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We study the structural origin of the Bauschinger effect by accessing numerically the local plastic
thresholds in the steady state flow of a two-dimensional model glass under athermal quasistatic
deformation. More specifically, we compute the local residual strength, Δτc, for arbitrary loading
orientations and find that plastic deformation generically induces material polarization, i.e., a forward-
backward asymmetry in the Δτc distribution. In steady plastic flow, local packings are on average closer to
forward (rather than backward) instabilities, due to the stress-induced bias of barriers. However,
presumably due to mechanical noise, a significant fraction of zones lie close to reverse (backward)
yielding, as the distribution of Δτc for reverse shearing extends quasilinearly down to zero local residual
strength. By constructing an elementary model of the early plastic response, we then show that unloading
causes reverse plasticity of a growing amplitude, i.e., reverse softening, while it shifts away forward-
yielding barriers. This result in an inversion of polarization in the low-Δτc region and, consequently, in the
Bauschinger effect. This scenario is quite generic, which explains the pervasiveness of the effect.
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The Bauschinger effect [1] is the remarkably common
property that after experiencing plastic strain, materials
generally exhibit a softer stress response under reverse
loading as compared with reloading. Initially observed in
mono- and polycrystalline metals [2,3], this phenomenon
has been evidenced in polymers [4], and more recently
in amorphous materials such as metallic glasses [5]. It is
thus found in almost all material classes. Yet, its origin
remains the topic of ongoing debates across the concerned
disciplines.
Our interest here is to understand the origin of the

Bauschinger effect in amorphous solids. This is an espe-
cially challenging goal since there is no consensus today on
how to describe the internal state of a glass [6] in view of
predicting its mechanical response. The plastic response of
glasses is known to result from local rearrangements (or
“flips”) [7–10] that occur when certain regions (“zones”) a
few atoms wide reach local instabilities. Yet, due to
structural disorder, these instabilities are not associated
with specific local structures such as topological defects;
they may also occur at different local yield stress levels
[11,12]. Besides, every zone flip introduces long-range,
elastic, stress fluctuations, which act as a mechanical noise,
that may cause secondary events and avalanche behavior
[10,13]. Any stable packing, hence, approaches instabilities
haphazardly [14] as its local stress fluctuates under the
combined effects of external forcing and mechanical noise.
Few numerical works exist on the Bauschinger effect in

amorphous solids [15–18]. Procaccia and co-workers found
a signature of loading asymmetry in high order derivatives
of the potential energy surface [16]. In a model of silica, in

unloaded states after shear plasticity, Rountree et al. [17]
observed the emergence of a type of structural anisotropy
captured by a variant of the fabric tensor [19] classically
associated with structural asymmetry in granular materials
[20]. Such findings, however, remain difficult to relate to a
physical picture of flow mechanisms in the spirit of
mesoscale or mean-field models [6,8,21]. Rodney and
Schuh [18] used the ART method [22] to sample the
barriers of a sheared system; they found a signature of
polarization in the strains associated with barrier crossings
[23], but could not connect it directly to the Bauschinger
effect.
Here, we identify the origin of the Bauschinger effect in

an amorphous solid under steady athermal quasistatic
(AQS) flow, [10] using a recently developed method,
which consists in probing the instabilities of small circular
domains under strain [12,24], and was recently extended to
deal with deviatoric strains of arbitrary orientations [25].
By measuring Δτc, the local residual strength, for arbitrary
strain orientations, we bring evidence of a strain-induced
material polarization, which we characterize precisely both
in steady state and during the Bauschinger test.
Our analysis shows that the Bauschinger effect originates

from an inverse polarization of the low-Δτc tails during
unloading. More precisely, we find that, in steady state, the
distribution of Δτc extends down to Δτc ¼ 0 for any strain
orientation, a property expected to arise due to mechanical
noise. Strikingly, this holds even for barriers responding
to reverse shearing. It follows that, from its very onset,
unloading causes reverse plasticity of a growing amplitude,
i.e., reverse softening, while shifting forward-yielding
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barriers away. The Bauschinger ensues since after any finite
amount of unloading, the reverse response (i.e., the
continuation of unloading) is soft (plastic), while reloading
is nearly elastic.
This work uses the same numerical system as

