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Atomic-scale simulations are associated with an elastic line model to analyze thoroughly the pinning
strength experienced by an edge dislocation in some face-centered-cubic solid solutions, Al(Mg) and Ni(Al)
with solute concentration comprise between 1 and 10 at. %. The one-dimensional elastic line model is devel-
oped to sketch out the details of the atomic scale. The account of such details is shown to yield a proper
description of the dislocation statistics for the different systems. The quantitative departure between hardening
in Al(Mg) and Ni(Al) is then demonstrated to hinge on the difference in the short-range interaction between the
partial dislocations and the isolated impurities. It is also shown that an accurate description of the solid-
solution hardening requires the account for the dislocation geometry and the dislocation interaction with
clusters of solute atoms. The elastic line model allows us to perform some computations at the microscopic
scales meanwhile accounting for the most important atomic details. A comparison with experimental data is

attempted.
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I. INTRODUCTION

The solid-solution hardening (SSH) of a metal stems from
the pinning of its dislocations on the solute atoms introduced
during material processing. The SSH depends essentially on
the nature of the dislocation interaction with the impurities
and the concentration of the latter. In order to estimate the
stress threshold to which the dislocation depinning proceeds
in face-centered-cubic (fcc) alloys, several statistical
theories' were devised on the so-called line tension model,
in which the dislocation is thought of as a one-dimensional
(ID) elastic line dragged on a planar random landscape.
From the different theoretical treatments applied to this
model, the critical resolved shear stress (CRSS) required to
liberate the dislocations was found to vary as the power law
of the solute content, with an exponent 7 comprised between
1/2 and 1. The main differences between various theories
arise from the assumptions made about the obstacle-
dislocation interaction and about the typical roughness of the
dislocation profile when the depinning proceeds. A number
of studies contributes to the development of the 1D elastic
line model (ELM) to tentatively release some of the rougher
approximations introduced in the early SSH theories (see, for
instance, Refs. 6-11).

Since SSH hinges on the pinning of dislocations in a
crowd of atom-sized obstacles, the problem is worth being
approach from the atomic scale. Employing the embedded
atom method (EAM) (Refs. 12-14) to compute the inter-
atomic forces in a nanocrystal, the dislocation depinning has
already been simulated in a collection of binary alloys.!>20
In dislocation theory, the main interest of such atomic-scale
computations (ASCs) is to integrate the crystal deformation
in the region near the dislocation core where the nonlinearity
of the interatomic forces cannot be neglected. The EAM re-
mains however an approximation and as such it presents
some flaws varying with the system and that may be cor-
rected by suitable developments as the bound order poten-
tials (see, for instance, Ref. 21) or the modified EAM (see,
for instance, Ref. 22).
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The present work intends a quantitative comparison be-
tween the CRSS computed at the atomic scale and the CRSS
predicted throughout ELM. The ASC are carried out in two
different fcc alloys, Al(Mg) and Ni(Al) with the EAM devel-
oped by different authors.'>?3 The ELM is properly extended
to sketch out the atomic details of the dislocation-obstacle
interaction. In the early analytical theories for SSH, the dis-
location pinning was resumed into the interaction of an elas-
tic line with a single type of obstacle, which was regarded as
an average obstacle. By contrast, we shows that in order to
model quantitatively SSH in fcc alloys, the ELM must ac-
count thoroughly for the atomic details as (i) the dissociation
of the dislocation core in two Shockley partials (see Fig. 1)
due to the low stacking-fault energy (SFE) in (111) fcc crys-
tal planes; (i) the pinning force variation according to the
solute atom position, above or below the glide plane; and
(iii) the pinning by clusters of solute atoms in concentrated
solid solutions.

In order to integrate the pertaining atomic details, a dis-
crete version of the ELM has been developed. The discrete
nature of this model allows us to describe the crystallography
of the systems, thence sketching out the dislocation core
structure as well as the dislocation-obstacle interaction for
obstacles situated at various positions nearby the glide plane.
The comparison between the depinning statistics computed
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FIG. 1. (Color online) Plane view for an edge dislocation pinned
by Mg solute atoms in Al(Mg) alloy, modeled within EAM (Ref.
23). The Mg atoms situated in the nearest planes that bound the
(111) glide plane are colored in gray while the atoms involved in
the Shockley partial dislocations are colored in orange. The rest of

the crystal atoms are not shown. The Mg concentration is c¢;
=2 at. %.
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independently from ASC and from ELM demonstrates that
the latter is accurate enough to capture the main atomic-scale
features of SSH. Interestingly, the ability in ELM for switch-
ing on or switching off selectively some of these features
shows that the quantitative departure between hardening in
Al(Mg) and Ni(Al) hinges on the difference in the short-
range interaction between the partial dislocations and the iso-
lated impurities. The same method allows us to determine
how the solute atom clusters contribute to the dislocation
pinning. Another important property of ELM, employed
here, is that the integration of the small-scale details does not
impede ELM working with large dimensions, i.e., of few
micrometers, much larger than those afforded by ASC. The
comparison of ELM predictions with the low-temperature
experimental works performed by different authors’* on
Al(Mg) solid solutions demonstrates a satisfactory agree-
ment.

The paper is organized as follows: in Sec. II, the ASC are
described and our computations for the dislocation depinning
in different model solid solutions are presented. In Sec. III,
the ELM for the solution hardening in fcc alloys is intro-
duced and its predictions for the depinning statistics are dis-
cussed in regard of the ASC in Secs. IV=VL. In Sec. VII, the
ELM is eventually used to perform a multiscale study of
dislocation static depinning. Our results are discussed in Sec.
VIII.

II. ATOMIC-SCALE SIMULATIONS
A. Geometry of the simulation cell

In the ASC, the interatomic forces are modeled through-
out the EAM developed previously by different
authors. 3715232526 The simulation cell (see Fig. 1) is ori-

ented such as that the horizontal Z planes are the (111)
planes of the fcc lattice. The edge dislocation Burgers vector

=%[1 10] points at the glide direction, hereafter denoted as
Y. The simulation box size along the directions i=X,Y,Z is
denoted by L,. The periodic boundary conditions are applied
along X and Y while the external applied stress 7is produced
by imposing extra forces to the atoms in the upper and lower
Z free surfaces.'®?” In order to form a dislocation between

the two (111) central midplanes, the displacement field of
the elastic solution for a dislocation with Burgers vector b is
applied to the atoms of the simulation box. The ASC are
performed to minimize the total enthalpy under a fixed ap-
plied shear stress. The external applied stress is incremented
by 0.3 MPa and for each increment the enthalpy minimiza-
tion procedure is repeated until it either converges to a re-
quired precision (with interatomic forces inferior to
1077 eV/A) or until the dislocation has glided over a certain
distance d,, fixed later on. This procedure allows us to de-
termine the static stress threshold associated with the dislo-
cation depinning. The same method was employed in Refs.
17 and 20 with same notations but switching the axis label X
and Y. The atoms involved into the dislocation core are iden-
tified by their first neighbor cells which differ from the per-
fect crystal.27 In the simulations, the thermal effects are not
present so the solute atom diffusion and the thermally acti-
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vated glide are frozen. We thence work in an ideal case
where the distribution of foreign atoms does not evolve and
the dislocation glide occurs through a static depinning. Be-
cause of the rather low SFE of the (111) planes in fcc metals,
the dislocation core dissociates in two Shockley partial dis-
locations (SPDs). Such a dissociation appears spontaneously
in our enthalpy minimization procedure applied to ASC, as
shown in Fig. 1.

B. Different solute random distributions

In order to decipher the statistics of the dislocation depin-
ning in a fully three-dimensional (3D) random solid solution,
we analyze different simplified situations. Four different
types of solute atoms distributions are studied: (i) a single
obstacle is introduced in the atomic simulation cell otherwise

made of pure metal; (ii) the (111) planes situated just above
the dislocation glide plane contains a random distribution of
foreign atoms with an in-plane atomic concentration c,; (iii)

the two (111) planes that bound the glide plane contains a
random distribution of foreign atoms with an atomic concen-
tration c; and (iv) the solute atoms distribution is fully 3D.
The ASC have been performed for the three types of con-
strained distributions and the fully random solid solution in
both Al(Mg) and Ni(Al) alloys.

