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a b s t r a c t 

Mesoscale elasto-plastic models, with statistically distributed structural properties and elastic coupling 

between discrete blocks, have been shown to quantitatively reproduce the main phenomenology observed 

in the stationary flow state of glasses as modelled at the atomic scale [1]. In the present study, an ex- 

tension of such approaches is proposed to describe the transient mechanical response of glasses from 

different off-equilibrium states in the athermal quasi-static limit. Equilibrated liquids are simulated using 

two-dimensional molecular dynamics, quenched instantaneously to zero temperature, and then sheared. 

The mechanical observables measured in atomistic and elasto-plastic models are compared at the same 

length scales to calibrate a state-dependent constitutive law. A physical mechanism is proposed where 

the structural properties’ evolution rate depends on the magnitude of local plastic deformation events, 

introducing an effective local memory of previous states in the system. This mechanism naturally leads 

to a brittle-ductile transition in the mechanical response of glasses, which depends exclusively on the 

quenched structure. Specifically, initially stable glasses exhibit strain-softening and localization, where 

the memory of the initial states is lost abruptly after the first plastic rearrangements. On the other hand, 

systems quenched from high-temperature liquids show a slow strain-hardening with statistically homo- 

geneous plastic deformation. In these initially soft glasses, numerous plastic rearrangements are required 

to converge toward the stationary flow state. The elasto-plastic model successfully reproduces the stress- 

strain curves in the transient regime for the whole range of parent temperatures by including this local 

memory mechanism. The limitations of the model are finally discussed, together with possible improve- 

ments. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Understanding the physical mechanisms that lead to the de- 

ormation of amorphous solids is still an ongoing fundamental 

roblem [2,3] , with implications in engineering and microstruc- 

ural designs [4,5] . Amorphous solids, and specifically glasses, are 

ut-of-equilibrium systems, implying a dependence on past ther- 

al [6] and mechanical history [7] . Consequently, preparation pro- 

ocols lead to highly contrasted mechanical responses depending 

n the degree of structural stability [8] . Glasses quenched from 

quilibrated states at low parent temperature exhibits a brittle- 

ike behaviour, characterized by a stress-overshoot followed by 

train-softening and permanent shear-banding. On the other hand, 

lasses obtained from high parent temperatures exhibit ductile- 
� Fully documented templates are available in the elsarticle package on CTAN . 
∗ Corresponding author. 

E-mail address: sylvain.patinet@espci.fr (S. Patinet) . 
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ike behaviours characterized by a more compliant response, slow 

train-hardening, and statistically homogeneous plastic activity. 

In addition to history dependency [9] , the complexity of their 

lastic behaviour arises from their microscopic disordered struc- 

ures. Any coarse-grained description of amorphous plasticity has 

hus to deal with the statistical nature of their structures and their 

omplex energy landscapes [10–13] . Their properties are locally 

eterogeneous, and they feature prestresses, even in the reference 

tate, before any plastic deformation [14] . In glassy systems, plas- 

icity results from localized atomistic rearrangements known as 

hear transformations (STs) [15,16] that give rise to long-range in- 

ernal stress fields [17,18] . Elastic coupling induced by the STs gives 

ise to intermittent deformation in the form of strain bursts [19] . 

o date, there are no physically motivated standard constitutive 

aws for amorphous media, in sharp contrast with crystal plasticity 

odels where dislocation densities along local slip systems play 

he role of internal variables [20–22] . 

Numerous mesoscale elasto-plastic models of the plastic de- 

ormation of amorphous solids have been proposed in the liter- 

https://doi.org/10.1016/j.actamat.2022.118405
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.118405&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:sylvain.patinet@espci.fr
https://doi.org/10.1016/j.actamat.2022.118405
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ture over the last decades [23–30] with the goal of shedding 

ight on the physical mechanisms at play at the lowest scales. 

hese models attempt to reduce the complexity of the problem 

y coarse-graining atomistic details into a discrete-continuum de- 

cription. Spatially, STs are modelled as Eshelby inclusions [31–

4] with purely deviatoric eigenstrains. On the other hand, struc- 

ural heterogeneity is accounted for by considering a statistically 

istributed local yield stress field [35] . Such models are well- 

nown for reproducing the main features of the plastic defor- 

ation of amorphous solids in the stationary flow regime [36] . 

hese models have also been successfully extended to address 

echanical response at finite temperature, e.g., for creep [24,37–

9] . However, comparatively little attention has been given to 

he dependence upon initial quench states and to the transient 

egime [38,40–42] . In addition, the ingredients of the models are 

ost often phenomenological, and only a few works rely on mi- 

roscopic insight from atomistic methods [43–45] . 

In this work, we take advantage of the two-dimensional tenso- 

ial elasto-plastic model developed in [1] . This model has shown 

uantitative agreement with atomistic simulations in the station- 

ry flow regime. Thanks to its ability to deal with ST flow in differ-

nt directions, it was shown to capture emergent phenomena such 

s the Bauschinger effect, i.e. deformation-induced anisotropy. This 

odel is extended here by introducing a new constitutive rela- 

ion that explicitly considers non-stationarity in the local structural 

enewal process. This relation accounts for the history-dependent 

echanical response observed in the atomistic glasses. This frame- 

ork introduces a simple and physically motivated memory effect 

t the local scales. 

Both models are compared in the athermal quasi-static limit 

or a wide range of parent temperatures, establishing a rigor- 

us connection between elasto-plastic and atomistic descriptions. 

hese preparation protocols lead to highly contrasted mechanical 

esponses, from soft to hard glasses, showing a progressive strain- 

ardening or a sudden strain-softening and localization, respec- 

ively. The frozen matrix method [1,35] is employed to probe the 

ocal mechanical response of the atomistic and elasto-plastic sam- 

les at the same length scales. These measurements allow us to 

alibrate the elasto-plastic model in the quench states and tran- 

ient regimes while keeping some elements of microscale physics, 

hus shedding light on history-dependent processes and the origins 

f the brittle-ductile transition. 

The paper starts by introducing the atomistic system in 

ection 2 and the elasto-plastic model ingredients in Section 3 . The 

rozen matrix methods to probe the local mechanical properties 

t different length scales in both models are then presented. The 

lasto-plastic model is enriched to deal with the local evolution of 

tructural properties under plastic deformation. This model is then 

alibrated to reproduce the quench states obtained from a set of 

ifferent parent temperatures. Section 4 deals with the transient 

echanical response of glasses focusing on the characteristic strain 

eeded to converge toward steady flow microscopic properties. The 

ariation of shear modulus and strain localisation under imposed 

eformation are analysed. We finally discuss in Section 5 the dis- 

repancies between the two models and the insights gained from 

his multi-scale approach. 