Refs. [25,26]: a two-dimensional (2D) binary Lennard-
Jones model with second order smoothing near the inter-
action cutoff. Physical units are fixed by the characteristic
energy and length scales of the pair potential. The simu-
lation cell is square and periodic, of fixed volume. We use
104-atom configurations and systematically collate 100
independent runs to obtain statistically significant data.
Plastic deformation is applied in simple shear, with Lees-
Edwards boundary conditions, using the AQS protocol, in
which a system is deformed by small increments of affine
strain Δγxy ¼ 10−4 followed by energy minimization,
which guarantees mechanical balance [10]. As a result,
the system tracks reversible elastic branches except at
instabilities where avalanchelike plastic events occur and
dissipate energy.
As is well known, the early shear response of a glass

depends significantly on its preparation and especially on
its degree of relaxation: a poorly relaxed glass typically
displays strain hardening; a very well relaxed glass typi-
cally develops a peak stress followed by softening and
usually accompanied by localization. Yet, when steady
shear can be maintained beyond the initial, transient,
response, all glasses are eventually driven toward a unique
ensemble. This steady flow state is usually inaccessible in
experiments on hard glasses due to strain localization, but is
commonly observed in soft glasses, and can be easily
realized in numerical simulations using periodic boundary
conditions. This is illustrated in the Supplemental Material
[27], where we monitor the convergence of shear stress to a
unique level, starting from three widely different glasses,
namely, prepared by instantaneously quenching a high
temperature liquid (HTL), an equilibrated supercooled
liquid (ESL), or a system relaxed via a slow gradual
quench (GQ) [25].
Here, as detailed in Fig. 1, we evidence the Bauschinger

effect starting from steady flow configurations, so as to
emphasize that it is unrelated to the preparation-dependent,
hardening or softening, transient response of the glass. In
this figure, the origin of strains is taken with reference to
the zero-stress states reached after unloading steady flow
configurations. The unloading stress-strain relation (black)
appear nearly, but not quite, elastic. A small (less that
≃0.6%) but clear hysteresis is seen when reloading (green),
which entails that unloading induces a small amount of
plasticity. The reverse loading curve (red), which is the
continuation of unloading beyond zero stress, i.e., at
negative strains, is considerably softer than the reloading
(green) one—this is the Bauschinger effect.
To understand the origin of this phenomenon, we now

analyze steady flow configurations using the method of

Refs. [12,25]. It consists in identifying the first plastic event
undergone by atoms inside a small circular test domain (of
radius Rfree ¼ 5) when forced by imposing an affine strain
to the outer atoms within a shell of width larger than the
pair interaction cutoff Rcut. We only consider pure (devia-
toric) strains parametrized as

∝
�− sin 2α cos 2α

cos 2α sin 2α

�
ð1Þ

with a positive prefactor and 2α ∈ ½0; 2π�. Thus 2α ¼ 0
when strain is aligned with the simple shear flow direction,
and 2α ¼ π for reverse loading. Statistically significant
data are accumulated by considering all inclusions centered
on regular grid points with a mesh size ≈Rcut, while 2α
takes values at regular (π=9) intervals.
For each test domain and each 2α ∈ ½0; 2π�, we measure