C. Single isolated obstacle

To analyze the elementary interaction between a disloca-
tion and a single isolated solute atom at the atomic level, the
simulations are carried out in a cell where only one atom of
the pure crystal has been substituted with a foreign atom.
Hereafter, such an isolated obstacle will be referred as to type
I obstacle. The applied shear stress 7 is incremented from
zero to 7, above which the dislocation liberates from the
obstacle. Since the simulation cell is periodic along X, the
obstacle and its periodic images form a regular array of ob-
stacles separated by a distance L,. The Peierls stress for the
edge dislocation in the two pure fcc crystals was found neg-
ligible so the balance between the Peach-Koehler (PK) force
and the obstacle pinning strength denoted by f,, leads to f,,
=7,bL,. The maximum pinning force f,, has been computed
for a single isolated impurity with different positions, i.e.,
above or below the glide plane, inside or outside the
stacking-fault ribbon. The absolute values found for f,, are
presented in Fig. 2(a) against the apical distance H to the
glide plane. The same type of computations were performed
for screw dislocations and confirmed an earlier study,?”
where it was found that both types of dislocations experi-
enced similar pinning strengths. This similarity might be pre-
sented as a satisfactory explanation for the isotropy of the fcc
alloy microstructure. The asymmetry of the obstacle strength
[ in tensile and compressive regions, i.e., above and below
the glide plane is ascribed to the interatomic potentials an-
harmonicity. This asymmetry, well understood for edge dis-
locations which the deformation field changes in sign at the
crossing of the glide plane, is also present in the case of
screw dislocations, mainly because of the edge components
of the partial dislocations. A precise comparison between the
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FIG. 2. (Color online) In (a), maximum pinning forces f,, (nanonewton) against the position of the solute atom with respect to the glide
plane for every Shockley partial of the edge dislocation (leading: triangles up, trailing: triangles down) and for different systems: Al(Mg)
(full symbols) and Ni(Al) (open symbols). Lines are guide to eyes. Underneath, internal energy of the simulation cells, U,y against the
position of the edge dislocation bypassing a solute atom: in (b) Mg in the Al crystal and in (c) Al in the Ni crystal. The different symbols
correspond to the ASC realized as detailed in the text Sec. II [circles for the obstacles situated in the nearest (1 11) plane above the glide

plane and squares for those in the nearest (111) plane below]. The continuous lines have been obtained from the adjustment of the 1D elastic

line model presented in Sec. III.
different dislocation types is under progress.”

Once f,, has been computed for an obstacle situated at a
certain position, we restart the simulation but with an exter-
nal stress maintained to a constant value, slightly larger than
7,,. Then the variations in the internal energy U, of the
simulation cells are analyzed during the dislocation bypass-
ing. Such quantity is merely the sum of the interatomic EAM
potentials over the whole simulation cell. After a steep drop
of U, over a few numerical steps, the internal energy U,
varies smoothly. The rapid transient stage stems from the
relaxation of the elastic displacement field imposed by the
applied shear stress. The internal energy U, is recorded
after the simulation cell has passed the rapid transient stage.
We remarked that the use of a fast quench procedure to mini-
mize the simulation cell enthalpy yields some jerky fluctua-
tions of U..y. A noiseless Langevin dynamics, with a suitably
adjusted damping allowed us to record a continuous Uy
function against the ASC numerical increment, though the
latter proved far much slower than a fast quench. In Figs.
2(b) and 2(c), the data for U, have been reported for the
two different alloys, against the dislocation center of mass
distance to the obstacle, for different positions of the latter,

i.e., either in the nearest (111) plane above the glide plane or
in the nearest (111) plane underneath. One clearly notices

the nonmonotonous variations in the energy as the distance
deviates from the energy maximum, in contrast to the pre-
dictions drawn from a first-order Volterra elastic theory.?
This also contrasts with the assumptions made in an analyti-
cal model® for SSH. Such variations are particularly marked
in Ni(Al) where up to six different extrema may be noticed
for an obstacle situated just above the glide plane [see Fig.
2(c)]. The energy U, actually includes an elastic contribu-
tion stemming from the whole deformation of the crystal
pieces, above and below the glide plane.’® Though, under a
constant external stress the energy variations associated with
such an elastic deformation remain very small in comparison
to the variations involved by the plastic deformation. The
energy variations associated with the elastic deformation of
the crystal will be discarded in our ELM analysis.

In Fig. 2(a), it is worth noticing that some pinning forces,
corresponding to the obstacles situated in the next-nearest

(111) planes that bound the glide plane are still appreciable
in comparison to those associated with the nearest obstacles.
In some cases, the strength of the former can even dominate
those of the latter. In early SSH theories, a single average
obstacle was regarded as a reasonable approximation. The
confrontation of such an approximation with the results re-
ported in Fig. 2 raises a question about how to define such an
average.”’ This problem becomes increasingly complicate as
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FIG. 3. (Color online) Critical resolved shear stress computed
for Ni(Al) and Al(Mg) from the ASC (full symbols) for an edge
dislocation passing through a crystal with a single (111) random
plane situated just above the glide plane (referred as SRP in the
text). The ELM predictions (open symbols with full lines) were
obtained as detailed in Sec. III. The error bars corresponds to the
mean square root of the ELM sampling.

the solute concentration rises up to values where the pinning
may result from the entanglement between the isolated ob-
stacles and the solute atom dimers, or still even larger clus-
ters.

D. Single random plane

The single random plane (SRP) distribution consists of a
crystal made of the pure metal where the solute atom distri-

bution is constrained in the only (111) plane situated just

above the glide plane. To ease notations, the (111) crystal
planes that bound the glide plane, above and below the glide
plane, are denoted by (A1) and (B1), respectively. The next-
nearest planes, above and below are denoted by Aj and Bj

where j=2 for the second, j=3 for the third (111) planes,
etc. The number of foreign atoms equals ¢, times the number
of atom sites in the (A1) plane. The ASC for SSH in SRP
solid solutions are realized as described previously, by in-
creasing adiabatically the applied stress 7. The dimensions of
the simulation cell in X and Y directions are given in Ref. 31.
The t9ta1 course of the dislocation is here fixed to d,
=60 A. Once the dislocation has run over d, the simulation
is stopped. The value of 7 required to reach d, is averaged
over a sampling of 20 different random distributions to de-
termine the CRSS denoted by 7,. Our results for 7. against c;
have been reported in Fig. 3 for both systems. The CRSS is
larger in the Ni(Al) SRP solutions than in the AI(Mg) ones.
This agrees with the larger pinning strength f,, for the Al
substitutional impurities in Ni, as seen from the comparison
in Fig. 2(a). To understand how the data reported in Figs.
2(a)-2(c) might explain those reported in Fig. 3 a statistical
model is required. This will be the purpose of the work re-
ported in Sec. III.

E. Two contiguous random planes

The entanglement between the pinning forces from ob-
stacles situated below and above the glide plane was dis-
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FIG. 4. (Color online) Same as in Fig. 3 but for different con-
strained solutions, referred as to TRP in the text, made of a pure
crystal with solute atoms situated in the two contiguous planes that
bound the dislocation glide plane. The corresponding ELM is de-
tailed in Sec. III.

carded in the early analytical theories’:>* for SSH. Different
mixing laws were proposed depending on the strength of
disorder.> To analyze how the pinning forces combine, a
third type of distribution is employed. Instead of limiting the
foreign atoms distribution in the (A1) plane, the impurities
can now also occupied the crystal sites situated below the
glide plane, in the (B1) plane. The edge dislocation statistics
is then studied in such a solid solution, hereafter called a two
random planes (TRPs) configuration. This study allows us to
approach cautiously the realistic fully three-dimensional
solid solution. The geometry of the simulation cell and the
distribution sampling are the same as for the SRP solutions.
The ASC results for the CRSS against ¢, have been presented
in Fig. 4. The comparison between the SRP (see Fig. 3) and
the TRP solutions shows that the CRSS in the latter is
slightly higher than the one found in the former. The en-
tanglement of the obstacles situated above and below is not
simply a linear superimposition of the pinning forces. The
maximum applied stresses in TRP increase roughly by 20%
in both Ni(Al) and Al(Mg) in comparison to the SRP in the
same systems.

F. Fully random distribution

The ideal 3D solid solutions are formed by substituting
some atoms of the pure crystal, randomly chosen, with solute
atoms in the proportion fixed by c,. The ASC for such fully
random distributions (FRDs) integrate the contributions from
solute atoms situated at different positions. The thermally
activated solute diffusion being frozen in our static ASC, the
dislocation is pinned by an ideal random distribution with a
homogeneous solute concentration since no solute atoms at-
mosphere may form. The CRSS obtained in ASC for the
edge dislocation depinning has been reported in Fig. 5. The
comparison for the CRSS between FRD and previous other
distributions shows that the main contribution to the disloca-
tion pinning stems from the nearest crystal planes, namely,
(A1) and (B1). The CRSS computed from ASC in TRP ap-
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FIG. 5. (Color online) Same as in Figs. 3 and 4 but for fully
random solid solutions (referred in the text as to FRD). The corre-
sponding ELM is detailed in Sec. III.

proach reasonably well those in FRD. As for SRP and TRP
distributions, the dislocation pinning in Ni(Al) solutions
proves much stronger than in Al(Mg), over the whole range
of concentration. In order to determine to which extent our
results could depend on the EAM employed in the ASC, we
performed the same type of simulations but with some inter-
atomic potentials different from those in use here. The com-
parison of SSH in the different atomic-scale models is pre-
sented in Appendix A where it is noted that the CRSS differ
roughly of a factor 2 in the two systems. It seems therefore
difficult to conclude about the precision of the EAM and a
comparison with some experimental data is required. The
Al(Mg) SSH will be the purpose of such a comparison in
Sec. VIIL.

