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Atomic nonaffinity as a predictor of plasticity in amorphous solids
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Structural heterogeneity of amorphous solids presents difficult challenges that stymie the prediction of plastic
events, which are intimately connected to their mechanical behavior. Based on a perturbation analysis of the
potential energy landscape, we derive the atomic nonaffinity as an indicator with intrinsic orientation, which
quantifies the contribution of an individual atom to the total nonaffine modulus of the system. We find that the
atomic nonaffinity can efficiently characterize the locations of the shear transformation zones, with a predicative
capacity comparable to the best indicators. More importantly, the atomic nonaffinity, combining the sign of
the third-order derivative of energy with respect to coordinates, reveals an intrinsic softest shear orientation.
By analyzing the angle between this orientation and the shear loading direction, it is possible to predict the
protocol-dependent response of one shear transformation zone. Employing this method, the distribution of
orientations of shear transformation zones in model two-dimensional amorphous solids can be measured. The
resulting plastic events can possibly be understood from a simple model of independent plastic events occurring
at variously oriented shear transformation zones. These results shed light on the characterization and prediction
of the mechanical response of amorphous solids.
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Understanding how the heterogeneity of amorphous struc-
tures correlates with mechanical response remains a signif-
icant challenge. Various indicators have been proposed to
quantitatively predict where the material is susceptible to
plastic transformation. Some of these only consider the struc-
tural geometry, such as free volume [1,2], fivefold symmetry
[3,4], local deviation from sterically favored structures [5],
etc. Others of these take the interaction between particles into
consideration, like low-frequency normal modes [6–9], poten-
tial energy [10], local elastic modulus [11], flexibility volume
[12], mean-square vibrational amplitude (MSVA) [13], local
thermal energy [14,15], local yield stress (LYS) [16,17], and
saddle-point sampling [18]. Recently, machine learning has
also proven to be a promising statistical tool to build a relation
between structure and plastic rearrangements [19–22].

Nevertheless, most of these indicators are inherently scalar
quantities, while the deformation mechanism must have an
oriented shearlike character [23]. This is clearly borne out by
the fact that the orientational nature of shear transformation
zones (STZs), the defects purported to be associated with
plastic rearrangement, can be measured through their high
sensitivity to the deformation protocol. As verified in simu-
lations, under different loading orientations, the same glass
may exhibit contrasting mechanical responses during which
entirely different STZs are activated [14,16–18,24].
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Obtaining the mechanical response along different orienta-
tions of one STZ may be accomplished in a number of ways:
by measuring the LYS [16,17,25], by calculating the linear re-
sponse of local thermal energy with respect to strain (LRLTE)
[15], or by sampling low-energy events [18]. All of these
methods require computationally expensive calculations. LYS
requires prior calculations to determine the appropriate prob-
ing length scale and direct computation of response along
many orientations [17]. LRLTE must be recalculated under
the specified mechanical load to compare different orien-
tations [15]. Sampling low-energy events only captures the
subset of events that are inherently viscoplastic, and requires
the harvesting of large numbers of events so as to find the few
lowest-energy events.

In this paper, based on a perturbation analysis of the energy
landscape, we derive a parameter-free and low-cost indicator,
termed the atomic nonaffinity. Since this indicator is derived
from a perturbation method, the atomic nonaffinity can pre-
cisely predict the mechanical behavior near the reference state
and becomes less effective as the system is deformed. We
show that atomic shear nonaffinity, i.e., the shear part of
the atomic nonaffinity, can efficiently predict the locations
of plastic rearrangements during shear deformation of two-
dimensional amorphous solids with an accuracy comparable
to the best known indicators. The relevant orientational in-
formation of STZs is naturally reflected in this parameter,
and analysis of the atomic shear nonaffinity indicates that the
softest shear orientation of the triggered STZs aligns with
the orientation of the applied shear protocol. Moreover, the
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FIG. 1. Analysis of configuration that was sheared to be close to
the triggering of a plastic event. (a) The spatial distribution of the nor-
mal mode with lowest eigenvalue. (b) The D2

min field [26] after shear
with strain of �γ = 6 × 10−5 in the orientation of θL = −π/4. The
inset shows the stress-strain curve. (c) The predicted triggering strain
(line) and triggering strain from simulation (circles) as a function of
shear angle θL. (d) The magnitude of nonaffine modulus contribution
from the lowest mode at different θL. The blue line represents the
range of θL, where the plastic event can be triggered, while the
red line represents the range of θL, where the plastic event cannot
be triggered. (e) The spatial distribution of Ĝ(θL )sign(�γc(θL )) for
different orientations. (f) The atomic shear nonaffinity in different
orientations for the atom that has the maximum magnitude of atomic
shear nonaffinity in (e).

distribution of orientations of activated STZs is calculated,
and we show that this distribution can be understood through
a simple model that assumes independent STZs with isotropi-
cally distributed soft orientations.