the average (over inclusion atoms) shear stress conjugate to
the imposed pure shear deformation. The residual strength
of the inclusion in this orientation, Δτcð2αÞ, is the
corresponding stress increment at the first instability.
The left panels of Fig. 2 display polar maps of the function
PðΔτc; 2αÞ in the ðΔτc; 2αÞ; 2α ∈ ½0; 2π� plane. The right
panels show cuts of this function along the x axis, i.e., plots
of P vs Δτcxy ¼ Δτc for 2α ¼ 0 (forward), and vs Δτcxy ¼
−Δτc for 2α ¼ π (backward).
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FIG. 1. Mean stress vs strain (both in absolute values) during
three tests: unloading from steady flow (black), backward (red)
and forward (green) loading from fully unloaded (zero stress)
configurations. In all three cases, strain is measured with
reference to the zero-stress state. Solid black line: fit of the
unloading curve using Eq. (2) and ρa2Δϵ0 ≃ 0.25. Solid green
and red lines: consequent predictions for the Bauschinger tests.
Dashed lines: predicted reloading and backward loading curves,
when the model is used starting from the steady flow barrier
distribution (see text), i.e., while taking into account its prediction
for the unloading-induced asymmetry. Inset: corresponding
evolution of mean barrier polarizations and their asymptotic
values (dotted lines).
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In as-quenched systems, as illustrated in Fig. 2(a) for the
ESL, PðΔτc; 2αÞ is isotropic. Moreover [see cuts on panel
(d)], the more relaxed the system, the higher the local yield
stresses, as previously observed [25].
In the steady flow ensemble [Fig. 2(b) and blue curves in

panels (e),(f)], PðΔτc; 2αÞ is clearly anisotropic, and more
precisely polarized in the sense that it breaks the right-left,
cos 2α → − cos 2α symmetry, corresponding to the sign
inversion of the off-diagonal strain. The mean barrier height
hΔτcið2αÞ, in white in Fig. 2(b), remains circular (a curious
feature we cannot explain), but is shifted horizontally by
χ ¼ 1

2
(hΔτcið0Þ − hΔτciðπÞ), a quantity we call the mean

barrier polarization. Since χ ≃ −0.31 < 0, inclusions are
on average closer to the forward (α ¼ 0) barriers: this is, of
course, expected since the steady flow ensemble is under a
positive average stress τ̄flowxy ¼ 0.53.
In unloaded states [Fig. 2(c)], hΔτcið2αÞ (white) is still

circular, but shifted to the right: unloading inverts the mean
barrier polarization as χunloaded ≃ 0.14 > 0; inclusions are
then, on average, closer to reverse barriers. We systemati-
cally examined PðΔτc; 2αÞ and hΔτcið2αÞ at many strain

levels (not shown) and always found hΔτcið2αÞ to be
hardly distinguishable from a circle, so that χ is the center
of the mean yield curve. It thus closely resembles the
“backstress” in its initial meaning as a phenomenological
parameter meant to represent a strain-dependent shift of the
yield surface [28].
In continuum theories of plasticity, although this was

recently challenged [29], the backstress is often presumed
to reflect an asymmetry of local stress [3,30]. We thus
emphasize that, in our system, the unloaded local stress
distribution is nearly perfectly symmetric [27]. The barrier
distribution asymmetry does not result from stress asym-
metry, but from the dynamical equilibrium between the
postflip production of new barriers (rejuvenation) and the
preferential elimination of forward-yielding ones.
The evolution of χ with strain is reported in the inset of

Fig. 1, for the three considered tests. Clearly, the barrier
distribution develops a history-dependent forward-back-
ward asymmetry, which is inverted during unloading. This
raises the question of the possible link between mechanical
polarization and the Bauschinger effect. Yet, since χ
overshoots its steady state value (dotted lines, inset of
Fig. 1), it does not appear sufficient to characterize the
material state. If it did, the barrier distribution would
recover symmetry when χ vanishes, which is not the case
[27], as it can be guessed from Fig. 2(e), since certain
asymmetric features (narrowness, peak heights) are not
inverted after full unloading.
The question remains to understand how the forward-