. Atomistic model 

We consider a two-dimensional binary model for generating 

nd probing the mechanical response of glasses. Its plastic be- 

aviour has been extensively studied in [7,46,47] . This model has 

een employed as a reference system for a systematic and quan- 

itative calibration of an enriched elasto-plastic model in [1] . The 

imulations are performed with periodic boundary conditions for 
2 
ystems made of 10 4 atoms with number density ≈ 1 . 02 . The 

toms interact through Lennard-Jones (LJ) interatomic potentials 

arametrized by their energy ε and length σ scales. The mass m of 

ach particle is unity, and the unit of time is σ
√ 

m/ε. Boltzmanns 

onstant is taken as unity, and the LJ units are used in the fol- 

owing. The LJ expression for an interatomic distance greater than 

 in = 2 is replaced by a quartic polynomial vanishing function at 

he cutoff distance R cut = 2 . 5 . 

The glasses are obtained from instantaneous quenches of liq- 

ids at thermodynamic equilibrium simulated by molecular dy- 

amics (MD) over a duration equal to 100 times the liquid relax- 

tion times. A wide range of parent temperatures is studied from 

 p 

= 0 . 32 to 0.7, ranging from the supercooled liquid regime to 

he simple liquid diffusion regime. This temperature range is cho- 

en to overlap the mode coupling temperature T MCT ≈ 0 . 373 [47] 

hile still being able to achieve thermodynamic equilibrium with 

onventional MD, i.e. above of the computer glass transition tem- 

erature T g ≈ 0 . 31 . After the quench, the glasses are relaxed by a

onjugate gradient algorithm and then deformed in simple shear 

long the xy direction following the athermal quasi-static (AQS) 

ethod [19] . This procedure consists in applying small increments 

f affine deformation to the simulation box �γext = 10 −4 followed 

y a static relaxation. Depending on initial states, the stationary 

ow state for this system under AQS can be reached for strains of 

he order of γext � 5 [7] . Here we shall investigate only the tran- 

ient regime and deform the resulting glasses to a total strain of 

ext = 0 . 5 . In addition to the plastic response, the overall system’s 

lastic shear modulus G is computed as a function of γext . The data 

eported in the article correspond to ensemble averages computed 

ver 30 independent samples simulated for each preparation pro- 

ocol. 

As previously reported [6,8,46] , the average mechanical re- 

ponse shown in figure Fig. 1 presents a marked dependence on 

he thermal history of the glass. The lower the equilibrium parent 

emperature, the stiffer and harder the glass. For the lowest T p 

, 

he amorphous solid exhibits a stress-overshoot marking the start 

f strain-softening associated with the appearance of shear bands. 

n the other hand, glasses obtained from a high T p 

are more com- 

liant and exhibit a progressive slow hardening behaviour with a 

tatistically homogeneous plastic deformation field. 

In addition to the overall response, local yield stresses are com- 

uted with the frozen matrix method developed in [35,46] . The 

ethod consists in deforming a patch of radius R (see the blue 

rea in Fig. 1 , left) following AQS pure shear boundary condi- 

ions. To this end, an affine pure shear in the direction α is ap- 

lied to the atoms of the surrounding matrix. Starting from the 

nternal patch-scale shear stress ˜ τ , the patch is loaded up to 

he onset of instability at the patch-scale yield stress ˜ τ c , from 

hich the residual plastic strength (or equivalently the distance 

o threshold � ˜ τ c = ˜ τ c − ˜ τ ) is obtained. Following the instabil- 

ty, a ST occurs, leading to a stress drop δ ˜ τ c within the patch. 

atches are defined on a regular square grid of mesh parame- 

er 2.5, every �α = 10 ◦, and for patch radii ranging from R = 2 . 5

o 30. 

. Elasto-plastic model 

The elasto-plastic model employed in this work is a direct ex- 

ension of the one introduced in [1] . A continuum body discretized 

nto a two-dimensional lattice of mesoscale elements is considered 

s depicted in Fig. 1 , middle. Each element has a size l × l where

is larger than the typical scale of a ST. Microscopic details below 

he element scale are not resolved. Consequently, the stress and 

train fields are considered homogeneous within each element but 

an fluctuate over the material domain. 
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Fig. 1. Left and middle: Atomistic and elasto-plastic models, respectively. The regular square grid is the mesh used in this work. The glass experiences a local shear transfor- 

mation. The frozen matrix method is employed to probe the local mechanical response on different scales R (blue patches) and directions α. Right: Global stress-strain curves 

under simple shear in the xy direction for atomistic (dashed lines) and elasto-plastic (continuous lines) models for glasses prepared from different parent temperatures T p . 

The horizontal dotted line corresponds to the stationary flow stress. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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.1. Local slip systems 

The amorphous microstructure is represented by considering 

hat each mesoscale element contains several local slip systems 

ith statistically distributed properties. The rationale behind us- 

ng a discrete set of local slip planes per element is that STs can 

nly occur in specific weak directions on a local scale, as shown 

n [46] from atomistic simulations. In the presence of strong struc- 

ural disorder, planes that qualify as weak under the action of 

hear stress may not qualify as such in other shear directions α. 

hile the slip system concept is more often used in the context of 

rystal plasticity to describe dislocation glide, it recently allowed 

s to reproduce the anisotropy induced by the plastic deformation 

n the same elasto-plastic framework [1] . 