To motivate the relevance of the atomic nonaffinity we first
consider a special state in which a two-dimensional amor-
phous system is deformed to be close to the triggering strain
of a plastic event via a protocol of athermal quasistatic shear.
The two-dimensional glassy system, comprised of 104 parti-
cles, was prepared via the same gradual quench and the same
smoothed Lennard-Jones potential described in Refs. [16,17].
The spatial distribution of the normal mode with the lowest
eigenvalue, referred to here as the lowest mode (LM), is
shown in Fig. 1(a). A plastic event will be triggered in the
region (see Fig. S1 in the Supplemental Material (SM) [27])
where the LM is localized if the system is further sheared
in this direction, denoted as the reference direction, θL = 0.
However, if the system is further sheared with similar small

strains or even larger ones in other directions, such as θL =
−π

4 or π
4 , the triggering of the same plastic event is not

observed [see Fig. 1(b) and Fig. S1 in the SM]. Obviously,
this protocol-dependent mechanical behavior of amorphous
systems cannot be clearly understood solely with scalar indi-
cators. Here, we introduce the second and the third derivatives
of the energy with respect to the vibrational coordinate (q∗)
of the LM, denoted as λ∗ and η∗, respectively, and the first
derivative of stress of the system with respect to q∗ (denoted
as ∂σxx

∂q∗ , ∂σyy

∂q∗ , and ∂τxy

∂q∗ , respectively). The triggering strain for
different shear orientations can be derived as (see the SM [27]
for details of derivation)

�γc(θL) = λ∗2

2η∗V ∂τ (θL )
∂q∗

, (1)

where V is the volume of the system and ∂τ (θL )
∂q∗ is the first

derivative of the shear stress with respect to q∗ at θL, which
is equal to − 1

2 ( ∂σxx
∂q∗ − ∂σyy

∂q∗ ) sin 2θL + ∂τxy

∂q∗ cos 2θL. A similar
form was also obtained from prior analyses of the plastic
mode [28]. Moreover, a softest shear orientation of the LM,
θ̃s, associated with the smallest positive triggering strain can
be defined as

tan 2θ̃s = −
(

∂σxx
∂q∗ − ∂σyy

∂q∗

2∂τxy

∂q∗

)
, with

∂τ (θs)

∂q∗ η∗ > 0 and θs ∈
(
−π

2
,
π

2

]
. (2)

Here we take the symmetry of shear into consideration and
note that shear with orientation of θs is equal to shear with
orientation of θs + π . To verify the validity of the predic-
tions of Eqs. (1) and (2), further simulations were performed
to directly measure �γc(θL) and θ̃s. As shown in Fig. 1(c),
the predictions agree well with the simulation results, which
suggests that the analysis of LM is successful for calculating
the orientation-dependent mechanical response of the system
close to the instability. When the system is far from the insta-
bility, we suppose that all the modes, especially the ones with
small eigenvalues, should be taken into consideration.

To develop an indicator that takes all modes into con-
sideration while maintaining the orientational information of
each mode, we investigate how different modes contribute to
the system modulus. Following Maloney [6,29], the elastic
constants of amorphous solids can be derived from the second
derivative of the total potential energy with respect to strain
in athermal quasistatic deformation. These can be rewritten in
the coordinates of the eigenbasis as

Ci jkl = 1

V

(
∂2U

∂εi j∂εkl
+

∑
m

∂2U

∂qm∂εi j

dqm

dεkl

)
, (3)

where U is the potential energy, and qm is the mth coordinate
of the eigenbasis of the Hessian matrix ( ∂2U

∂r0i∂r0 j
). The first

term (Born term) of Eq. (3) accounts for affine displacement
and is insensitive to the structural stability [30]. The second
term, containing the contribution from nonaffine relaxation in
each normal mode, termed the nonaffine modulus (C̃) here,
is sensitive to the structural stability. By expressing the stress
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as σi j = 1
V

∂U
∂εi j

and the nonaffine “velocity” in quasistatic de-

formation as dqm

dεkl
= − 1

λm

∂σkl
∂qm

[6], where λm is the eigenvalue

of the mth normal mode, the nonaffine part, C̃i jkl , can be
rewritten as

C̃i jkl =
∑

m

C̃i jkl,m =
∑

m

− V

λm

∂σi j

∂qm

∂σkl

∂qm
, (4)

where C̃i jkl,m is the contribution from the mth normal mode,
which is always negative. In shear protocols, the shear mod-
ulus is the most important elastic constant. Thus, we focus
on the nonaffine shear modulus (G̃) and the contribution from
each mode (G̃m). The G̃m can be calculated by

G̃m(θL) = − V

λm

(
∂τ (θL)

∂qm

)2

, (5)

which depends on the orientation θL. The nonaffine shear
modulus contribution of the dominant LM, G̃LM, for the state
described in Figs. 1(a)–1(c) is shown in Fig. 1(d). The blue
line represents the orientational range, where �γc > 0, i.e.,
∂τ (θL )
∂q∗ η∗ > 0 following Eq. (1), and the event can be triggered.