backward asymmetry of the barrier distribution may play a
role in the Bauschinger effect. For this purpose, we recall
that, in AQS plasticity, yielding occurs when atomic
packings are mechanically brought beyond local yield
thresholds [10,31–34]. Therefore, the early plastic response
during Bauschinger tests (i.e., forward or backward loading
from zero stress) is expected to result primarily from the
crossing of the nearest thresholds responding to the external
forcing orientation, in the initial, unloaded, state. This
points to the forward-backward asymmetry of the small
barrier tails of PðΔτc; 2αÞ, which [Fig. 2(f)], like χ, is
visibly inverted during unloading.
To illustrate the key role of small barriers, we take an

arbitrary zero-stress configuration and report in Fig. 3 its
backward (a) and forward (b) barrier maps, on top of which
we mark the locations of the local flips undergone in the
first 2% of strain in the corresponding loading direction.
Clearly, there is a higher fraction of small barriers (red) and
more events (symbols) in panel (a) rather than (b). Also, in
both cases, the loci of the plastic events seem to correlate
with the low barrier regions. This supports our expectation
that the forward-backward response contrast (the
Bauschinger effect) results from the small barrier density
bias in unloaded states.
This idea is quantitatively tested by constructing an

elementary model relating the early plastic response to the
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FIG. 2. Left frames: the polar function PðΔτc; 2αÞ, with
hΔτcið2αÞ in white. (a) As-quenched isotropic (ESL) state,
(b) steady state, and (c) unloaded steady state configurations.
Right frames: cuts of PðΔτc; 2αÞ along the forward (2α ¼ 0) and
backward (2α ¼ π) directions (d) in our three as-quenched
glasses of different degrees of relaxation (HTL, ESL, and GQ)
[25]. (e),(f) In steady flow (blue) and unloaded states (red), and
(up to a scaling factor) model prediction for unloading (see text,
dashed black).
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barrier distribution in the initial state. Three types of
loading are considered: both Bauschinger tests, along with
unloading from steady state. In all three cases, the macro-
scopic strain increment δγxy is taken with reference to the
initial state: it grows positive for reloading, and negative,
for unloading, and reverse loading. The strain-induced
change in macroscopic stress is written as δτ̄xy ¼ μδγxy −
δτ̄plxy with μ ≃ 15.7 the shear modulus, and δτ̄plxy the stress
released by plastic events.
For all the three considered cases, we looked at plastic

drops within the first few percents of strain [27], and
found them to typically involve isolated rearrangements,
which supports that avalanche dynamics are inactive,
and hence mechanical noise can be neglected. Since we
seek to capture the beginning of the stress response only,
we also neglect rejuvenation. We thus assume that early
plasticity results exclusively from instabilities of fixed
thresholds τcxy, preexisting in the initial state. Neglecting
elastic heterogeneities, the preyield local stress reads
τxyðδγxyÞ ¼ τxyð0Þ þ δτ̄xy, and yielding occurs when
ΔτcxyðδγxyÞ ¼ Δτcxyð0Þ − δτ̄xy vanishes [35], so that

μδγxy − δτ̄xy ¼ δτ̄plxy ¼ 2 μρa2Δϵ0
Z

δτ̄xy

0

pðΔτcxyÞdΔτcxy;

ð2Þ

which defines δτ̄xyðδγxyÞ. Here, p is the distribution, in the
initial state, of the barriers responding to the considered
forcing, a a the typical zone size, Δϵ0 the typical strain
release, and ρ is the number density of yield barriers [36].
Equation (2) provides a quantitative test of the relation

between barrier tails and the Bauschinger effect because it
effectively depends only on the combination ρa2Δϵ0, i.e.,
of a single unknown parameter that can be obtained by
fitting (solid black line on Fig. 1) the beginning of the
unloading curve (using for p the steady state backward
barrier distribution). This yields ρa2Δϵ0 ≃ 0.25. To confirm
the relevance of this value, we have computed coarse-
grained local strain changes during isolated plastic events,
and estimate a2Δϵ0 (not shown) to lie in the 0.4–0.7 range.