Each local slip system is defined by a plane of normal unit 

ector n and a slip direction s , from which a Schmid tensor M = 

1 
2 ( s � n + n � s ) can be constructed. In two-dimension, this tensor 

an be written in terms of the angle θ between the local slip plane 

nd the horizontal axis as 

 (θ ) = 

1 

2 

(
−sin 2 θ cos 2 θ
cos 2 θ sin 2 θ

)
(3.1) 

ith θ ∈ (−π/ 2 , π/ 2] due to symmetry. The resolved shear stress τ
n a local slip plane is given by 

= M (θ ) : �, (3.2) 

here � is the stress on the element. Each local slip system has 

 critical resolved shear stress, or slip threshold, τ c > 0 . When- 

ver a local slip system fulfills τ = τ c , it becomes active and a slip

vent takes place. This event aims at accounting, at the mesoscale, 

or the coarse-grained effects of a ST. To this end, a local (plastic) 

igenstrain increment �ε pl is added to the element in which the 

vent takes place, 

ε pl = �γpl M , (3.3) 

here the slip amplitude �γpl along the local slip system is sta- 

istically distributed due to the (unresolved) microstructural het- 

rogeneity. The following bounded power-law distribution is used 

 (�γpl | γmax , χ) = 

χ

γmax 
(1 − �γpl 

γmax 
) χ−1 (3.4) 

ith �γpl ∈ [0 , γmax ) . This form is chosen, as discussed in [1] ,

ince it allows to establish bounds to �γpl while still allowing to 

une its shape with a single parameter χ . 
3 
To avoid negative dissipation [48] , the parameter γmax writes 

max (τ ) = 

−2 τ

(C : (S − I ) : M ) : M 

, (3.5) 

nd defines the plastic shear strain amplitude that would cancel 

 resolved shear stress τ , assuming linear elasticity, where C is 

he fourth-order Hooke’s tensor, and S is the Eshelby tensor of 

he mesoscale elements. In [1] , the limit γmax (τ ) was used, mean- 

ng that the locally acting shear stress gives the amplitude of the 

vents. In the present work, however, a limit γmax (τ c ) based on 

he maximum shear stress τ c that a specific local slip plane can 

old was found to reproduce better the transient flow regime, 

nd hence this choice was adopted. After model calibration, both 

hoices lead to similar results in the stationary regime. 

The slip angles and thresholds are statistically distributed to 

epresent structural heterogeneity. As discussed in [1] , to ensure 

hat elements have a finite critical resolved shear stress defined 

or any shear orientation α, N local slip systems, in groups of four, 

re introduced, with orientations θ + nπ/ 4 where n = 1 , 2, 3 and

. θ is uniformly distributed in the interval (−π/ 2 , π/ 2] . The slip

hresholds are independently renewed from the Weibull distribu- 

ion 

 (τ c | λ, k ) = 

k 

λ

(
τ c 

λ

)k −1 

exp 

[
−
(
τ c 

λ

)k 
]
, (3.6) 

here the parameter λ and the exponent k define the scale and 

he shape of the distribution, respectively. When an element un- 

ergoes a slip event, the orientations and thresholds of its N local 

lip systems are renewed from their respective probability distri- 

utions. This mechanism accounts for unresolved changes in the 

ocal microstructural properties induced by plastic deformation. 

.2. Dynamics 

Whenever one or more local slip systems are active, slip events 

re simultaneously performed in all those systems. Influenced by 

tress redistribution, additional local slip systems might become 

ctive. The activation process is repeated in a series of steps un- 

il no local slip system is active. During this process, the external 

train is kept fixed. If several local slip systems within the same 

esoscale element are active simultaneously, only the local slip 

ystem with the lowest distance to threshold �τ c = τ c − τ under- 

oes a slip event. A quasi-static driving protocol is applied. To this 

nd, whenever there is no active local slip system, discrete exter- 

al shear strain increments are applied along the xy direction with 

he same amplitude �γext = 10 −4 as in the atomistic model. 
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.3. Computing the elastic fields 

The Finite Element Method (FEM) is used to compute the dis- 

lacement field at every time step, so that compatibility, balance, 

nd constitutive relations are all obeyed [24,28,30,37,38,49,50] . A 

wo-dimensional quadrilateral structured mesh of finite elements 

FEs) is considered with linear shape functions. Each FE defines the 

patial domain of a mesoscale element. 

The total strain, i.e., the symmetric part of the displacement 

radient, is the sum of the elastic ε el and the plastic strain ε pl . 

he stress is related to the elastic strain through the linear elastic 

aw � = C : ε el , where C is the fourth-order Hooke’s tensor, and 

he plastic strain ε pl is updated according to the model dynam- 

cs. The fields associated with each mesoscale element are natu- 

ally the coarse-grained average of the same quantity occurring at 

 smaller (microscopic) scale that cannot be resolved. Thus, we as- 

ociate to each mesoscale element the average of each field com- 

uted over its associated FE. 

Bi-periodic boundary conditions are used with an externally ap- 

lied shear strain γext along the xy direction. The external shear 

tress 
xy 
ext is computed as the average shear stress over the sys- 

em. 

.4. Transient properties 

Atomistic measurements [7,35] evidence that quenched state 

tructural properties differ from the stationary state ones. In the 

lasto-plastic model, this difference is introduced by considering 

hat the distribution parameters of the distribution Eq. 3.6 evolve 

s a function of local plastic deformation, thus spatially fluctuating. 

e consider a linear evolution law for parameter evolutions as a 

onsequence of local plastic deformation. Thus, for the parameter 

, 

λ = (∂ λ/∂ γpl )�γpl , (3.7) 

nd 

∂ λ/∂ γpl ) = (λs − λ) /γt , (3.8) 

here λs is the stationary state value, and γt > 0 is a characteris- 

ic plastic strain scale. This law can be interpreted as the dominant 

erm (i.e., with the largest relaxation strain γt ) in a small pertur- 

ation expansion of a possibly more complex law. If the scale γt 

s constant, Eq. 3.9 reduces to an exponential function of the local 

ccumulated plastic strain. 

Nonetheless, we consider a more general approach in which no 

onstraints on γt are imposed, and the values of λ are updated 

ased only on local changes �γpl instead of on accumulated val- 

es. To this end, we first index the system history according to the 

umber n of plastic events that have occurred so far. Thus, tran- 

ition from n to n + 1 takes place due to a local plastic increment

f amplitude �γ (n 
pl 

. We integrate Eq. 3.8 between the current state 

 and the next state n + 1 , and consider the limits λ ∈ [ λ(n , λ(n +1 ]

nd �γpl ∈ [0 , �γ (n 
pl 

] , which result in the exponential form 

(n +1 = (λ(n − λs ) · exp 

( 

−
�γ (n 

pl 

γt 

) 

+ λs (3.9) 

For the sake of simplicity, an analogous form is considered for 

he shape parameter k of Eq. 3.6 , with an asymptotic value k s . To

eep the model formulation simple enough, χ is assumed to be 

onstant so that the plastic rearrangement amplitude relations (see 

q. 3.4 and Eq. 3.5 ) do not change with the deformation. The fol-

owing limits hold, 

(n +1 → λ(n if �γ (n 

pl 
/γt → 0 

λ(n +1 → λs if �γ (n 

pl 
/γt → ∞ 
4

Thus, as intuitively expected, plastic events with a small plastic 

train amplitude �γpl result in renewed structural properties that 

emain statistically close to the previous ones. On the other hand, 

vents with a larger amplitude result in a comparatively more sig- 

ificant change toward the asymptotic stationary value. 