III. ELASTIC LINE MODEL
A. Harmonic spring ladder model

To analyze the CRSS against solute content in the differ-
ent alloys, an extended version of the ELM is introduced. In
its simplest version, the ELM requires>'! (i) a typical inter-
action potential between a single isolated obstacle and the
dislocation and (ii) the dislocation stiffness, also named after
line tension, and denoted as I'. At the atomic scale, such
parameters multiply!”-?* as each of them depends on the ob-
stacle position with respect to the glide plane and which SPD
is concerned, i.e., leading or trailing one. As remarked by
Arsenault et al.,’ the potential interaction never vanishes to-
tally because of the Coulomb-type elastic stress field of the
edge dislocation. It is then an interesting theoretical question
whether it is reasonable to follow Nabarro® and introduce a
distance cutoff over the interaction potential, without altering
the CRSS computation.

To tackle the aforementioned difficulties, we develop the
ELM model as follows: (i) to account for the multiplicity of
the obstacles a discrete elastic line model is introduced; (ii)
to sketch out the fcc crystal SPD in such a model, we con-
sider two elastic lines bound by some elastic interactions;
and (iii) to describe accurately the interaction potentials be-
tween the solute atoms and the SPD [see Figs. 2(b) and 2(c)]
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FIG. 6. (Color online) (a) Schematic representation of the trans-
formation from the fcc crystal sites to a perfect hexagonal lattice.
(b) Schematic representation for the one-dimensional ELM with
two bound elastic lines. Circles represent the lattice sites and the
triangles correspond to the nodes of discrete elastic lines. b stands
for the norm of the Burgers vector (see Sec. II).

the elastic lines random potentials are constructed from the
superimposition of some independent effective interaction
potentials, adjusted on the ASC reported in Sec. II D. The
method is now described thoroughly.

In order to account properly for the different atomic con-
figurations of the nearest obstacles, a discrete version of the
ELM (Ref. 33) must be introduced, allowing distinction be-
tween the crystal sites. In order to simplify the symmetries of
the problem, we transform the fcc 3D perfect lattice into an
hexagonal lattice as shown in Fig. 6(a). Our extended version
for ELM is then depicted in Fig. 6(b) for the case of an edge
dislocation. The dislocation is actually thought of as a ladder
of harmonic springs, each linking some nodes [triangles in
Fig. 6(b)] that are dragged along the rows of the perfect
hexagonal lattice. The spring ladder represents the disloca-
tion core dissociated in two SPD. Along the elastic lines, in X
direction, the distance between two nearest rows is b\3/ 2
whereas in the Y direction it is /2. To work with a dimen-
sionless square lattice, we rescale the dimensions in X and Y
directions with the associated inter-row distances. The di-
mensionless node position is denoted as y, for the leading
chain and y, for the trailing one. The PK force stemming
from the applied shear stress applies equally on each dislo-
cation segment. The PK force applied to a segment of length
\V3b/2 is reported totally on the nearest nodes. The over-
damped Langevin equation for the chain node k of the lead-
ing chain writes as follows:

. r ’ * 4
Ny = TgAkyk ~ =y d T+ = 2V 4y
v b

(1)

where N is a damping coefficient with no physical impor-
tance in our static computations, s= [3b%/4 is the unit area of
our hexagonal lattice, A, the discrete Laplacian, d* is the
equilibrium distance between the SPD, I' and vy are the
spring constants, @y, ; is the coordinate of the ith obstacle in
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the kth row of the plane labeled j € [(An),(Bn)] with n e N
and V,_;(x) is the interaction potential between a chain node
and the type I obstacle situated in plane j. The same equation
holds for y, but switching the sign of v and replacing the
interaction potential V,_; with the appropriate form associ-
ated with the trailing partial, and denoted as W,_;. In Appen-
dix B, Eq. (1) is derived from the continuous model for a 1D
elastic line, also known as the line tension model. The
Coulomb-type interactions between the segments of a given
partial are neglected in the present approach. The two chains
are bound together with harmonic springs that intend to rep-
resent the SPD interactions. The strength of these springs is
obtained from the SPD interaction force per unit length, de-
rived from the dislocation elastic theory:®* F,=1y,
—aub?®/21r, where v, is the SFE per unit area, r is the
dissociation width, and « is a geometric factor varying with
Poisson’s ratio v and with the true direction of the SPD Bur-
gers vectors. For some perfect SPD* a=[1/(1-v)
—1/3]/4 which gives approximately a=~0.3 in Al and «
~(0.26 in Ni if one uses for Poisson’s ratio v,;=0.347 and
vni=0.28. The other physical constants needed here are the

(111) shear modulus w=(C,;—Cj,+Cy)/3 which gives
ma1=30 833 Mpa and up;=74 600 MPa and the norm of
the dislocation Burgers vector b=a,/ V2 with ay=4.031 A in
Al and ay=3.52 A in Ni.

Because of the limited dimensions of ASC, the elastic
interactions between the SPD and their periodic images
along the Y direction must be accounted for, which leads, for
the leading partial to a force per unit length,

I T
JVX(r)—*yz—<312qTlﬁgf1 _(,'Ly)—r+(iLy)+V] (2)

This equation can be reduced using a well-known identity of
the Riemann zeta function,

2
Fy(r)= y,—aﬂ[cot<lr>]. (3)

2L, [\ L,

According to the previous elastic theory applied to our ato-
mistic simulation cell, the equilibrium distance between SPD
would then be

L aub?

dspp = —Xarctan( K ) (4)
T 2Ly'y,

In Eq. (1), the dimensionless separation distance between

SPD has been denoted by d*=2dspp/b. For very large L, in

comparison with d0=(%’;—l;j), the width of the stacking fault
ribbon tends to d, as expected in an infinite media.’*
Through ASC, both dgpp, and the stacking-fault energy vy, can
be computed independently in pure Ni and pure Al. The
former is simply obtained from simulations with a disloca-
tion in the computational cell as presented in Sec. II while
the latter is obtained by construction of another simulation
cell?>3¢ with three periodic boundary conditions allowing to
produce some perfect stacking faults, i.e., not bounded by
dislocations. In Ni, we found ;=89 mJ/m? whereas in Al
¥=109 mJ/m?. The SFE computed within the present EAM
underestimate the experimental estimations found by Carter

PHYSICAL REVIEW B 82, 054115 (2010)

and Holmes®” in Ni and Westmacott and Peck>® in Al, with
¥%=120-130 mJ/m? and v,=120-144 mJ/m?, respec-
tively. Using the same computational method as in Sec. II
with no external shear stress applied, the dissociation dis-
tance is computed in ASC. For a simulation cell with dimen-
sions given in Ref. 31, it is found that dgpp=28.6 A in Ni
and dgpp=17.1 A in Al To render the ASC for dgpp com-
patible with those for y; through the elastic theory Eq. (4) we
must adjust the dimensionless coefficient a to @=0.462 in Ni
and @=0.503 in AL

The variation in the SFE with solute concentration may be
important in FRD solid solutions. The SFE has been com-
puted for solid solutions as for the pure metals but introduc-
ing randomly the impurities in the simulation cell as in Sec.
IIF. The SFE is found to decrease linearly with the solute
content cy,

v=89¢,— 670c, in Ni(Al)
and
y,=109¢, - 249¢, in Al(Mg) (5)

with numerical coefficients unit in millijoule per square
meter. The steepest decrease is noticed for Ni(Al). The ASC
presented in Sec. II F also allowed us to compute the average
distance between SPD, dgpp for a finite concentration with
no applied stress. While dgpp hardly varies with ¢, in
Al(Mg), its variation is much more pronounced in Ni(Al).
The analytical computations for dspp, in Eq. (4), where v, is
given by Eq. (5) provides us a satisfactory approximation for
dgpp in comparison to ASC in Ni(Al). The coefficient « in
Eq. (4) has been adjusted only to fit the ASC data for c¢,=0
meanwhile for finite ¢, it was not required to change the
value fixed at ¢;=0. In AI(Mg) the same analytical treatment
overestimates our ASC data. Consequently, in the following
ELM computations dgpp Will be invariant against ¢, in the
case of Al(Mg) whereas in Ni(Al) we shall employ Eq. (4)
combined with Eq. (5) to fix dgpp, and subsequently d* in Eq.
(1). The ASC performed with SRP and TRP constrained solid
solutions (see Secs. IID and IIE) showed us that the
stacking-fault ribbon width depends marginally on the solute
content in both alloys. Such variations will then be discarded
when the ELM computations will concern these constrained
solid solutions.