The red line represents the orientational range, where the
event cannot be triggered. Moreover, a softest shear orienta-
tion can also be defined by the largest value of G̃LM in the blue
range which is and should be consistent with the θ̃s derived
from Eq. (2).

So far our results have been discussed with respect to
eigenbasis. To develop an indicator expressed in terms of
atomic quantities, we borrow an idea from the literature re-
garding the participation fraction [7,9]. By expressing the
normalized eigenvector in the atomic coordinates as �m =∑

n,α cmnαenα , where enα is a unit vector corresponding to the
displacement of the nth atom in the α(= x or y) direction, and
cmnα is the projection of the mth eigenvector onto enα , the C̃i jkl

can be rewritten as

C̃i jkl =
∑

n

Ĉi jkl,n =
∑

n

∑
m,α

− V

λm

∂σi j

∂qm

∂σkl

∂qm
c2

mnα. (6)

Here Ĉi jkl,n is the atomic nonaffinity of the nth atom. As most
local plastic rearrangements are shearlike [26,31], the atomic
shear nonaffinity (ASN) is the most important component
when investigating the STZs and can be written as

Ĝn(θL) =
∑
m,α

− V

λm

(
∂τ (θL)

∂qm

)2

c2
mnα. (7)

Obviously, the value of Ĝn depends on the orientation θL. As a
result, the spatial distribution of Ĝn in the previous case shown
in Fig. 1(e) exhibits a clear orientation-dependent behavior in
the region where the plastic event is located. More negative
values of Ĝn mean that the corresponding atom is easier to
trigger in the orientation θL. The Ĝn distribution calculated
at different orientations indicates that θL = 0 is the easiest
shear direction for the plastic event when compared with
θL = π

4 and π
2 , which is consistent with the direct loading

test in Fig. 1(b) and Fig. S1 in the SM [27]. Moreover, the
atom located in the core region has the maximum magnitude
of atomic shear nonaffinity, denoted as Ĝc(θL). Figure 1(f)
shows the θL-dependent Ĝc, which has a similar shape as

the G̃LM. This is attributed to the fact that the LM with the
smallest eigenvalue dominates the variation of Ĝc, which can
be inferred from Eq. (7). Thus, we can define the softest shear
orientation for the nth atom as the softest shear orientation of
the mode that dominates the variation of Ĝn. The softest shear
orientation of the nth atom is defined as

θn,s = θ̃i,s, i = argmaxm

∑
α

|G̃m(θ̃m,s)|c2
mnα, (8)

and the calculated softest shear orientation of the core atom
(θ c

s ) is shown in Fig. 1(f). The consistency of the proposed
softest shear orientations for one STZ from the three param-
eters, i.e., the directly calculated triggering strain [Fig. 1(c)],
the nonaffine modulus of the lowest mode [Fig. 1(d)], and the
atomic shear nonaffinity [Fig. 1(f)], implies that the θs defined
from atomic shear nonaffinity is effective for characterizing
the orientations of STZs.

Now that we have seen the predictive capacity of atomic
shear nonaffinity regarding the protocol-dependent mechan-
ical response of a plastic event close to instability, we can
ask, “What if the system is not close to instability?” and
“How predictive is this indicator?” Predicting plastic events
in an amorphous system by analyzing the local indicators
of initial structure has been extensively studied in the liter-
ature [7–9,14,16,18,24,28,32,33]. To compare the reliability
of local indicators for predicting plastic events, 100 two-
dimensional samples prepared with the same thermal history
as the previous sample were employed for local properties
calculations. The athermal quasistatic shear deformation with
a strain step of �γxy = 10−5 was then applied to each sample,
and each stress drop in the stress-strain curve was associated
with the resulting atomic rearrangements corresponding to
one plastic event. The nonaffine rate [6] was calculated for
the configurations just before the stress drops, and the atom
with maximum nonaffine rate was identified as the core atom,
whose index is denoted as IDN for the N th plastic event.
To compare the success of different indicators, we transform
those indicators to a rank correlation (RC) value following the
analysis performed by Patinet et al. [16] as