The model considers the evolution of the shear modulus G as a 

unction of local plastic deformation. On the other hand, since the 

odel is mainly sensitive to shear stresses, we make the simpli- 

ying assumption of a constant bulk modulus B , which is set to 

ts stationary state value. We assume that the shear modulus G 

volves locally according to a law with the same form as Eq. 3.9 .

hen, the model relies on an approximation for computational per- 

ormance. Namely, the shear modulus is homogenized by replacing 

t with its spatial average. With the global values of G and B , a

omogeneous and isotropic Hooke’s tensor C is created and used 

or computing the elastic fields as described in Section 3.3 . Let us 

tress that the goal is to describe the effects of the variation of the 

lastic properties with strain only to the leading order. These ho- 

ogeneous values will be compared to the effective atomistic ones 

easured at the sample scale in Fig. 6 below. 

Finally, in order to implement recursive evolution laws with the 

orm of Eq. 3.9 , the initial values λ(1 , k (1 , and G 

(1 are needed.

hese values are respectively given by the quench state values λq , 

 q , and G q , which correspond to model-free parameters to be fit- 

ed. On the other hand, the stationary state values λs , k s and G s 

re known from [1] . 

. Results 

As explained in Section 2 , atomistic glass samples are prepared 

ith parent liquid temperatures of T p 

= 0 . 32 , 0.34, 0.37, 0.4, 0.5

nd 0.7. The goal is to reproduce the atomistic quench state prop- 

rties and the transient flow regime for the whole temperature 

ange using the elasto-plastic model. To this end, the stationary 

tate results of [1] are leveraged. The mesoscale element length is 

et to l = 6 . 6 and the number of local slip systems per element

o N = 36 . For this model configuration, the optimum values for 

he stationary state parameters λs , k s , χ , G s and B s are given in 

ab. B.1 . These values are independent of the initial conditions and 

hus of the parent temperature T p 

. 

.1. Quenched state 

The quenched shear modulus G q is measured from the 

acroscale elastic response of atomistic glasses with different par- 

nt temperatures T p 

. The bulk modulus is set to its stationary state 

alue B s , independently of T p 

. These values are used as input for 

he elasto-plastic model, considering isotropic and homogeneous 

lastic properties. 

To calibrate the local properties, the frozen matrix method is 

mployed as schematized in Fig. 1 (left and middle, blue areas). 

t allows us to compare the local mechanical response indepen- 

ently of model implementation details and at different length 

cales. The method is applied to the atomistic samples as described 

n Section 2 . On the other hand, the implementation of the same 

ethod, presented in [1] , is used for the elasto-plastic model. Local 

roperties are calibrated by requiring that patch-scale values, when 

easured at the largest patch size available, are statistically simi- 

ar between both models. In the case of the atomistic model, the 

argest patch has a radius of R = 30 . As detailed in [1] , this is com-

ared with square elasto-plastic patches of the same area. For the 

hosen mesoscale length of l = 6 . 6 , such patches are composed of

 × 8 = 64 mesoscale elements. Moreover, since the quenched state 

s statistically isotropic, aggregated measurements do not depend 

n the shear orientation α. Thus, we compute aggregated quanti- 



D.F. Castellanos, S. Roux and S. Patinet Acta Materialia 241 (2022) 118405 

Fig. 2. Average von Mises stress ˜ 
vm (top) and stress drop δ ˜ τ c (bottom) vs. patch 

radius R for parent temperatures from T p = 0 . 32 to 0.7. 
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Fig. 3. Average (top) and standard deviation (bottom) quench state local yield stress 

˜ τ c vs. patch radius R , for parent temperatures from T p = 0 . 32 , to 0.7. 

Fig. 4. Average (top) and standard deviation (bottom) quench state local yield stress 

˜ τ c vs. parent temperature T p , measured with patch radius R = 30 . 
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ies by pooling patch-scale data from local shear tests with differ- 

nt shear orientations. 

To induce an internal stress field akin to the residual quenched 

tresses resulting from the atomistic sample preparation his- 

ory and mimic the supercooled liquid relaxation process [51] , 

 quenched eigenstrain plastic field ε 0 
pl 

is generated. We ne- 

lect the quenched state pressure field since the system dynam- 

cs are mostly sensitive to shear stresses. Thus, ε 0 
pl 

is assumed to 

e a purely deviatoric field. The two deviatoric components are 

element-wise) independently drawn from a Gaussian distribution 

ith zero average and standard deviation std[dev ( ε 0 
pl 

)] . The stan- 

ard deviation is calibrated by requiring that the patch-scale von 

ises stress ˜ 
vm 

is statistically similar between both models. The 

rocess is repeated for each parent temperature T p 

(see Fig. 2 top). 

The initial slip configuration must be stable, given the stress 

eld induced by ε 0 
pl 

. Thus, if an initial local slip system is active, 

ll mesoscale element local slip systems are re-drawn from Eq. 3.6 . 

his process is repeated until all local slip systems are stable, thus 

mplementing a rejection sampling algorithm for constructing sta- 

le initial configurations. 

The frozen matrix method is then applied to sample the patch- 

cale local yield stress values ˜ τ c . The individual slip thresholds, 

rawn from Eq. 3.6 , and the measured coarse-grained yield stress 

˜ c are observed to be different due to stress heterogeneity and 

atch-scale effects. The values of λq and k q are calibrated by re- 

uiring statistically similar measurements of ˜ τ c in both models. 

he process is repeated for each parent temperature T p 

as reported 

n Fig. 3 and Fig. 4 . 

As discussed in [1,45,46] , small patches lead to an overesti- 

ation of ˜ τ c measurements in the atomistic model due to rigid 

oundary conditions (see Fig. 3 in the small R range). For this rea- 

on, the comparison between models is performed with the largest 

atch size available. For this coarse length scale of R = 30 , an ex-

ellent calibration is achieved in the quenched states for all the 

arent temperatures. 