The first-order expansion of F in Eq. (3), around the
equilibrium distance dgpp, yields a linear force proportional
to (r—dspp),

amub?

d
ZL% sin( i
’ L

'y

Fy(r)=- )2(r_dSPD)- (6)

Multiplying F; by the unit area of our dimensionless lattice
s=13b%/4, we obtain the spring constant y of the transversal
springs in the elastic ladder presented in Fig. 6(b),
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Although the interdislocation forces are usually presented as
long-range elastic Coulomb-type forces, the transversal
springs in the ELM link only the nodes that are situated in
the same lattice row, along the Y direction. We acknowledge
that this may be thought of as a rather rough approximation
which the reliability is yet supported by the following analy-
sis for the profile of anchored dislocations. The study of such
profiles also allows us to determine the strength I" associated
with the lateral springs in the elastic ladder.

Some ASC with a single foreign atom are realized as de-
scribed in Sec. II C. The dislocation is then anchored by an
isolated obstacle and it takes different profile according to
the external shear stress inferior to the critical value. In order
to span a wide range of stress and thus to gain in precision on
the computation of the dislocation bowing, the foreign atom
is substituted with a fictitious atom, which the first-neighbor
bonds are artificially maintained invariant during the simula-
tion, such that the dislocation cannot pass the obstacle (un-
less the stress attains the Orowan threshold which is out of
purpose here). In Figs. 7(a) and 7(b), the profiles of the dis-
location computed from ASC have been reported for differ-
ent applied stresses. The triangles represent the position of
each dislocation segment in the ASC. The different configu-
rations were obtained for an obstacle situated in (A1) plane,
in front of the leading partial in Al [Fig. 7(a)] and in front of
the trailing partial, in the stacking-fault ribbon in Ni [Fig.
7(b)]. In order to reproduce such computations within the
ELM, we introduce also a fictitious obstacle like in ASC,
with an arbitrary form for the potentials V;_; and W,_;, suffi-
ciently hard to impede the passage of the elastic ladder. Then
we proceed the same as in ASC to determine the configura-
tion of the elastic ladder under the same applied stress. The
elastic ladder profiles in ELM eventually can be compared to
the ASC as done in Figs. 7(a) and 7(b) where the profiles of
the elastic ladders are represented by continuous lines. The
adjustment of the spring constant I" in the ELM was realized
such that we found similar anchored profiles in both ELM
and ASC. The comparisons were performed for different
length L, and different external stresses 7. The adjustment of
I', obtained for a set of parameters L, and 7 proves to be
valid over a broad range of those parameters.

Throughout such an adjustment, we found Ty,
=0.101 nN and I'\;=0.162 nN. According to the analytical
elastic theory® for an edge dislocation, the line tension can
be estimated with the formula,

1-2v
m]n(f?/b) R (8)

I‘-el= sz
where R corresponds to the outer cutoff of the elastic theory.
In our simulation cell, R would correspond to L,/2, i.e., the
shortest distance between the dislocation and the free sur-
faces of the cell. With L, in Ref. 31, Eq. (8) yields I'§
=0.2 nN and I';,=0.5 nN. The discrepancy between Eq. (8)
and our computations is partly due to the fact that Eq. (8)
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FIG. 7. (Color online) Configuration for an edge dislocation,
anchored on an arbitrary strong obstacle situated either in front of
the trailing partial (a) or in between both partials (b), in a crystal of
Al (a) and in a crystal of Ni (b) for different applied shear stresses
(see insets). The triangles represent the dislocation segments com-
puted within atomic-scale simulations and the continuous lines cor-
respond to the results from the elastic line model presented in Fig.
6(b).

applies to a dislocation that is not dissociated whereas in our
problem the coefficient I' concerns the stiffness of a single
SPD. To tentatively reduce the discrepancy, we apply the
general formula from the dislocation elastic theory®® to the
case of a single partial dislocation,

_ pbp[(1+ v)cos’(B) + (1 = 2v)sin*(B)]
- 47(1 - v)

re In(R/b), (9)

where this time, b,=a,/ V6 stands for the norm of the partial
burgers vector while B8 e [#w/3,27/3] is the angle between
the line direction and the burgers vector of either the leading
or the trailing partials. Equation (9) yields I'{;=0.132 nN
and F§}1=0.25 nN which proves closer from our computa-
tions in both systems though it still overestimates it. Actually
applying Eq. (9) to SPD still corresponds to a quite rough
approximation where the SPD are considered as some iso-
lated dislocations which is by far not realistic since the SPD
are in contact with a stacking fault. Nevertheless the com-
parison with the elastic theory of dislocation allowed us to
confirm the order of magnitude of T'.
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FIG. 8. (Color online) Width of the stacking fault ribbon dgpp
for an edge dislocation anchored on an arbitrary strong obstacle
situated either in front of the trailing partial or in between both
partials, in a crystal of Al (a) and in a crystal of Ni (b). The symbols
represent the computations from atomic-scale simulations and the
lines correspond to the elastic line model presented in Figs. 6(a) and
6(b) with the same geometric parameters given in Ref. 31.

In order to test further our harmonic spring ladder model,
we determine the variation in the separation distance dgpp
between anchored partial dislocations against the applied
stress. The ASC data have been presented for both alloys in
Figs. 8(a) and 8(b) with symbols. Depending on the position
of the obstacle, i.e., outside or inside the stacking-fault rib-
bon, the distance dgpp either decreases or increases with 7,
respectively. Once again, the same type of computations per-
formed within the ELM [see lines in Figs. 8(a) and 8(b)]
demonstrates a satisfactory agreement with ASC.

From the previous comparisons, we estimate that the elas-
tic properties of the dissociated dislocation have been suc-
cessfully captured within the spring chain ladder. The short-
range harmonic interaction between the chain nodes allows
us to avoid the computational load that would imply the
numerical treatment of the long-range Coulomb-type interac-
tions. It is worth noticing that the latter however enter effec-
tively into the determination of the spring constant I and 7y
since these ELM parameters are adjusted to fit the ASC
where the long-range elastic effects are present.
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FIG. 9. (Color online) Interaction potentials V;_ J between the
elastic line corresponding to the leading partial, for different sys-
tems and different positions of the obstacle above (A1) and below
(B1) the glide plane. These potentials have been constructed with a
series of cubic polynomials, interpolating the coordinates for the
first derivative zeroes.

B. Isolated solute atoms pinning potentials

In the ELM, we assume that the obstacle forces apply
solely on the ladder nodes in the lattice row where is situated
the obstacle. The interaction potentials V,_; and W,_; between
the obstacles and the elastic ladder nodes are constructed
with a series of cubic polynomials, interpolating the zeroes
of the potential-energy derivatives. The position of such ze-
roes and the values taken by the potential energy at such
points serve as adjustable variables. The coefficients of the
polynomials are determined consistently by the conditions of
continuity of the potential and its first derivative. The adjust-
able variables are tuned such that to sketch out the internal
energy U, between the partial dislocations and the foreign
atoms, in the ASC presented in Sec. II D. In Figs. 9(a) and
9(b), the end results from our spline procedure is presented
for the two systems and for the interaction potential between
the leading partial and an isolated obstacle either situated in
the (A1) plane (full line) or in the (B1) plane (dashed line).
The same procedure has been applied to derive the interac-
tion potential with the trailing partial. The total energy asso-
ciated with Eq. (1) is simply given by
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L]
Such an energy is computed as the spring ladder bypasses the
isolated obstacle for an external force larger than the critical
threshold that corresponds to the obstacle. The results of our
adjustment have been reported as continuous lines in Figs.
2(b) and 2(c) for some obstacles situated in planes (A1) and
(B1), respectively. It is worth noticing that in the ASC the
internal energy U,;, in addition to the interaction potential
between the dislocation and the obstacle, also involves the
elastic energy of the dislocation bowing. In the procedure of
adjustment for the potentials V;_; and Wi, the total line
length has been chosen equal to the dislocation length L, and
the dissociation distance dgpp and the spring stiffness y were
determined from Egs. (4) and (7) with the proper L,, i.e.,
corresponding to the cell of the ASC. Moreover the ASC and
the ELM computations where performed with the same ap-
plied stress. In such conditions, and on the basis of the re-
sults shown in Figs. 7 and 8, we may expect that the ELM
yields a satisfactory computation of the elastic energy con-
tribution from the dislocation bowing.

