesostates are trapped within an SCC, the larger the size
of the SCC itself. This trend is clearly visible in all six panels of
the plots. The smallest (and most numerous) SCCs are clustered
around small values ΔE SCC, while particularly for the WA and
UA samples there appears to be a value ΔE SCC = ΔEmax beyond
which it is unlikely to find SCCs, except for the outlier SCCs
that we have associated with mesostates not having experienced
the stress-peak. A naive estimate for ΔEmax can be made as fol-
lows. Denote by Σss the steady-state yield stress reached under
monotonous loading (cf. Fig. 4). Assuming that between −Σss
and Σss the system responds purely elastically, we obtain the esti-
mate ΔEmax = Σ ss/μ. From Fig. 4, we find that for the mesoscopic
samples Σss ≈ 0.85, while for the atomistic samples Σss ≈ 2.4. The
dashed lines shown in Fig. 11 correspond to these choices, i.e.,
E+SCC − E−SCC = Σ ss/μ.

APPENDIX G: FINITE-SIZE EFFECTS
AND THE IRREVERSIBILITY TRANSITION
FROM A t -GRAPH PERSPECTIVE

As our cyclic shear simulations show, at strain amplitudes
close to but below the irreversibility transition, cyclic response may
eventually be attained, but after a long transient. In particular, for
the better-aged MA and WA samples we find that with increas-
ing system size the transition to irreversibility becomes abrupt,
meaning that we either reach cyclic response after a few driving
cycles (typically one or two cycles) or not at all, implying a rather
sharp and possibly discontinuous transition from reversibility to

irreversibility. Our simulations indicate that this transition becomes
smoother when the system size is fixed and the samples are less
aged or when we reduce the system size at fixed aging steps per site.
Thus, for example, for system sizes N = 16 and N = 32, the moder-
ately aged samples are able to attain limit-cycles [cf. Fig. 8(a)], and
even at strain amplitudes that are well beyond the location of the
stress peak under uniform shear, which is thought of as marking the
onset of yielding. To demonstrate this, we have used red triangles to
mark on the monotonous loading curves of Fig. 4, the strain ampli-
tudes beyond which the probability of finding a cycle is less than 2%.
For the MA and WA samples, there are located beyond the stress
peak.

These observations are consistent with findings in recent work
by one of us on periodically sheared 3d atomistic glass formers.81

There it was found that small samples that were moderately or well-
aged exhibit cyclic response at amplitudes well beyond the value of
the strain at the stress peak. As the size of the samples increases,
a sharp irreversibility transition at the stress peak is recovered. We
should note, however, that in Ref. 81 such behavior was found to
be the case only for totally asymmetric shear protocols of the form
0→ εamp → 0→ εamp → ⋅ ⋅ ⋅.

Summarizing all of these findings: (i) we think that for the
better-aged samples, the cycles reached after relatively long tran-
sients and at amplitudes beyond the stress-peak, meaning that the
cyclic driving must have passed through it at least once, are an arti-
fact of the system’s finite size. (ii) Related to this, we also find that
as the samples get increasingly better aged, finite-size effects are not
necessarily characterized by long transients. A case in point is the
response to cyclic shear for the N = 32 UA sample. Here, it turns
out that a cyclic response after only a few cycles is reached even
at strain amplitudes as large as 0.4, which is well beyond the loca-
tion of the stress peak. Consequently, such cycles are composed of a
large number of plastic events, and hence mesostates, meaning that
the SCCs confining them must be quite large as well. This finding
is consistent with the “giant” SCCs already visible in the transition
graph excerpt of the N = 32 UA sample, as shown in Fig. 15(b).
A better understanding of such finite size effects, particularly in
the ultra-stable glasses is clearly desirable and the subject of future
work.
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