RC
 (n) = 1 − 2CDF
 (n), (9)

where 
 is one of the indicators, CDF
 is the cumulative
distribution function for the 
 of all atoms, and CDF
 (n) is
the function value in the range of [0,1] based on the value
of 
 for the nth particle. The spatial distribution field of
the calculated RCĜ with θL = 0 is shown in Fig. 2(a). The
first ten plastic events in shear protocols with θL = 0 are
almost all located at high-RCĜ regions, which implies the
highly predictive power of Ĝ. To quantitatively compare the
predictive power regarding plastic events for different local
indicators, the relationship between the locations of plastic
events and the corresponding values of local indicators is
described by the average of RC
 (IDN ) over 100 samples. The
average RC
 (IDN ) of investigated local indicators, such as the
participation fraction (PF) [7–9] in the lowest 1% of normal
modes, the nonaffine rate (NR) [6], the MSVA [13], the LYS
[16], and the ASN, are shown in Fig. 2(b). The LYS presents
the highest predictive power in the early stage, since nonlinear
response to shear is considered. The MSVA and ASN show
comparable predictive power, and the other indicators have
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FIG. 2. Predicting plastic events by analyzing initial configura-
tions. (a) The correlation field of atomic shear nonaffinity Ĝ(θL =
0) and the locations of the first ten plastic events (black circles)
triggered in shear protocols with θL = 0. (b) Correlation between
the indicators including local yield stress (LYS), mean-square
vibrational amplitude (MSVA), atomic shear nonaffinity (ASN), par-
ticipation fraction (PF), and nonaffine rate (NR) with the locations of
plastic events as a function of the index of the events. Averages are
taken over windows of five events. The error bar at each window
represents the standard deviation of the mean. (c) Orange circles
represent the atoms with RCĜ > 0 and |θs| < π

4 . Black circles mark
the locations of the first ten plastic events with θL = 0. (d) Green
circles represent the atoms with RCĜ > 0 and |θs| > π

4 . Triangles
mark the locations of the first ten plastic events with θL = π

2 .

lower predictive power than those three. It is worth noting
that the predictive power of the indicators depends on the
stability of configurations. In the SM [27] we show the pre-
dictive power of these indicators for configurations prepared
by instantly quenching from high-temperature liquids systems
in which MSVA and ASN outperform LYS. We also note that
the orientational information in ASN is incomplete and it, as
a modulus, has the same value for θL = 0 and π

2 , while local
regions generally have different mechanical behavior for those
two protocols.

As discussed in Fig. 1, we expect that the plastic events
induced when shearing along direction θL should be located
at the atoms with |θs − θL| < π

4 , and here we test this ex-
pectation in one of the previous samples. We focused on the
“soft” atoms in the sample with RCĜ > 0, and distinguished
them by the value of θs. The correlation between the atom
with RCĜ > 0 and |θs| < π

4 (|θs| > π
4 ) and the first ten plastic

events of θL = 0 (θL = π
2 ) direction is illustrated in Fig. 2(c)

[Fig. 2(d)]. The correlation in both Figs. 2(c) and 2(d) indi-
cates that the predictive power can potentially be increased
by screening for regions where the intrinsic softest orientation
of Ĝn aligns with the deformation protocol. (Similar results
about protocols of θL = π

4 and −π
4 are shown in the SM [27].)

However, there still exist some number of events that are
not caught by the criterion |θs − θL| < π

4 . This can be at-

, −1 ,

, −1,

, −1,

, ,

, ,

Before triggering

After triggering

ID −1 IDN: Index of the core atom for Nth event(a)

(b) (c)

FIG. 3. Distribution of the softest shear orientations for plastic
regions. (a) A schematic diagram introducing the notations used in
this figure. (b) The distribution of the softest shear orientations for
all the plastic events that are triggered before shear strain 0.12 in ten
samples. The softest shear orientations are calculated based on the
configuration just before each event. The red line follows the function
4
π

cos2(2�θ ). (c) Similar to (b), but the softest shear orientations for
each event are calculated based on the configurations just after the
previous event.

tributed to the rotation of θs during deformation, since the
θs is calculated mainly based on a second-order perturbation
method, and higher-order terms and nonlinear interactions be-
tween different modes can lead to the rotation of θs. To obtain
the statistics of the rotation of θs, the softest shear orientations
of core particles of all the plastic events before shear strain
0.12 with θL = 0 in ten samples are calculated based on the
configurations just before each event or just after the last event
[illustrated in Fig. 3(a)]. The distribution of the calculated
θs of those core particles in the configurations just before
triggering are shown in Fig. 3(b) and all θs satisfy the criterion
|θs − θL| < π