Regarding the patch-scale local stress drops δ ˜ τ c induced by 

lastic deformation, we observe an excellent agreement between 

oth models (see Fig. 2 bottom) once the local stress and yield 

hresholds have been calibrated. 
5

.2. Transient regime 

With the quantitative calibration of the quench state discussed 

n Section 4.1 and the steady-state flow provided in [1] , we focus 

ow in the transient regime. It was suggested previously that the 

ransient regime, and its memory effects, are ruled by Eq. 3.9 . In 

rinciple, the value of γt is expected to be intrinsic to the ather- 

al system dynamics and thus does not depend on parent temper- 

ture or initial conditions. In Fig. 5 , different orders of characteris- 

ic strains γt are used, namely γt = 0 . 02 , 0.2, and 2. The smallest

t = 0 . 02 approaches the no-memory limit γt → 0 . For this value,

he model reproduces the mechanical response of samples close to 

he mode coupling temperature T MCT , since in this case, the proper- 

ies of the quenched state are similar to the steady-state flow ones 

disregarding polarization effects [1,7] ). However, it fails to gener- 

lize to other temperatures. Specifically, we observe too fast con- 

ergence toward the steady-state. This observation motivates using 
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Fig. 5. Stress-strain curves obtained with different fixed values of the γt parame- 

ter in Eq. 3.9 . The continuous lines correspond to the elasto-plastic model and the 

dashed lines to the atomistic one. The dotted line is the steady-state value. 

a

a

a

W

g

I

q  

t

t

c

a

a

e

a  

e

s  

γ

p

t

s

c

e

T

m

s

t

a

a  

e  

h

f

r

a

t

a

a

r

m

a

p

t

t

r

t  

f

v

a

t

v

o

T

S

l

i

d

f

o

t

γ

a

p

(

E

p

o

a

s

a  

p

t

p

r

4

l

s

t

w

t  

w

a

t

a

s

s

 non-vanishing characteristic strain γt and supports the modelling 

pproach chosen for the transient regime. 

On the other hand, both γt = 0 . 2 and γt = 2 show excellent 

greements but their best fits correspond to different T p 

ranges. 

e find that γt = 0 . 2 reproduces almost quantitatively the stable 

lasses response obtained from the lowest parent temperatures. 

n particular, the model describes the stress peak and the subse- 

uent strain-softening observed for T p 

= 0 . 32 . However, for γt = 2 ,

he elasto-plastic model misses the stress overshoot with a much 

oo slow strain-softening, as shown in Fig. 5 bottom. This result 

an be compared with previous works [45,47] employing the same 

tomic model and glass stability ranges. In [47] , a characteristic re- 

rrangement plastic strain of ε ∗
pl 

≈ 0 . 054 was estimated from the 

volution of ˜ τ c with a coarse-graining length of R = 5 . Taking into 

ccount the factor 2 for a slip γ = 2 ε and the length scale differ-

nce between the patch and the element area, one finds a corre- 

ponding strain scale 2 ε ∗
pl 
πR 2 /l 2 ≈ 0 . 195 , in close agreement with

t = 0 . 2 . 

The interpretation of γt in the framework of the present elasto- 

lastic model is not straightforward because of the involved dis- 

ributions of slip amplitudes in Eq. 3.4 . Starting from the quench 

tate, if one assumes constant γt and slip orientation, then �γ (n 
pl 

an be interpreted in Eq. 3.9 as an accumulated plastic strain. How- 

ver, the model deals with randomly oriented local slip systems. 

he characteristic strain γt is thus expected to be an upper esti- 

ate of the local plastic strain necessary to converge to the steady- 

tate. One can estimate the average slip amplitude of the first plas- 

ic rearrangement in the quenched state to assess the rapid relax- 

tion toward a steady-state. A rough approximation of this first slip 

mplitude for T p = 0 . 32 is given at the element scale by the av-

rage 〈 δ ˜ τ c 〉 /G q ≈ 0 . 06 which is slightly smaller. This estimate is,
6 
owever, closer if we consider the optimized γt ≈ 0 . 1 computed 

rom Eq. 4.1 (see below). In any case, this result confirms that the 

enewal process in hard glasses takes place almost instantaneously, 

nd stable amorphous solids locally forget their initial state after 

he very first plastic events. 

In sharp contrast, the convergence toward steady-state found in 

tomistic simulations is much slower for the high parent temper- 

tures, as shown in Fig. 5 . In this case, the unstable glasses expe- 

ience progressive hardening akin to mechanical annealing. A good 

atch is found between the atomistic and elasto-plastic models for 

 value γt ≈ 2 , meaning that each element has to undergo many 

lastic rearrangements before reaching a 〈 
xy 
ext 〉 value comparable 

o the steady-state plateau. 

A critical parent temperature, featuring the quickest asymp- 

otics between the fast strain-softening and slow strain-hardening 

egimes, is found in the vicinity of the mode coupling tempera- 

ure [47] , for 0 . 37 < T p 

< 0 . 4 . As discussed above, the reason is that

or the mode coupling temperature, the quench state properties are 

ery close to the steady-state ones if we ignore plasticity-induced 

nisotropy [1,7] . In this case, the transient regime vanishes, leading 

o a negligible parameter gap (λ − λs ) , and thus an undeterminate 

alue of the relaxation strain γt . 

In summary, the picture reported above suggests a dependency 

f the characteristic plastic strain γt on the parent temperature T p 

. 

his finding is key to understanding the plasticity of glasses better. 

ince the systems evolve in athermal conditions, under the same 

oading protocol, and the compositions of all the glass samples are 

dentical, differences in the dynamics must be necessarily linked to 

ifferences in local quench structural properties. Thus, to account 

or a dependency on structural properties, we generalize the mem- 

ry model of Eq. 3.9 by considering a correction that depends on 

he local value of λ as 

t = γ̄t 

(
λ(n 

λs 

)
β (4.1) 

In this equation, the parameters γ̄t and β are intrinsic to the 

thermal system dynamics and do not depend on parent tem- 

erature or initial conditions. It means that γt now depends on 

λ − λs ) ; hence, we have lost the simple first-order character of 

q. 3.8 , but still, everything is local during the structural evolution 

rocess. 