In Figs. 10(a) and 10(f), we also present the ASC results
and the corresponding ELM adjustments for the isolated ob-

stacles situated in the next-nearest (11_1) planes, namely,
(An) and (Bn) for n € [2,4]. For the type I obstacles interac-
tion with the trailing SPD, we found that a satisfactory de-
scription of the potentials could be obtained with some func-
tions that are simply the symmetric of the interaction
potentials with the leading SPD, i.e., W_j(x)=V_;(=x). In
order to specify the location of a type I obstacle, the sub-
script T is completed with the notation for the (111) plane
where it is situated. For instance, a type I obstacle in the (A3)
plane will be referred as to an obstacle of type I-A3. From
the comparison between Figs. 2(b), 2(c), and 10(a)-10(f),
one notes that the interaction potentials, with multiple ex-
trema when the obstacle is near the glide plane show only
one extremum per SPD when the obstacle is situated further
in the next-nearest planes, as it is expected from a Volterra
elastic theory.!7?°

C. Dimers pinning potentials

In previous studies bearing on the SSH in Ni(Al)
system,'>!7 the role of clusters was put forward to explain
the CRSS rate against c,. Here we first examine the first-
neighbor dimers which the interatomic bonds are oriented

along either [110], [011] or [101]. The three configurations
have been represented in Figs. 11(a)-11(c) and they are as-
sociated with three new types of obstacles, hereafter denoted
by type II, type I1I, and type 1V, respectively. Only the dimers
situated either in (A1) or in (B1) planes are concerned. As
done previously for type I, the interaction potentials that cor-

PHYSICAL REVIEW B 82, 054115 (2010)

respond to these obstacles are introduced in the ELM by
fitting the ASC data obtained as described in Sec. II C. There
are 12 new potential forms. For instance, the three potentials
Vitats Vimar» and Viy_4; concern the interactions between the
leading partial and the dimers situated in the (A1) plane
whereas Wy_g1, W1, and Wiy g, are for the trailing partial
and the dimers situated in the plane (B1). The same proce-
dure as for V,_; and W,_; is applied to derive these new
interaction potentials. Replacing V,_; and W,_; in Eq. (1)
and in Eq. (10) with V, and W, where ¢
e[Il-A1,0II-A1,IV-A1,1I-B1,11I-B1,IV-B1], the variation
in the energy in the course of the spring ladder is computed
for each type of dimer. The adjustment of the cubic polyno-
mials associated with the different interaction potentials al-
lows us to describe accurately the data obtained from ASC
for U.y, when an edge dislocation bypasses the different
dimers. The energy variation computed from the ELM has
been reported with continuous lines in Figs. 12(a)-12(f) for
the dimers situated in the (A1) plane and in Figs. 13(a)-13(f)
for the dimers situated in the (B1) plane. For comparison, the
variations in U,y obtained from ASC and targeted in the
adjustment procedure have been represented in the same fig-
ures with symbols. Because of the asymmetry of the ob-
stacles with respect to the X direction [see Figs. 11(a)-11(c)],
the potential forms V, and W, have not the same symmetry as
for V,_; and W,_;.

In addition to the previous dimers, parallel to the (111)
planes we also consider some dimers, the bonds of which
cross the glide plane. Figure 14(a) sketches out the formation
of a first-neighbor dimer during the bypassing of a disloca-
tion whereas Fig. 14(b) shows the opposite process, i.e., the
dissociation of a pre-existing first-neighbor dimer. The varia-
tions in the potential energies associated with these processes
are presented in Figs. 14(c)-14(f) for the two systems. The
account of such dimers led us to the introduction of two new
obstacle types in the ELM, denoted hereafter as fype V and
type VI. In Ni(Al), a marked variation in the potential energy,
extending over the whole stacking-fault ribbon contributes to
the dislocation pinning, being absent from or negligible in
Al(Mg). This variation corresponds to an increase in the case
of the formation of a first-neighbor dimer and to a decrease
when a first-neighbor dimer is dissociated in the course of
the dislocation passage. Such a variation has its physical ori-
gin in the fact that the order energy is much more important
in Ni(Al) than in Al(Mg). With the interatomic potential used
in the present study for Ni(Al), it was found that the forma-
tion energy for a first-neighbor dimer is 0.35 eV while it is
—0.2 eV for the second-neighbor dimers. These formation
energies were computed within independent ASC, i.e., with
no dislocation inside the simulation cell. The potential-
energy difference between the two configurations is then
0.55 eV which corresponds to the increase (respectively, de-
crease) in energy in Fig. 14(d) [respectively, Fig. 14(f)]. As
the potential-energy rise extends over the entire staking fault,
the mean force is close from 0.55 eV divided by the
stacking-fault ribbon width, around 28 A in our EAM model
for Ni(Al), which would therefore give a pinning strength
close from 0.03 nN. This is the same order as the maximum
pinning forces reported in Fig. 2(a). In Al(Mg), the differ-
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FIG. 10. (Color online) Internal energy of the simulation cell U, for an edge dislocation bypassing a type I obstacle situated in the

nearest planes (111) above and below the glide plane. The planes are referred as a function of their apical height (see the text). The
continuous lines have been obtained from the ELM, detailed in the text.

ence between the dimer formation energies is one order
smaller as we found 0.03 eV in our EAM model for Al(Mg).
Then, accordingly the associated pinning effect is negligible.
In an earlier publication,’ the large energy formation in
Ni(Al) leads the authors to regard the type V and VI dimers
as strong contributions to the dislocation pinning. On the
basis of the present work, one will be able to answer the
question raised in Ref. 15.

IV. DISLOCATION STATISTICS IN SRP SOLID
SOLUTIONS

Here, first we must emphasize that the ELM parameters
have been adjusted to fit the elementary interactions between
the edge dislocation and the obstacles and that such an ad-
justment remains independent of the following statistical
study, where no adjustable parameter is required. The ran-
dom potential landscape of the elastic ladder is constructed
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2]
[110]

FIG. 11. Schematic representation for the first-neighbor dimer configurations in the (1 11) plane. Portion of the two nearest (1 1) planes
that bound the dislocation glide plane. The square symbols correspond to the solute atoms whereas the circles represent crystal atoms. Open
symbols represent atoms situated above the glide plane, the full symbols the ones below the glide plane. The arrows indicate the relative

motion of the atom in the course of the dislocation passage.

by selecting randomly the sites of the hexagonal lattice [Fig.
6(a)] that are occupied by the obstacles. The distance d, over
which the elastic ladder is dragged, the total chain length L,
and the simulation cell size in Y direction, L, have been
chosen equal to those in the ASC in next sections (see Ref.
31). In ELM for SRP solid solutions, the total number of
obstacles, distributed on the discrete lattice is N,=c,Ld,/s.
Each site of the hexagonal lattice can take two possible
states: (i) unoccupied or (ii) occupied by an obstacle of type
I-A1. Then the nearest-neighbor sites of each occupied site
are probed in order to recognize the dimers, i.e., the obstacles
of type II, 1T, and TV [see Figs. 11(a)-11(c)], distinguished
by the direction of their bonds. According to the bond direc-
tion, the type of obstacle is identified as either I1I-A1, III-A1,
or IV-A1. Then one of the two sites concerned by the dimer
is considered as bearing the obstacle with the suitable type
and the other one is forced into the unoccupied state. This
avoids the double counting of the dimer obstacles. The lattice
sites can then take five different states.

The dynamical equation for the leading spring chain is
extended to the case with multiple types of obstacle,

) , ,
Ay = TgAkyk - Ay - Vi~ 2d/b] + 75 - E Vt—Al(yk - a;c,i,Al)v
\J

it

(11

where now a; ; ,, is the ¥ coordinate of the ith obstacle of
type 7€ [I,II,II,IV] in the kth row of the dimensionless
hexagonal lattice, corresponding to the plane (A1). The ELM
predictions for the edge dislocation CRSS in the two differ-
ent systems have been reported in Fig. 3 as continuous lines
with open symbols. The excellent agreement between the
ELM and the ASC demonstrates that the account of the dif-
ferent physical quantities, important in SSH, is correctly
achieved. A quantitative agreement is obtained in both sys-
tem Ni(Al) and Al(Mg) over the whole range of concentra-
tion. To determine the average critical shear stress, we used
for every concentration a sampling of 20 configurations in
ASC and 80 in the ELM where the computations are much
shorter, i.e., few minutes each on a standard monoprocessor.
The mean-square root of the CRSS dispersion computed
from the ELM has been reported in Fig. 3 with error bars.
The CRSS dispersion computed from ASC was found to be
similar but less regular against ¢, because of the limited sam-

pling. From Fig. 3, one notes clearly that the CRSS disper-
sion increases with ¢, in the two systems.