We have also estimated ρ ≃ 0.39 by relating the average
strain interval between plastic drops in steady state to the
distribution of forward barriers [27]. These values are
therefore mutually consistent.
Once ρa2Δϵ0 is thus determined, Eq. (2) provides

parameter-free predictions for both Bauschinger tests,
i.e., forward and backward loading from zero-stress states.
The resulting curves (Fig. 1, solid green and red lines) do
match strikingly well the corresponding stress-strain rela-
tions, up to at least 5% of strain. It establishes that the
Bauschinger effect does result from the forward-backward
asymmetry, in unloaded states, between the small barrier
tails, i.e., for Δτcxy ≲ 0.5, which corresponds to the macro-
scopic stress change over the fitted strain range.
The remarkable ability of our model to jointly account

for these three mechanical tests supports that its core
assumption (barriers are mechanically shifted by macro-
scopic stress up to instabilities) is quite reasonable up to
strains about a few percents. This legitimates using the
model itself to understand how full unloading (down to
zero stress) leads to the small barrier distribution asym-
metry which we have just shown to be responsible for the
Bauschinger effect. We thus plot in Figs. 2(e) and 2(f)
(black dashed lines) the barrier distribution PðmÞ the model
predicts after full unloading: it is merely the steady state
distribution, translated by τ̄flowxy along the x axis, and
truncated to reflect the elimination of instable barriers.
PðmÞ is multiplied by an arbitrary factor to better show how
it departs from the measured distribution, PðuÞ. Since, for all
jΔτcxyj≳ 1, PðmÞ falls right atop PðuÞ, we conclude that the
assumed elastic shift of barriers is a very reasonable
assumption away from threshold.
The model remarkably predicts an inversion of small

barrier tails during unloading, as observed, yet with two
discrepancies. It overestimates the growth of the backward
barrier density near threshold, expectedly due to the neglect
of mechanical noise, which facilitates the crossing of
small barriers, hence requires PðuÞ to essentially vanish at
Δτcxy ¼ 0 [14,37]. As for the forward barrier density, the
model predicts the appearance, during unloading, of a gap
over Δτcxy < τ̄flowxy . In this range, remarkably, the measured
PðuÞ does present a pseudogap, i.e., a weak initial growth
compared with its rise beyond τ̄flowxy . But it does not strictly
vanish, presumably due to rejuvenation and/or noise
associated with the small plastic activity during unloading.
This analysis suggests that the elastic shift of barriers up to
instabilities is the main drive behind the inversion in small
barrier densities during unloading, while the neglected
effects, rejuvenation and noise, which arise from unload-
ing-induced plasticity, are only mitigating factors.
To test this interpretation, we compute the model

predictions for Bauschinger tests, when replacing the initial
(unloaded) density PðuÞ by PðmÞ. The predicted response
curves are displayed in Fig. 1 (dashed lines): reloading is

FIG. 3. Maps of the local residual strength for shearing (a) in
the backward (2α ¼ π) and (b) forward (2α ¼ 0) directions.
Symbols show the loci of plastic events in the 2% of strain in the
corresponding direction.
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strictly elastic; backward loading is the continuation of
unloading. These curves clearly exhibit a Bauschinger
effect of very reasonable amplitude, although slightly
overestimated. This unambiguously confirms that the
discrepancies previously identified between PðmÞ and
PðuÞ only reflect compensation mechanisms, while the
elastic shift (up to instabilities) hypothesis at the basis of
the model captures the core mechanism responsible for
unloading-induced inversion of the small barrier asymme-
try leading to the Bauschinger effect.
Additionally, according to the model: (a) for any finite