4 , which is what we expected for systems close
to instability, as discussed previously. Moreover, the peak of
probability density is located at θL, implying that the region
with the intrinsically softest orientation closest to the imposed
shear orientation is easiest to trigger. However, the distribu-
tion is broadened as shown in Fig. 3(c) for the calculated
θ c

s based on the configurations just after the triggering of the
previous event. In this analysis only approximately 75% of the
plastic events satisfy the criterion. More statistics about how
orientations calculated by our perturbation method change are
presented in the SM [27]. Because plastic events tend to hap-
pen at STZs closely aligned with the orientation of the shear
protocols, we also show that the precision of prediction for
different indicators can be improved by screening for potential
STZs with the softest shear orientations in the SM [27].

The distribution of orientations of the triggered plastic
event shown in Fig. 3(b) is regular. It can be understood by a
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simple model of independent plastic events with intrinsic ori-
entations. In this model, we assume that amorphous solids are
isotropic and that the shear-orientation-dependent triggering
strain can be derived from Eq. (1) as

γc(θL) = γc(θs)

cos[2(θs − θL)]
, (10)

where θs is the softest shear orientation of a STZ. If we
assume that the number density for a particular softest shear
direction θs at different triggering strains γc(θs) (noted as γc,s)
follows a power law ρ(γc,s) = Aγ α

c,s [34–37], the probability
density distribution of orientations ρ̂(θs − θL) [denoted as ])
will follow (see the SM [27] for details of derivation)

ρ̂(�θ ) = k cosα+1(2�θ ). (11)

The probability density distribution in Fig. 3(b) corresponds
to α = 1, as it closely fits a distribution function 4

π
cos2(2�θ )

[red line in Fig. 3(b)]. These results are also supported by the
probability distribution function of local yield stress of the
samples, in which α ≈ 1.1, as shown in Ref. [16].

In summary, we have derived a general and parameter-free
indicator, the atomic nonaffinity. It is well defined and is easy
to apply in systems beyond the two-dimensional Lennard-
Jones system discussed here. The atomic nonaffinity has a
clear physical meaning in that the summation of atomic non-
affinities corresponds to the total nonaffine modulus of the

system. The softest shear orientation of each region is de-
fined based on the atomic shear nonaffinity and stems from
anisotropy of the shear stress derivative against the coordinate
of the low-frequency mode in different orientations. When
combined with the sign of the third-order derivative of energy
with respect to coordinates, it reveals the intrinsic orienta-
tion of the plastic rearrangement and directly connects to the
anisotropic mechanical response of local regions, which is im-
portant for understanding aspects of the mechanical behavior
of amorphous solids not directly reflected or defined in other
indicators. As atomic nonaffinity is developed based on the
nonaffine response of atoms upon deformation, it naturally has
a good correlation with the plastic events, comparable to the
best indicators. Mechanical behavior must be correlated with
structure, and we anticipate that this method will be important
for elucidating the structural origin of the anisotropic mechan-
ical response in specific systems.

B.X and P.F.G acknowledge financial support by the Sci-
ence Challenge Project (Grant No. TZ2018004) and the
National Natural Science Foundation of China (NSFC, Grant
No. U1930402). M.L.F acknowledges support provided by
NSF Grant Award No. 1910066/1909733. We also acknowl-
edge the computational support from Beijing Computational
Research Center. Insightful discussions with members of the
“Beijing Metallic Glass Club” are highly acknowledged by
B.X and P.F.G.

[1] F. Spaepen, Acta Metall. 25, 407 (1977).
[2] F. Zhu, A. Hirata, P. Liu, S. Song, Y. Tian, J. Han, T. Fujita, and

M. Chen, Phys. Rev. Lett. 119, 215501 (2017).
[3] M. Wakeda, Y. Shibutani, S. Ogata, and J. Park, Intermetallics

15, 139 (2007).
[4] Y. Hu, F. Li, M. Li, H. Bai, and W. Wang, Nat. Commun. 6,

8310 (2015).
[5] H. Tong and H. Tanaka, Phys. Rev. X 8, 011041 (2018).
[6] C. Maloney and A. Lemaître, Phys. Rev. Lett. 93, 195501

(2004).
[7] A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R.

Reichman, Nat. Phys. 4, 711 (2008).
[8] M. L. Manning and A. J. Liu, Phys. Rev. Lett. 107, 108302

(2011).
[9] J. Ding, S. Patinet, M. L. Falk, Y. Cheng, and E. Ma, Proc. Natl.