For simplicity, the same correction based on λ is used for the 

ther structural properties k and G . Strikingly, this corrected model 

llows for a rather accurate quantitative agreement in the stress- 

train response, but this time over the whole temperature range 

s reported in Fig. 1 with γ̄t = 0 . 2 and β = −3 . 3 . Additional com-

arisons between the elasto-plastic model with the enriched rela- 

ion Eq. 4.1 and the atomistic model are provided in Section Ap- 

endix A . Details of the fitting procedure and the estimated pa- 

ameters are given in Section Appendix B . 

.3. Evolution of elastic modulus 

Plastic deformation is known to induce changes not only in the 

ocal yield stresses but also in the elastic moduli [33] as a con- 

equence of structural rejuvenation. As discussed in Section 3.4 , 

he model considers the local evolution of the shear modulus 

ith plastic deformation, assuming an evolution law first similar 

o Eq. 3.9 , and then corrected by Eq. 4.1 . However, elastic fields

ere computed for computational efficiency by considering only 

n average homogeneous G . To further check the consistency of 

he proposed approach, we compute these average shear moduli 

nd compare them with the effective ones computed in atomistic 

imulation as a function of strain. 

To investigate elastic nonlinearities, the shear moduli are mea- 

ured in the atomistic simulations in the loaded and the unloaded 
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Fig. 6. Global effective shear modulus vs. applied strain for different parent temper- 

atures T p , obtained from the elasto-plastic model (continuous lines), and the atom- 

istic model in loaded states (open circles, dotted lines) and in unloaded states (full 

circles, dashed lines). 
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Fig. 7. Top: local von Mises strain ε vm maps for different applied deformations γext 

(columns) and parent temperatures T p (rows) computed from atomistic simulations 

(AT) and the elastoplastic model (EP). Bottom: ε vm standard deviation as a function 

of γext for different T p obtained from the elasto-plastic model (continuous lines) 

and the atomistic model (open circles, dashed lines). 
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tates, as shown in Fig. 6 . The unloading is carried out quasi- 

tatically down to zero macroscopic shear stress. The unloading 

enerates little plastic activity in agreement with [7] . This proce- 

ure, therefore, allows us to separate elastic nonlinearities from 

he effect of structural rejuvenation induced by plasticity. 

Changes in modulus in the loaded state show a rapid drop 

n stiffness, especially at large external stresses, in stable glasses 

hat feature a stress overshoot. This rapid drop is absent from the 

ata in the unloaded state, which leads to the conclusion that it 

s mainly due to the increased external stress and, thence, elastic 

onlinearities. The variation of the modulus of structural origin in 

he elasto-plastic model is described from the threshold evolution 

quations by replacing λ with G in Eq. 3.9 and Eq. 4.1 . The com-

arison is made between the atomic simulations in the unloaded 

tate and the calibrated elasto-plastic model in Fig. 6 . 

Although the evolution of the shear modulus was not part of 

he model calibration, this simplified modelling approach for the 

volution of elastic properties can qualitatively reproduce the vari- 

tions in the effective shear modulus obtained from atomistic sim- 

lations. Nevertheless, in agreement with [45] , we note that the 

verage macroscopic stress response is nearly unaffected if we ne- 

lect the global elastic property variations. 

.4. Local strain fluctuation 

In addition to stress response, the mesoscopic model consis- 

ency is evaluated by analyzing the strain fields, which strongly 

epend on the thermal history of the glasses. For this, the local 

train tensor ε is calculated from the deformation gradient tensor 

 . For the elasto-plastic model, F is numerically integrated for each 

lement by multiplying the tensors F = F n F n −1 · · · F 2 F 1 where F i is

he deformation gradient tensor between the states i and i + 1 sep- 

rating each plastic event. 

For the atomistic simulations, F is computed from the Zimmer- 

an’s approach [52] defining the atomic level deformation gradi- 

nt tensor F α
i j 

for the atom α from the (least square) minimization 

f the function 

 

α = 

n ∑ 

β=1 

2 ∑ 

i =1 

(x 
αβ
i 

− F αi j X 

αβ
j 

) 2 , (4.2) 

here the sum is performed over the n nearest neighbours of α
ocated at a distance less than R CG with X 

αβ and x αβ the distances 

etween the atoms α and β in the reference (the quench state 

ere) and current configurations, respectively. 
7 
To quantitatively compare the local deformations of the two 

odels, the strains are calculated on a length scale corresponding 

o the size of the elements of the elastoplastic model l. We employ 

 length R CG = l/ 
√ 

π so that the considered area is the same for 

he atomistic coarse-grained strains and the mesoscopic elements. 

n addition, F are spatially sampled on the same regular grid as the 

lasto-plastic model (see the mesh reported in Fig. 1 ) by assigning 

o each grid point the atomic value F α
i j 

corresponding to its near- 

st atom. The linear strain tensor ε is then calculated from F and 

nally reduced to a scalar by considering the second invariant of 

he strain tensor ε V M 

. 

Local strain maps are shown in Fig. 7 (top) for the most con- 

rasting parent temperatures, T p 

= 0 . 32 and 0.7, in order to high-

ight the dependence of plastic strain fluctuations with the sys- 

em’s initial preparation. The strain fields calculated from the 

tomistic simulations (AT) and the elastoplastic model (EP) are il- 
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ustrated for three imposed macroscopic strains equal to γext = 

 . 15 , 0.3 and 0.45. 

The elasto-plastic model reproduces with a remarkable agree- 

ent the overall strain patterns observed in the atomistic model. 

or low parent temperatures, the strain field concentrates in the 

orm of shear bands nucleated just after the stress peak, with 

 surrounding matrix almost not plastically deformed. Thereafter, 

he band widens with the increase in imposed deformation. While 

mall fluctuations are still present in systems prepared from a 

igh parent temperature, these soft glasses show statistically ho- 

ogeneous plastic strain. The elasto-plastic model, therefore, con- 

istently captures the ductile-fragile transition with the system 

reparation. 

However, closer inspection of the strain fields computed in the 

esoscopic model shows discrepancies with respect to the atom- 

stic simulations. We indeed observe that the profile of the shear 

ands is less rough in the model, which features straighter bands. 

imilarly, the elastoplastic model for the high parent temperatures 

hows spatial correlations organising themselves into quasilinear 

atterns aligned with the mesh. We attribute part of this behaviour 

o the presence of soft modes in the elastic propagator as shown 

n [53] . 