unloading, a gap opens in the forward barrier distribution,
hence reloading is pure elastic; (b) from its very onset,
unloading initiates reverse plasticity and softening. The
model therefore predicts that the Bauschinger effect exists
at partial unloading levels, and that the associated contrast
grows with the decreasing stress. This is unambiguously
confirmed by simulations [27]. While the (pseudo)-gap
formation (a) results merely from the stability condition
Δτcxy ≥ 0, reverse softening originates from the remarkable
property that the steady flow reverse barrier distribution
vanishes only at threshold. This feature is expected to result
from mechanical noise [14,33], which causes local stress
to diffuse over the whole stability domain [37]. The
Bauschinger effect thus appears to be an indirect conse-
quence of mechanical noise.
This work has shown that strain induces a history-

dependent polarization of local yield thresholds in an
amorphous solid under AQS shear. The Bauschinger effect
then appears to arise because the backward-yielding barrier
distribution vanishes only (and quasilinearly) at threshold,
so that unloading causes reverse plasticity of growing
amplitude (i.e., softening), jointly with the emergence of
a pseudogap in the forward barrier distribution, guarantee-
ing nearly elastic reloading. Although we used a 2D model,
we expect these conclusions to carry over to 3D since our
main qualitative results (forward-reverse symmetry break-
ing, and presence of near-threshold reverse barriers) are not
dimension dependent.
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ACCESSING A PREPARATION-INDEPENDENT
STEADY STATE

We show in Fig. 1, the mean stress-strain τxy and mean
barrier polarizations χ curves starting from three very
different initial ensembles [1]: the first two are obtained
from instantaneous quenches from resp. a high temper-
ature liquid (HTL, at T = 7.8TMCT where TMCT is the
temperature of the mode-coupling transition), and an
equilibrated supercooled liquid (ESL, at 0.95TMCT ); the
third one is obtained by a gradual quench (GQ), at a rate

Ṫ = 0.32× 10−6 across the glass transition, which allows
the system to equilibrate down to a relaxation timescale
of order Tg/Ṫ ' 106, with Tg the glass transition temper-
ature. As seen for the GQ system, when starting from a
tempered and hard glass, the early plastic response dis-
plays strain-softening, which is accompanied by transient
localization [2]. When starting from a very poorly tem-
pered, very soft glass (our HTL ensemble), the erasure
of the initial state shows up as a strain-hardening effect.
The evolution of χ is roughly opposite of τxy, since the
mean stress tends to bring local packings closer, on aver-
age, to forward-yielding instabilities. All systems even-
tually reach the same steady flow ensemble, which we use
as a starting point of our analysis.
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FIG. 1. For our three different initial ensembles: mean stress
τxy and mean barrier polarizations χ vs ln(1 + γxy), with γxy
the linear macroscopic strain.
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ABSENCE OF SYMMETRY IN THE BARRIER
DISTRIBUTION WHEN χ = 0

On figure 2, we report the forward and backward bar-
rier distributions at γxy = 0.015 (from the zero stress
state, i.e. ≈ −3% of unloading), a strain at which χ ≈ 0
(see Fig. 1 in the Article). Clearly these distributions
are not symmetric, although they present almost identi-
cal 〈∆τ c〉 values.
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FIG. 2. Residual strength ∆τ cxy distribution along the for-
ward/backward loading direction in the unloading branch at
γxy = 0.015 that corresponds to mean barrier polarizations
χ ≈ 0.

ABSENCE OF NON-TRIVIAL STRESS
ASYMMETRY

In continuum theories of plasticity, the Bauschinger
effect is classically interpreted as arising from “mi-
crostresses”, i.e. presumed local excesses of negative
stress, that would cause certain regions to be closer to
reverse yielding [3–5]. Here, we would like to emphasize
that this interpretation does not apply to our systems,
since the distribution of stress in the tested inclusions,
which is reported in Fig. 3, is nearly perfectly symmetric
in unloaded states, and corresponds to the elastic shift
by the mean stress τxy of its counterpart in flow states.
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FIG. 3. The distribution of inclusion stresses in flow (black)
and unloaded (red) states; the latter distribution is also plot-
ted after the x → −x transformation (green) to show that it
is nearly symmetric. The steady state distribution shifted by
the flow stress is also very similar (blue).