Acad. Sci. USA 111, 14052 (2014).
[10] Y. Shi, M. B. Katz, H. Li, and M. L. Falk, Phys. Rev. Lett. 98,

185505 (2007).
[11] M. Tsamados, A. Tanguy, C. Goldenberg, and J.-L. Barrat,

Phys. Rev. E 80, 026112 (2009).
[12] J. Ding, Y.-Q. Cheng, H. Sheng, M. Asta, R. O. Ritchie, and E.

Ma, Nat. Commun. 7, 13733 (2016).
[13] H. Tong and N. Xu, Phys. Rev. E 90, 010401(R) (2014).
[14] J. Zylberg, E. Lerner, Y. Bar-Sinai, and E. Bouchbinder, Proc.

Natl. Acad. Sci. USA 114, 7289 (2017).
[15] Z. Schwartzman-Nowik, E. Lerner, and E. Bouchbinder, Phys.

Rev. E 99, 060601(R) (2019).
[16] S. Patinet, D. Vandembroucq, and M. L. Falk, Phys. Rev. Lett.

117, 045501 (2016).

[17] A. Barbot, M. Lerbinger, A. Hernandez-Garcia, R. García-
García, M. L. Falk, D. Vandembroucq, and S. Patinet, Phys.
Rev. E 97, 033001 (2018).

[18] B. Xu, M. L. Falk, J. F. Li, and L. T. Kong, Phys. Rev. Lett. 120,
125503 (2018).

[19] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, and
A. J. Liu, Nat. Phys. 12, 469 (2016).

[20] Q. Wang and A. Jain, Nat. Commun. 10, 5537 (2019).
[21] V. Bapst, T. Keck, A. Grabska-Barwińska, C. Donner, E. D.
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Supplementary Materials for “Atomic nonaffinity as a predictor of1

plasticity in amorphous solids”2

Bin Xu, Michael L. Falk, Sylvain Patinet, and Pengfei Guan3

I. CLOSE TO INSTABILITY OF ONE PLASTIC EVENT4

The two-dimensional system mentioned in the main text was sheared to be very close to5

the triggering strain of a plastic event via a protocol of athermal quasistatic shear. A plastic6

event will be triggered in the region (Fig. S1(a)) where the mode with lowest eigenvalue is7

localized, if the system were to be further sheared in the pre-sheared direction (the reference8

direction θL = 0). However, if the system were to be further sheared in other directions,9

such as θL = π
4
, no plastic event would be observed in the region, as shown in Fig. S1(b),10

even when subjected to a large magnitude of strain.1112

II. TRIGGERING STRAIN OF THE SOFTEST MODE13

In athermal quasistatic shear (AQS), the system is always mechanically stable and must14

reside at a minimum on the energy landscape. The energy of system U can be expanded15

with a third-order Taylor approximation based on the vibrational coordinate q∗ of the softest16

mode and shear strain as17

(a) γ0+ΔγΔθL=0)
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(b) γ0+ΔγΔθL= π/4)
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FIG. S1. The D2
min field after simple shear with θL = 0 (a) and θL = π/4 (b). The loading shear

strain was 6× 10−5. A plastic event was triggered when θL = 0.
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where λ∗ is the eigenvalue, η∗ is the third derivative of energy with respect to coordinate18

q∗, V is the volume of the system, τ(θL) is the shear stress in the shear orientation θL, and19

∆γ = γ − γ0 is the shear strain. We can further formulate the following assumptions:20

� Stress variation along vibrational coordinate q∗ is linear. Then, ∂3U
∂q∗2∂γ

= 0.21

� Affine shear modulus of system remains the same for different vibrational coordinate22

q∗. Then, ∂3U
∂q∗∂γ2

= 0.23

The above assumptions are reasonable as observed in Ref. [1]. At γ0, the initial minimum24

coordinate is q∗0, and we set q∗0 = 0 to simplify the notation. Then, ∆q∗ = q∗− q∗0 = q∗. Two25

stationary points, the initial minimum and saddle point at strain ∆γ, can be obtained by26

solving the following equation27

∂U

∂q∗
=
η∗

2
q∗2 + λ∗q∗ + V∆γ

∂τ(θL)

∂q∗
= 0. (2)

At triggering strain ∆γc, the two roots of Eq. (2) are equal, and28

∆γc(θL) =
λ∗2

2η∗V ∂τ(θL)
∂q∗

. (3)

∆γc(θL) reaches minimum when ∂τ(θL)
∂q∗

reaches maximum. This occurs when the correspond-29

ing orientation θL equals to θs, which is the softest shear orientation defined in the main30

text. From stress transformation rules, we can get31

∂τ

∂q∗
(θL) =

∂τ(θs)

∂q∗
· cos[2(θL − θs)]. (4)

Finally, the relation between ∆γc and the angle can be written as32

∆γc = ∆γc,min · cos[2(θL − θs)]. (5)
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FIG. S2. Correlation between different indicators and the locations of plastic events as a function

of index of events.