To quantitatively compare the strain fluctuations of the two 

odels, we report in Fig. 7 (bottom) the strain standard deviation 

td(ε V M 

) as a function of γext . As expected, we observe an in- 

rease in std(ε V M 

) with the applied strain and a decrease in the 

arent temperature. If the elasto-plastic model reproduces these 

rends qualitatively, it underestimates (overestimates) the fluctu- 

tions for high (low) parent temperatures. For the lowest T p 

, the 

ifference can be explained in particular by a slower spreading of 

he shear band with γext and by the plastic event scarcity outside 

he band with respect to the atomistic simulations. In the case of 

oft glasses, the underestimation of std(ε V M 

) can be explained by 

he presence of large amplitude localised plastic rearrangements. 

evertheless, an excellent agreement is found around the ductile- 

rittle transition parent temperature for T p 

= 0 . 34 . Bearing in mind

hat the local strain fluctuations were not part of the adjustment, 

he model calibration thus appears here as a compromise that calls 

or considering other physical ingredients as discussed in the next 

ection. 

. Discussion 

We have shown that the extended elasto-plastic model can 

uantitatively match the macroscale mechanical response in the 

ransient regime. This match is especially true for small T p 

, which 

isplay a softening behaviour well captured by the calibration. 

pecifically, stable glasses are characterized by a memory of their 

uenched state much shorter than in unstable glasses quenched 

rom relatively higher temperatures. Locally, this behaviour can be 

nderstood considering that glasses equilibrated at low T p 

tend 

o have higher yield stresses, but as soon as refreshed by a plas- 

ic slip, the stable packing is almost entirely reshuffled and be- 

omes, on average, softer. On a global scale, the observable soften- 

ng behaviour is caused by the rapid localization of the deforma- 

ion into a shear band. Shear bands are characterized by their soft- 

ess compared to the surrounding matrix [47] , which again sup- 

orts a short memory. In contrast, for large T p 

, the unstable glasses 

re ”slow learners”. In this case, it is difficult to reproduce a long 

emory in this elasto-plastic framework because the entire ele- 

ent is renewed. Hence, the model might compensate for exces- 

ive structural renewal with an increased apparent memory given 

y a larger value of γt . If we exclude the independent quench and 

teady-state calibrations, only the two parameters of the extended 

odel given by Eq. 4.1 are required to match all the glass prepara- 

ion protocols consistently. 
8 
While the physical interpretation of the γt value was dis- 

ussed in Section 4.2 , another question lies in the consistency 

f the calibrated exponents k reported in Table B.1 and B.2 . In 

he limit �τ c → 0 , a scaling law p(�τ c ) ∝ (�τ c ) θ is indeed ex- 

ected, but with a significantly smaller pseudogap exponent θ
in the range 0 . 5 − 0 . 7 [46,54] ). The exponent k − 1 (to compare

ith θ ) however correspond to the τ c renewal distributions and 

ot to �τ c . Once decorated from internal stresses, we recover 

robability distribution functions for �τ c in the steady state with 

n exponent θ ≈ 0 . 6 , in excellent agreement with the literature 

esults [55] (with a plateau at low �τ c due to finite size ef- 

ects [56,57] ). For the quench states, the scaling is nevertheless 

ess convincing. We ascribe this discrepancy to the caricaturally 

imple procedure employed to mimic the quench states, which 

nly requires mechanical equilibrium and ignores the stress cor- 

elations observed in the inherent states [14] . Note that if atom- 

stic simulations have shown that θ is almost independent of the 

uench state [58–60] , this is not the case for elasto-plastic models 

or which the question of a relevant preparation protocol remains 

pen. The approaches developed in our work provide a first step 

o answering this. 

As for the strain fluctuations discussed in Section 4.4 , some 

mall discrepancies regarding the stress response between the 

lasto-plastic and atomistic models should also be pointed out. 

irst, Fig. 1 shows that the elasto-plastic model predicts slightly 

arger stresses than atomistic simulations in the pseudo-elastic 

egime at small applied strains for unstable glasses produced from 

igh parent temperatures. Second, stress fluctuations are slightly 

verestimated as shown in Fig. A.8 for stable glasses. The ori- 

in of these two discrepancies can be presumably traced back to 

he statistics of plastic rearrangement amplitudes. For high T p 

, the 

lip amplitudes are underestimated in the pseudo-elastic regime, 

lightly overestimating the stress response. 

On the other hand, part of the overestimation of the fluctua- 

ion in the low T p 

glasses comes from the constant coupling rela- 

ionship between local thresholds and stress drops. These ampli- 

udes are controlled by Eq. 3.4 , supposedly independent of plastic 

train in contrast to yield stress renewal distributions, which links 

tructure relaxation through its dependence on the overcome slip 

hresholds. However, at the small scales at which slip events occur, 

lastic heterogeneity becomes relevant [61,62] . Thus, a more accu- 

ate description of a slip event would explicitly consider the effects 

f local elastic heterogeneity as part of the event. Locally evolving 

lastic properties might also impact the event amplitude and the 

tatistics of slip orientations. 

The small strain regime may also suffer from the independent 

et of stresses and local slip systems during the quench state cal- 

bration, which neglects possibly more complex correlations be- 

ond those introduced by the stability requirement discussed in 

ection 4.1 . The effect of such a naive preparation protocol is pre- 

umably more significant in the case of high parent temperature 

lasses, where yield stresses are lower than for low T p 

glasses. A 

odelling approach able to reproduce quenched states by explic- 

tly incorporating the physics of the parent liquid state might thus 

e a way to improve the small strain responses [51] . Moreover, the 

bserved discrepancies might be linked to some simplifying mod- 

lling assumptions, such as the postulated linearity, the neglection 

f finite deformation/rotation effects, the use of highly structured 

esh, or the lack of convection [63] as discussed at length in [1] . 

. Conclusions 

In this paper, we have extended the description of the mechan- 

cal response of an elasto-plastic model of amorphous solids to the 

ransient regime and for a wide range of initial system stabilities. 

he calibration of the model reproduces the different quench states 
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f  
btained from the local atomistic data. A statistical model of the 

volution of slip thresholds based on local plastic strain increments 

s proposed. This model shows an excellent agreement with atom- 

stic simulations and makes it possible to reproduce the transient 

echanical responses of glasses. 