Switching off the dimer recognition in the ELM, the
dimer-dislocation interaction then consists of the linear su-
perimposition of the interaction between the two solute at-
oms and the dislocation. The critical CRSS has been com-
puted in such a modified ELM in order to quantify the role of
the dimers in the dislocation pinning. In Fig. 15, the results
are compared with those obtained from the previous ELM,
involving the potentials specific to dimers. For higher con-
centrations, above 4 at. %, the CRSS from the second ELM
neatly deviates from the former model and becomes errone-
ous in comparison to the ASC reported in Fig. 3. In Ni(Al)
the contribution specific to dimers enhances the CRSS while
in Al(Mg), by contrast, it lowers it. In both systems, at c;
=10 at. % the difference between the CRSS derived from
the two different ELM may reach 15-20 % of the CRSS. In
order to accurately approach the dislocation statistics, we are
therefore compelled accounting for the pinning potentials of

the dimers situated in the nearest (111) planes. The contri-
bution of dimers proves though far much less important than
what was expected from the analytical theory proposed in
Ref. 17 by one of us (L.P.).

V. DISLOCATION STATISTICS IN TRP SOLID
SOLUTIONS

To extend the ELM to the case of TRP solid solutions, we
conserve the hexagonal lattice as presented in Fig. 6(a) and

we describe the sites of the two (111) planes contiguous to
the glide plane by a same single hexagonal lattice. This cor-
responds to the shift in the X direction presented in Fig. 6(a),

which leads to superpose the two (111) planes. The total
number of obstacles is fixed to N,=2¢L,d,/s. Each site of
the hexagonal lattice can take three different states: unoccu-
pied, occupied by a type I-A1 obstacle or occupied by a type
I-B1 obstacle. The dimers are then identified by probing the
nearest-neighbor sites of an occupied lattice site, following
the same procedure as in SRP (see Sec. IV). The ELM pre-
dictions for the pinning strength of TRP are shown in Fig. 4
and they demonstrate again a remarkable agreement with
ASC. In the ELM, it is possible to cancel arbitrarily the
recognition of type V and type VI obstacles. Then these sol-
ute atom dimers only contribute to the elastic ladder pinning
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FIG. 12. (Color online) Internal energy U in ASC for an edge dislocation bypassing dimers situated in the (111) planes just above the
glide plane (A1). On the left hand side Al(Mg) and on the right Ni(Al). Symbols represent the ASC data and the continuous line corresponds
to ELM which the interaction potentials V;_, and W,_, [i € [I[,1II,IV] and n=(A1)] have been properly adjusted on the atomistic data.

through the linear superimposition of the force fields due to
the type I-Al and I-Bl obstacles associated to form the
dimer. With such a modified ELM, the computations for the
TRP CRSS is presented in Fig. 16 for the two systems, along
with the results obtained earlier with the original ELM, that
is with specific potentials for type V and type VI obstacles.
For concentration larger than 4 at. %, the account of these
dimers may increase in more than 10% the CRSS in Ni(Al)
and lowers it in AI(Mg). This reflects the same trend as for

the type II, III, and IV obstacles in SRP (see Fig. 15). Such a
comparison allows us to establish to which extent the larger
order energy in Ni(Al) impacts the SSH in the ideal random
solid solutions.

VI. DISLOCATION STATISTICS IN FRD SOLID
SOLUTIONS

In addition to the pinning forces arising from the solute
atoms situated in the two planes that bound the glide plane,
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FIG. 13. (Color online) Same as in Figs. 12(a)—12(f) but for dimers situated in (111) planes just below the glide plane j=(B1).

we now consider those situated in the next-nearest planes

above and below, up to the fourth (111) planes, namely, (An)
and (Bn) with n=4 in our notations. It is equivalent to in-
troducing a upper distance cutoff on the dislocation-obstacle
interaction as earlier suggested by Nabarro in his analytical
SSH theory.>*’ We also studied the ELM statistics, including

in our computations the contribution from further (111)
planes, with n=7, but no significant increase in the CRSS
has been noticed in comparison to the case n=4. This con-
firms Nabarro’s assumption. In plane (An) and (Bn) with n
>1, i.e., further than the planes that bound the glide plane,

we assume that the dislocation interaction with dimers and
other clusters could be approximated as the linear superim-
position of those with type I obstacles. This assumption
proves satisfactory and allows us to limit the number of dif-
ferent types of obstacles that must be accounted for.

The total number of obstacles in the height nearest (111)
planes is fixed to N,=8c,L,d,/s. The obstacle recognition
proceeds the same as for SRP and TRP (see Secs. IV and V).
In Fig. 5, the CRSS computed for Al(Mg) and Ni(Al) is
plotted against c¢,. An excellent agreement is obtained be-
tween the ASC and the ELM predictions for the dislocation
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FIG. 14. (Color online) In (a) and (b), schematic representation of the solute atom relative flip for the dislocation bypassing some solute
atom dimers which the bond crosses the glide plane (see legend in Fig. 11). The corresponding variation in U, computed from ASC are
reported in (c) and (e) for AI(Mg) and in (d) and (f) for Ni(Al) as symbols. The continuous lines correspond to the ELM adjustments (see

in text).

statistics in the two different systems. The ELM thus pro-
vides a satisfactory description of the edge dislocation statis-
tics at the atomistic level. Such a result indicates clearly that
the physical origin of SSH stems from a local interaction
between solute atoms and the SPD.

In Fig. 5, we note that the scattering of the CRSS in-
creases with solute content and even reaches same order as
the CRSS itself, for ¢,=10 at. %. Here the computations
have been performed for a single dislocation. With an assem-
bly of N independent dislocations the CRSS scattering can be
expected to reduce by a factor VN, according to the central
limit theorem. In macroscopic samples, this factor is much
larger than unity which thence leads to a negligible CRSS
scattering.

VII. MULTISCALE ELASTIC LINE MODEL

In Fig. 17, we reproduced the experimental data (open
triangles), obtained by different authors through tensile
tests,”* applied to Al(Mg) monocrystalline samples. The low-
temperature data have been treated such as to obtain the
static depinning threshold,® avoiding strength loss due to the
very low-temperature effects.*! This strength loss, either due
to the dislocation inertia,*? to some quantum effects or to the
weakness of the metal conductivity*> must actually be ig-
nored to properly evaluate the static depinning threshold. A
mere extrapolation® of the experimental data from the tem-
perature range where the stress-temperature rate is negative
is expected to yield a satisfactory estimate for the static
CRSS. Concerning Ni(Al), we did not found low-
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FIG. 15. Critical shear stress computed for Ni(Al) and Al(Mg)
SRP solid solutions, within the ELM, as detailed in the text and
sketched out in Fig. 6. The open symbols correspond to the same
ELM as in Fig. 3. The full symbols correspond to the computations
from an ELM where the solute atom dimers are approximated as the
linear superimposition of the single solute atoms taking part to the
dimers.

temperature tensile tests as for AI(Mg). We tentatively exam-
ined some experimental data from various sources as the
deformation tests performed by Nembach and Neite** above
90 K, the compressive tests by Mishima et al.*> above 73 K
and the nanoindentations*® measuring hardness (H), from
which the yield stress o can be deduced empirically by ap-
plying the linear relation H=30 (established for metallic
crystalline materials*’*%). However, those experimental data
scatter too much and it has not been possible to extrapolate
them against temperature in order to deduce the static CRSS.
We thus choose to limit the comparison between our theoret-
ical results and the experimental data to the Al(Mg) system.

The distance L, has been chosen equal to I um. For such
Ly, dspp=dy is a very good approximation. The total dislo-
cation length has been fixed to L,=0.8 um, above which we
found a CRSS invariant against L, indicating that the Larkin
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FIG. 16. Critical stress computed for Ni(Al) and Al(Mg) TRP
solid solutions within ELM. The open symbols are the same as in
Fig. 4. The full symbols correspond to a different ELM where type
V and VI dimers are approximated as the linear superimposition of
single solute atoms.
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FIG. 17. (Color online) ELM computations for the CRSS
against solute atomic concentration ¢, in Al(Mg), for different glide
distances d, (see legend). For comparison, the experimental data
from Ref. 24 for Al(Mg) were reported as triangles. The rescaling
for the line tension I' is detailed in the text.

length?34%0 is inferior to 0.8 um. A series of ELM compu-
tations were performed with different glide distances d,. In
Fig. 17, the results are presented for Al(Mg) and they agree
quite well with the experimental data, particularly for d,
=4 nm. Interestingly, we note that the CRSS increases with
d,. The CRSS dependence in d, is the mere consequence of
the increasing probability for the dislocation to encounter
stronger obstacles in its course. This has been studied thor-
oughly in a simpler ELM (Refs. 33 and 51) where the CRSS
was shown to increase with d, as

7.=A(c,)In(dy)*, (12)

where A is a function of ¢, and @<<1 is an exponent that
varies linearly with [~In(c,)]. With the present ELM, the
parameter « has been adjusted such as to reproduce our nu-
merical results (shown in Fig. 17) for ¢,=0.1 in Al(Mg). It
was found that a«=0.3. The logarithmic variation in 7,
against d, indicates that such a variation should be negligible
in relative value for very large d,.