III. PREDICTIVE POWER OF INDICATORS FOR CONFIGURATIONS IN-33

STANTLY QUENCHED FROM HIGH TEMPERATURE LIQUIDS34

In the main text, we show the predictive power of indicators for configurations prepared35

via a slow cooling rate from high temperature liquid. Here, we show the results for config-36

urations prepared via instantly quenching from high temperature liquids (HTL) in Fig. S2.37

Different from the those slowly quenched configurations, MSVA and ASN have a better38

predictive power than the LYS. One possible reason for the big drop of predictive power of39

LYS is that the LYS is purely a local method. Its statistics is narrower for HTL and has the40

same order as the mechanical noise [2].41

IV. LOCATIONS OF PLASTIC EVENTS WITH DIFFERENT SHEAR PROTO-42

COLS43

In the Fig. 2 of the main text, we show the correlation between θs calculated from the44

undeformed configuration and the locations of plastic events in shear protocols with θL = 045

3



(a) (b)

FIG. S3. (a) Orange circles represents the atom with RCĜ > 0 and θs > 0. Diamond mark the

locations of the first ten plastic events with θL = π
4 . (b) Green circles represents the atom with

RCĜ > 0 and θs < 0. Triangles mark the locations of the first ten plastic with θL = −π
4 .

and π
2
. Here in Fig. S3, we show the results of the same configuration for two other shear46

protocols with θL = π
4

and −π
4
. It was observed that core atoms of most events satisfied the47

condition |θs − θL| < π
4

mentioned in the main text.48

V. STATISTICS FOR THE ROTATION OF THE SOFTEST SHEAR ORIENTA-49

TION50

In the main text, we show that the distribution of the softest orientations is broadened51

when measured from the configuration associated with the previous event. Here, we show52

that the broadening effect is correlated with incremental triggering strain required to induce53

each event. As shown in Fig. S4(a), the fraction of the plastic events with orientations within54

the range θs(IDN , γc,N−1,A) − θL < π
4

decreases from one to around 0.75. We also measure55

the distribution of the change of orientation for the core atoms for each plastic event since56

the triggering of the previous event, as shown in Fig. S4(b). The change of orientation for57

most events are small, but a few events do undergo large change of orientation.58
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FIG. S4. (a) Measuring the broadening effect of distribution of orientation of plastic events at

different strains intervals before triggering point. The fraction is the number fraction of events that

satisfy |θs(IDN , γc,N−1,A)−θL| < π
4 . If one measure the orientations of the plastic events at a larger

strain before the triggering point, the distribution of orientations will be more broaden. (b) The

change of orientations if one measure the orientation of plastic events from the configurations after

the triggering of previous event of each event and from the configuration just before the triggering

of each event. Red line represents the commutative distribution function of the distribution.

VI. IMPROVING THE PRECISION OF PREDICTION VIA CHARACTERIZING59

THE SOFTEST SHEAR ORIENTATION60

As the plastic events tend to happen in STZs with the softest shear orientations close61

the orientation of shear protocols, one can expect that characterizing the softest shear ori-62

entations will help improve the predictive power of those indicators that do not contain63

orientational information. In Fig. S5, we show that the precision of predicting the location64

of core atoms for first events of 100 samples is improved by a factor close to 2 by filtering65

out those regions that do not have a good alignment with the orientations with the shear66

protocols. In the graph, the rank threshold means that the threshold to label the ”softest”67

atoms characterized by different indicators as the potential locations of first plastic event of68

each sample. E.g. if rank threshold equals 10 for atomic shear shear nonaffinity, we label69

the atoms with the 10 lowest atomic shear nonaffinity as the potential locations of the first70
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FIG. S5. Predictive precision of different indicators at different rank threshold. Dash blue lines

represent results for single indicators. Solid orange lines represent results for each indicators after

filtering the atoms with |θS − θL| < π/4.
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plastic events. For 100 samples we used here, we will totally label 1000 atoms. If in all71

labeled atoms, there are 30 atoms that are just the core atoms of the 100 first plastic event72

of 100 samples, the precision will be 30/1000 = 0.03, which is True Positive/ Total postive.73