In stable glasses, showing a stress peak followed by strain- 

oftening and localization, the transition to the stationary state is 

xtremely rapid and occurs from the first plastic rearrangements. 

onversely, the unstable glasses, quenched from high tempera- 

ures, require a much larger plastic strain and slowly harden to- 

ards the steady state. However, we show that to match the full 

ange of behaviours within a unified model, it is necessary to ex- 

licitly consider the effects of the initial structure in the system’s 

emory. With this correction, the model reproduces the transient 

esponses with good precision for all the parent temperatures. 

In total, two parameters are used to capture the instantaneous 

echanical state ( k and λ), and a third parameter ( γt ) is introduced

o describe their evolution along shear. In this respect, the main 

essage of our work is not the parameter fitting procedure but 

he fact that with only three parameters, it is possible to account 

recisely for the mean behaviour, its transient evolution from dif- 

erent initial states and its fluctuation in a continuous setting. 

Future improvements should be considered regarding the con- 

istent match between atomistic and elasto-plastic models. First, 

n the elastoplastic model, one could deal explicitly with elastic 

eterogeneity and anisotropy, which are known to become domi- 

ant at small scales [61,62] . Another point would consist in assess- 

ng the effects of a constant FEM mesh. It is indeed expected that 

he ST size and density depend on thermomechanical history [64] . 

n this respect, the usage of non-uniform [29,50] and history- 

ependent discretization would be of interest to explore the limit 

nder which the continuous approach breaks down. As shown here 

nd in previous studies [1,45] , the frozen matrix method seems to 

verestimate the measurements of the threshold values in atom- 

stic simulations because of rigid boundary conditions. Another av- 

nue would therefore consist in taking into account the deforma- 

ion of the surrounding matrix, for instance, by resorting to flex- 

ble and elastic boundary conditions developed initially for dislo- 

ations [65] . All these enrichments are related to small-scale re- 

ponses. As such, they could serve not only for more quantitative 

ulti-scale approaches but also as a guide for a fundamental un- 

erstanding of amorphous plasticity. 

Several perspectives can be drawn from the present study for 

arger and continuous scales. To leverage the computational ef- 

ciency of elasto-plastic models, homogenization techniques and 

oarser descriptions are logical next steps. Here, we have assumed 

hat any deformation completely renews the local slip systems 

onfiguration within a deforming element. However, this is true 

nly if the discretization length l is close to or below the ST size. 

n general, for larger l, the structure of a portion of the element is

xpected to remain unaltered. The non-renewed portion leads to a 

cale-dependent memory term, which could be translated to evo- 

ution laws with the same procedure as in this work, but with a 

t appropriately weighted by the relative size of the non-renewed 

tructure relative to the element size. Another avenue would be to 

tudy the relevant statistical fluctuations retained during a coarse- 

raining procedure. A goal could be to transfer the knowledge ac- 

uired from mesoscale elasto-plastic approaches to existing engi- 

eering codes for submicron scale applications, where large plas- 

ic fluctuations and intermittency cannot be ignored. Finally, the 

resented approach could be straightforwardly generalized to other 

morphous materials, such as covalent glasses or granular media, 

otentially enriching our understanding of the similarities (or lack 

f) between these materials regarding plastic activity and struc- 

ural evolution. The mechanical response for three-dimensional 

ystems [66] and at finite temperature could also be considered. 
9 
n principle, these developments do not pose a problem, allowing 

his method to be generalized to more realistic systems. 
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ppendix A. Evolution of stress fluctuations 

The macroscopic stress fluctuations are computed as a function 

f the applied strain. The comparison is made between the atomic 

imulations and the calibrated elasto-plastic model, taking into ac- 

ount the memory effect through the nonlinear relation Eq. 4.1 . 

ig. A1. External stress drops (top) and increments (bottom) vs. applied strain, for 

ifferent parent temperatures T p . The continuous lines correspond to the elasto- 

lastic model and the dashed lines to the atomistic one. 

The fluctuations are quantified through the variations of stress 

ncrements �
xy 
ext and stress drops δ
xy 

ext as reported in Fig. A.8 . 

he drops (increments) of macroscopic stresses increase (decrease) 

uring the pseudo-elastic regime to quickly stabilize around a 

lateau, slowly converging to a steady state. A good agreement 

s obtained between the elasto-plastic model and atomistic sim- 

lations. However, a deviation is observed for the most stable 

lasses obtained from T p 

= 0 . 32 for which the increments and 

rops are slightly greater than atomistic simulations. The two ef- 

ects nevertheless compensate each other, thus giving an average of 

he macroscopic stresses in good agreement with the microscopic 

odel as shown in Fig. 1 . Since this discrepancy is observed only 

or the most stable glass and after the peak stress, it is presumably 

elated to shear banding and strain localization where the small 

train framework of the elastoplastic model ceases to be valid. 

ppendix B. Fitting procedure 

The stationary state parameters are known from [1] , except 

or the value of χ . This change is due to the law γmax (τ c ) in
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Table B1 

Stationary state parameters. 

λs 2.05 

k s 2.18 

χ 1.81 

G s 13.2 

B s 59.0 

Table B2 

Quenched state parameters. 

T p std[dev ( ε 0 
pl 
)] G q λq k q 

0.32 0.012 17.6 2.47 3.42 

0.34 0.012 15.6 1.97 3.49 

0.37 0.013 14.5 1.53 4.09 

0.40 0.014 13.0 1.30 4.20 

0.50 0.015 11.7 1.14 4.39 

0.70 0.015 10.9 0.94 5.40 

Table B3 

Transient regime parameters. 

γ̄t 0.2 

β –3.3 
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q. 3.5 that is used in this work, in contrast with the law γmax (τ )

f [1] . The stationary state parameters are given in Table B.1 . 

The values of G q are measured from the quenched effec- 

ive elastic response of the atomistic samples. The value of 

td[dev ( ε 0 
pl 

)] is calibrated from the quenched state average von 

ises stress ˜ 
vm 

. The value of λq and k q are calibrated from the 

uenched state average local yield stress 〈 ̃  τ c 〉 and the standard 

eviation std ( ̃  τ c ) . These local quantities are measured using the 

iggest patch size available, i.e., R = 30 . The quenched state param- 

ters are given in Tab. B.2 . 

Finally, the transient parameters γ̄t and β were calibrated by 

sing the stationary and quenched state calibrations. In this case, 

 global fit to all the stress-strain curves corresponding to differ- 

nt parent temperatures T p 

was performed. These parameters are 

eported in Table B.3 . 
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