In the present tentative to compare the theory with experi-
ments, the distance L, may be thought of as the shorter in-
terdislocation distance, such that L,=v1/py where py corre-
sponds to a realistic dislocation density in a weakly
deformed alloy, i.e., pg=10'> m=2. The latter density leads
to a typical interdislocation distance of 1 um, corresponding
to the one employed previously to compute the CRSS in Fig.
17. However, the dislocation density in the tensile tests is
known to vary during the deformation process, which hin-
ders a precise comparison between theory and experiments.
In a same manner it is difficult to estimate d, from the ex-
perimental works. Here we propose to integrate the Orowan
relation between the deformation rate and the average dislo-
cation velocity. It is then easy to show that e=pybd,. With
pq=10" m™ and d,=100 nm, we obtain €=2.5X107%,
which proves far much smaller than the true elastic limit
found in macroscopic tensile tests (see, for instance, Ref. 45)
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Certainly, a manner to establish a more accurate comparison
with experiments would be to work with data obtained from
in situ studies where the glide of a single dislocation can be
followed at low temperatures.’>>* On the basis of the
Orowan relation, a true elastic limit of few tenth of percent,
more realistic in macroscopic tests, leads to d, much longer
than the ones used in our computations, reported in Fig. 17.
However Eq. (12) yields a relative variation in the CRSS that
becomes negligible for sufficiently large d,. For instance, the
same type of ELM computations as reported in Fig. 17 but
for d,=0.5 um yields a CRSS only slightly larger than for
d,=0.1 um. We therefore consider that the CRSS computed
with d,=0.1 wm is a good approximation for the CRSS in a
macroscopic sample where d, is expected to be much larger.
Then the agreement between the theory and the experimental
data reported in Fig. 17 is not very good since the computa-
tions overestimate the CRSS measurements in AI(Mg) by a
factor 1.6. The agreement obtained for d,=4 nm proved ac-
tually fortuitous results that is due to dimensional effects.
The uncertainty of our computations might be put on the
EAM employed to model the Al(Mg) interatomic forces. In
Appendix A, a comparison between the different EAM is
reported to computing the CRSS from ASC in Al(Mg). The
EAM version proposed by Mendelev et al.> leads to a CRSS
still larger than the one obtained with the EAM chosen in our
study. Therefore we cannot expect that the change in EAM
would solve the discrepancy, noticed between the experimen-
tal data and the theory.

The present work concerns the edge dislocations. Thence
one may wonder whether the interplay of screw dislocation
could explain our CRSS discrepancy. Since the transmission
electron microscopy in the fcc alloys,’® shows that the pro-
portion of screw dislocations is similar to the edge ones, the
screw depinning must occur for stresses comparable to the
edge dislocations,?® otherwise the microstructure of a de-
formed sample would imply a majority of edge dislocations.
It seems therefore difficult to invoke the depinning of screw
dislocations as a possible explanation for the theory failure.

We remark in Eq. (8) that according to the dislocation
elastic theory the line tension I' is expected to vary with the
log of R, the outer cutoff radius. Such a quantity is usually
related to the dislocation distance to nearest extended defects
that can be a surface, a grain boundary or another disloca-
tion. In theory, it is standard to assume that R \s’Tpd.
Though, in our previous ELM application to microscopic
scales we assumed that I" could be kept equal to the value
determined throughout our adjustment on the ASC disloca-
tion profile (see Sec. II). In order to determine what I’
should be when py~ 10'?> we assume that the logarithmic law
for I', predicted by the dislocation elastic theory is verified
but that the prefactor of such a law can be rescaled in order
to match our computation for I' at the atomic scale. Our
additional assumption is equivalent to suppose that the ratio
I'/T" is constant in the scale transition toward microscopic
scales. With R:\e“‘Tpd 2 we obtain a rescaled line tension
I'=0.278 nN instead of the I'5;=0.101 nN in Sec. IIl. Put-
ting the new value for the line tension I' in the ELM, the
CRSS has been computed against the solute concentration
for d,=0.1 wm. The corresponding results are shown in Fig.
17 as a continuous line with open square symbols which now
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slightly overestimates the experimental data. According to
our estimation the increase in I' along the scale transition
seems thus sufficient to resolve a large part of the theoretical
discrepancy with the experiments.

For the sake of consistency between the different atomic-
scale models, when we compared the dislocation statistics in
ELM and ASC, i.e., in Sec. VI the stacking-fault energy 7, in
the ELM computations was fixed to the one computed in our
ASC, i.e., within the EAM described in Sec. II. The ELM
can also be employed independently from these EAM, in
order to determine how the CRSS would vary with ;. Ac-
cording to the first-principles computations realized by
Woodward et al.,”’ the separation distance between SPD is
8 A for the edge dislocation in Al In the EAM model em-
ployed here, we found dgpp=18 A. We thus correct in Eq.
(4) the SFE in order to obtain dgpp=8 A in the ELM. This
leads us to an SFE 2.5 larger than the one found in our EAM
computations [see Eq. (5)]. We then performed the same
ELM computations in Sec. VI but with the new value of
SFE. It was found a CRSS of few percents smaller than those
reported in Fig. 17. A strong SFE variation seems thus not to
yield an important change in SSH.

A valuable property of ELM lies in that large samplings
can be performed with a minimum of computational force,
so that we obtain easily the CRSS with a very good preci-
sion. It is then of some interest to examine also the CRSS
rate against c,. Taking as targeted data the ELM results simi-
lar to those presented in Fig. 17, we adjust a power law of
the form 7,=Ac, as it is predicted by different analytical
theories for SSH.!>*3 In our fits of the ELM data in Fig. 17,
the parameters A and 7 are adjusted on the different CRSS
curves, corresponding to different d,. We obtained: 7=0.61
for d,=2.5 nm and ©=0.67 for d,=0.1 um. Clearly the ef-
fective concentration exponent 7 increases with the glide
distance dg,51 a feature absent in the standard analytical SSH
theories. It is however important to stress that the latter pre-
dict correctly that the CRSS decreases as the inverse of the
line tension and that it increases with the maximum pinning
force and with the solute content c,. All these features are
actually confirmed by our computations. On a pedagogical
ground, the early SSH theories remain therefore highly valu-
able.

From our study of different simulation cell geometries, we
also noticed that 7, decreases with L, when L, is small
enough to yield a separation distance dgpp inferior to d,.
Such a decrease is the consequence of the staking-fault rib-
bon tightening, under the effect of the Coulomb-type inter-
actions between the SPD and their periodic images in the Y
direction. Actually the decrease in dspp with L, [see Eq. (4)]
leads to an increase in the spring constant y in Eq. (7), which
contributes to stiffer the ensemble of the elastic ladder and
thus alters the total pinning strength. We exemplify the effect
of a variation in L, in the case of the random Ni(Al) solid
solutions in Fig. 18. Here it appears neatly that for a small
enough interdislocation distance L,, the CRSS is inferior to
the value computed for L =1 wum. In Al(Mg), for some ge-
ometries with small enough L,, the computed values for the
CRSS were comparable to the experimental data reported in
Fig. 17 but such an agreement remains a fake yielded by the
dimensional effect on L,, which is then far too small in com-
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FIG. 18. (Color online) ELM computations for the CRSS
against solute atomic concentration ¢, in Ni(Al), for different dis-
tances between the dislocation periodic images along the Y direc-
tion L, (see legend) and for different approximations for dimers
interaction potentials and the SFE. The dislocation length is L,
=80 nm and the glide distance d,=100 nm. The effective concen-
tration exponent 7 is reported for each set of data.