After obtaining the softest shear orientational of each atom, for those 1000 labeled atoms,74

we filter those atoms with |θS−θL| < π/4, since we estimate that only the plastic events will75

in most cases happen in those regions that have a good alignment with shear protocols. On76

average, 500 atoms will left after filtering, since the amorphous materials are statistically77

isotropic in the quench state. If all the true positive atoms are in the atoms left after filter-78

ing, the precision will be 30/500 = 0.06, where the precision will be improved by a factor79

of 2. In Fig. S5, the improving factor is close to 2 for small rank threshold but decay to80

smaller values as rank threshold increases.81

VII. A SIMPLE MODEL OF INDEPENDENT PLASTIC EVENTS WITH IN-82

TRINSIC ORIENTATIONS83

In this section, we present a simple mean-field model of independent plastic events with84

intrinsic orientations to understand the distribution of orientations for triggered plastic85

events after shear deformation.86

A. Assumptions87

� Each shear transformation zone (STZ) in an amorphous solid has two important and88

independent properties, i.e. the softest shear orientation (denoted as θs,i) and the89

minimum triggering strain (denoted as γc,s,i). θs,i is confined in the range [−π
2
, π
2
)90

considering the symmetry of shear.91

� The triggering strain for one STZ at a given imposed shear orientation (denoted as92

θL) may be expressed as93

γc,i(θL) =
γc,s,i

cos[2(θs,i − θL)]
. (6)

� The initial microstructure of the amorphous solid is isotropic. Then, the number94

density of STZs with specified properties θs and γc,s does not rely on the θs, i.e.95

ρ(θs, γc,s) = ρ(γc,s), (7)

7
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FIG. S6. (a) The distribution of the softest shear orientations for all the plastic events that are

triggered before shear strain 0.12 in 10 samples. The softest shear orientations are measured based

on the configuration just before the triggering of each event. Each line represents the predictions

from Eqs. (11) and (12). (b) The probability density for the triggering strains for all the plastic

events in AQS for 100 samples. (c) The distribution of the softest shear orientations for the first

five events that are triggered in AQS for 100 samples. The softest shear orientations are measured

based on the configuration just before the triggering of each event.

where ρ is the number density.96

� We further assume that ρ(γc,s) follows a power law, i.e. ρ(γc,s) = Aγαc,s.97

Noting that here we neglects that fact that when one STZ is activated upon deformation98

it may get a new orientation and new minimum triggering strain. This is reasonable when99

new triggering strain is large and plastic events are sparse, which is close to the situation100

of that the configurations are prepared with slow cooling rate and observing strain range is101

before yielding.102

B. Derivation of correlation between number density function and distribution of103

orientations of triggered events in one shear orientation104

We set the orientation of shear protocol as the referential orientation with value of θL = 0,105

set the loading shear strain as γL and denote the total number of the plastic events with106

8



γc,s ≤ γL as N(γL). Then, we obtain107

N(γL) =

∫ −π
2

π
2

∫ γL

0

ρ(γc,s) dγc,s dθs = π

∫ γL

0

ρ(γc,s) dγc,s =
Aπ

α + 1
γα+1
L . (8)

Then,108

A =
(α + 1)N(γL)

πγα+1
L

. (9)

For events with |θs| ≤ π
4
, only those events with condition that γc,s ≤ γL cos 2θs will triggered.109

Then, the number density (ρ̃) of events that are triggered with property θs is110

ρ̃(θs) =

∫ γL cos 2θs

0

ρ(γc,s) dγc,s =
A

α + 1
γα+1
L cosα+1 2θs =

N(γL)

π
cosα+1 2θs. (10)

Events with |θs| > π
4

will not be triggered in this protocol. Thus, the probability density111

(ρ̂(θs)) of events that are triggered should have the form112

ρ̂(θs) = k cosα+1 2θs, (11)

where k is the normalizing factor that ensures that the total probability equals one. The113

peak probability corresponds to events that have the same orientation as the shear protocol114

i.e. θs = 0, and ρ̂max = ρ̂(θs = 0) = k. For different power-law factors, we infer the value of115

k to be116

α = 0, k = 1, (12)

α = 1, k =
4

π
≈ 1.27,

α = 2, k =
3

2
,

α = 3, k =
16

3π
≈ 1.70.

In the systems that we investigated in the main text, we found that ρ̂(θs) corresponds closely117

to what would be expected from α = 1, as shown in Fig. S6(a). When α = 1, one can also118

derive that the probability density of triggering strains for the plastic events in AQS should119

be a linear function of shear strain; this was further verified in simulations as shown in120

Fig. S6(b). The function is close to linear relation before yielding, but a plateau arises after121

yielding. To confirm the linear regime we further checked the distribution of the softest122

orientations for the first five plastic in 100 samples. The distribution was also found to be123

9



close to distribution of α = 1, as shown in Fig. S6(c).124
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