EVENT SAMPLES AND ESTIMATION OF THE
TYPICAL STRAIN RELEASE

In Fig. 4, we display typical displacement fields ob-
tained from the first plastic events observed under dif-
ferent conditions: (a) steady flow; (b) unloading from
steady state; (c) backward loading from zero stress
(which is just the continuation of unloading) and (d) re-
loading after full (zero stress) unloading. In steady flow,
we clearly see that a typical plastic drop corresponds to
a system-spanning avalanche; in the three other tests we
usually observe independent Eshelby-like events. Note,
however, that reverse loading, which is the continuation
of unloading, occasionnally features plastic events that
may combine a few spatially separated rearrangements
due to the reverse polarization (higher amplitude) of the
low-∆τ c density in the backward direction.

We estimate the typical strain release ∆ε0 by comput-
ing the corresponding local strain from a coarse-graining
procedure describe in [1, 2] over a the typical test domain
size a = 5. This analysis is performed only for isolated
plastic events and gives values lying in the 0.016–0.028
range, which corresponds to a2∆ε0 in the 0.4–0.7 range.

ESTIMATING ρ FROM THE AVERAGE LENGTH
OF ELASTIC BRANCHES IN STEADY STATE

Let us consider a configuration taken from steady
state, at the end of a plastic stress drop. Previous stud-
ies [6, 7] have shown that, at such a point, the length of
the following elastic branch is already determined by the
local packing which first reaches instability when con-
vected by external loading. Consistently with our sim-
ple plasticity model, we assume that: (i) in a system
of volume V = L2, the instability arises among one of

FIG. 4. Example of displacement fields for plastic drops under
different types of loading conditions. (a) in steady state, an
event is typically an avalanche; in contrast, during unloading
(b), reverse loading (c), or re-loading (d), typical events are
well separated Eshelby-like single zone flips.

the N = ρL2 barriers that are independent, distributed
according to the steady state forward distribution p re-
ported on Fig. 2-(e) and (f) in the article
(ii) at each point, the local distance to threshold shifts as
∆τ cxy(δγxy) = ∆τ cxy(0)−µδγxy up to the first instability.
Under these assumptions, δγxy > γ∗ iff all N barriers
verify ∆τ cxy(0) > µγ∗, which occurs with probability:

P(δγ > γ∗) =

(∫ ∞
µ γ∗

dδτ p(δτ)

)N
(1)

Since the density of δγ is the derivative −P ′(δγ), the
average strain interval is:

〈δγ〉 = −
∫ ∞
0

dxxP ′(x)

=

∫ ∞
0

dxP(x)

(2)

We measure 〈δγ〉 and p independently and then find the
value of N which fits the above two relations. This yields
ρ ' 0.39.

BAUSCHINGER EFFECT AT PARTIAL
UNLOADING LEVELS

On figure 5, we report the forward and backward
mechanical response, starting at a few levels of un-
loading from steady flow, ranging from δγuxy = −0.02
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FIG. 5. Mean stress vs strain for different responses: full un-
loading from steady flow (black symbols); after full or partial
unloading (by δγu

xy) from steady state, during re-loading (con-
tinuous lines), and backward loading (after inversion about
(γu

xy, τ
u
xy), dashed lines). In all cases, strain is measured with

reference to the zero-stress state.

(down from steady state) to fully unloaded (zero stress,
δγfullxy ≈ −0.045) configurations. In unloaded states, the
strain measured with respect to the zero stress state is
γuxy = δγfullxy − δγuxy. To evidence the response contrast,
the re-loading data is plotted after the inversion about
the point (γuxy, τ

u
xy), which amounts to plotting in all

cases |τxy−τuxy|+τuxy vs |γxy−γuxy|+γuxy. These curves un-
ambiguously confirm our prediction that the Bauschinger
effect exists at finite unloading, and that the associated
contrast between forward and backward responses grows
with the increasing unloading level.
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