parison with the realistic value of L,=1 wm. The same type
of fit in concentration power law as performed previously for
Al(Mg) was realized in Ni(Al). Some of our results are re-
ported in Fig. 18. For comparable dislocation geometries,
L,=80 nm, L,=1 um, and dg=0.1 pm, the effective expo-
nent 7 is found larger in Ni(Al) than in Al(Mg), ie., 7
=0.79 in Ni(Al) against =0.67 in Al(Mg). In order to con-
firm the importance of dimers in the pinning strength of
FRD, as we noticed in SRP and TRP constrained solid solu-
tions, we employ again the ELM where the dimer pinning
potentials are approximated by the linear superimposition of
the single solute atom ones. The results for the Ni(Al) FRD
are presented in Fig. 18 where one notes that the ELM pre-
dictions deviate above c;=4 at. % and that for c;
=10 at. % the linear approximation on the dimer potential
underestimates by 10% the true predictions. Below c;
=4 at. % the SSH can be described in term of an interaction
between the dislocation and the isolated solute atoms
whereas above this concentration the account of the solute
atom dimer is required in order to provide an accurate com-
putation. The adjustment of an effective power law for the
CRSS gives an exponent 7=0.73 which is inferior to the
value found in the ELM with specific dimer potentials (7
=0.79) but which is still significantly larger than in Al(Mg)
(7=0.67). In addition to the previous approximation on the
solute atom dimers, we also performed some computations
with the same ELM where the SFE is fixed to a constant,
independent from c, that is the SFE computed in the pure Ni
[see Eq. (5)]. The result for the CRSS is presented in Fig. 18
where one notices that the CRSS still decreases with the
additional approximation. The reason for this is that fixing
the SFE impedes the stacking fault ribbon to broaden with c,
which according to Eq. (7) leads to a more rigid elastic lad-
der as it was analyzed previously about the CRSS variation
against L. The adjustment of an effective power law gives
an exponent 7=0.66 which is, this time, comparable to the
exponent found in Al(Mg) for the same geometry. We thus
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conclude that the difference in the CRSS rate between the
two systems stems from the association of the dimer pinning
strength with the variation in the SFE with the solute content.

VIII. DISCUSSION

Our analysis of the SSH in different model alloys, i.e.,
Ni(Al) and Al(Mg) showed that it is possible to obtain a
quantitative agreement between ASCs and a suitably ex-
tended ELM. Our developments for ELM demonstrate how
to transfer the data acquired at the atomic scale toward larger
scales. On the basis of such a work, we believe that bridging
ASC to multidislocations simulations as discrete dislocations
dynamics>® (DDD) could proceed through the development
of a discrete version of ELM as the one presented here. We
admit though that the work realized here is not yet sufficient
to finalize an ASC to DDD bridging. Actually such a task
would also require to account for the thermal activation of
the dislocation glide as well as other processes as the solute
diffusion and the dislocation cross slip. The integration of
such mechanisms in ELM may be thought of as a long-
standing work but it presents an encouraging perspective for
a truly multiscale simulation.

A valuable property of the ELM lies in the fact that the
different physical features introduced phenomenologically in
the model can be switched off arbitrarily in order to deter-
mine their importance in the dislocation statistics and thence
in SSH. Following such a scheme, the main contributions
that differentiate hardening in Al(Mg) and Ni(Al) have been
worked out whereas those of less importance could have
been discarded, thereby leading us toward a consistent un-
derstanding of SSH. Here we demonstrated that the main
contribution to SSH in fcc metals stems from the short-range
interaction between the SPDs and the single isolated solutes
situated in the nearest planes that bound the dislocation glide
plane. In addition, the use of ELM allowed us to characterize
the pinning contributions from (i) the solute atom obstacles
situated in the vicinity of the glide plane, (ii) the solute atom
dimers, and (iii) the effect of broadening of the stacking-fault
ribbon. These features were found to be the physical ingre-
dients needed in ELM to obtain a quantitative agreement
with the dislocation statistics simulated through ASC. Note-
worthy the Coulomb-type interaction between the solute at-
oms and the dislocation, stemming from the long-ranging
dislocation stress field was discarded in the present version
of ELM whereas it was integrated consistently in the ASC.
The agreement obtained between the ELM and the ASC for
the dislocation statistics shows us that the long-range inter-
action has a negligible weight in the determination of the
CRSS, as it was early expected by Nabarro.>*? According to
our computations, the pinning of solute atoms becomes inef-
fective when they are situated farther than the fourth-
neighbor crystal planes from the glide plane.

Finally, it is worth stressing that qualitatively, the ELM is
independent from the EAM model chosen to adjust its input
parameters. Some atomistic data different than those derived
from the present EAM can be used to adjust these param-
eters. For instance, the obstacle-dislocation interaction po-
tentials and the dislocation elastic features could be derived
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FIG. 19. (Color online) Critical resolved shear stress computed
from ASC for the fully random solid solutions of Al(Mg) and
Ni(Al) with different concentrations ¢, and with the geometry given
in Ref. 31. Different EAM are employed for the two systems (see
legend). The EAM chosen for the present study are those developed
by Liu er al. (Ref. 23) for AI(Mg) and by Rodary et al. (Ref. 15) for
Ni(Al).

from different EAM interatomic potentials as those proposed
by Mendelev et al.>® and Purja Pun et al.’° (see Appendix A)
or else from some first principle studies. The important result
of the present study was to show the feasibility of a quanti-
tative agreement between the statistics of the ELM and the
statistics of a dislocation in ASC. The comparison with the
experimental tensile tests as exemplified with Al(Mg) (Ref.
24) in Sec. VII requires though to work further the multiscale
approach.

APPENDIX A: COMPARISON OF SSH IN
DIFFERENT EAM

For the same geometry of the simulation cell’! as the ASC
described in Sec. I F, the simulations are performed with
different EAM to compute the CRSS in the fully random
Al(Mg) and Ni(Al) solid solutions. The results obtained with
the interatomic potentials employed in the present study, i.e.,
the EAM proposed by Liu et al.?® for Al(Mg) and the EAM
proposed by Rodary et al.'> for Ni(Al) are compared with
those obtained from the more recent EAM developed by dif-
ferent authors: the EAM proposed by Mendelev ef al. in Ref.
55 for Al(Mg) and the one proposed in Ref. 59 for Ni(Al) by
Purja Pun and Mishin. The different sets of data for the
CRSS are presented in Fig. 19 where the results that corre-
spond to the earlier EAM versions are the same as those
already shown in Fig. 5. The comparison shows us that the
CRSS computed from different EAM for a same system di-
verge which demonstrates the importance of the atomic-scale
details into the SSH. With the recent EAM, the CRSS in the
two systems are comparable. The choice to work with the
EAM developed earlier in Refs. 15 and 23 was merely mo-
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tivated by historical reasons since the present work started
much before the publication of the recent EAM. Our study
bearing essentially on the development of the ELM for the
dislocation depinning statistics, the proper choice of an EAM
potential is not the purpose of our study.

APPENDIX B: DISCRETE VERSION OF THE ELASTIC
LINE MODEL

In the continuous version for the ELM, the athermal
Langevin dynamics of the elastic body is given by the fol-
lowing equation:

BYZ(X,I)=FYXX—U,(Y)+fA, (Bl)

where Y(X,1) is the position of the string segment situated at
the coordinate X, I' is the stiffness of the line, f, is the
external applied force per unit length, v(Y) is the random
potential field per unit length, and B is a mobility coefficient.
The single line model Eq. (B1) is extended to the case of two
bound elastic lines. Then, the Langevin dynamics of the en-
semble now composed with two strings is given by

BY,(X.)) =TYyxy—v'(Y) + f+g(Y - Y'),

BY!(X.) =T Y}y —w'(Y)+f—g(Y-Y'), (B2)

where Y(X,1) [respectively, Y'(X,1)] is now the position of
the leading (respectively, trailing) string segment and v(Y)
and w(Y’) are the random potential fields per unit length for
the leading and the trailing lines. In Eq. (B2), we introduced
the interaction force per unit length between the lines, de-
noted as g(Y—Y’). In the case of two partial dislocations, f
stems from the Peach-Kohler force related to the applied
stress 7. The component of such a force in the direction of
motion is equal for both partials f,=7b/2 where b is the total
Burgers vector. In order to account for the atomic-scale de-
tails, Eq. (B2) must be discretized. To work with the hexago-

nal lattice, corresponding to the fcc (111) plane symmetry,
we_divide the dislocation line into segments of length £
=\3b/2 [see Fig. 6(a)]. The coordinate ¥ and X are rescaled:
y=2Y/b and x=2X/\3b. Multiplying Eq. (B2) by the el-
ementary segment length £, a new equation is obtained for
the dimensionless dynamics of the leading string,

+ V.1 —2Y,
Ay,(x,z)=r[y“1 Vet Vil

/

Y

-V +ms+Gly-y'),

(B3)

where s=13b%/4, V(y)=Lv(Y), G(y)=Lg(Y), and \=sB.
The same equation holds for the trailing string with proper
notations, switching the sign in front of G. The expression
for the latter is derived in Sec. III.
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